
Construction of (polynomial) lattice rules by

smoothness-independent component-by-component

digit-by-digit constructions

Talk at the Point Distributions Webinar

Adrian Ebert, RICAM, Linz

Joint research with D. Nuyens, P. Kritzer, O. Osisiogu and T. Stepaniuk

November 4, 2020

Table of contents

1. Lattice rules and periodic functions

2. Quality measure and optimal coefficients

3. The componentwise digit-by-digit algorithm

4. Fast implementation of the algorithm

5. Numerical results

6. Polynomial lattice rules

1/35

Lattice rules and periodic functions

Multivariate numerical integration

Approximate the integral of an s-variate function f : [0, 1]s → R

I (f) :=

∫
[0,1]s

f (x)dx

over the s-dimensional unit cube by a quasi-Monte Carlo (QMC) rule, i.e.,

I (f) =

∫
[0,1]s

f (x)dx ≈ 1

N

N−1∑
k=0

f (xk) =: QN(f , {xk}N−1k=0)

with deterministically chosen quadrature nodes {x0, . . . , xN−1} ⊂ [0, 1]s .

Worst-case error

Let (F , ‖ · ‖F) be a Banach space and QN be a QMC rule with

underlying point-set PN = {x0, . . . , xN−1} ⊂ [0, 1]s . The worst-

case error of QN w.r.t. F is defined as

eN,s(QN ,F) := sup
‖f ‖F≤1

∣∣∣∣∣
∫
[0,1]s

f (x)dx − 1

N

N−1∑
k=0

f (xk)

∣∣∣∣∣ .

2/35

Multivariate numerical integration

Approximate the integral of an s-variate function f : [0, 1]s → R

I (f) :=

∫
[0,1]s

f (x)dx

over the s-dimensional unit cube by a quasi-Monte Carlo (QMC) rule, i.e.,

I (f) =

∫
[0,1]s

f (x)dx ≈ 1

N

N−1∑
k=0

f (xk) =: QN(f , {xk}N−1k=0)

with deterministically chosen quadrature nodes {x0, . . . , xN−1} ⊂ [0, 1]s .

Worst-case error

Let (F , ‖ · ‖F) be a Banach space and QN be a QMC rule with

underlying point-set PN = {x0, . . . , xN−1} ⊂ [0, 1]s . The worst-

case error of QN w.r.t. F is defined as

eN,s(QN ,F) := sup
‖f ‖F≤1

∣∣∣∣∣
∫
[0,1]s

f (x)dx − 1

N

N−1∑
k=0

f (xk)

∣∣∣∣∣ .
2/35

Rank-1 lattice rule

A rank-1 lattice rule is a quasi-Monte Carlo rule with quadrature

node set PN ⊂ [0, 1]s of the form

PN =

{
kz mod N

N

∣∣∣ 0 ≤ k < N

}
⊂ [0, 1]s ,

where z ∈ Zs is called the generating vector of the lattice rule.

z

z

Figure 1: Fibonacci lattice with N = 55 and z = (1, 34) (left) and a rank-1

lattice with N = 32 and z = (1, 9) constructed by the CBC construction (right)

3/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(1
32 ,

9
32)

z

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(2
32 ,

18
32)

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(3
32 ,

27
32)

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(4
32 ,

36
32)

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(4
32 ,

4
32)

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

PN =

{
kz mod N

N
: k = 0, 1, 2, . . . ,N − 1

}
with z ∈ Zs and can be constructed in the following way:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lattice with N = 32 points and generating vector z = (1, 9)

4/35

Good lattice, bad lattice

• Generating vector z ∈ Zs influences quality of lattice rule

z
z

(a) well-distributed lattice

(b) badly distributed lattice

Illustration of rank-1 lattices with generating vectors z = (1, 34) and N = 89

points (left) and z = (1, 43) with N = 89 points (right)

• Goal: Find good generating vectors z ∈ Zs such that the obtained

rank-1 lattice rules QN(·, z) are suited for numerical integration.

5/35

Good lattice, bad lattice

• Generating vector z ∈ Zs influences quality of lattice rule

z

z

(a) well-distributed lattice

(b) badly distributed lattice

Illustration of rank-1 lattices with generating vectors z = (1, 34) and N = 89

points (left)

and z = (1, 43) with N = 89 points (right)

• Goal: Find good generating vectors z ∈ Zs such that the obtained

rank-1 lattice rules QN(·, z) are suited for numerical integration.

5/35

Good lattice, bad lattice

• Generating vector z ∈ Zs influences quality of lattice rule

z
z

(a) well-distributed lattice (b) badly distributed lattice

Illustration of rank-1 lattices with generating vectors z = (1, 34) and N = 89

points (left) and z = (1, 43) with N = 89 points (right)

• Goal: Find good generating vectors z ∈ Zs such that the obtained

rank-1 lattice rules QN(·, z) are suited for numerical integration.

5/35

Good lattice, bad lattice

• Generating vector z ∈ Zs influences quality of lattice rule

z
z

(a) well-distributed lattice (b) badly distributed lattice

Illustration of rank-1 lattices with generating vectors z = (1, 34) and N = 89

points (left) and z = (1, 43) with N = 89 points (right)

• Goal: Find good generating vectors z ∈ Zs such that the obtained

rank-1 lattice rules QN(·, z) are suited for numerical integration.

5/35

Lattice rule integration error

Consider 1-periodic, continuous functions f : [0, 1]s → R with associated

absolutely convergent Fourier series

f (x) =
∑
h∈Zs

f̂ (h)e2πih·x with f̂ (h) :=

∫
[0,1]s

f (x)e−2πih·x dx .

The integration error of a lattice rule QN(·, z) then equals

QN(f , z)−I (f) =
∑

0 6=h∈Zs

f̂ (h)

[
1

N

N−1∑
k=0

e2πikh·z/N

]
=

∑
06=h∈Zs

f̂ (h) δN(h ·z)

with indicator function for the dual lattice {h ∈ Zs | h · z ≡ 0 (mod N)}

δN(m) :=

{
1, if m ≡ 0 (mod N),

0, if m 6≡ 0 (mod N).

6/35

Lattice rule integration error

Consider 1-periodic, continuous functions f : [0, 1]s → R with associated

absolutely convergent Fourier series

f (x) =
∑
h∈Zs

f̂ (h)e2πih·x with f̂ (h) :=

∫
[0,1]s

f (x)e−2πih·x dx .

