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Frames

A set of vectors X = {xi}i∈I is a frame for a separable Hilbert space H
if there exist A,B > 0 such that for every x ∈ H,

A‖x‖2 ≤
∑
i∈I

|〈x , xi〉|2 ≤ B‖x‖2.

The constants A,B are called the frame bounds.

When A = B, X is called a tight frame, which generalizes the concept
of an orthonormal basis in the sense that we have the following
recovery formula

x =
1
A

∑
i∈I

〈x , xi〉xi , ∀x ∈ H.



Desirable properties of frames

equal norm
tight
symmetry
well separation

→ robustness to erasures
stability in reconstruction →

signal processing
coding theory
quantum inf. theory
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informationally complete quantum measurements. J. Math. Phys., 45(6):2171–2180,
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Desirable properties of frames

S(d ,N) = the set of all unit norm frames (with N frame vectors) for Hd

= the collection of all N-point configurations on Sd−1

We will focus on finding unit norm finite frames X = [x1, · · · , xN ] that
are

I nearly tight: XX ∗ ≈ N
d

Id

I well-separated: coherence ξ(X ) = max
i 6=j
|〈xi , xj〉| is small.

min
X∈S(d,N)

ξ(X ) is the best line-packing problem [4].

[4] J. H. Conway, R. H. Hardin, and N. J. A. Sloane. Packing lines, planes, etc.:
Packings in Grassmannian spaces. Exp. Math. 5.2 (1996)



Desirable properties of frames

A frame X = {xi}N
i=1 is an equiangular tight frame (ETF) if

I X is tight, and

I
|〈xi , xj〉|
‖xi‖2‖xj‖2

is constant for any pair i 6= j .

ETF is exactly tight and best-separated, but it does not always exist.

[5] M. Fickus and D. G. Mixon. Tables of the existence of equiangular tight frames.
[6] S. Waldron. An introduction to finite tight frames. Boston: Birkhäuser, 2018.



Previous work
Minimizing frame potential [7]

min
X∈S(d,N)

∑
i 6=j

|〈xi , xj〉|2 (1)

The minimizing configurations of (1) are exactly unit norm tight
frames.
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Previous work

min
X∈S(d,N)

∑
i 6=j

|〈xi , xj〉|p (2)

I Bigger p value promotes separation, since (2) approaches
coherence minimizing as p →∞.

I If p > 2, ETF (when exists) is the minimizer.

[8] M. Ehler and K. Okoudjou. Minimization of the Probabilistic p-frame Potential, J.
Statist. Plann. Inference, 142 (2012)
[9] D. Bilyk, D., A. Glazyrin, R. Matzke, J. Park, and O. Vlasiuk. Optimal measures for
p-frame energies on spheres. (2019)
[10] X. Chen, V. Gonzalez, E. Goodman, S. Kang, and K. Okoudjou. Universal optimal
configurations for the p-frame potentials. Adv. Comput. Math (2020)



Main result

Solving min
X∈S(d,N)

∑
i 6=j

1(√
2− 2|〈xi , xj〉|2

)s produces nearly tight and

well-separated (low coherence) frames.

√
2− 2|〈x , y〉|2 = ‖xx∗ − yy∗‖F



Set up

min
X∈S(d,N)

∑
i 6=j

f
(√

2− 2|〈xi , xj〉|2
)

where f is decreasing and convex on (0,
√

2].

f (t) =
1
ts , s > 0 min

X∈S(d,N)

∑
i 6=j

1(√
2− 2|〈xi , xj〉|2

)s

decreasing, strictly convex

f (t) = − log(t) min
X∈S(d,N)

∑
i 6=j

log
1√

2− 2|〈xi , xj〉|2decreasing, strictly convex

f (t) =
(

2− t2

2

)p/2

,p > 0 min
X∈S(d,N)

∑
i 6=j

|〈xi , xj〉|p

decreasing, f is not convex
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Set up

S(d ,N) = the collection of all N-point configurations on Sd−1

P(d ,N) = the collection of all N-point configurations on Pd−1

X = {xi}N
i=1

P = {pi = xix∗i }N
i=1

min
X∈S(d,N)

∑
i 6=j

f
(√

2− 2|〈xi , xj〉|2
)

= min
P∈P(d,N)

∑
i 6=j

f (‖pi − pj‖)



Results on R2

Theorem 1 (C. Hardin, Saff, 2020)
If f is a non-increasing convex function, then equally distributed
points on half circle is an optimal configuration of

min
X∈S(d,N)

∑
i 6=j

f
(√

2− 2|〈xi , xj〉|2
)

If, in addition, f is strictly convex, then no other N-point configuration
is optimal.

tight

best-separated



Results related to ETF

Theorem 2 (C., Hardin, Saff, 2020)
Let f be decreasing and strictly convex, then ETF (when exists) is the
unique minimizer of

min
X∈S(d,N)

∑
i 6=j

f
(√

2− 2|〈xi , xj〉|2
)
.

