# Construction of (polynomial) lattice rules by smoothness-independent component-by-component digit-by-digit constructions

Talk at the Point Distributions Webinar

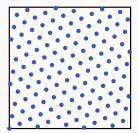
Adrian Ebert, RICAM, Linz

Joint research with D. Nuyens, P. Kritzer, O. Osisiogu and T. Stepaniuk November 4, 2020



- 1. Lattice rules and periodic functions
- 2. Quality measure and optimal coefficients
- 3. The componentwise digit-by-digit algorithm
- 4. Fast implementation of the algorithm
- 5. Numerical results
- 6. Polynomial lattice rules

# Lattice rules and periodic functions



# Multivariate numerical integration

Approximate the integral of an s-variate function  $f:[0,1]^s 
ightarrow \mathbb{R}$ 

$$I(f) := \int_{[0,1]^s} f(\mathbf{x}) \,\mathrm{d}\mathbf{x}$$

over the s-dimensional unit cube by a quasi-Monte Carlo (QMC) rule, i.e.,

$$I(f) = \int_{[0,1]^s} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} \approx \frac{1}{N} \sum_{k=0}^{N-1} f(\mathbf{x}_k) =: Q_N(f, \{\mathbf{x}_k\}_{k=0}^{N-1})$$

with deterministically chosen quadrature nodes  $\{x_0, \ldots, x_{N-1}\} \subset [0, 1]^s$ .

# Multivariate numerical integration

Approximate the integral of an *s*-variate function  $f:[0,1]^s \to \mathbb{R}$ 

$$I(f) := \int_{[0,1]^s} f(\mathbf{x}) \,\mathrm{d}\mathbf{x}$$

over the s-dimensional unit cube by a quasi-Monte Carlo (QMC) rule, i.e.,

$$I(f) = \int_{[0,1]^s} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} \approx \frac{1}{N} \sum_{k=0}^{N-1} f(\mathbf{x}_k) =: Q_N(f, \{\mathbf{x}_k\}_{k=0}^{N-1})$$

with deterministically chosen quadrature nodes  $\{x_0, \ldots, x_{N-1}\} \subset [0, 1]^s$ .

#### Worst-case error

Let  $(\mathcal{F}, \|\cdot\|_{\mathcal{F}})$  be a Banach space and  $Q_N$  be a QMC rule with underlying point-set  $P_N = \{\mathbf{x}_0, \ldots, \mathbf{x}_{N-1}\} \subset [0, 1]^s$ . The *worstcase error* of  $Q_N$  w.r.t.  $\mathcal{F}$  is defined as

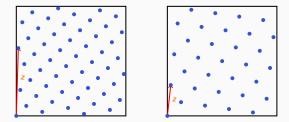
$$e_{N,s}(Q_N,\mathcal{F}) := \sup_{\|f\|_{\mathcal{F}} \leq 1} \left| \int_{[0,1]^s} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} - \frac{1}{N} \sum_{k=0}^{N-1} f(\mathbf{x}_k) \right|.$$

#### Rank-1 lattice rule

A rank-1 lattice rule is a quasi-Monte Carlo rule with quadrature node set  $P_N \subset [0,1]^s$  of the form

$$P_N = \left\{ rac{k z \mod N}{N} \mid 0 \leq k < N 
ight\} \subset [0,1]^s,$$

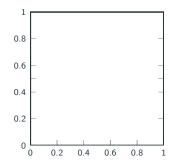
where  $z \in \mathbb{Z}^s$  is called the generating vector of the lattice rule.



**Figure 1:** Fibonacci lattice with N = 55 and z = (1, 34) (left) and a rank-1 lattice with N = 32 and z = (1, 9) constructed by the CBC construction (right)

The point set of a rank-1 lattice rule is given via

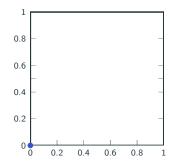
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

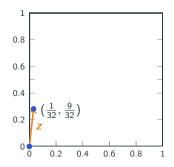
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

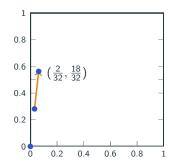
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

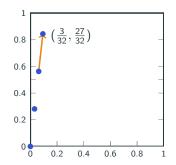
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

