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Quadratic discrepancy on the sphere

Quadratic discrepancy on the sphere SdpRq

DL2
CappZNq “

ż 1

´1

ż

Sd

´ 1
N

|Cpx, tq X ZN | ´ σpCpx, tqq

¯2
dσpxqdt

Quadratic discrepancy on the sphere SdpRq
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ż 1

´1

ż
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´ 1
N

|Cpx, tq X ZN | ´ σpCpx, tqq

¯2
dσpxqdt

A sequence of spherical point sets pZNqN is uniformly distributed if and only if

lim
NÑ8

DL2
CappZNq “ 0.

Hyperuniform point sets: small number variance (Torquato-Stillinger, 2003).
Applications in condensed matter physics, materials, chemical, engineering, and
biological sciences.
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Stolarsky’s invariance principle for connected spaces

Stolarsky’s invariance principle, 1973

cdpDL2
CappZNqq

2
“

ĳ

SdˆSd

}x ´ y}dσpxqdσpyq ´
1

N2

N
ÿ

i,j“1

}zi ´ zj},

where cd “
d

?
πΓpd{2q

Γppd`1q{2q
.

Minimum quadratic discrepancy is equivalent to maximum average distance in ZN

General results regarding universally optimal spherical codes (COHN-KUMAR, 2007) imply that they minimize

quadratic discrepancy
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Bounds on DL2 (the case of Sd)

§ Classical results of BECK (1987) and ALEXANDER (1972) imply that for any ZN of
size N

DL2
Cap ą cN´1{2p1`1{dq,

and that there exist point distributions such that

DL2
Cap ă CN´1{2p1`1{dq.

§ Universal lower bounds on discrepancy can be derived using the approach of
BOYVALENKOV ET AL. (2014-2019). For instance, simplices and orthoplexes meet
the low-degree bounds with equality.

§ Optimal spherical designs of BONDARENKO-RADCHENKO-VIAZOVSKA (2013) meet the
lower bound:

cN´1{2p1`1{dq
ă DL2

Cap ă CN´1{2p1`1{dq

for sufficiently large N, absolute constants c and C (SKRIGANOV, 2019)
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Finite spaces
Let X be a finite metric space; distances d P t0, 1, . . . , nu

ZN “ tz1, . . . , zNu Ă X

§ Problem: Is ZN “uniformly distributed” in X?

A subset ZN is u.d. if for all x P X, t P t0, 1, . . . , nu

|Bpx, tq X ZN |

N
“ volpBpx, tqq

where Bpx, tq “ tz P X|dpz, xq ď tu is a metric ball in X centered at x

Quadratic discrepancy of ZN :

DL2 pZNq “

n
ÿ

t“0

pDtpZNqq
2

where
DtpZNq :“

´

ÿ

xPX

´

|Bpx, tq X ZN |

N
´

1
|X|

|Bpx, tq|

¯2¯1{2
.
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Finite metric spaces

Theorem (STOLARSKY’S INVARIANCE PRINCIPLE)

Let ZN “ tz1, . . . , zNu be a subset of a finite metric space X. Then

DL2 pZNq “
1
2

´ 1
|X|2

ÿ

x,yPX

ÿ

uPX

|dpx, uq ´ dpy, uq| ´
1

N2

N
ÿ

i,j“1

ÿ

uPX

|dpzi, uq ´ dpzj, uq|

¯

.

