Divide the interval from $x=a$ to $x=b$ into n equal subintervals of length $\Delta x=\frac{b-a}{n}$. Let c_{k} be the midpoint in the k th subinterval.

Then

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx M_{n}=f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+\ldots+f\left(c_{n}\right) \Delta x \\
M_{n} & =\Delta x\left[f\left(c_{1}\right)+f\left(c_{2}\right)+\ldots+f\left(c_{n}\right)\right]
\end{aligned}
$$

1. Use the rectangle (mid-point) rule, with $\mathrm{n}=4$, to approximate $\int_{4}^{12} \sqrt{x^{2}-1} d x$. Compute your answer to three decimal places.

$$
\begin{aligned}
& M_{4}=\Delta x\left(f\left(c_{1}\right)+f\left(c_{2}\right)+f\left(c_{3}\right)+f\left(c_{4}\right)\right) \Rightarrow a=4 ; b=12 ; n=4 ; \Delta x=\frac{b-a}{n}=\frac{12-4}{4}=2 \\
& f(x)=\sqrt{x^{2}-1} \\
& {[4,6] \quad[6,8] \quad[8,10] \quad[10,12]} \\
& c_{1}=5 \quad c_{2}=7 \quad c_{3}=9 \quad c_{4}=11 \\
& f\left(c_{1}\right)=\sqrt{24} \quad f\left(c_{2}\right)=\sqrt{48} \quad f\left(c_{3}\right)=\sqrt{80} \quad f\left(c_{4}\right)=\sqrt{120} \\
& M_{4}=2(\sqrt{24}+\sqrt{48}+\sqrt{80}+\sqrt{120}) \approx 63.452 \\
& \int_{4}^{12} \sqrt{x^{2}-1} d x \approx 63.447
\end{aligned}
$$

2. Use the rectangle (mid-point) rule, with $\mathrm{n}=2$, to approximate $\int_{-2}^{4}\left(x-x^{2}\right) d x$.

$$
\begin{array}{cc}
M_{2}=\Delta x\left(f\left(c_{1}\right)+f\left(c_{2}\right)\right) \Rightarrow & a=-2 ; b=4 ; n=2 ; \Delta x=\frac{b-a}{n}=\frac{4-(-2)}{2}=3 \\
f(x)=x-x^{2} \\
{[-2,1]} & \quad[1,4] \\
c_{1}=-\frac{1}{2} & c_{2}=\frac{5}{2} \\
f\left(c_{1}\right)=-\frac{1}{2}-\left(-\frac{1}{2}\right)^{2} & f\left(c_{2}\right)=\frac{5}{2}-\left(\frac{5}{2}\right)^{2} \\
=-\frac{1}{2}-\frac{1}{4}=-\frac{2}{4}-\frac{1}{4}=-\frac{3}{4} \quad=\frac{5}{2}-\frac{25}{4}=\frac{10}{4}-\frac{25}{4}=-\frac{15}{4} \\
M_{2}=3\left(-\frac{3}{4}-\frac{15}{4}\right)=3\left(-\frac{18}{4}\right)=3\left(-\frac{9}{2}\right)=-\frac{27}{2} \\
M_{2}=-13.5, \quad M_{4}=-16.875, & M_{8}=-17.71875, \quad M_{16}=-17.9296875 \\
\int_{-2}^{4}\left(x-x^{2}\right) d x=-18
\end{array}
$$

3. Use the rectangle (mid-point) rule, with $\mathrm{n}=2$, to approximate $\int_{-4}^{2}\left(x-2 x^{2}\right) d x$.

$$
\begin{array}{lc}
M_{2}=\Delta x\left(f\left(c_{1}\right)+f\left(c_{2}\right)\right) \Rightarrow a=-4 ; b=2 ; n=2 ; \Delta x=\frac{b-a}{n}=\frac{2-(-4)}{2}=3 \\
f(x)=x-2 x^{2} & {[-4,-1]} \\
c_{1}=-\frac{5}{2} & c_{2}=\frac{1}{2} \\
f\left(c_{1}\right)=-\frac{5}{2}-2\left(-\frac{5}{2}\right)^{2} & f\left(c_{2}\right)=\frac{1}{2}-2\left(\frac{1}{2}\right)^{2} \\
=-\frac{5}{2}-2\left(\frac{25}{4}\right)=-\frac{5}{2}-\frac{25}{2}=-\frac{30}{2}=-15 & =\frac{1}{2}-2\left(\frac{1}{4}\right)=\frac{1}{2}-\frac{1}{2}=0 \\
M_{2}=3(-15+0)=3(-15)=-45 & \\
M_{2}=-45, \quad M_{4}=-51.75, \quad M_{8}=-53.4375, & M_{16}=-53.859375 \\
\int_{-4}^{2}\left(x-2 x^{2}\right) d x=-54 &
\end{array}
$$

4. Use the rectangle (mid-point) rule, with $\mathrm{n}=3$, to approximate $\int_{-2}^{1}\left(2 x-3 x^{2}\right) d x$.

$$
M_{3}=\Delta x\left(f\left(c_{1}\right)+f\left(c_{2}\right)+f\left(c_{3}\right)\right) \Rightarrow a=-2 ; b=1 ; n=3 ; \Delta x=\frac{b-a}{n}=\frac{1-(-2)}{3}=1
$$

$$
f(x)=2 x-3 x^{2}
$$

$$
\begin{array}{c|c|c}
{[-2,-1]} & {[-1,0]} & {[0,1]} \\
c_{1}=-\frac{3}{2} & c_{2}=-\frac{1}{2} & c_{3}=\frac{1}{2} \\
f\left(c_{1}\right)=2\left(-\frac{3}{2}\right)-3\left(-\frac{3}{2}\right)^{2} & f\left(c_{2}\right)=2\left(-\frac{1}{2}\right)-3\left(-\frac{1}{2}\right)^{2} & f\left(c_{3}\right)=2\left(\frac{1}{2}\right)-3\left(\frac{1}{2}\right)^{2} \\
=-3-3\left(\frac{9}{4}\right)=-3-\frac{27}{4}=-\frac{39}{4} & =-1-3\left(\frac{1}{4}\right)=-1-\frac{3}{4}=-\frac{7}{4} & =1-3\left(\frac{1}{4}\right)=1-\frac{3}{4}=\frac{1}{4} \\
M_{3}=1\left(-\frac{39}{4}-\frac{7}{4}+\frac{1}{4}\right)=1\left(-\frac{45}{4}\right)=-\frac{45}{4} \\
M_{3}=-11.25, M_{6}=-11.8125, M_{12}=-11.953125, M_{24}=-11.98828125 \\
\int_{-2}^{1}\left(2 x-3 x^{2}\right) d x=-12
\end{array}
$$