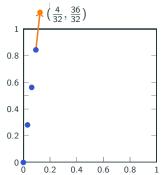
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

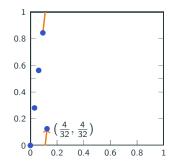
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

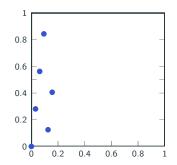
$$P_N = \left\{ \frac{k \operatorname{\mathsf{z}} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

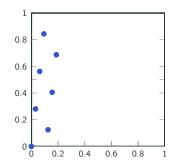
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

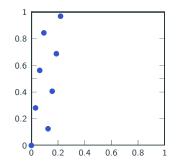
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

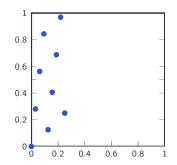
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

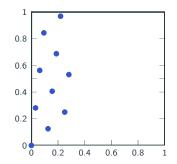
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

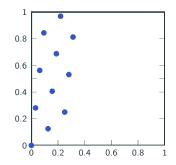
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

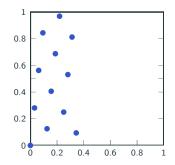
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

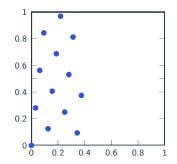
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

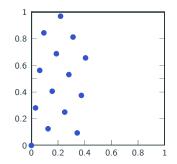
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

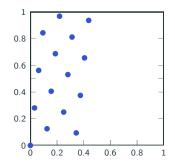
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

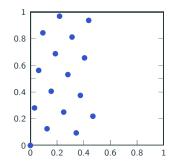
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

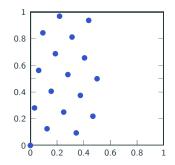
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

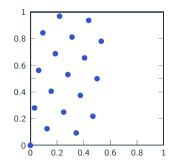
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

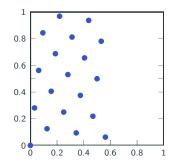
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

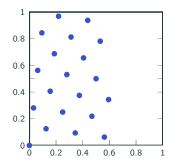
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

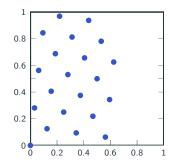
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

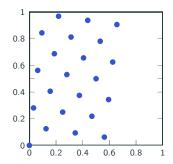
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

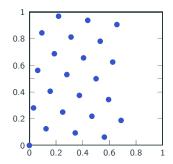
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

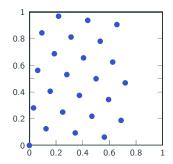
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

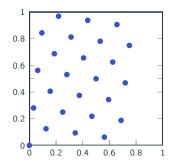
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

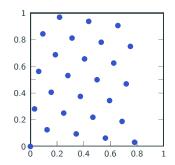
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

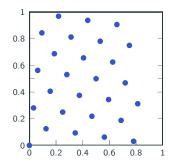
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

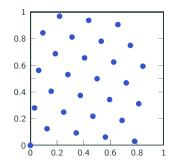
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

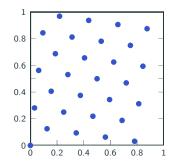
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

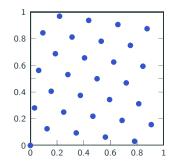
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

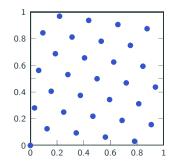
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

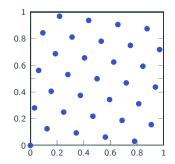
$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$



Lattice with N = 32 points and generating vector z = (1, 9)

The point set of a rank-1 lattice rule is given via

$$P_N = \left\{ \frac{k \mathbf{z} \mod N}{N} : k = 0, 1, 2, \dots, N - 1 \right\}$$

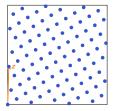


Lattice with N = 32 points and generating vector z = (1, 9)

 $\bullet$  Generating vector  $\textbf{\textit{z}} \in \mathbb{Z}^{s}$  influences quality of lattice rule

# Good lattice, bad lattice

• Generating vector  $\mathbf{z} \in \mathbb{Z}^s$  influences quality of lattice rule

