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Quadratic discrepancy on the sphere

Quadratic discrepancy on the sphere 5(R)

Dl = [ [ (yictn ozl — otcten) asta
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Quadratic discrepancy on the sphere

Quadratic discrepancy on the sphere 5(R)

Cap (Zv) = f J;d C(x,t) N Zy| — o(C(x, t)))zda(x)dt

A sequence of spherical point sets (Zy)y is uniformly distributed if and only if

hm DCap( N) =0.
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Quadratic discrepancy on the sphere

Quadratic discrepancy on the sphere 5(R)

D, (Zn) = fil L (}v |C(x,1) N Zn| — o (C(x, t)))zda(x)dt

A sequence of spherical point sets (Zy)y is uniformly distributed if and only if

. L
Jim D (Zv) = 0.

Hyperuniform point sets: small number variance (Torquato-Stillinger, 2003).
Applications in condensed matter physics, materials, chemical, engineering, and
biological sciences.
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Stolarsky’s invariance principle for connected spaces

Stolarsky'’s invariance principle, 1973

g2 = ([ I sldo(wyins) — ok 3 -1

54 x 54 =l

d/7T(d)2)

Where Cd = W.

Extensions
0000000
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Stolarsky’s invariance principle for connected spaces

Stolarsky'’s invariance principle, 1973

g2 = ([ I sldo(wyins) — ok 3 -1
sdxsd =1
_ dVAT(/)
Where Cqd = W.

Extensions
0000000

Minimum quadratic discrepancy is equivalent to maximum average distance in Zy
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Stolarsky’s invariance principle for connected spaces

Stolarsky'’s invariance principle, 1973

g2 = ([ I sldo(wyins) — ok 3 -1

5dxsd =1

d\/7T(d/2)

Where Cqd = W.

Minimum quadratic discrepancy is equivalent to maximum average distance in Zy

General results regarding universally optimal spherical codes (COHN-KUMAR, 2007) imply that they minimize

quadratic discrepancy
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Bounds on D% (the case of $9)

» Classical results of BEck (1987) and ALEXANDER (1972) imply that for any Zy of
size N

D(L;2 > N~ PRO+1/d)
ap )

and that there exist point distributions such that

L —12(1+1/d)
D%, < CN™" :
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Bounds on D% (the case of $9)

» Classical results of BEck (1987) and ALEXANDER (1972) imply that for any Zy of
size N

D(L:Zap - CN_]/Z(]+I/d)7

and that there exist point distributions such that

L —12(1+1/d)
D%, < CN™" :

» Universal lower bounds on discrepancy can be derived using the approach of
BOYVALENKOV ET AL. (2014-2019). For instance, simplices and orthoplexes meet
the low-degree bounds with equality.
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Bounds on D% (the case of $9)

» Classical results of BEck (1987) and ALEXANDER (1972) imply that for any Zy of
size N

D(L:Zap - CN_]/Z(]+I/d)7

and that there exist point distributions such that

L —12(1+1/d)
D%, < CN™" :

» Universal lower bounds on discrepancy can be derived using the approach of
BOYVALENKOV ET AL. (2014-2019). For instance, simplices and orthoplexes meet
the low-degree bounds with equality.

» Optimal spherical designs of BONDARENKO-RADCHENKO-VIAZOVSKA (2013) meet the
lower bound:
CN71/2(1+1/61) <Délzap < CN71/2(1+1/d)

for sufficiently large N, absolute constants ¢ and C (Skricanov, 2019)
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Finite spaces

Let X be a finite metric space; distances d € {0, 1,...,n}
ZN = {Zl,...,ZN}C:X:

» Problem: Is Zy “uniformly distributed” in X?
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Finite spaces
Let X be a finite metric space; distances d € {0, 1,...,n}
ZN= {Zl,---,ZN} cX

» Problem: Is Zy “uniformly distributed” in X?
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Finite spaces

Let X be a finite metric space; distances d € {0, 1,...,n}
ZN = {Zl,.,.,ZN}Cx

» Problem: Is Zy “uniformly distributed” in X?