Rephrasing:

λpx, yq :“
1
2

ÿ

uPX

|dpx, uq ´ dpy, uq|

Then

DL2 pZNq “
1

|X|2

ÿ

x,yPX

λpx, yq ´
1

N2

N
ÿ

i,j“1

λpzi, zjq

“ xλyX ´ xλyZN
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Proof outline

DtpZNq
2

“
ÿ

xPX

´ 1
N

N
ÿ

j“1

1Bpx,tqpzjq ´
1

|X|
|Bpx, tq|

¯2

“
1

N2

N
ÿ

i,j“1

|Bpzi, tq X Bpzj, tq| ´
|Bpu, tq|2

|X|
,

n
ÿ

t“0

|Bpx, tq X Bpy, tq| “ |X|pn ` 1q ´
ÿ

zPX

dpz, uq ´
1
2

ÿ

zPX

|dpz, xq ´ dpz, yq|

Another form of the invariance principle: Define

µpx, yq “
ÿ

t“0

µtpx, yq, where µtpx, yq :“ |Bpx, tq X Bpy, tq|

Then
DpZNq2 “ xµyZN ´ xµyX
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Kernel λpx, yq in the Hamming space

Lemma
Let x, y P Xn be two points such that dpx, yq “ w. Then

λpx, yq “ λpwq :“ 2n´ww

˜

w ´ 1
r w

2 s ´ 1

¸

, w “ 0, 1, . . . , n.

We have

λp2i ` 1q

2i ` 1
“

λp2iq
2i

, i ě 1,

and thus λpiq is a monotone non-decreasing function of i for all i ě 1.

Generating function:
8
ÿ

i“0

λp2i ` 1qxi
“ 2n´1

p1 ´ xq
´3{2
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Average value xλyXn

xλyXn “ 2´2n
ÿ

x,yPXn

λpdpx, yqq

“ 2´n
n

ÿ

w“0

˜

n
w

¸

λpwq

“ 2´n
n

ÿ

w“1

2n´ww

˜

n
w

¸˜

w ´ 1
r w

2 s ´ 1

¸

“
n

2n`1

˜

2n
n

¸

Computed using
n

ÿ

t“0

!

t
ÿ

i“0

˜

n
i

¸

)2
“ 22n´1

pn ` 2q ´
n
2

˜

2n
n

¸

(OEIS A002457 )

http://oeis.org/A002457
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Stolarsky’s identity in the Hamming space

Distance distribution of the code ZN Ă t0, 1un :

Aw “
1
N

|tpx, yq P ZN | dpx, yq “ wu|, w “ 0, 1, . . . , n

Theorem (STOLARSKY’S INVARIANCE FOR THE HAMMING SPACE)

Let ZN Ă t0, 1un be a subset of size N with distance distribution
ApZNq “ p1,A1, . . . ,Anq. Then

DL2 pZNq “ Λn ´
1
N

n
ÿ

w“1

Awλpwq,

where Λn :“ n
2n`1

`2n
n

˘

This result enables us to compute or estimate DL2 pZNq for various binary codes
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Upper bound

Proposition

The expected discrepancy of a random code of size N in t0, 1un equals

ErDL2 pZNqs “
n

N2n`1

˜

2n
n

¸

«

c

n
π

2n´1

N

As a result, there exist binary codes of length n and size N with discrepancy

DL2 pZNq ď C
?

n
2n

N
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Dual view of discrepancy

Define the dual distance distribution AKpZNq “ pAK
0 , . . . ,AK

n q of the code ZN :

AK
w “

1
N

n
ÿ

i“0

Kpnq
w piqAi, w “ 0, 1, . . . , n

where

Kpnq
k pxq “

˜

n
k

¸

2F1p´k,´x;´n; 2q.

are the Krawtchouk polynomials

We obtain

DL2 pZNq “ Λn ´
1
2n

n
ÿ

i“0

AK
i

n
ÿ

w“0

Kpnq
w piqλpwq

“ ´
1
2n

n
ÿ

i“1

AK
i

n
ÿ

w“0

Kpnq
w piqλpwq
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Hamming codes

Theorem
The quadratic discrepancy of the Hamming code ZN “ Hm of length n “ 2m ´ 1,m ě 2
equals

DL2 pHmq “
n
2n

˜

n ´ 1
n´1

2

¸

For large n the discrepancy DL2 pHmq “
a

n{4πp1 ´ op1qq.

