Differentiation Rules

From Section 3-4:

$$1. \ \frac{d}{dx}(C) = 0$$

$$\frac{d}{dx}\left(x^n\right) = n \ x^{n-1}$$

3.
$$\frac{d}{dx}(k f(x)) = k f'(x)$$

4.
$$\frac{d}{dx}(f(x)\pm g(x)) = f'(x)\pm g'(x)$$

From Section 3-5:

5.
$$\frac{d}{dx}(F(x)\cdot S(x)) = F(x)S'(x) + F'(x)S(x)$$

6.
$$\frac{d}{dx} \left(\frac{T(x)}{B(x)} \right) = \frac{B(x)T'(x) - T(x)B'(x)}{\left[B(x) \right]^2}$$

From Section 3-6:

7.
$$\frac{d}{dx}\left(\left[f(x)\right]^n\right) = n\left[f(x)\right]^{n-1}f'(x)$$

From Section 5-2:

$$8. \quad \frac{d}{dx}(e^x) = e^x$$

$$9. \quad \frac{d}{dx}(\ln x) = \frac{1}{x}$$

From Section 5-3:

$$10. \frac{d}{dx} \left(e^{f(x)} \right) = e^{f(x)} f'(x)$$

$$11. \frac{d}{dx} \left(\ln \left(f(x) \right) \right) = \frac{1}{f(x)} f'(x) = \frac{f'(x)}{f(x)}$$