A subset Zy is u.d. ifforallxe X,z € {0,1,...,n}

|B(x; 1) 0 Zn|

= = vol(B(x, 1))

where B(x, 1) = {z € X|d(z,x) < t} is a metric ball in X centered at x

Quadratic discrepancy of Zy:

where
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Finite metric spaces




Uniform distributions and their applic:

tions Finite metric spaces
oeo

Finite metric spaces

Theorem (STOLARSKY’S INVARIANCE PRINCIPLE)

LetZy = {z1,...,zv} be a subset of a finite metric space X. Then
7 1
D" (Zy) = 5( Z Z|dxu d(y,u)| — NZZZWZ”
x,yeX ueX ij=1ueX
Rephrasing:

Z|dxu u)

uex
Then

1 N
DLz ZN — |x|2 Z )\ x y Z )\(Zi,Zj)
i,j=1

x,yeX

= (Vx =Nz

d(z,u))).
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Proof outline

D/(Zv)* Z ( Z Lo () = 1o L B(, t)|)2

L5 |B(u,1)|*
= — Y |B(z,1) n B(z,1)| — Y/t
N2 MEZI ‘ (Z7 ) N (ZJ )l |x‘

Z|thn3(y,)\_|x|n+1 >ld(zu) Z|dzx

=0 zeX zex

)|

Extensions
0000000
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Proof outline

Dt(ZN) = Z ( i: L (z) — ||B(x t)|)2

xeX

|B(u,1)|*

BZi,t ﬁBZ',t - )
19(2.1) 0 8(5.)] - 2

||M2

ﬁ

watnB(y,t>|—|x|n+1>—Zd<z, 33 ld(e,x) — d(ey)| O

zeX zex
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Kernel A(x,y) in the Hamming space

Lemma
Letx,y € X, be two points such thatd(x,y) = w. Then

51-1

A, y) = A(w) := Z"WW([?:_ ! ), w=0,1,...,n

We have

)\(2.1-1- N _ )\(2.1)7 i1,
2i+1 2i

and thus (i) is a monotone non-decreasing function of i for alli > 1.

Generating function:

A2i+Dx' =271 —x) 7

s

I
)

Extensions
0000000
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Average value {\)x,

Mx, =277 ) Md(x,y))

x,y€X,

—2" Z (Z) A(w)

R 7] w—1
-5 W(W><m_l)
n (2n
:2n+1<n)



http://oeis.org/A002457
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Average value {\)x,

Mx, =277 ) Md(x,y))

x,y€X,

—2" Z (Z) A(w)

R 7] w—1
-5 W<W> (m_l)
n (2n
~ (n)

S () -2eea-4(2)

Computed using

t=0 i=0

(OEIS A002457 )


http://oeis.org/A002457
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Stolarsky’s identity in the Hamming space

Distance distribution of the code Zy < {0,1}" :

1
Av= g H{xy) €z [dx,y) =wll, w=0,1,....n
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Stolarsky’s identity in the Hamming space

Distance distribution of the code Zy < {0, 1}" :

1
Ay = NH(X,)’) €Zy|d(x,y)=w}, w=0,1,...,n

Theorem (STOLARSKY’S INVARIANCE FOR THE HAMMING SPACE)

LetZy < {0,1}" be a subset of size N with distance distribution
A(Zy) = (1,A4,...,A,). Then

l n
Lo _ _
D(Zw) = A — 5 WEZIAWA(W),

where A, := 54+ (%)

n
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Stolarsky’s identity in the Hamming space

Distance distribution of the code Zy < {0, 1}" :

1
Ay = NH(XJ) €Zy|d(x,y)=w}, w=0,1,...,n

Theorem (STOLARSKY’S INVARIANCE FOR THE HAMMING SPACE)

LetZy < {0, 1}" be a subset of size N with distance distribution
A(Zy) = (1,A4,...,A,). Then

1 n
Lo _ _
D(Zw) = A — 5 WEZIAWA(W),

where A, := 54+ (%)

n

This result enables us to compute or estimate D™ (Zy) for various binary codes
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Upper bound

