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This is an expository talk based on work of Lubotzky-Phillips-Sarnak
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Lubotzky-Phillips-Sarnak 1986/87

- Points on sphere constructed from
p = a2 + b2 + c2 + d2

prime = sum of integer squares

- Why 4 squares for 2d sphere?

(a,b, c,d) ⇒ quaternion ⇒ rotation of S2

- Proof that points are well distributed uses theorem of Deligne
(Ramanujan conjecture on Fourier coefficients of holomorphic cuspforms)

- Fact that their properties are best possible uses theorem of Kesten
(random walk on groups)
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Quadrature:
∑

vs
∫

- Operator: given finite set of rotations S, define

Tf (x) =
∑

S

f (S−1x)

self-adjoint on L2 if the set also contains S−1 for each of its S

- Largest eigenvalue: for f = 1 get
Tf = 2`f

where 2` = # of rotations

- Want Tf small when
∫

f = 0
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No such luck on torus

- Rotations⇒ translations
x 7→ x ± ai i = 1, . . . , `

- Constant function gives highest eigenvalue 2` as before

- But there are exponentials with eigenvalue arbitrarily close to 2`

- f (x) = exp(2π
√
−1ν · x) well-defined on torus Rn/Zn for ν ∈ Zn

Tf = λν f where λν = 2
∑̀
i=1

cos 2πν · ai

≈ 2`

provided ν · ai are all close to integers
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λ1

- Next largest |eigenvalue| of T , after 2` = λ0

λ1 = sup ‖Tf‖

over f with
∫

f = 0 and
∫
|f |2 = 1

- λ1 controls mean-square error in the approximation∫
f ≈ 1

2`

∑
S

f (Sx)

over different choices of x

- Want spectral gap: λ1 as far from 2` as possible
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Quaternions and rotations
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±1 i

−kj

−i

k −j

7 / 29



Rotations

- q = w + xi + yj + zk has a conjugate q̄ = w − xi − yj − zk

- Quaternion norm
N(q) = qq̄ = w2 + x2 + y2 + z2

Crucially N(q1q2) = N(q1)N(q2) so

N(q−1rq) = N(r)

- If r has “real part” w = 0 then so does q−1rq
N(r) = x2 + y2 + z2 is also preserved

- ⇒ Each quaternion q defines a rotation of the sphere
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Which rotation is it?

- Polar form
q = s(cos θ + u sin θ)

where s is a scalar and u = xi + yj + zk with x2 + y2 + z2 = 1
Note that u2 = −1 for any such “unit quaternion”

- Then r 7→ q−1rq is a rotation by angle 2θ around axis u

- Compare with matrix form of the same rotation

(
u u⊥1 u⊥2

)1 0 0
0 cos 2θ − sin 2θ
0 sin 2θ cos 2θ

(u u⊥1 u⊥2
)>
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Example: p = 5

- 5 = N(q) for any of the six quaternions 1± 2i ,1± 2j ,1 +±2k

- Polar form
√

5(cos θ + u sin θ) where cos θ = 1/
√

5 and u = ±i , j , or k

- Corresponding rotations have orthogonal axes X , Y , or Z
(counter)clockwise according to ± ( =⇒ S−1 always comes with S)

- Trig identity cos 2θ = cos2 θ − sin2 θ determines angle arccos(−3/5)
in degrees: roughly 126.86989764584402129685561255909341066
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Sums of four squares

12 / 29



8(p + 1) ways to write p as a sum of four squares
- 5 = 12 + 22 + 02 + 02

8(p + 1) = 48 = 6× 2× 22

two places out of four for 0 choose 1 vs 2 choose sign for non-zero coordinates

- 7 = 22 + 12 + 12 + 12

8(p + 1) = 64 = 4× 24 four places for 2, then four signs to choose

- 11 = 02 + 12 + 12 + 32

8(p + 1) = 12× 23 four places for 0, three left for 3, three signs to choose

- First really non-unique case: p = 13 with 8(p + 1) = 8× 6 + 8× 8

13 =32 + 22 + 02 + 02 48 like this

=12 + 22 + 22 + 22 64 like this
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Jacobi’s 4-square theorem

- 8(p + 1) ways to write prime p as sum of four squares

- For composite n, replace p + 1 by sum of divisors of n excluding multiples of 4

- Only p + 1 ways of a standard form:
w + xi + yj + zk where w has different parity from the others

e.g. 5 = 12 + 22 + 02 + 02 with one odd, others even

7 = 22 + 12 + 12 + 12 with one even, others odd

- For each prime p, get p + 1 quaternions of norm p such that
q mod 2 is either 1 (if p ≡ 1 mod 4) or i + j + k (if p ≡ 3 mod 4)
with real part w > 0

- Assume p ≡ 1 mod 4 from now on
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Hurwitz quaternions

- w + xi + yj + zk with coefficients either all integers,
or all half-integers (gives D4 instead of Z4)

- enables division with remainder for quaternions
and a form of unique factorization