The integration error of a lattice rule QN(·, z) then equals

QN(f , z)−I (f) =
∑

0 6=h∈Zs

f̂ (h)

[
1

N

N−1∑
k=0

e2πikh·z/N

]
=

∑
06=h∈Zs

f̂ (h) δN(h ·z)

with indicator function for the dual lattice {h ∈ Zs | h · z ≡ 0 (mod N)}

δN(m) :=

{
1, if m ≡ 0 (mod N),

0, if m 6≡ 0 (mod N).

6/35

Function space setting

It is then common to consider function spaces of periodic functions

whose Fourier coefficients f̂ (h) decay sufficiently fast.

The decay of the f̂ (h) is measured by a decay function rα(h) of the form

rα(h) :=

{
1, if h = 0,

|h|α, if h 6= 0
and rα(h) :=

s∏
j=1

rα(hj)

with smoothness parameter α > 1.

In order to overcome the curse of dimensionality, we additionally

introduce so-called weights γ = (γu)u⊆{1:s} which measure the

importance of (groups of) variables xu := (xj)j∈u:

rα,γ(h) := γ−1supp(h)

∏
j∈supp(h)

|hj |α .

• Relation between rα,γ(h) and mixed partial derivatives f (τ), τ ∈ Ns
0

7/35

Function space setting

It is then common to consider function spaces of periodic functions

whose Fourier coefficients f̂ (h) decay sufficiently fast.

The decay of the f̂ (h) is measured by a decay function rα(h) of the form

rα(h) :=

{
1, if h = 0,

|h|α, if h 6= 0
and rα(h) :=

s∏
j=1

rα(hj)

with smoothness parameter α > 1.

In order to overcome the curse of dimensionality, we additionally

introduce so-called weights γ = (γu)u⊆{1:s} which measure the

importance of (groups of) variables xu := (xj)j∈u:

rα,γ(h) := γ−1supp(h)

∏
j∈supp(h)

|hj |α .

• Relation between rα,γ(h) and mixed partial derivatives f (τ), τ ∈ Ns
0

7/35

Function space setting

It is then common to consider function spaces of periodic functions

whose Fourier coefficients f̂ (h) decay sufficiently fast.

The decay of the f̂ (h) is measured by a decay function rα(h) of the form

rα(h) :=

{
1, if h = 0,

|h|α, if h 6= 0
and rα(h) :=

s∏
j=1

rα(hj)

with smoothness parameter α > 1.

In order to overcome the curse of dimensionality, we additionally

introduce so-called weights γ = (γu)u⊆{1:s} which measure the

importance of (groups of) variables xu := (xj)j∈u:

rα,γ(h) := γ−1supp(h)

∏
j∈supp(h)

|hj |α .

• Relation between rα,γ(h) and mixed partial derivatives f (τ), τ ∈ Ns
0

7/35

Function space setting

Define the norm of the Banach space Eαs,γ as

‖f ‖Eαs,γ := sup
h∈Zs

|f̂ (h)| rα,γ(h)

and for α > 1 and positive weights define the weighted function space

Eαs,γ := {f ∈ L2([0, 1]s) | ‖f ‖Eαs,γ <∞}.

0

2

4

6

8

0 1
2

1

x

f β
(x

)
=

1
+
∑ h
∈
Z ∗

e
2
π
i
h
x

|h
|β

β = 4
3

β = 2 β = 3
8/35

Function space setting

Applying Hölder’s inequality with p =∞ and q = 1 to the integration

error (see previous slide) yields

|QN(f , z)− I (f)| =

∣∣∣∣∣∣
∑

0 6=h∈Zs

f̂ (h) rα,γ(h) r−1α,γ(h) δN(h · z)

∣∣∣∣∣∣
≤

(
sup
h∈Zs

|f̂ (h)|rα,γ(h)

)
︸ ︷︷ ︸

=: ‖f ‖Eαs,γ

(∑
06=h∈Zs

δN(h · z)

rα,γ(h)

)
︸ ︷︷ ︸

=eN,s (QN (·,z),Eαs,γ)

.

Theorem (Lattice rule worst-case error)

Let N, s ∈ N, α > 1 and a sequence of positive weights γ = (γu)u⊆{1:s}
be given. Then the worst-case error eN,s,α,γ(z) for the rank-1 lattice

rule QN(·, z) in the space Eαs,γ satisfies

eN,s,α,γ(z) := eN,s(QN(·, z),Eαs,γ) =
∑

0 6=h∈Zs

δN(h · z)

rα,γ(h)
.

9/35

Function space setting

Applying Hölder’s inequality with p =∞ and q = 1 to the integration

error (see previous slide) yields

|QN(f , z)− I (f)| =

∣∣∣∣∣∣
∑

0 6=h∈Zs

f̂ (h) rα,γ(h) r−1α,γ(h) δN(h · z)

∣∣∣∣∣∣
≤

(
sup
h∈Zs

|f̂ (h)|rα,γ(h)

)
︸ ︷︷ ︸

=: ‖f ‖Eαs,γ

(∑
06=h∈Zs

δN(h · z)

rα,γ(h)

)
︸ ︷︷ ︸

=eN,s (QN (·,z),Eαs,γ)

.

Theorem (Lattice rule worst-case error)

Let N, s ∈ N, α > 1 and a sequence of positive weights γ = (γu)u⊆{1:s}
be given. Then the worst-case error eN,s,α,γ(z) for the rank-1 lattice

rule QN(·, z) in the space Eαs,γ satisfies

eN,s,α,γ(z) := eN,s(QN(·, z),Eαs,γ) =
∑

0 6=h∈Zs

δN(h · z)

rα,γ(h)
.

9/35

Function space setting

Applying Hölder’s inequality with p =∞ and q = 1 to the integration

error (see previous slide) yields

|QN(f , z)− I (f)| =

∣∣∣∣∣∣
∑

0 6=h∈Zs

f̂ (h) rα,γ(h) r−1α,γ(h) δN(h · z)

∣∣∣∣∣∣
≤

(
sup
h∈Zs

|f̂ (h)|rα,γ(h)

)
︸ ︷︷ ︸

=: ‖f ‖Eαs,γ

(∑
06=h∈Zs

δN(h · z)

rα,γ(h)

)
︸ ︷︷ ︸

=eN,s (QN (·,z),Eαs,γ)

.

Theorem (Lattice rule worst-case error)

Let N, s ∈ N, α > 1 and a sequence of positive weights γ = (γu)u⊆{1:s}
be given. Then the worst-case error eN,s,α,γ(z) for the rank-1 lattice

rule QN(·, z) in the space Eαs,γ satisfies

eN,s,α,γ(z) := eN,s(QN(·, z),Eαs,γ) =
∑

0 6=h∈Zs

δN(h · z)

rα,γ(h)
.

