Lubotzky-Phillips-Sarnak points on a sphere

Matthew de Courcy-Ireland

EPFL
Point Distributions Webinar July 8, 2020

This is an expository talk based on work of Lubotzky-Phillips-Sarnak

Lubotzky-Phillips-Sarnak 1986/87

Points on sphere constructed from

$$
\begin{aligned}
p & =\quad a^{2}+b^{2}+c^{2}+d^{2} \\
\text { prime } & =\text { sum of integer squares }
\end{aligned}
$$

Why 4 squares for 2d sphere?

$$
(a, b, c, d) \Rightarrow \text { quaternion } \Rightarrow \text { rotation of } S^{2}
$$

Proof that points are well distributed uses theorem of Deligne (Ramanujan conjecture on Fourier coefficients of holomorphic cuspforms)

Fact that their properties are best possible uses theorem of Kesten (random walk on groups)

Quadrature: \sum vs \int

Operator: given finite set of rotations S, define

$$
T f(x)=\sum_{S} f\left(S^{-1} x\right)
$$

self-adjoint on L^{2} if the set also contains S^{-1} for each of its S
Largest eigenvalue: for $f=1$ get

$$
T f=2 \ell f
$$

where $2 \ell=\#$ of rotations
Want Tf small when $\int f=0$

No such luck on torus

Rotations \Rightarrow translations

$$
x \mapsto x \pm a_{i} \quad i=1, \ldots, \ell
$$

Constant function gives highest eigenvalue 2ℓ as before
But there are exponentials with eigenvalue arbitrarily close to 2ℓ
$f(x)=\exp (2 \pi \sqrt{-1} \nu \cdot x)$ well-defined on torus $\mathbb{R}^{n} / \mathbb{Z}^{n}$ for $\nu \in \mathbb{Z}^{n}$

$$
\begin{aligned}
& T f=\lambda_{\nu} f \quad \text { where } \quad \lambda_{\nu}=2 \sum_{i=1}^{\ell} \cos 2 \pi \nu \cdot a_{i} \\
& \approx 2 \ell
\end{aligned}
$$

provided $\nu \cdot a_{i}$ are all close to integers

Next largest |eigenvalue| of T, after $2 \ell=\lambda_{0}$

$$
\lambda_{1}=\sup \|T f\|
$$

over f with $\int f=0$ and $\int|f|^{2}=1$
λ_{1} controls mean-square error in the approximation

$$
\int f \approx \frac{1}{2 \ell} \sum_{S} f(S x)
$$

over different choices of x
Want spectral gap: λ_{1} as far from 2ℓ as possible

Quaternions and rotations

Here as he walked by

 on the I6th of ()ctober 184.3 Sir UVilliam Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

\mathcal{E} cut it on a stone of this bridge

Rotations

$q=w+x i+y j+z k \quad$ has a conjugate $\quad \bar{q}=w-x i-y j-z k$
Quaternion norm

$$
N(q)=q \bar{q}=w^{2}+x^{2}+y^{2}+z^{2}
$$

Crucially $N\left(q_{1} q_{2}\right)=N\left(q_{1}\right) N\left(q_{2}\right)$ so

$$
N\left(q^{-1} r q\right)=N(r)
$$

If r has "real part" $w=0$ then so does $q^{-1} r q$ $N(r)=x^{2}+y^{2}+z^{2}$ is also preserved
\Rightarrow Each quaternion q defines a rotation of the sphere

Which rotation is it?

Polar form

$$
q=s(\cos \theta+u \sin \theta)
$$

where s is a scalar and

$$
u=x i+y j+z k \quad \text { with } x^{2}+y^{2}+z^{2}=1
$$

Note that $u^{2}=-1$ for any such "unit quaternion"
Then $r \mapsto q^{-1} r q$ is a rotation by angle 2θ around axis u
Compare with matrix form of the same rotation

$$
\left(\begin{array}{lll}
u & u_{1}^{\perp} & u_{2}^{\perp}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos 2 \theta & -\sin 2 \theta \\
0 & \sin 2 \theta & \cos 2 \theta
\end{array}\right)\left(\begin{array}{lll}
u & u_{1}^{\perp} & u_{2}^{\perp}
\end{array}\right)^{\top}
$$

Example: $p=5$

$5=N(q)$ for any of the six quaternions $1 \pm 2 i, 1 \pm 2 j, 1+ \pm 2 k$
Polar form $\sqrt{5}(\cos \theta+u \sin \theta)$ where $\cos \theta=1 / \sqrt{5}$ and $u= \pm i, j$, or k
Corresponding rotations have orthogonal axes X, Y, or Z (counter)clockwise according to $\pm\left(\Longrightarrow S^{-1}\right.$ always comes with $\left.S\right)$