- clarifies why Jacobi excludes multiples of 4:
need to separate integer solutions from half-integer

1+i+j+k
2 i

j

k
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Why does this achieve λ1 = 2
√

p?
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- Amplify difference between λ1 and 2
√

p by iterating many times

Tnf (ζ) =
1
2

∑
α

f (αζ)

sum over quaternions α ≡ 1 mod 2 with norm N(α) = n

- Lemma: Tpm is a polynomial in Tp

Tpm = Um(Tp) where pm/2 sin (m + 1)θ

sin θ
= Um(2

√
p cos θ)

- Write eigenvalue as λ = 2
√

p cos θ
Want to show θ is real so λ1 ≤ 2

√
p
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- If Tpu = λu, with eigenvalue written λ = 2
√

p cos θ

Tpmu = pm/2 sin (m + 1)θ

sin θ
u

- Input from Deligne: for any harmonic u and any point ζ on the sphere

|Tpmu(ζ)| �ε pm/2+εm

constant depends on ε, u, ζ BUT NOT on m

- Consequence: As m→∞

pεm �
∣∣∣∣sin (m + 1)θ

sin θ

∣∣∣∣ ≈ em|Imag θ|

exp rate ε log p exp rate |Imag θ|

Only possible if θ is real, since ε can be arbitrarily small
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From p to pm

- Every integral quaternion with N(β) = pm has a unique representation

β = ±ps(product of t quaternions of norm p)

where 2s + t = m, the factors are in “standard form” α ≡ 1 mod 2
and the product is reduced (no cancellations αα−1 allowed)

-
Tpm f (ζ) =

∑
N(β)=pm

f (βζ) =
∑

s≤m/2

∑
w

f (wζ)

- inner sum over shell at radius t = m−2s in (p + 1)-regular tree

- Recurrence

Gm(x) = xGm−1(x)− pGm−2(x)

solved by linear combo of exponentials; initial values match
sin (m + 1)θ/ sin θ 19 / 29



Theta series

- Generating function for the terms Tnu we want to estimate

- Given spherical harmonic u and point ζ, let

θ(z) =
∑
α

N(α)mu(αζ) exp
(
2π
√
−1N(α)z/16

)
sum over integral quaternions α with α ≡ 2 mod 4
converges for =(z) > 0

- Collect terms:

θ(z) =
∞∑
ν=1

(
νm
∑
α

u(αζ)

)
exp(2π

√
−1νz/16)

inner sum over α with N(α) = ν and α ≡ 2 mod 4
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|
∑

α u(αζ)| � ν1/2+ε where N(α) = ν, α ≡ 2 mod 4

- If the spharmonic u is non-constant, then
θ is a holomorphic cuspform of weight 2 + 2m for Γ(4), meaning roughly:

θ is periodic under certain translations of z
further properties derived from Poisson sum
θ is not too large as =(z)→ 0,∞ (would fail for u = 1)

- Deligne’s theorem: for any holomorphic cuspform of weight k

ν thcoefficient�ε ν
k/2−1/2+ε

- For θ, the coefficients are νm∑
α u(αζ) and k = 2 + 2m
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Back to pm

- Apply Deligne’s theorem with ν = 4pm

- Change (quaternion) variables to β = α/2

- Get ∣∣∣∣∣∣∣∣
∑

β≡1 mod 2
N(β)=pm

u(βζ)

∣∣∣∣∣∣∣∣�ε (pm)1/2+ε

which is the input we needed earlier:

|Tpmu(ζ)| � pm/2pεm
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Why can’t we do even better?
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Cayley graph

- Given a group G with generating set S
Assume S = {γ±1

1 , . . . , γ±1
` } is symmetric (and finite)

- The vertices of the Cayley graph are the elements of G
Edges connect g to sg for each generator s from the given set S

- Adjacency operator on a graph:

Tf (x) =
∑
y∼x

f (y)

sum over all neighbours of the point x
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A Cayley graph we have met

±1 i

−kj

−i

k −j

- Group G of order 8

- Generating set S consists of i , j , k and inverses

More typically, G would be infinite e.g. Z2 with generators (1,0) and (0,1)
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λ1 ≥ 2
√

2`− 1 for any set of 2` rotations

- In particular λ1 ≥ 2
√

p for the p + 1 rotations from p = a2 + b2 + c2 + d2

- Theorem (Kesten 1959)
2
√

2`− 1 ≤ ‖T‖ ≤ 2`

where T is the adjacency operator of a Cayley graph on 2` generators

- ‖T‖ = 2
√

2`− 1 if and only if G is the free group on those generators
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Banach-Tarski

- Quaternions 1 + 2i and 1 + 2j from p = 5
generate a free group of rotations
(freedom guaranteed by Kesten; possible to check directly)

- CHOOSE a set R of representatives from each orbit

- Every point of S2 lies in wR for some word w in the generators
a = 1 + 2i, b = 1 + 2j , and their inverses

- Partition sphere based on first letter of w
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