9/35

Quality measure and optimal coefficients

Quality measure Tα(N , z)

For α ≥ 1 we introduce the quality measure

Tα(N, z) :=
∑

0 6=h∈MN,s

h·z≡0 (mod N)

1

rα,γ(h)
=

∑
06=h∈MN,s

δN(h · z)

rα,γ(h)

with truncated index set MN,s = {−(N − 1), . . . ,N − 1}s .

0 1
0

1

−40 −20 0 20 40
−40

−20

0

20

40

Figure 2: Fibonacci lattice with N = 34 and z = (1, 21) (left) with the

corresponding set of 0 6= h ∈ MN,s with h · z ≡ 0 (mod N) (right)

10/35

Connection with the worst-case error

The difference between eN,s,α,γ(z) and its restriction to MN,s satisfies:

Lemma (Truncation error)

Let γ = (γu)u⊆{1:s} be a sequence of positive weights and let z ∈ Zs

with gcd(zj ,N) = 1 for all j = 1, . . . , s. Then, for α > 1, we have that

eN,s,α,γ(z)− Tα(N, z) ≤ 1

Nα

∑
∅6=u⊆{1:s}

γu (4ζ(α))|u|.

Under the same assumptions we obtain

eN,s,α,γ(z) =
∑

0 6=h∈Zs

δN(h · z)

rα,γ(h)
−

∑
0 6=h∈MN,s

δN(h · z)

rα,γ(h)
+

∑
0 6=h∈MN,s

δN(h · z)

rα,γ(h)

11/35

Connection with the worst-case error

The difference between eN,s,α,γ(z) and its restriction to MN,s satisfies:

Lemma (Truncation error)

Let γ = (γu)u⊆{1:s} be a sequence of positive weights and let z ∈ Zs

with gcd(zj ,N) = 1 for all j = 1, . . . , s. Then, for α > 1, we have that

eN,s,α,γ(z)− Tα(N, z) ≤ 1

Nα

∑
∅6=u⊆{1:s}

γu (4ζ(α))|u|.

Under the same assumptions we obtain

eN,s,α,γ(z) =
∑

0 6=h∈Zs

δN(h · z)

rα,γ(h)
−

∑
0 6=h∈MN,s

δN(h · z)

rα,γ(h)
+

∑
0 6=h∈MN,s

δN(h · z)

rα,γ(h)

11/35

Connection with the worst-case error

The difference between eN,s,α,γ(z) and its restriction to MN,s satisfies:

Lemma (Truncation error)

Let γ = (γu)u⊆{1:s} be a sequence of positive weights and let z ∈ Zs

with gcd(zj ,N) = 1 for all j = 1, . . . , s. Then, for α > 1, we have that

eN,s,α,γ(z)− Tα(N, z) ≤ 1

Nα

∑
∅6=u⊆{1:s}

γu (4ζ(α))|u|.

Under the same assumptions we obtain

eN,s,α,γ(z) =
∑

0 6=h∈Zs

δN(h · z)

rα,γ(h)
−

∑
0 6=h∈MN,s

δN(h · z)

rα,γ(h)
+

∑
0 6=h∈MN,s

δN(h · z)

rα,γ(h)

≤ 1

Nα

∑
∅6=u⊆{1:s}

γu (4ζ(α))|u| +
∑

0 6=h∈MN,s

δN(h · z)

rα,γ(h)

11/35

Connection with the worst-case error

The difference between eN,s,α,γ(z) and its restriction to MN,s satisfies:

Lemma (Truncation error)

Let γ = (γu)u⊆{1:s} be a sequence of positive weights and let z ∈ Zs

with gcd(zj ,N) = 1 for all j = 1, . . . , s. Then, for α > 1, we have that

eN,s,α,γ(z)− Tα(N, z) ≤ 1

Nα

∑
∅6=u⊆{1:s}

γu (4ζ(α))|u|.

Under the same assumptions we obtain (using Jensen’s inequality)

eN,s,α,γ(z) =
∑

0 6=h∈Zs

δN(h · z)

rα,γ(h)
−

∑
0 6=h∈MN,s

δN(h · z)

rα,γ(h)
+

∑
0 6=h∈MN,s

δN(h · z)

rα,γ(h)

≤ 1

Nα

∑
∅6=u⊆{1:s}

γu (4ζ(α))|u| +

 ∑
0 6=h∈MN,s

δN(h · z)

r1,γ1/α(h)

α

.

11/35

Optimal coefficients modulo N

For the limiting case α = 1, we analogously introduce the quality measure

T (N, z) :=
∑

06=h∈MN,s

δN(h · z)

r1,γ(h)

as a quality criterion for good rank-1 lattice rules.

As in Korobov works1, we introduce the concept of optimal coefficients.

Definition (Optimal coefficients modulo N)

For given N ∈ N and positive weights γ = (γu)u⊆{1:s}, the components

z1, . . . , zs of z are called optimal coefficients modulo N if for any δ > 0

it holds that

T (N, z) ≤ C (γ, δ)N−1+δ,

where C (γ, δ) is a positive constant independent of s and N.

1N.Korobov. Number-theoretic methods in approximate analysis. Fizmatigiz, 1963.

N.Korobov. On the computation of optimal coefficients. Dokl. Akad. Nauk., 1982.
12/35

Optimal coefficients modulo N

For the limiting case α = 1, we analogously introduce the quality measure

T (N, z) :=
∑

06=h∈MN,s

δN(h · z)

r1,γ(h)

as a quality criterion for good rank-1 lattice rules.

As in Korobov works1, we introduce the concept of optimal coefficients.

Definition (Optimal coefficients modulo N)

For given N ∈ N and positive weights γ = (γu)u⊆{1:s}, the components

z1, . . . , zs of z are called optimal coefficients modulo N if for any δ > 0

it holds that

T (N, z) ≤ C (γ, δ)N−1+δ,

where C (γ, δ) is a positive constant independent of s and N.

1N.Korobov. Number-theoretic methods in approximate analysis. Fizmatigiz, 1963.

N.Korobov. On the computation of optimal coefficients. Dokl. Akad. Nauk., 1982.
12/35

The componentwise digit-by-digit algorithm

The construction of good rank-1 lattice rules

An exhaustive search for good generating vectors z ∈ {0, 1, . . . ,N − 1}s

such that the worst-case error eN,s,α,γ(z) for our function space is small,

is infeasible since the search space has size O(Ns).

Therefore, different search algorithms were introduced:

• Korobov (1963) and later Sloan and Reztsov (2002) introduced a

component-by-component (CBC) construction to find good

generating vectors z . (Greedy algorithm with complexity O(s N2)

and search space size reduced to O(s N))

• The introduction of the fast CBC construction by Nuyens and Cools

(2006) reduced the complexity of the algorithm to O(s N lnN).