DISCREPANCY OF THE HAMMING CODES AND THEIR DUALS

Hamming codes Hm , n “ 2m ´ 1, N “ 2n´m

m 4 5 6 7 8 9 10

DL2 pHmq 1.571 2.239 3.179 4.50471 6.377 9.027 12.763
EDL2 pNq 17.336 50.058 143.016 406.518 1152.64 3264.14 9238.04

Hadamard codes HK
m , n “ 2m ´ 1, N “ 2m

2´nDL2 pHK
m q 0.058 0.042 0.030 0.021 0.015 0.011 0.008

2´nEDL2 pNq 0.068 0.049 0.035 0.025 0.018 0.012 0.009
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Fourier-Krawtchouk expansions, I
Our next goal is to identify binary codes that have the smallest discrepancy, using tools
from harmonic analysis.

First step: Compute a Krawtchouk expansion of λpx, yq “ λpwq. Start with

µtpx, yq :“ |Bpx, tq X Bpy, tq| “
ÿ

zPXn

ϕtpdpx, zqqϕtpdpz, yqq

where ϕt “ 1t0,1,...,tu

For the indicator function f we compute

ϕtplq “ 2´n
n

ÿ

k“0

ckptqKpnq
k plq, l “ 0, 1, . . . , n

where

c0ptq “

t
ÿ

i“0

˜

n
i

¸

; ckptq “
1̀
n
k

˘

t
ÿ

i“0

˜

n
i

¸

Kpnq
k piq “ Kpn´1q

t pk ´ 1q, k ě 1
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Fourier-Krawtchouk expansions, II

Lemma
Let x, y P Xn be such that dpx, yq “ w. The Krawtchouk expansion of the kernel
µtpx, yq, t “ 0, . . . , n has the following form:

µtpx, yq “ 2´n
n

ÿ

k“0

ckptq2Kpnq
k pwq,

n
ÿ

k“0

pKpnq
k piqq

2
“

˜

2n ´ 2i
n ´ i

¸˜

2i
i

¸

{

˜

n
i

¸

Corollary

Let x, y P Xn be such that dpx, yq “ w. We have

λpx, yq “ λpwq “

n
ÿ

k“0

λ̂kKpnq
k pwq

λ̂0 “ Λn, λ̂k “ ´2´n

`2n´2k
n´k

˘`2k´2
k´1

˘

`n´1
k´1

˘ , k “ 1, 2, . . . , n,

and thus the kernel p´λpx, yqq is positive definite up to an additive constant.
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λpx, yq “ λpwq “

n
ÿ

k“0

λ̂kKpnq
k pwq

λ̂0 “ Λn, λ̂k “ ´2´n

`2n´2k
n´k

˘`2k´2
k´1

˘

`n´1
k´1

˘ , k “ 1, 2, . . . , n,

and thus the kernel p´λpx, yqq is positive definite up to an additive constant.
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Fourier-Krawtchouk expansions, II
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n
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FIG.1: The plots show λpwq for n “ 20 (left figure) and n “ 6 (right figure). In the right plot we also show the
Krawtchouk expansion, that is equal to λpwq at integer values of w. The plots are scaled by 2´n.
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Transform domain representation of DL2pZNq

We obtain an expansion of the discrepancy of the code ZN

DL2 pZq “ 2´n
n

ÿ

k“1

`2n´2k
n´k

˘`2k´2
k´1

˘

`n´1
k´1

˘ AK
k

For instance, let ZN “ Hm be the Hamming code. We have AK
n`1

2
“ n and AK

k “ 0 o/w

pk ě 1q. Thus
DL2 pHmq “ ´nλ̂ n`1

2

λ̂ n`1
2

“ ´2´n

˜

n ´ 1
n´1

2

¸
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Discrepancy and energy minimization

Define the “potential energy” of the code ZN Ă Xn

EλpZNq “
1
N

N
ÿ

i,j“1

λpdpzi, zjqq

Minimizing DL2 pZNq is equivalent to maximizing EλpZNq. This problem can be
addressed by linear programming using the Delsarte conditions

n
ÿ

k“1

AkKpnq
i pkq ě ´

˜

n
i

¸

, i “ 1, . . . , n

and
řn

k“1 Ak “ N ´ 1.