Theorem 2 (C., Hardin, Saff, 2020)
This is a stronger theorem:
Let g be decreasing and strictly convex, then ETF (when exists) is the
unique minimizer of

min
X∈S(d,N)

∑
i 6=j

g
(
2− 2|〈xi , xj〉|2

)
.

|〈x , y〉|p = g(2− 2|〈x , y〉|2), where g(t) =
(

2− t
2

)p/2

is decreasing

and strictly convex when p > 2.
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Results related to ETF
Proof of Theorem 2:
Let pi = xix∗i .

J : =
∑
i 6=j

‖pi − pj‖2 =
N∑

i=1

∑
j 6=i

(2− 2〈pi , pj〉)

=
N∑

i=1

2(N − 1)− 2
N∑

j=1

〈pi , pj〉+ 2


= 2N2 − 2

N∑
i,j=1

|〈xi , xj〉|2 ≤ 2N2 − 2N2/d ,

E(X ) =
N(N − 1)

1
· 1

N(N − 1)

∑
i 6=j

g(‖pi − pj‖2)

≥ N(N − 1)
1

g

∑
i 6=j

1
N(N − 1)

‖pi − pj‖2

 = N(N − 1)g
(

1
N(N − 1)

J
)

≥ N(N − 1)g
(

2N2 − 2N2/d
N(N − 1)

)
= N(N − 1)g

(
2N(1− 1/d)

(N − 1)

)
.



Projective Riesz kernel

1(√
2− 2|〈xi , xj〉|2

)s =
1

‖pi − pj‖s

Theorem 3 (Separation)

Let s > α = dim(Pd−1). If XN is an N-point minimizing configuration of

min
X∈S(d,N)

∑
i 6=j

1(√
2− 2|〈xi , xj〉|2

)s , (3)

then

ξ(XN) ≤
√

1− C2

2
N−2/α,

where the constant C depends on s and d .



Projective Riesz kernel

Proof uses a result from [11]

Suppose A ⊂ Rm is compact and supports an upper α-regular
measure µ. Let s > α,N ≥ 2 be fixed. If PN is an N-point minimizing
configuration on A for the s-Riesz energy minimizing problem, then

δ(PN) ≥ C1N−
1
α ,

where C1 =

(
µ(A)
CA

(1− α

s
)

)1/α (α
s

) 1
s
.

δ2(PN) = min
i 6=j
‖pi − pj‖2 = min

i 6=j
(2− 2|〈xi , xj〉|2) = 2− 2ξ2(XN)

[11] D. P. Hardin, E. B. Saff, and J. T. Whitehouse. Quasi-uniformity of minimal
weighted energy points on compact metric spaces. J. Complexity 28.2 (2012)



Projective Riesz kernel

Theorem 4 (Nearly tight)

Let s ≥ 0. If XN is an N-point minimizing configuration of

min
X∈S(d,N)

∑
i 6=j

1(√
2− 2|〈xi , xj〉|2

)s ,

then
lim

N→∞

1
N

XNX ∗N =
1
d

Id . (4)

The counting measure converges weak* to the uniform measure.
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Projective Riesz kernel

Theorem 4 says that the optimal configurations are nearly tight
asymptotically. A more desirable result would be∥∥∥∥XNX ∗N −

N
d

Id

∥∥∥∥
F
= O(N−q), q > 0. (5)

Numerical experiments suggest this holds for small values of s.



Numerical experiment: tightness
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Numerical experiment: separation
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Numerical experiment: a proposal

A method to generate well separated tight frame:
1. Generate a random frame X ∈ S(d ,N).
2. Using X as an initial configuration, use an optimization algorithm

(such as gradient descent) to find a local minimizer Y for

min
X∈S(d,N)

∑
i 6=j

1(√
2− 2|〈xi , xj〉|2

)s (3)

for some s > d − 1. Y is expected to be well-separated and
nearly tight according to our theorems.

3. Solve min
X∈S(d,N)

∑
i 6=j

|〈xi , xj〉|2 using Y as the initial configuration.



Numerical experiment: a proposal
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