• We will explore a different construction algorithm which originates

from an article by Korobov2 (1982, 3 1
2 pages long).

2N.Korobov. On the computation of optimal coefficients. Dokl. Akad. Nauk., 1982.
13/35

The construction of good rank-1 lattice rules

An exhaustive search for good generating vectors z ∈ {0, 1, . . . ,N − 1}s

such that the worst-case error eN,s,α,γ(z) for our function space is small,

is infeasible since the search space has size O(Ns).

Therefore, different search algorithms were introduced:

• Korobov (1963) and later Sloan and Reztsov (2002) introduced a

component-by-component (CBC) construction to find good

generating vectors z . (Greedy algorithm with complexity O(s N2)

and search space size reduced to O(s N))

• The introduction of the fast CBC construction by Nuyens and Cools

(2006) reduced the complexity of the algorithm to O(s N lnN).

• We will explore a different construction algorithm which originates

from an article by Korobov2 (1982, 3 1
2 pages long).

2N.Korobov. On the computation of optimal coefficients. Dokl. Akad. Nauk., 1982.
13/35

The construction of good rank-1 lattice rules

An exhaustive search for good generating vectors z ∈ {0, 1, . . . ,N − 1}s

such that the worst-case error eN,s,α,γ(z) for our function space is small,

is infeasible since the search space has size O(Ns).

Therefore, different search algorithms were introduced:

• Korobov (1963) and later Sloan and Reztsov (2002) introduced a

component-by-component (CBC) construction to find good

generating vectors z . (Greedy algorithm with complexity O(s N2)

and search space size reduced to O(s N))

• The introduction of the fast CBC construction by Nuyens and Cools

(2006) reduced the complexity of the algorithm to O(s N lnN).

• We will explore a different construction algorithm which originates

from an article by Korobov2 (1982, 3 1
2 pages long).

2N.Korobov. On the computation of optimal coefficients. Dokl. Akad. Nauk., 1982.
13/35

The construction of good rank-1 lattice rules

An exhaustive search for good generating vectors z ∈ {0, 1, . . . ,N − 1}s

such that the worst-case error eN,s,α,γ(z) for our function space is small,

is infeasible since the search space has size O(Ns).

Therefore, different search algorithms were introduced:

• Korobov (1963) and later Sloan and Reztsov (2002) introduced a

component-by-component (CBC) construction to find good

generating vectors z . (Greedy algorithm with complexity O(s N2)

and search space size reduced to O(s N))

• The introduction of the fast CBC construction by Nuyens and Cools

(2006) reduced the complexity of the algorithm to O(s N lnN).

• We will explore a different construction algorithm which originates

from an article by Korobov2 (1982, 3 1
2 pages long).

2N.Korobov. On the computation of optimal coefficients. Dokl. Akad. Nauk., 1982.
13/35

For x ∈ (0, 1) consider the Fourier series of the function −2 ln(sin(πx))

−2 ln(sin(πx)) = ln(4) +
∑

h∈Z\{0}

e2πihx

|h|
.

The relation to the error expression motivates us to define the quality

function for our componentwise digit-by-digit (CBC-DBD) algorithm.

0

5

10

0 1
2

1

x

−
2

ln
(s

in
π
x

)

Figure 3: Behavior of the function −2 ln(sinπx) on the interval [0, 1].

14/35

Formulation of the CBC-DBD construction

Definition (Digit-wise quality function)

Let x ∈ N be an odd integer, n, s ∈ N be positive integers, and let

γ = (γu)u⊆{1:s} be a sequence of positive weights. For 1 ≤ v ≤ n and

1 ≤ r ≤ s and positive integers z1, . . . , zr−1, we define the quality

function hr ,v ,γ : Z→ R as

hr ,v ,γ(x) :=
n∑

k=v

1

2k−v

2k∑
m=1

m≡1 (mod 2)

 ∑
∅6=u⊆{1:r−1}

γu
∏
j∈u

ln
1

sin2(πmzj/2k)

+
∑

w⊆{1:r−1}

γw∪{r}

∏
j∈w

ln
1

sin2(πmzj/2k)

 ln
1

sin2(πmx/2v)

Based on hr ,v ,γ the component-wise digit-by-digit (CBC-DBD) algorithm

can be formulated as follows.

15/35

Formulation of the CBC-DBD construction

Algorithm 1 Component-wise digit-by-digit construction

Input: Integer n ∈ N, dimension s and positive weights γ = (γu)u⊆{1:s}.

Set z1,n = 1 and z2,1 = . . . = zs,1 = 1.

for r = 2 to s do

for v = 2 to n do

z∗ = argmin
z∈{0,1}

hr ,v ,γ(zr ,v−1 + 2v−1z)

zr ,v = zr ,v−1 + 2v−1z∗

end for

end for

Set z = (z1, . . . , zs) with zr := zr ,n for r = 1, . . . , s.

Return: Generating vector z = (z1, . . . , zs) for N = 2n.

The resulting vector z = (z1, . . . , zs) is the generating vector of a lattice

rule with N = 2n points in s dimensions. 16/35

Illustration of the CBC-DBD algorithm

• The generating vector z is constructed component-by-component,

where each component is build up digit-by-digit.

r=
2
,.
..
,s

y

v=2,. . . ,n←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
z1,n = 1 · · · z1,v · · · z1,2 z1,1 = 1

z2,n · · · z2,v · · · z2,2 z2,1 = 1

z3,n · · · z3,v · · · z3,2 z3,1 = 1
...

...
...

...

zr ,n · · · zr ,v · · · zr ,2 zr ,1 = 1
...

...
...

...

zs,n · · · zs,v · · · zs,2 zs,1 = 1
...

...
...

...

• The size of the search space is of order O(2ns) = O(s lnN).

• The construction is extensible in the dimension s.

• Näıve implementation has time complexity O(s2N lnN).

17/35

Error convergence behavior (main result)

Theorem (A.E., P.Kritzer, D.Nuyens, O.Osisiogu)

Let N = 2n and (γu)u⊆{1:s}, with γu =
∏

j∈u γj and γj > 0, be product

weights. Then the corresponding generating vector z , constructed by

Algorithm 1, satisfies the following estimate:

T (N, z) ≤ 1

N

 s∏
j=1

(1 + γj(ln 4 + 2(1 + lnN)))

+ 2(1 + lnN)
s∏

j=1

(1 + γj(2(1 + 2 lnN)))

 .