Dualizing, we obtain that any feasible solution of the linear program

min
!

n
ÿ

i“0

˜

n
i

¸

hi ´ h0N
ˇ

ˇ

ˇ

n
ÿ

i“0

hiK
pnq
i pkq ď ´λpkq, k “ 1, . . . , n; hi ě 0, i “ 1, . . . , n

)

gives an upper bound on EλpZNq
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Linear programming bound

Proposition (LP)

Let hpiq “
řn

k“0 hkKpnq
k piq be a polynomial on t0, 1, . . . , nu such that

(a), hk ě 0 for all k ě 1 such that Ak ą 0 and
pbq, hpiq ď ´λpiq for all i ě 1 such that AK

i ą 0. Then

EλpZNq ď hp0q ´ Nh0

with equality if and only if all the inequalities in the assumptions (a),(b) are satisfied
with equality.

DELSARTE 1972-73, YUDIN 1992, ASHIKHMIN-B-LITSYN 1999-2001, COHN-KUMAR 2007,
COHN-ZHAO 2014, many others.
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Bounds on discrepancy

Theorem
For any N ě 1

DL2 pn,Nq ě Λn ´
N ´ 1

N
λpnq. (1)

For n “ 2t ´ 1,N ě 1

DL2 pn,Nq ě

$

’

&

’

%

Λn ´ 2N´1
2N λptq t even

Λn ´
Nn´pn´1q{2

Npn`1q
λptq t odd.

(2)

For any N ě 1

DL2 pn,Nq ě

$

’

&

’

%

´p 2n

N ´ 1qλ̂ n
2
, n even

´p 2n

N ´ 1qλ̂ n`1
2
, n odd.

(3)

§ Proof by fitting a polynomial to satisfy the conditions in Proposition (LP).

§ Computations are aided by knowing the Fourier coefficients λ̂k

§ The bounds are obtained by using hpxq of degree 0 and n
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Discrepancy minimizers

Theorem: Binary perfect codes are discrepancy minimizers

The following codes were found to be discrepancy minimizers by computer:

1. the Golay code with n “ 23,N “ 4096
2. the shortened Golay code

3. the twice shortened Golay code

4. the quadratic residue code with n “ 17,N “ 512
5. the 2-error-correcting BCH codes with n “ 31,N “ 221 and n “ 127,N “ 2113 and their
shortened codes.
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Bounds on discrepancy

In summary, we proved the following bounds on the quadratic discrepancy of binary
codes in the Hamming space:

Theorem
For large n and N “ op2nq we have the asymptotic bounds

c
1

?
n

2n

N
ď DL2 pn,Nq ď C

?
n

2n

N

for some constants c,C. The discrepancy DL2 pn,Nq is bounded away from zero unless
2n
?

n “ opNq.

If N “ 2rn, 0 ă r ă 1, then

plog Nq
´1{2Nα

À DL2 pn,Nq À plog Nq
1{2Nα,

where α “ 1
r ´ 1.
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Generalization: Weighted Lp discrepancies

(This part is based on a joint work with Maxim Skriganov, arXiV:2007)

(Weighted) Lp discrepancy:

DppG, Znq “

´

n
ÿ

t“0

gt

ÿ

xPXn

|DpZn, y, tq|
p
¯1{p

, 0 ă p ă 8

where
DpZn, x, tq “

|Bpx, tq X ZN |

N
´ 2´n

|Bpx, tq|

is the local discrepancy, and G “ pg0, g1, . . . , gnq, gt ě 0,
řn

t“0 gt “ 1 is a vector of
weights.