Proposition
The expected discrepancy of a random code of size N in {0, 1}" equals

) n 2n n2!
EID" 2w = Nz<) VW

As a result, there exist binary codes of length n and size N with discrepancy

D" (2y) < C\/ﬁzﬁ
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Dual view of discrepancy

Define the dual distance distribution A* (Zy) = (47, ...,A;") of the code Zy:

L& o,
Aj:N;K§,)(z)A,-, w=0,1,...,

S

where
K () = (k) P (k= =15 2).

are the Krawtchouk polynomials
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Dual view of discrepancy

Define the dual distance distribution A* (Zy) = (47, ...,A;") of the code Zy:

L& o,
Aj:N;K§,)(z)A,-, w=0,1,...,n

where

KIE") (x) = (Z) 2F1 (—k, —x; —n;2).

are the Krawtchouk polynomials
We obtain

™) (i
D" (zy) ~ o ZA Z K

w=0

. WD IOt
i=1 w=0
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Hamming codes

Theorem
The quadratic discrepancy of the Hamming code Zy = 3, of lengthn = 2" — 1,m > 2

n({n—1
2

= y/n/4r(1 —o(1)).

equals

For large n the discrepancy D" ()

DISCREPANCY OF THE HAMMING CODES AND THEIR DUALS
Hamming codes J,,, n = 2" — 1,N = 2"~"
m 4 5 6 7 8 9 10
ph2 (Hm) 1.571 2.239 3.179 4.50471 6.377 9.027 12.763
ED™2 (N) 17.336 50.058 143.016 406.518 1152.64 3264.14 9238.04
Hadamard codes 9{,#, n=2"—-1,N=2"
2="pha (?(i) 0.058 0.042 0.030 0.021 0.015 0.011 0.008
27"EDk2 (N) 0.068 0.049 0.035 0.025 0.018 0.012 0.009




Uniform distributions and their applications Finite metric spaces Hamming space Extensions
[e]e]e} [e]e]e} 000000 0000000
®00000000

Fourier-Krawtchouk expansions, |

Our next goal is to identify binary codes that have the smallest discrepancy, using tools
from harmonic analysis.
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Fourier-Krawtchouk expansions, |

Our next goal is to identify binary codes that have the smallest discrepancy, using tools
from harmonic analysis.

First step: Compute a Krawtchouk expansion of A(x,y) = A(w). Start with

pu(,y) := [B(x,1) 0 By, 0)] = 3 ¢u(d(x,2))n(d(z,))

X,

where ¢; = 1yo1,....3
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Fourier-Krawtchouk expansions, |

Our next goal is to identify binary codes that have the smallest discrepancy, using tools
from harmonic analysis.

First step: Compute a Krawtchouk expansion of A(x,y) = A(w). Start with

pi(x,y) = [B(x, 1) A By, 1) = Y i(d(x,2))u(d(z,7))
z€X,

where ¢; = 1yo1,....3

For the indicator function f we compute

where
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Fourier-Krawtchouk expansions, Il

Lemma
Letx,y € X, be such thatd(x,y) = w. The Krawtchouk expansion of the kernel
wi(x,y),t =0,...,n has the following form:

pu(x,y) = 27" (0K (w),
k=0
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Fourier-Krawtchouk expansions, Il

Lemma
Letx,y € X, be such thatd(x,y) = w. The Krawtchouk expansion of the kernel
wi(x,y),t =0,...,n has the following form:

pa(x,y) = 27" (0K (w),
k=0

SUKP @) = (2” B ?’) (2.’)/(’.’)
=0 n—i l 1
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Fourier-Krawtchouk expansions, Il

Lemma
Letx,y € X, be such thatd(x,y) = w. The Krawtchouk expansion of the kernel
wi(x,y),t =0,...,n has the following form:

pa(x,y) = 27" (0K (w),
k=0

Corollary
Letx,y € X, be such thatd(x,y) = w. We have

A(x,y) = Aw) = Y K" (w)
G G
()

and thus the kernel (—X(x,y)) is positive definite up to an additive constant.