Moreover, if the weights (γj)
s
j=1 satisfy the condition

∞∑
j=1

γj <∞,

then T (N, z) is bounded independently of the dimension s and z1, . . . , zs
are optimal coefficients modulo N.

18/35

Error convergence behavior (main result)

Theorem (A.E., P.Kritzer, D.Nuyens, O.Osisiogu)

Let N = 2n and (γu)u⊆{1:s}, with γu =
∏

j∈u γj and γj > 0, be product

weights. Then the corresponding generating vector z , constructed by

Algorithm 1, satisfies the following estimate:

T (N, z) ≤ 1

N

 s∏
j=1

(1 + γj(ln 4 + 2(1 + lnN)))

+ 2(1 + lnN)
s∏

j=1

(1 + γj(2(1 + 2 lnN)))

 .
Moreover, if the weights (γj)

s
j=1 satisfy the condition

∞∑
j=1

γj <∞,

then T (N, z) is bounded independently of the dimension s and z1, . . . , zs
are optimal coefficients modulo N. 18/35

Error convergence behavior (main result)

Theorem (A.E., P.Kritzer, D.Nuyens, O.Osisiogu)

Let N = 2n and denote by z = (z1, . . . , zs) the generating vector

constructed by Algorithm 1. If the weights γu =
∏

j∈u γj satisfy the

condition
∞∑
j=1

γj <∞,

then for any δ > 0 and each α > 1 the worst-case error eN,s,α,γα(z)

satisfies

eN,s,α,γα(z) ≤ 1

Nα

 s∏
j=1

(
1 + γαj (4ζ(α))

)
+ C (γ, δ)Nαδ

with weight sequence γα = (γαu)u⊆{1:s} and positive constant C (γ, δ)

independent of s and N.

19/35

Fast implementation of the algorithm

Cost analysis

For the implementation we consider the special case of product weights

γu =
∏

j∈u γj for a sequence of positive reals (γj)j≥1.

The digit-wise quality function hr ,v ,γ(x) then equals

n∑
k=v

1

2k−v

2k∑
m=1

m≡1 (mod 2)

r−1∏
j=1

(
1 + γj ln

1

sin2(πmzj/2k)

)(
1 + γr ln

1

sin2(πmx/2v)

)
.

A single evaluation of hr ,v ,γ(x) requires O(r
∑n

k=v 2k−1) operations. The

total cost of each inner loop over the v = 2, . . . , n is therefore

O

(
r

n∑
v=2

2
n∑

k=v

2k−1

)
= O (r (2nn − 2(2n − 1))) = O (r N lnN) .

Thus, a näıve implementation of the CBC-DBD algorithm has time

complexity O
(
s2 N lnN

)
.

20/35

Cost analysis

For the implementation we consider the special case of product weights

γu =
∏

j∈u γj for a sequence of positive reals (γj)j≥1.

The digit-wise quality function hr ,v ,γ(x) then equals

n∑
k=v

1

2k−v

2k∑
m=1

m≡1 (mod 2)

r−1∏
j=1

(
1 + γj ln

1

sin2(πmzj/2k)

)(
1 + γr ln

1

sin2(πmx/2v)

)
.

A single evaluation of hr ,v ,γ(x) requires O(r
∑n

k=v 2k−1) operations. The

total cost of each inner loop over the v = 2, . . . , n is therefore

O

(
r

n∑
v=2

2
n∑

k=v

2k−1

)
= O (r (2nn − 2(2n − 1))) = O (r N lnN) .

Thus, a näıve implementation of the CBC-DBD algorithm has time

complexity O
(
s2 N lnN

)
.

20/35

Cost analysis

For the implementation we consider the special case of product weights

γu =
∏

j∈u γj for a sequence of positive reals (γj)j≥1.

The digit-wise quality function hr ,v ,γ(x) then equals

n∑
k=v

1

2k−v

2k∑
m=1

m≡1 (mod 2)

r−1∏
j=1

(
1 + γj ln

1

sin2(πmzj/2k)

)(
1 + γr ln

1

sin2(πmx/2v)

)
.

A single evaluation of hr ,v ,γ(x) requires O(r
∑n

k=v 2k−1) operations. The

total cost of each inner loop over the v = 2, . . . , n is therefore

O

(
r

n∑
v=2

2
n∑

k=v

2k−1

)
= O (r (2nn − 2(2n − 1))) = O (r N lnN) .

Thus, a näıve implementation of the CBC-DBD algorithm has time

complexity O
(
s2 N lnN

)
.

20/35

Cost analysis

For the implementation we consider the special case of product weights

γu =
∏

j∈u γj for a sequence of positive reals (γj)j≥1.

The digit-wise quality function hr ,v ,γ(x) then equals

n∑
k=v

1

2k−v

2k∑
m=1

m≡1 (mod 2)

r−1∏
j=1

(
1 + γj ln

1

sin2(πmzj/2k)

)(
1 + γr ln

1

sin2(πmx/2v)

)
.

A single evaluation of hr ,v ,γ(x) requires O(r
∑n

k=v 2k−1) operations. The

total cost of each inner loop over the v = 2, . . . , n is therefore

O

(
r

n∑
v=2

2
n∑

k=v

2k−1

)
= O (r (2nn − 2(2n − 1))) = O (r N lnN) .

Thus, a näıve implementation of the CBC-DBD algorithm has time

complexity O
(
s2 N lnN

)
.

20/35

Fast implementation

A fast implementation can be obtained by evaluating hr ,v ,γ(x) =

n∑
k=v

1

2k−v

2k∑
m=1

m≡1 (mod 2)

r−1∏
j=1

(
1 + γj ln

1

sin2(πmzj/2k)

)(
1 + γr ln

1

sin2(πmx/2v)

)

in a more efficient manner.

For 1 ≤ r < s let z1, . . . , zr be constructed by Algorithm 1. For

k ∈ {2, . . . , n} and odd m ∈ {1, . . . , 2k − 1} define the term q(r , k,m) by

q(r , k,m) =
r∏

j=1

(
1 + γj ln

1

sin2(πmzj/2k)

)
.

This way, the function hr ,v ,γ(x) can be rewritten as

hr ,v ,γ(x) =
n∑

k=v

1

2k−v

2k∑
m=1

m≡1 (mod 2)

q(r−1, k ,m)

(
1 + γr ln

1

sin2(πmx/2v)

)
.

21/35

Fast implementation

A fast implementation can be obtained by evaluating hr ,v ,γ(x) =

n∑
k=v

1

2k−v

2k∑
m=1

m≡1 (mod 2)

r−1∏
j=1

(
1 + γj ln

1

sin2(πmzj/2k)

)(
1 + γr ln

1

sin2(πmx/2v)

)

in a more efficient manner.