REMARK: Lp discrepancies have been earlier considered for the case of spherical sets
(M.M. Skriganov, J. Complexity, 2020)
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Bounds on Lp discrepancy

Idea: Choose N points randomly in Xn, then

DpZn, x, tq “

N
ÿ

i“1

1
N
ζi

where ζipx, tq “ 1Bpx,tqpziq ´ 2´n|Bpx, tq|, i “ 1, . . . ,N are zero-mean random variables.
Khinchine-type inequalities for the pth moment of the sum of independent RVs enable
one to derive estimates of DLp .

Theorem
For all N ď 2n´1, we have

DppG, n,Nq ď 2´pn{pq`1N´1{2
pp ` 1q

1{2

for 1 ď p ă 8, and DppG, n,Nq ď 2´pn{pq`3{2 N´1{2 for 0 ă p ă 1.
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Discrepancy for hemispheres

Let n “ 2m ` 1 and consider only balls of radius t “ m
For a subset ZN Ă Xn define

Dpmq
p pZNq “

´

ÿ

xPXn
|DpZN , x,mq|

p
¯1{p

, 0 ă p ă 8 ,

where
DpZN , x,mq “

|Bpx,mq X ZN |

N
´

1
2

Let
Dpmq

8 pZNq “ max
xPXn

|DpZn, xq|
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Main results for Dpmq
p

§ Let N “ 2K be even, then

Dpmq
p pZNq ě 0 @ZN Ď Xn, p P p0,8s,

with equality for subsets ZN consisting of K pairs of antipodal points.
For p “ 2 the condition for equality is also necessary.

§ Let N “ 2K ` 1 be odd, then

Dpmq
p pZNq ě 2n{p´1

{N @ZN Ď Xn, p P p0,8s,

with equality for subsets ZN consisting of K pairs of antipodal points
supplemented with a single point.
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Weighted invariance principle

Given a vector of weights G “ pg0, g1, . . . , gnq, define the weighted discrepancy as

DL2
G pZNq “

n
ÿ

t“0

gt ¨ pDtpZNqq
2

Proposition (WEIGHTED INVARIANCE)

DL2
G pZNq “ xλGyZN ´ xλGyX,

where for x, y P Xn

λGpx, yq :“
1
2

ÿ

zPXn

|γpdpx, zqq ´ γpdpy, zqq|

and γptq :“
řn

i“t gt.
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“Probabilistic potential” in the Hamming space
(joint work with Madhura Pathegama)

Let vpx, yq “ vpdpx, yqq be a radial potential function on t0, 1un; let V “ pvpx, yqqx,y

Let p be a probability vector on t0, 1un

Consier the energy Ev “ pT Vp

Proposition

The uniform distribution p “ p2´nq is a minimizer of Ev if and only if the potential v is
negative definite up to an additive constant.

vpdq “

n
ÿ

i“0

v̂iKipdq, vi ď 0, i ě 1

E.g.,

vpdq “ d “
n
2

Kpnq
0 pdq ´

1
2

Kpnq
1 pdq

λ̂k “ ´2´n

`2n´2k
n´k

˘`2k´2
k´1

˘

`n´1
k´1

˘ , k “ 1, 2, . . . , n
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Summary and open problems

§ Previously the invariance principle was studied only for connected spaces such as
Sd and related projective spaces (Riemannian symmetric spaces of rank one).
Concrete results relied on analytic methods specific to such spaces.

§ Finite metric spaces require different methods (combinatorial, etc.). Some of the
results for the Hamming space have no direct analogs in the continuous case.

A multitude of open questions:

§ Find necessary and sufficient conditions for minimizing discrepancy

§ Classify discrepancy minimizers

§ Structural results for other distance transitive finite (or disconnected infinite) metric
spaces

§ Explore applications of sets with small discrepancy
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