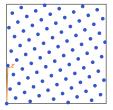


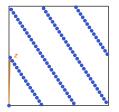
(a) well-distributed lattice

Illustration of rank-1 lattices with generating vectors  $\mathbf{z} = (1, 34)$  and N = 89 points (left)

# Good lattice, bad lattice

• Generating vector  $\mathbf{z} \in \mathbb{Z}^s$  influences quality of lattice rule



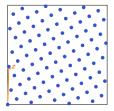


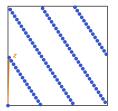
(a) well-distributed lattice (b) badly distributed lattice

Illustration of rank-1 lattices with generating vectors z = (1, 34) and N = 89 points (left) and z = (1, 43) with N = 89 points (right)

# Good lattice, bad lattice

• Generating vector  $\mathbf{z} \in \mathbb{Z}^s$  influences quality of lattice rule





(a) well-distributed lattice (b) badly distributed lattice

Illustration of rank-1 lattices with generating vectors z = (1, 34) and N = 89 points (left) and z = (1, 43) with N = 89 points (right)

• Goal: Find good generating vectors  $z \in \mathbb{Z}^s$  such that the obtained rank-1 lattice rules  $Q_N(\cdot, z)$  are suited for numerical integration.

Consider 1-periodic, continuous functions  $f:[0,1]^s \to \mathbb{R}$  with associated absolutely convergent Fourier series

$$f(\mathbf{x}) = \sum_{\mathbf{h} \in \mathbb{Z}^s} \hat{f}(\mathbf{h}) e^{2\pi \mathrm{i} \mathbf{h} \cdot \mathbf{x}}$$
 with  $\hat{f}(\mathbf{h}) := \int_{[0,1]^s} f(\mathbf{x}) e^{-2\pi \mathrm{i} \mathbf{h} \cdot \mathbf{x}} \, \mathrm{d} \mathbf{x}.$ 

Consider 1-periodic, continuous functions  $f : [0,1]^s \to \mathbb{R}$  with associated absolutely convergent Fourier series

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{h} \in \mathbb{Z}^s} \hat{f}(\boldsymbol{h}) e^{2\pi i \boldsymbol{h} \cdot \boldsymbol{x}} \quad \text{with} \quad \hat{f}(\boldsymbol{h}) := \int_{[0,1]^s} f(\boldsymbol{x}) e^{-2\pi i \boldsymbol{h} \cdot \boldsymbol{x}} \, \mathrm{d} \boldsymbol{x}.$$

The integration error of a lattice rule  $Q_N(\cdot, z)$  then equals

$$Q_N(f, \mathbf{z}) - I(f) = \sum_{\mathbf{0} \neq \mathbf{h} \in \mathbb{Z}^s} \hat{f}(\mathbf{h}) \left[ \frac{1}{N} \sum_{k=0}^{N-1} e^{2\pi i k \mathbf{h} \cdot \mathbf{z}/N} \right] = \sum_{\mathbf{0} \neq \mathbf{h} \in \mathbb{Z}^s} \hat{f}(\mathbf{h}) \, \delta_N(\mathbf{h} \cdot \mathbf{z})$$

with indicator function for the dual lattice  $\{ \boldsymbol{h} \in \mathbb{Z}^s \mid \boldsymbol{h} \cdot \boldsymbol{z} \equiv 0 \pmod{N} \}$ 

$$\delta_N(m) := \begin{cases} 1, & \text{if } m \equiv 0 \pmod{N}, \\ 0, & \text{if } m \not\equiv 0 \pmod{N}. \end{cases}$$

It is then common to consider function spaces of periodic functions whose Fourier coefficients  $\hat{f}(\mathbf{h})$  decay sufficiently fast.

The decay of the  $\hat{f}(\boldsymbol{h})$  is measured by a decay function  $r_{\alpha}(\boldsymbol{h})$  of the form

$$r_{lpha}(h) := \left\{egin{array}{ccc} 1, & ext{if } h=0, \ |h|^{lpha}, & ext{if } h
eq 0 \end{array}
ight.$$
 and  $r_{lpha}(h) := \prod_{j=1}^{s} r_{lpha}(h_j)$ 

with smoothness parameter  $\alpha > 1$ .

It is then common to consider function spaces of periodic functions whose Fourier coefficients  $\hat{f}(\mathbf{h})$  decay sufficiently fast.