For 1 ≤ r < s let z1, . . . , zr be constructed by Algorithm 1. For

k ∈ {2, . . . , n} and odd m ∈ {1, . . . , 2k − 1} define the term q(r , k,m) by

q(r , k,m) =
r∏

j=1

(
1 + γj ln

1

sin2(πmzj/2k)

)
.

This way, the function hr ,v ,γ(x) can be rewritten as

hr ,v ,γ(x) =
n∑

k=v

1

2k−v

2k∑
m=1

m≡1 (mod 2)

q(r−1, k ,m)

(
1 + γr ln

1

sin2(πmx/2v)

)
.

21/35

Fast implementation

A fast implementation can be obtained by evaluating hr ,v ,γ(x) =

n∑
k=v

1

2k−v

2k∑
m=1

m≡1 (mod 2)

r−1∏
j=1

(
1 + γj ln

1

sin2(πmzj/2k)

)(
1 + γr ln

1

sin2(πmx/2v)

)

in a more efficient manner.

For 1 ≤ r < s let z1, . . . , zr be constructed by Algorithm 1. For

k ∈ {2, . . . , n} and odd m ∈ {1, . . . , 2k − 1} define the term q(r , k,m) by

q(r , k,m) =
r∏

j=1

(
1 + γj ln

1

sin2(πmzj/2k)

)
.

This way, the function hr ,v ,γ(x) can be rewritten as

hr ,v ,γ(x) =
n∑

k=v

1

2k−v

2k∑
m=1

m≡1 (mod 2)

q(r−1, k ,m)

(
1 + γr ln

1

sin2(πmx/2v)

)
.

21/35

Fast implementation

We can thus compute and store q(r − 1, k ,m) for all values of k and m

at cost O(N) and compute q(r , k ,m) via the recurrence relation

q(r , k ,m) = q(r − 1, k ,m)

(
1 + γr ln

1

sin2(πm zr/2k)

)
.

This way, a single evaluation of hr ,v ,γ(x) requires only O(
∑n

k=v 2k−1)

operations, each inner loop O (N lnN) operations.

Theorem (Fast implementation)

Let n, s ∈ N and N = 2n. For a given positive weight sequence

γ = (γj)
s
j=1, a generating vector z = (z1, . . . , zs) can be computed via

Algorithm 1 using O(s N lnN) operations and requiring O(N) memory.

This algorithm has time complexity O(s N lnN) and does not require the

use of fast Fourier transforms (FFTs)!

22/35

Fast implementation

We can thus compute and store q(r − 1, k ,m) for all values of k and m

at cost O(N) and compute q(r , k ,m) via the recurrence relation

q(r , k ,m) = q(r − 1, k ,m)

(
1 + γr ln

1

sin2(πm zr/2k)

)
.

This way, a single evaluation of hr ,v ,γ(x) requires only O(
∑n

k=v 2k−1)

operations, each inner loop O (N lnN) operations.

Theorem (Fast implementation)

Let n, s ∈ N and N = 2n. For a given positive weight sequence

γ = (γj)
s
j=1, a generating vector z = (z1, . . . , zs) can be computed via

Algorithm 1 using O(s N lnN) operations and requiring O(N) memory.

This algorithm has time complexity O(s N lnN) and does not require the

use of fast Fourier transforms (FFTs)!

22/35

Numerical results

Error convergence behavior

Consider the convergence behavior of eN,s,α,γα(z) for generating vectors

constructed by the CBC-DBD algorithm and the fast CBC algorithm3.

• Use product weights sequences γ = (γu)u⊆{1:s} with γu =
∏

j∈u γj
and consider the worst-case error eN,s,α,γα for α = 2, 3, 4.

• The generators zcbc-dbd are constructed by the CBC-DBD algorithm

with n, s and weights (γj)
s
j=1 as input.

• The generators zcbc are constructed by the fast CBC algorithm for

N = 2n using the error eN,s,α,γα as quality function.

• The error values of generators constructed by the standard fast CBC

algorithm are used as a benchmark for our CBC-DBD construction.

3D. Nuyens, R. Cools. Fast component-by-component construction of rank-1 lattice

rules with a non-prime number of points. J. Complexity 22, 4–28, 2006.
23/35

Error convergence in the space Eαs,γ with γu =
∏

j∈u γj , s = 100, α = 2, 3, 4.

101 102 103 104 105 106
10−20

10−14

10−8

10−2

Number of points N = 2n

W
or
st
-c
as
e
er
ro
r
e N
,s
,α
,γ
α
(z
)

O(N−1.79)

O(N−2.83)

O(N−3.82)

(a) γ = (γj)
s
j=1 with γj = 1/j2

101 102 103 104 105 106
10−25

10−17

10−9

10−1

Number of points N = 2n

W
or
st
-c
as
e
er
ro
r
e N
,s
,α
,γ
α
(z
)

O(N−1.93)

O(N−2.97)

O(N−3.97)

(b) γ = (γj)
s
j=1 with γj = 1/j3

101 102 103 104 105 106
10−6

10−2

102

106

Number of points N = 2n

W
or
st
-c
as
e
er
ro
r
e N
,s
,α
,γ
α
(z
)

O(N−1)

O(N−1.02)

O(N−1.19)

(c) γ = (γj)
s
j=1 with γj = (0.95)j

101 102 103 104 105 106
10−17

10−12

10−7

10−2

Number of points N = 2n

W
or
st
-c
as
e
er
ro
r
e N
,s
,α
,γ
α
(z
)

O(N−1.5)

O(N−2.32)

O(N−3.16)

(d) γ = (γj)
s
j=1 with γj = (0.7)j

CBC-DBD standard fast CBC α = 2 α = 3 α = 4
24/35

Computation times

Table 1: Computation times (in seconds) for constructing generating vectors z of lattice rules

with N = 2n points in s dimensions via the CBC-DBD algorithm (bold font) and the standard fast

CBC construction (normal font). Constructed for weights of the form γu =
∏

j∈u γj . For the fast

CBC construction the smoothness parameter α = 2 was used.

s = 50 s = 100 s = 500 s = 1000 s = 2000

n = 10
0.038 0.075 0.37 0.743 1.485

0.061 0.119 0.595 1.184 2.371

n = 12
0.047 0.096 0.476 0.951 1.897

0.093 0.185 0.922 1.843 3.685

n = 14
0.068 0.138 0.674 1.339 2.676

0.155 0.31 1.547 3.081 6.166

n = 16
0.165 0.304 1.423 2.845 5.626

0.344 0.678 3.394 6.804 13.624

n = 18
0.586 1.053 4.746 9.497 18.867

1.145 2.293 11.63 23.1 46.184

n = 20
3.357 6.203 28.935 57.438 114.284

6.31 12.757 64.102 128.897 257.454

25/35

Polynomial lattice rules

Walsh series representation

Consider functions f : [0, 1]s → R given by their Walsh series

f (x) =
∑
k∈Ns

0

f̂ (k)walk(x) with f̂ (k) :=

∫
[0,1]s

f (x)walk(x)dx

with walk(x) =
∏s

j=1 walkj (xj) and walk(x) = e2πi(κ0ξ1+κ1ξ2+···+κa−1ξa)/b

for base b representations k = κ0 + κ1b + · · ·κa−1ba−1 and

x = ξ1b
−1 + ξ2b

−2 + · · · with coefficients κi , ξi ∈ {0, 1, . . . , b − 1}.

