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Frames

A set of vectors X = {x;}c/ is a frame for a separable Hilbert space H
if there exist A, B > 0 such that for every x € H,

Alx|Z < 10X P < Blix|%,
i€l

The constants A, B are called the frame bounds.

When A = B, X is called a tight frame, which generalizes the concept
of an orthonormal basis in the sense that we have the following
recovery formula

’
X=2 > (X, xi)x, Vx € H.

icl



Desirable properties of frames

equal norm signal processin
tight robustness to erasures ghal p 9

— S - — coding theory
symmetry stability in reconstruction

well separation quantum inf. theory
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Desirable properties of frames

S(d, N) = the set of all unit norm frames (with N frame vectors) for H¢
= the collection of all N-point configurations on S~

We will focus on finding unit norm finite frames X = [xy,--- , xy] that
are
. . N
> nearly tight: XX* ~ Eld
> well-separated: coherence £(X) = m;]x |(xi, x;)| is small.
i#]

Xerg(lg,N)f(X) is the best line-packing problem [4].

[4] J. H. Conway, R. H. Hardin, and N. J. A. Sloane. Packing lines, planes, etc.:
Packings in Grassmannian spaces. Exp. Math. 5.2 (1996)



Desirable properties of frames

A frame X = {x;}"V, is an equiangular tight frame (ETF) if
» X is tight, and
s ltxg))

is constant for any pair i # j.
[1xill2 X112

ETF is exactly tight and best-separated, but it does not always exist.

[5] M. Fickus and D. G. Mixon. Tables of the existence of equiangular tight frames.
[6] S. Waldron. An introduction to finite tight frames. Boston: Birkhauser, 2018.



Previous work
Minimizing frame potential [7]

min
XeS(d,N) 4
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Previous work
Minimizing frame potential [7]

min Z| X,7X] (1)

XeS(d,N) 4

The minimizing configurations of (1 ) are exactly unit norm tight

frames.
Xo Y3
N y4 y2
X3 € > X1 34
L 4
X4
Not well separated well separated
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2003



Previous work

min Z| Xi, Xj)|P (2)

XeS(d,N)

> Bigger p value promotes separation, since (2) approaches
coherence minimizing as p — oc.

> If p > 2, ETF (when exists) is the minimizer.

[8] M. Ehler and K. Okoudjou. Minimization of the Probabilistic p-frame Potential, J.
Statist. Plann. Inference, 142 (2012)

[9] D. Bilyk, D., A. Glazyrin, R. Matzke, J. Park, and O. Vlasiuk. Optimal measures for
p-frame energies on spheres. (2019)

[10] X. Chen, V. Gonzalez, E. Goodman, S. Kang, and K. Okoudjou. Universal optimal
configurations for the p-frame potentials. Adv. Comput. Math (2020)



Main result

1
Solvin min roduces nearly tight and
g xeS(d,N)%; ( 5 2\<Xi.,X,->|2)S p

well-separated (low coherence) frames.

\/2 = 2[(x,¥)12 = [Ixx* — yy*|IF



Set up

f 2 —2[(
Xe@'gN)Z< )P

where f is decreasing and convex on (0, v2].



Set up

f 2 —2[(
. (vo-20ne)

where f is decreasing and convex on (0, v2].

1

1

f(t)=—,s>0
ts XG?(IS N) Z S

decreasing, strictly convex 71 ( 2 —2|{x, x)[? )

f(t) = —log(t) min Z log o
decreasing, strictly convex XeS(dN) = 2 — 2[(xi, x))[?

2 2\P*?
f(t) = ( > ,p>0
e XG[QISN Z' Xio %) P

decreasing, f is not convex




Set up

S(d, N) = the collection of all N-point configurations on S~
P(d, N) = the collection of all N-point configurations on P9~"

X =} N
P ={pi = xix;"}i_

XES(dN)Zf(W 216 %) )=Peg;'gN)Zf(llpl al)



Results on R?