The decay of the  $\hat{f}(\boldsymbol{h})$  is measured by a decay function  $r_{\alpha}(\boldsymbol{h})$  of the form

$$r_lpha(h):= \left\{egin{array}{ccc} 1, & ext{if}\ h=0, \ |h|^lpha, & ext{if}\ h
eq 0 \end{array}
ight. ext{ and } r_lpha(oldsymbol{h}):=\prod_{j=1}^s r_lpha(h_j)$$

with smoothness parameter  $\alpha > 1$ .

In order to overcome the curse of dimensionality, we additionally introduce so-called weights  $\gamma = (\gamma_{\mathfrak{u}})_{\mathfrak{u} \subseteq \{1:s\}}$  which measure the importance of (groups of) variables  $\mathbf{x}_{\mathfrak{u}} := (x_j)_{j \in \mathfrak{u}}$ :

$$r_{lpha,oldsymbol{\gamma}}(oldsymbol{h}) \coloneqq \gamma_{ extsf{supp}(oldsymbol{h})}^{-1} \prod_{j \in extsf{supp}(oldsymbol{h})} \left| h_j 
ight|^lpha.$$

It is then common to consider function spaces of periodic functions whose Fourier coefficients  $\hat{f}(\boldsymbol{h})$  decay sufficiently fast.

The decay of the  $\hat{f}(\boldsymbol{h})$  is measured by a decay function  $r_{\alpha}(\boldsymbol{h})$  of the form

$$r_lpha(h):= \left\{egin{array}{ccc} 1, & ext{if}\ h=0, \ |h|^lpha, & ext{if}\ h
eq 0 \end{array}
ight. ext{ and } r_lpha(oldsymbol{h}):=\prod_{j=1}^s r_lpha(h_j)$$

with smoothness parameter  $\alpha > 1$ .

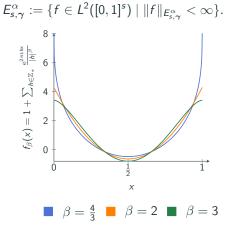
In order to overcome the curse of dimensionality, we additionally introduce so-called weights  $\gamma = (\gamma_{\mathfrak{u}})_{\mathfrak{u} \subseteq \{1:s\}}$  which measure the importance of (groups of) variables  $\mathbf{x}_{\mathfrak{u}} := (x_i)_{i \in \mathfrak{u}}$ :

$$r_{lpha,oldsymbol{\gamma}}(oldsymbol{h}) \coloneqq \gamma_{ extsf{supp}(oldsymbol{h})}^{-1} \prod_{j \in extsf{supp}(oldsymbol{h})} \left| h_j 
ight|^lpha.$$

• Relation between  $r_{lpha, \gamma}(m{h})$  and mixed partial derivatives  $f^{(m{ au})}, m{ au} \in \mathbb{N}_0^s$ 

Define the norm of the Banach space  $E^{\alpha}_{s,\gamma}$  as  $\|f\|_{E^{\alpha}_{s,\gamma}} := \sup_{\pmb{h} \in \mathbb{Z}^s} |\hat{f}(\pmb{h})| r_{\alpha,\gamma}(\pmb{h})$ 

and for  $\alpha>1$  and positive weights define the weighted function space



Applying Hölder's inequality with  $p=\infty$  and q=1 to the integration error (see previous slide) yields

Applying Hölder's inequality with  $p = \infty$  and q = 1 to the integration error (see previous slide) yields

$$\begin{aligned} |Q_N(f, \mathbf{z}) - I(f)| &= \left| \sum_{\mathbf{0} \neq \mathbf{h} \in \mathbb{Z}^s} \hat{f}(\mathbf{h}) r_{\alpha, \gamma}(\mathbf{h}) r_{\alpha, \gamma}^{-1}(\mathbf{h}) \delta_N(\mathbf{h} \cdot \mathbf{z}) \right| \\ &\leq \underbrace{\left( \sup_{\mathbf{h} \in \mathbb{Z}^s} |\hat{f}(\mathbf{h})| r_{\alpha, \gamma}(\mathbf{h}) \right)}_{=: \|f\|_{E_{s, \gamma}^{\alpha}}} \underbrace{\left( \sum_{\mathbf{0} \neq \mathbf{h} \in \mathbb{Z}^s} \frac{\delta_N(\mathbf{h} \cdot \mathbf{z})}{r_{\alpha, \gamma}(\mathbf{h})} \right)}_{=e_{N,s}(Q_N(\cdot, \mathbf{z}), E_{s, \gamma}^{\alpha})}. \end{aligned}$$