No=Ap, Ne=—27" L k=1,2,...,n,
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000 000
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é 1‘0 1‘5 2‘0 w

Hamming space Extensions
000000 0000000
0O0@000000
A(w)
1.2F
1.0r
0.8F
0.6
0.4
0.2
. . . L w
1 2 3 6

FiG.1: The plots show A(w) for n = 20 (left figure) and n = 6 (right figure). In the right plot we also show the

Krawtchouk expansion, that is equal to A(w) at integer values of w. The plots are scaled by 27".
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Transform domain representation of D2 (Zy)
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Transform domain representation of D22 (Zy)

We obtain an expansion of the discrepancy of the code Zy

R S

For instance, let Zy = 3, be the Hamming code. We have Ay, = nand A = 0 o/w
2
(k=1). Thus

ph (G‘Cm) = —n5\n+1
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Discrepancy and energy minimization

Define the “potential energy” of the code Zy < X,

Ex(Zy) = %_Z Ad(z,3)

ij=1
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Discrepancy and energy minimization

Define the “potential energy” of the code Zy < X,
1 N
Ex(Zv) = & 2 Ad(zi, 7))

ij=1

Minimizing D™ (Zy) is equivalent to maximizing Ex(Zy). This problem can be
addressed by linear programming using the Delsarte conditions

> Ak® (k) > —<’:>,i= 1,....n
k=1

and > Ar=N—1.
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Discrepancy and energy minimization

Define the “potential energy” of the code Zy < X,
1 N

Ex(Zw) = 5 2 Mdz0,7)

ij=1

Minimizing D™ (Zy) is equivalent to maximizing Ex (Zy). This problem can be
addressed by linear programming using the Delsarte conditions

> Ak® (k) > —(’:),i= 1,....n
k=1

and > Ar=N—1.
Dualizing, we obtain that any feasible solution of the linear program
min{Z (’.’)hi — hoN ‘ S K" (k) < =K,k =1,...,mhi=0,i=1,... n}
l
i=0 i=0

gives an upper bound on E (Zy)
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Linear programming bound

Proposition (LP)

Leth(i) = >_, th,f") (i) be a polynomial on {0, 1, . ..,n} such that
(a), e = 0 for all k > 1 such that A, > 0 and

(b), h(i) < —X(i) foralli > 1 such that A > 0. Then

EA(ZN) < h(O) — Nhy

with equality if and only if all the inequalities in the assumptions (a),(b) are satisfied
with equality.

DELSARTE 1972-73, YUDIN 1992, ASHIKHMIN-B-LITSYN 1999-2001, COHN-KUMAR 2007,
COHN-ZHAO 2014, many others.
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Bounds on discrepancy
Theorem
ForanyN > 1
N—-1
D" (n,N) = A, — T)\(n)
Forn=2t—1,N>1
2N—1
i Aw — A1) t even
D™ (n,N) =
Nn—(n—1)/2
An — Z5an A todd.
ForanyN > 1
7(% — 1):\%, n even
D" (n,N) >

Extensions
0000000
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Bounds on discrepancy

Theorem
ForanyN > 1
N—-1
D™ (n,N) = A, — T)\(n)
Forn=2t—1,N>1
Ay — 2N (1) t even
D™ (n,N) >
Ay = M0 (1) 1 odd.
ForanyN > 1
—(% - 1Az, neven
D" (n,N) = N ’
—(% — 1)Auer, nodd.

» Proof by fitting a polynomial to satisfy the conditions in Proposition (LP).

» Computations are aided by knowing the Fourier coefficients A

» The bounds are obtained by using A(x) of degree 0 and n
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Discrepancy minimizers

Theorem: Binary perfect codes are discrepancy minimizers

The following codes were found to be discrepancy minimizers by computer:

1. the Golay code with n = 23, N = 4096

2. the shortened Golay code

3. the twice shortened Golay code

4. the quadratic residue code withn = 17, N = 512

5. the 2-error-correcting BCH codes with n = 31, N = 22! and n = 127, N = 2!!3 and their
shortened codes.



