7.3. Maxima Minima

Theorem 7.3.1. Let $z=f(x, y)$ be a function of two variables.
GIVEN:
(1) $f_{x}(a, b)=0$ and $f_{y}(a, b)=0((a, b)$ is a \qquad for f)
(2) All second partial derivative exist around the point (a, b).
(3) $A=f_{x x}(a, b), B=f_{x y}(a, b), C=f_{y y}(a, b)$

THEN:

case 1: If $A C-B^{2}>0$ and $A<0$, then $f(a, b)$ is a \qquad
case 2: If $A C-B^{2}>0$ and $A>0$, then $f(a, b)$ is a \qquad
case 3: If $A C-B^{2}<0$, then f has a \qquad at (a, b).
case 4: If $A C-B^{2}=0$ the test fails - \qquad

Examples

Example 7.3.1. Find all local extrema and saddle points of $f(x, y)=2 x^{2}-2 x y+$ $y^{2}-4 x+6 y-3$

Example 7.3.2. Find all local extrema and saddle points of $f(x, y)=8 x+6 y-17$

Example 7.3.3. Find all local extrema and saddle points of $f(x, y)=-2 x^{2}+4 x y-$ $3 y^{2}-4 x+2 y-3$

Example 7.3.4. Find all local extrema and saddle points of $f(x, y)=x y+x-y$

Example 7.3.5. Find all local extrema and saddle points of $f(x, y)=3 y^{2}-2 x^{3}-$ $24 x-3 y-21$

Example 7.3.6. Find all local extrema and saddle points of $f(x, y)=2 x^{3}-2 x y+2 y$

Example 7.3.7. Let $z=f(x, y)$ have a critical point at $(3,-2)$ such that $f_{x x}(3,-2)=32, f_{y y}(3,-2)=\frac{1}{2}$, and $f_{x y}(3,-2)=-4$. Then at $(3,-2)$, z has a
a) local maximum
b) local minimum
c) saddle point
d) test fails

Example 7.3.8. The cost function, C (in hundreds of dollars), of producing two products is $C(x, y)=2 x^{2}+3 y^{2}-4 x y+4 x-8 y+20$, where x is the quantity of product A and y is the quantity of product B.
(1) How many of each product should be produced to minimize cost
(2) Find the minimum cost of producing these products.