Theorem 1 (C. Hardin, Saff, 2020)

If f is a non-increasing convex function, then equally distributed
points on half circle is an optimal configuration of

f 2 — 2
Xe@ugmz ( )] )

If, in addition, f is strictly convex, then no other N-point configuration
is optimal.

tight
best-separated




Results related to ETF

Theorem 2 (C., Hardin, Saff, 2020)

Let f be decreasing and strictly convex, then ETF (when exists) is the
unique minimizer of

f 2 - 2|
S ()




Results related to ETF

Theorem 2 (C., Hardin, Saff, 2020)

Let f be decreasing and strictly convex, then ETF (when exists) is the
unique minimizer of

f 2 - 2|
XeS(dN)Z ( [, 2 )

Theorem 2 (C., Hardin, Saff, 2020)

This is a stronger theorem:
Let g be decreasing and strictly convex, then ETF (when exists) is the
unique minimizer of

Zg (2 2/(xi, ) [?) -

XES ¢ N) £

4\ Pp/2
[(x, )P = g(2 — 2|(x, y)[?), where g(t) = (%) is decreasing

and strictly convex when p > 2.



Results related to ETF

Proof of Theorem 2:
Let pPi = X,'X,-*.

N
Jo=3_lp—pl* =332 2(p.p)

i#] =1 j#i

-> (2(N—1)—2Z<p,-,p,»>+2>

j=1

N
=2N? -2 " |(x;, x)[? < 2N* — 2N?/d,

ij=1

£00 = SO g S ol - pl)

i#]

> NN=1), (ZN(N 5l - p,|):N(N—1>g(N(N1_1)J)

> N(N - 1)g (W) = N(N—1)g (%)




Projective Riesz kernel

1 1

(ve—zmgp) IP-alf

Theorem 3 (Separation)

Let s > a = dim(P9"). If Xy is an N-point minimizing configuration of

”
min Z s’ ©
XeS(d.N) < ( 2— 2|<Xi,xj>|2)

2
€0) <\ 1 - G N2,

where the constant C depends on s and d.

then




Projective Riesz kernel

Proof uses a result from [11]

Suppose A ¢ R™ is compact and supports an upper a-regular
measure u. Let s > o, N > 2 be fixed. If Py is an N-point minimizing
configuration on A for the s-Riesz energy minimizing problem, then

§(Py) > CyN~ =,

where Cy = (MU - CY))Wa (9)15_

Ca s s

82(Pn) = min [|pi — py|[? = min(2 — 2[(x;, x;)|?) = 2 — 2¢63(Xy)
i# i#]

[11] D. P. Hardin, E. B. Saff, and J. T. Whitehouse. Quasi-uniformity of minimal
weighted energy points on compact metric spaces. J. Complexity 28.2 (2012)



Projective Riesz kernel

Theorem 4 (Nearly tight)
Let s > 0. If Xy is an N-point minimizing configuration of

1

min s’
XES(dN) ( 2—2|<XI7X/'>|2)

then ] ]
—XnXp = Eld'

lim
N—oco N




Projective Riesz kernel

Theorem 4 (Nearly tight)

Let s > 0. If Xy is an N-point minimizing configuration of

. 1
min Z s’
Xes(d.N) ( 2—2|<x,-,Xj>|2)

then ] ’
aim, NN = Gl

The counting measure converges weak* to the uniform measure.




Projective Riesz kernel

Theorem 4 says that the optimal configurations are nearly tight
asymptotically. A more desirable result would be

l

xuxi— N,

g =0O(N 9, g>0.

F

Numerical experiments suggest this holds for small values of s.



Numerical experiment: tightness
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Numerical experiment: separation
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Numerical experiment: a proposal

A method to generate well separated tight frame:
1. Generate a random frame X € S(d, N).

2. Using X as an initial configuration, use an optimization algorithm
(such as gradient descent) to find a local minimizer Y for

1

: ®)
; (v2=2100.%IP)

min
XeS(d,N)
for some s > d — 1. Y is expected to be well-separated and

nearly tight according to our theorems.

3. Solve i x;, X;)|? using Y as the initial configuration.
Xerg(lg,N);K' i) g g



Numerical experiment: a proposal
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