Bounds on discrepancy

In summary, we proved the following bounds on the quadratic discrepancy of binary

codes in the Hamming space:

Theorem
For large n and N = o(2") we have the asymptotic bounds

1 2)1 13 2"
—— <D*(n,N) <Cyn—
TN (n,N) < Cvng

for some constants ¢, C. The discrepancy D" (n,N) is bounded away from zero unless

% = o(N).
IfN =2"0<r<1,then

(logN)~'*N* < D" (n,N) < (logN)"/*N*,

where o = 1 — 1.
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Generalization: Weighted L, discrepancies

(This part is based on a joint work with Maxim Skriganov, arXiV:2007)

REMARK: L, discrepancies have been earlier considered for the case of spherical sets
(M.M. Skriganov, J. Complexity, 2020)
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Bounds on L, discrepancy

Idea: Choose N points randomly in X, then

1

D(Zn:xv l) N€

an

where (i(x, 1) = L (zi) —27"[B(x,1)],i = 1,...,N are zero-mean random variables.
Khinchine-type inequalities for the pth moment of the sum of independent RVs enable
one to derive estimates of D".



Extensions
0@00000

Bounds on L, discrepancy

Idea: Choose N points randomly in X, then

1

D(Zn7x7 l) NC

an

where Gi(x, ) = 1p(,n(zi) —27"|B(x,1)|,i = 1,..., N are zero-mean random variables.
Khinchine-type inequalities for the pth moment of the sum of independent RVs enable
one to derive estimates of D".

Theorem
ForallN < 2"~', we have

D,(G,n,N) < 2= WPHIN=V2(p 4 1)1/

for1 < p < o0, and D,(G,n,N) < 2~ "PH2N=12 for0 < p < 1.
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Discrepancy for hemispheres

Let n = 2m + 1 and consider only balls of radius t = m
For a subset Zy = X, define

1/p
D2y = (X I xml)”, 0<p <o,
where
|B(x,m) nZy| 1
D(ZN,X, I’I’l) = # - E
Let

D (2y) = max |D(Z,,x)|

xeX,
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Main results for D"’

» Let N = 2K be even, then
D™ (Zy) =0 VZy € X, p € (0,0],
with equality for subsets Zy consisting of K pairs of antipodal points.
For p = 2 the condition for equality is also necessary.
» Let N = 2K + 1 be odd, then
DY (Zv) = 2" N VZy € X, p € (0, 0],

with equality for subsets Zy consisting of K pairs of antipodal points
supplemented with a single point.
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Weighted invariance principle

Given a vector of weights G = (go, g1, - - -, gx), define the weighted discrepancy as

D (Zy) ng (Di(Zv))?

t=0

Proposition (WEIGHTED INVARIANCE)
DE(Zy) = Aayzy — aopx,

where for x,y € X,

Aa(x,y) = % D vd(x,2)) = v(d(y,2)]

2€Xy

and (1) 1= X_, &
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“Probabilistic potential” in the Hamming space
(joint work with Madhura Pathegama)
Let v(x,y) = v(d(x,y)) be a radial potential function on {0, 1}";let V. = (v(x,¥))x,y
Let p be a probability vector on {0, 1}"
Consier the energy E, = p" Vp
Proposition

The uniform distribution p = (27") is a minimizer of E, if and only if the potential v is
negative definite up to an additive constant.

v(d) = > 0iKi(d), vi<0,i>1
i=0

E.g.,
n o (n [ e
v(d)=d= EK(E '(d) - EKI( (d)
2n—2k\ (2k—2
Mo = —2*"M, k=1,2,...,n

[
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Summary and open problems

» Previously the invariance principle was studied only for connected spaces such as
$¢ and related projective spaces (Riemannian symmetric spaces of rank one).
Concrete results relied on analytic methods specific to such spaces.

» Finite metric spaces require different methods (combinatorial, etc.). Some of the
results for the Hamming space have no direct analogs in the continuous case.

A multitude of open questions:
» Find necessary and sufficient conditions for minimizing discrepancy
» Classify discrepancy minimizers
» Structural results for other distance transitive finite (or disconnected infinite) metric
spaces

» Explore applications of sets with small discrepancy
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