Trig identity $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$ determines angle $\arccos (-3 / 5)$ in degrees: roughly 126.86989764584402129685561255909341066

Sums of four squares

$8(p+1)$ ways to write p as a sum of four squares

$$
5=1^{2}+2^{2}+0^{2}+0^{2}
$$

$$
8(p+1)=48=6 x
$$

$$
2 \times \quad 2^{2}
$$

two places out of four for 0 choose 1 vs 2 choose sign for non-zero coordinates

$$
\begin{aligned}
& 7=2^{2}+1^{2}+1^{2}+1^{2} \\
& 8(p+1)=64=4 \times 2^{4} \\
& 11=0^{2}+1^{2}+1^{2}+3^{2}
\end{aligned}
$$

$$
8(p+1)=12 \times 2^{3} \quad \text { four places for } 0, \text { three left for } 3, \text { three signs to choose }
$$

First really non-unique case: $\quad p=13$ with $8(p+1)=8 \times 6+8 \times 8$

$$
\begin{array}{rlr}
13 & =3^{2}+2^{2}+0^{2}+0^{2} & 48 \text { like this } \\
& =1^{2}+2^{2}+2^{2}+2^{2} & 64 \text { like this }
\end{array}
$$

Jacobi's 4-square theorem

$8(p+1)$ ways to write prime p as sum of four squares
For composite n, replace $p+1$ by sum of divisors of n excluding multiples of 4
Only $p+1$ ways of a standard form:
$w+x i+y j+z k$ where w has different parity from the others

$$
\begin{array}{ll}
\text { e.g. } & 5=1^{2}+2^{2}+0^{2}+0^{2} \quad \text { with one odd, others even } \\
7=2^{2}+1^{2}+1^{2}+1^{2} \quad \text { with one even, others odd }
\end{array}
$$

For each prime p, get $p+1$ quaternions of norm p such that $q \bmod 2$ is either $1($ if $p \equiv 1 \bmod 4)$ or $i+j+k($ if $p \equiv 3 \bmod 4)$ with real part $w>0$

Assume $p \equiv 1 \bmod 4$ from now on

Hurwitz quaternions

$w+x i+y j+z k$ with coefficients either all integers, or all half-integers (gives D_{4} instead of \mathbb{Z}^{4})
enables division with remainder for quaternions and a form of unique factorization
clarifies why Jacobi excludes multiples of 4: need to separate integer solutions from half-integer

Why does this achieve $\lambda_{1}=2 \sqrt{p}$?

Amplify difference between λ_{1} and $2 \sqrt{p}$ by iterating many times

$$
T_{n} f(\zeta)=\frac{1}{2} \sum_{\alpha} f(\alpha \zeta)
$$

sum over quaternions $\alpha \equiv 1 \bmod 2$ with norm $N(\alpha)=n$
Lemma: $T_{p^{m}}$ is a polynomial in T_{p}

$$
T_{p^{m}}=U_{m}\left(T_{p}\right) \quad \text { where } \quad p^{m / 2} \frac{\sin (m+1) \theta}{\sin \theta}=U_{m}(2 \sqrt{p} \cos \theta)
$$

Write eigenvalue as $\lambda=2 \sqrt{p} \cos \theta$
Want to show θ is real so $\lambda_{1} \leq 2 \sqrt{p}$

If $T_{p} u=\lambda u$, with eigenvalue written $\lambda=2 \sqrt{p} \cos \theta$

$$
T_{p^{m}} u=p^{m / 2} \frac{\sin (m+1) \theta}{\sin \theta} u
$$

Input from Deligne: for any harmonic u and any point ζ on the sphere

$$
\left|T_{p^{m}} U(\zeta)\right|<_{\varepsilon} p^{m / 2+\varepsilon m}
$$

constant depends on ε, u, ζ BUT NOT on m

Consequence: As $m \rightarrow \infty$

$$
\begin{array}{ll}
& p^{\varepsilon m} \gg\left|\frac{\sin (m+1) \theta}{\sin \theta}\right| \\
\text { exp rate } \varepsilon \log p & \approx e^{m| | \operatorname{mag} \theta \mid} \\
\text { exp rate }|\operatorname{Imag} \theta|
\end{array}
$$

Only possible if θ is real, since ε can be arbitrarily small

From p to p^{m}

Every integral quaternion with $N(\beta)=p^{m}$ has a unique representation

$$
\beta= \pm p^{s}(\text { product of } t \text { quaternions of norm } p)
$$

where $2 s+t=m$, the factors are in "standard form" $\alpha \equiv 1 \bmod 2$ and the product is reduced (no cancellations $\alpha \alpha^{-1}$ allowed)

$$
T_{p^{m}} f(\zeta)=\sum_{N(\beta)=p^{m}} f(\beta \zeta)=\sum_{s \leq m / 2} \sum_{w} f(w \zeta)
$$

inner sum over shell at radius $t=m-2 s$ in $(p+1)$-regular tree
Recurrence

$$
G_{m}(x)=x G_{m-1}(x)-p G_{m-2}(x)
$$

solved by linear combo of exponentials; initial values match
 $\sin (m+1) \theta / \sin \theta$