We introduce a function to measure the decay of the Walsh coefficients:

rα(k) :=
s∏

j=1

rα(kj) and rα,γ(k) := γ−1supp(k)

∏
j∈supp(k)

bαψb(kj)

with ψb(k) = blogb(k)c.

26/35

Walsh series representation

Consider functions f : [0, 1]s → R given by their Walsh series

f (x) =
∑
k∈Ns

0

f̂ (k)walk(x) with f̂ (k) :=

∫
[0,1]s

f (x)walk(x)dx

with walk(x) =
∏s

j=1 walkj (xj) and walk(x) = e2πi(κ0ξ1+κ1ξ2+···+κa−1ξa)/b

for base b representations k = κ0 + κ1b + · · ·κa−1ba−1 and

x = ξ1b
−1 + ξ2b

−2 + · · · with coefficients κi , ξi ∈ {0, 1, . . . , b − 1}.

We introduce a function to measure the decay of the Walsh coefficients:

rα(k) :=
s∏

j=1

rα(kj) and rα,γ(k) := γ−1supp(k)

∏
j∈supp(k)

bαψb(kj)

with ψb(k) = blogb(k)c.

26/35

Weighted Walsh space

Define the norm of the Banach space W α
s,γ as

‖f ‖Wα
s,γ

:= sup
k∈Ns

0

|f̂ (k)| rα,γ(k)

and for α > 1 and positive weights define the weighted function space

W α
s,γ := {f ∈ L2([0, 1]s) | ‖f ‖Wα

s,γ
<∞}.

0

2

4

0 1
8

1
4

1
2

1

x

f β
(x

)
=
∑ k

∈
N
0

w
a
l k
(x
)

b
β
ψ
b
(k

)

β = 4
3

β = 2 β = 3

27/35

Polynomial lattice rules

Denote by Fb[x] the set of all polynomials over Fb and define the map

vm : Fb((x−1))→ [0, 1) by

vm

(∞∑
`=1

t` x
−`

)
=

m∑
`=1

t` b
−`.

For n ∈ N0 with base b expansion n = n0 + n1b + · · ·+ nab
a, we

associate n with the polynomial n(x) :=
∑a

k=0 nk x
k ∈ Fb[x].

Polynomial lattice point set

Let b be prime and choose p ∈ Fb[x] with deg(p) = m, and let

g ∈ Fb[x]. Then the point set P(g , p), defined as the collection

of the bm points

xn :=

(
vm

(
n(x) g1(x)

p(x)

)
, . . . , vm

(
n(x) gs(x)

p(x)

))
∈ [0, 1)s

for n ∈ Fb[x] with deg(n) < m, is called a polynomial lattice.

28/35

Polynomial lattice rules

Denote by Fb[x] the set of all polynomials over Fb and define the map

vm : Fb((x−1))→ [0, 1) by

vm

(∞∑
`=1

t` x
−`

)
=

m∑
`=1

t` b
−`.

For n ∈ N0 with base b expansion n = n0 + n1b + · · ·+ nab
a, we

associate n with the polynomial n(x) :=
∑a

k=0 nk x
k ∈ Fb[x].

Polynomial lattice point set

Let b be prime and choose p ∈ Fb[x] with deg(p) = m, and let

g ∈ Fb[x]. Then the point set P(g , p), defined as the collection

of the bm points

xn :=

(
vm

(
n(x) g1(x)

p(x)

)
, . . . , vm

(
n(x) gs(x)

p(x)

))
∈ [0, 1)s

for n ∈ Fb[x] with deg(n) < m, is called a polynomial lattice.

28/35

Integration error for PLR

Polynomial lattice node sets with 27 points in base b = 2 with irreducible

polynomial f = x7 + x3 + 1 ∈ F2[x] and the two generating vectors

g 1 = (x4 + x2 + 1, x2 + x) (left) and g 2 = (x3 + 1, x2 + x) (right).

Also here the integration error can be represented in terms of the series

coefficients, that is,

Qbm(f ;P(g , p))− I (f) =
∑

06=k∈D(g ,p)

f̂ (k)

with dual net D(g , p) = {k ∈ Ns
0 | trm(k) · g ≡ 0 (mod p)}.

29/35

Integration error for PLR

Polynomial lattice node sets with 27 points in base b = 2 with irreducible

polynomial f = x7 + x3 + 1 ∈ F2[x] and the two generating vectors

g 1 = (x4 + x2 + 1, x2 + x) (left) and g 2 = (x3 + 1, x2 + x) (right).

Also here the integration error can be represented in terms of the series

coefficients, that is,

Qbm(f ;P(g , p))− I (f) =
∑

06=k∈D(g ,p)

f̂ (k)

with dual net D(g , p) = {k ∈ Ns
0 | trm(k) · g ≡ 0 (mod p)}.

29/35

Further strategy

• As for lattice rules, define the quantities

T (g , p) :=
∑

06=k∈Ap(g)

(r1,γ(k))−1, Tα(g , p) :=
∑

0 6=k∈Ap(g)

(rα,γ(k))−1

with index set given by Ap(g) = {k ∈ {0, 1, . . . , bm − 1}s | k ∈ D(g , p)}.

• Relate the quality measure T (g , p) to the worst-case error expression

for polynomial lattice rules in the space W α
s,γ .

• Introduce the digit-wise quality function and formulate a

component-by-component digit-by-digit construction algorithm.

30/35

Further strategy

• As for lattice rules, define the quantities

T (g , p) :=
∑

06=k∈Ap(g)

(r1,γ(k))−1, Tα(g , p) :=
∑

0 6=k∈Ap(g)

(rα,γ(k))−1

with index set given by Ap(g) = {k ∈ {0, 1, . . . , bm − 1}s | k ∈ D(g , p)}.