Theta series

Generating function for the terms $T_{n} u$ we want to estimate
Given spherical harmonic u and point ζ, let

$$
\theta(z)=\sum_{\alpha} N(\alpha)^{m} u(\alpha \zeta) \exp (2 \pi \sqrt{-1} N(\alpha) z / 16)
$$

sum over integral quaternions α with $\alpha \equiv 2 \bmod 4$ converges for $\Im(z)>0$

Collect terms:

$$
\theta(z)=\sum_{\nu=1}^{\infty}\left(\nu^{m} \sum_{\alpha} u(\alpha \zeta)\right) \exp (2 \pi \sqrt{-1} \nu z / 16)
$$

inner sum over α with $N(\alpha)=\nu$ and $\alpha \equiv 2 \bmod 4$

$\left|\sum_{\alpha} u(\alpha \zeta)\right| \ll \nu^{1 / 2+\varepsilon}$ where $N(\alpha)=\nu, \alpha \equiv 2 \bmod 4$

If the spharmonic u is non-constant, then
θ is a holomorphic cuspform of weight $2+2 m$ for $\Gamma(4)$, meaning roughly:
θ is periodic under certain translations of z
further properties derived from Poisson sum
θ is not too large as $\Im(z) \rightarrow 0, \infty \quad$ (would fail for $u=1$)
Deligne's theorem: for any holomorphic cuspform of weight k

$$
\nu^{\text {th }} \text { coefficient }<_{\varepsilon} \nu^{k / 2-1 / 2+\varepsilon}
$$

For θ, the coefficients are $\nu^{m} \sum_{\alpha} u(\alpha \zeta)$ and $k=2+2 m$

Back to p^{m}

Apply Deligne's theorem with $\nu=4 p^{m}$
Change (quaternion) variables to $\beta=\alpha / 2$
Get

$$
\left|\sum_{\substack{\beta=1 \bmod 2 \\ N(\beta)=p^{m}}} u(\beta \zeta)\right|<_{\varepsilon}\left(p^{m}\right)^{1 / 2+\varepsilon}
$$

which is the input we needed earlier:

$$
\left|T_{p^{m}} U(\zeta)\right| \ll p^{m / 2} p^{\varepsilon m}
$$

Why can't we do even better?

Cayley graph

Given a group G with generating set S
Assume $S=\left\{\gamma_{1}^{ \pm 1}, \ldots, \gamma_{\ell}^{ \pm 1}\right\}$ is symmetric (and finite)
The vertices of the Cayley graph are the elements of G
Edges connect g to $s g$ for each generator s from the given set S
Adjacency operator on a graph:

$$
T f(x)=\sum_{y \sim x} f(y)
$$

sum over all neighbours of the point x

A Cayley graph we have met

Group G of order 8

Generating set S consists of i, j, k and inverses

More typically, G would be infinite
e.g. \mathbb{Z}^{2} with generators $(1,0)$ and $(0,1)$

$\lambda_{1} \geq 2 \sqrt{2 \ell-1}$ for any set of 2ℓ rotations

In particular $\lambda_{1} \geq 2 \sqrt{p}$ for the $p+1$ rotations from $p=a^{2}+b^{2}+c^{2}+d^{2}$
Theorem (Kesten 1959)

$$
2 \sqrt{2 \ell-1} \leq\|T\| \leq 2 \ell
$$

where T is the adjacency operator of a Cayley graph on 2ℓ generators
$\|T\|=2 \sqrt{2 \ell-1}$ if and only if G is the free group on those generators

Banach-Tarski

Quaternions $1+2 i$ and $1+2 j$ from $p=5$ generate a free group of rotations (freedom guaranteed by Kesten; possible to check directly)

CHOOSE a set R of representatives from each orbit
Every point of S^{2} lies in $w R$ for some word w in the generators $a=1+2 i, \quad b=1+2 j, \quad$ and their inverses

Partition sphere based on first letter of w

For more information

Lubotzky-Phillips-Sarnak, Hecke Operators and Distributing Points on the Sphere/S² I/II (1986/87)
Comm on Pure and Appl Math vol XXXIX and XL
Conway and Smith,
On Quaternions and Octonions (2003)
Deligne, La conjecture de Weil I (1974) Pub Math IHES, et II (1980)

Kesten, Symmetric random walks on groups (1959) Transactions of the AMS