• Relate the quality measure T (g , p) to the worst-case error expression

for polynomial lattice rules in the space W α
s,γ .

• Introduce the digit-wise quality function and formulate a

component-by-component digit-by-digit construction algorithm.

30/35

Further strategy

• As for lattice rules, define the quantities

T (g , p) :=
∑

06=k∈Ap(g)

(r1,γ(k))−1, Tα(g , p) :=
∑

0 6=k∈Ap(g)

(rα,γ(k))−1

with index set given by Ap(g) = {k ∈ {0, 1, . . . , bm − 1}s | k ∈ D(g , p)}.

• Relate the quality measure T (g , p) to the worst-case error expression

for polynomial lattice rules in the space W α
s,γ .

• Introduce the digit-wise quality function and formulate a

component-by-component digit-by-digit construction algorithm.

30/35

Formulation of the CBC-DBD construction for PLRs

Definition (Digit-wise quality function)

Let q ∈ Fb[x], m, s ∈ N, and let γ = (γu)u⊆{1:s} with γu =
∏

j∈u γj be

product weights. For integers w ∈ {1 : m}, r ∈ {1 : s}, and

polynomials g1, . . . , gr−1 ∈ Fb[x] with gcd(gj , x) = 1, we define the

quality function hr ,w ,m,γ : Fb[x]→ R as

hr ,w ,m,γ(q)

:=
m∑

t=w

1

bt−w

bt−1∑
`=1

6̀≡0 (mod b)

(
1 + γr (1− b)

(⌊
logb

(
vw

(
`(x) q(x)

xw

))⌋
+ 1

))
×

×
r−1∏
j=1

(
1 + γj(1− b)

(⌊
logb

(
vt

(
`(x) gj(x)

x t

))⌋
+ 1

))
.

Based on hr ,w ,m,γ the component-wise digit-by-digit (CBC-DBD)

algorithm for polynomial lattice rules can be formulated as follows.
31/35

Formulation of the CBC-DBD construction for PLRs

Algorithm 2 Component-wise digit-by-digit construction

Input: Integer n ∈ N, dimension s and positive weights γ = (γu)u⊆{1:s}.

Set g1,m = 1 and g2,1 = . . . = gs,1 = 1.

for r = 2 to s do

for w = 2 to m do

g∗ = argmin
g∈Fb

hr ,w ,m,γ(gr ,w−1 + xw−1g)

gr ,w = gr ,w−1 + g∗xw−1

end for

end for

Set g = (g1, . . . , gs) with gr := gr ,m for r = 1, . . . , s.

Return: Generating vector g = (g1, . . . , gs) ∈ (Fb[x])s with deg(gj) < m.

• For ease of computations, we fix b = 2 in the numerical experiments.
32/35

Error convergence behavior (main result)

Theorem (A.E., P.Kritzer, O.Osisiogu, T.Stepaniuk)

Let b be prime, let m, s ∈ N with m ≥ 4, let N = bm, and let (γj)j≥1
be positive product weights satisfying∑

j≥1

γj <∞.

Also, denote by g the generating vector obtained by Algorithm 2, run

for the weight sequence γ = (γj)j≥1. Then, for any δ > 0 and each

α > 1, the generating vector g satisfies

ebm,s,α,γα(g) ≤ 1

Nα

(
C (γα) + C̄ (γ, δ) Nαδ

)
,

with positive constants C (γα) and C̄ (γ, δ), which are independent of

the dimension s and the number of points N.

• Fast construction using only O(s m 2m) operations available

33/35

Error convergence behavior (main result)

Theorem (A.E., P.Kritzer, O.Osisiogu, T.Stepaniuk)

Let b be prime, let m, s ∈ N with m ≥ 4, let N = bm, and let (γj)j≥1
be positive product weights satisfying∑

j≥1

γj <∞.

Also, denote by g the generating vector obtained by Algorithm 2, run

for the weight sequence γ = (γj)j≥1. Then, for any δ > 0 and each

α > 1, the generating vector g satisfies

ebm,s,α,γα(g) ≤ 1

Nα

(
C (γα) + C̄ (γ, δ) Nαδ

)
,

with positive constants C (γα) and C̄ (γ, δ), which are independent of

the dimension s and the number of points N.

• Fast construction using only O(s m 2m) operations available

33/35

Error convergence in the space Wα
s,γ with γu =

∏
j∈u γj , s = 100, α = 1.5, 2, 3.

102 103 104
10−14

10−10

10−6

10−2

Number of points N = 2m

W
or
st
-c
as
e
er
ro
r
e N
,s
,α
,γ
α
(g

)

O(N−1.28)

O(N−1.72)

O(N−2.6)

(a) γ = (γj)
s
j=1 with γj = 1/j2

102 103 104
10−15

10−10

10−5

100

Number of points N = 2m

W
or
st
-c
as
e
er
ro
r
e N
,s
,α
,γ
α
(g

)

O(N−1.4)

O(N−1.88)

O(N−2.86)

(b) γ = (γj)
s
j=1 with γj = 1/j3

102 103 104
10−7

10−1

105

1011

Number of points N = 2m

W
or
st
-c
as
e
er
ro
r
e N
,s
,α
,γ
α
(g

)

O(N−1)

O(N−1)

O(N−1.07)

(c) γ = (γj)
s
j=1 with γj = (0.95)j

102 103 104
10−12

10−8

10−4

100

Number of points N = 2m

W
or
st
-c
as
e
er
ro
r
e N
,s
,α
,γ
α
(g

)

O(N−1.14)

O(N−1.48)

O(N−2.19)

(d) γ = (γj)
s
j=1 with γj = (0.7)j

CBC-DBD standard fast CBC α = 1.5 α = 2 α = 3 34/35

Thank you for your attention!

Lattice rules Quality measure CBC-DBD construction

Fast implementation Numerical results

Polynomial lattice rules

34/35

References

• A. Ebert, P. Kritzer, D. Nuyens, O.Osisiogu. Digit-by-digit and

component-by-component constructions of lattice rules for periodic

functions with unknown smoothness. Available on arXiv

• A. Ebert, P. Kritzer, O.Osisiogu, T.Stepaniuk.

Component-by-component digit-by-digit construction of good

polynomial lattice rules in weighted Walsh spaces. Available on arXiv

35/35

https://arxiv.org/abs/2001.02978
https://arxiv.org/abs/2008.08966

	Lattice rules and periodic functions
	Quality measure and optimal coefficients
	The componentwise digit-by-digit algorithm
	Fast implementation of the algorithm
	Numerical results
	Polynomial lattice rules