1

Applying Hölder's inequality with  $p = \infty$  and q = 1 to the integration error (see previous slide) yields

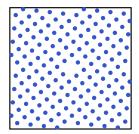
$$\begin{aligned} |Q_N(f, \mathbf{z}) - I(f)| &= \left| \sum_{\mathbf{0} \neq \mathbf{h} \in \mathbb{Z}^s} \hat{f}(\mathbf{h}) r_{\alpha, \gamma}(\mathbf{h}) r_{\alpha, \gamma}^{-1}(\mathbf{h}) \delta_N(\mathbf{h} \cdot \mathbf{z}) \right| \\ &\leq \underbrace{\left( \sup_{\mathbf{h} \in \mathbb{Z}^s} |\hat{f}(\mathbf{h})| r_{\alpha, \gamma}(\mathbf{h}) \right)}_{=: \|f\|_{E_{s, \gamma}^{\alpha}}} \underbrace{\left( \sum_{\mathbf{0} \neq \mathbf{h} \in \mathbb{Z}^s} \frac{\delta_N(\mathbf{h} \cdot \mathbf{z})}{r_{\alpha, \gamma}(\mathbf{h})} \right)}_{=e_{N, s}(Q_N(\cdot, \mathbf{z}), E_{s, \gamma}^{\alpha})}. \end{aligned}$$

#### Theorem (Lattice rule worst-case error)

Let  $N, s \in \mathbb{N}$ ,  $\alpha > 1$  and a sequence of positive weights  $\gamma = (\gamma_{\mathfrak{u}})_{\mathfrak{u} \subseteq \{1:s\}}$ be given. Then the worst-case error  $e_{N,s,\alpha,\gamma}(z)$  for the rank-1 lattice rule  $Q_N(\cdot, z)$  in the space  $E_{s,\gamma}^{\alpha}$  satisfies

$$e_{N,s,lpha,\gamma}(\boldsymbol{z}) := e_{N,s}(Q_N(\cdot, \boldsymbol{z}), E^{lpha}_{s,\gamma}) = \sum_{\boldsymbol{0} 
eq \boldsymbol{h} \in \mathbb{Z}^s} rac{\delta_N(\boldsymbol{h} \cdot \boldsymbol{z})}{r_{lpha,\gamma}(\boldsymbol{h})}.$$

# Quality measure and optimal coefficients

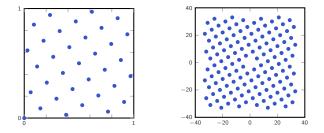


# Quality measure $T_{\alpha}(N, z)$

For  $\alpha \geq 1$  we introduce the quality measure

$$T_{lpha}(N, oldsymbol{z}) := \sum_{\substack{m{0} 
eq oldsymbol{h} \in \mathcal{M}_{N,s} \ oldsymbol{h} \colon oldsymbol{z} \equiv m{0} \ (oldsymbol{m} \in \mathcal{M}_{N,s})}} rac{1}{r_{lpha, \gamma}(oldsymbol{h})} = \sum_{m{0} 
eq oldsymbol{h} \in \mathcal{M}_{N,s}} rac{\delta_N(oldsymbol{h} \cdot oldsymbol{z})}{r_{lpha, \gamma}(oldsymbol{h})}$$

with truncated index set  $M_{N,s} = \{-(N-1), \ldots, N-1\}^s$ .



**Figure 2:** Fibonacci lattice with N = 34 and z = (1,21) (left) with the corresponding set of  $0 \neq h \in M_{N,s}$  with  $h \cdot z \equiv 0 \pmod{N}$  (right)

The difference between  $e_{N,s,\alpha,\gamma}(z)$  and its restriction to  $M_{N,s}$  satisfies:

#### Lemma (Truncation error)

Let  $\gamma = (\gamma_{\mathfrak{u}})_{\mathfrak{u} \subseteq \{1:s\}}$  be a sequence of positive weights and let  $\mathbf{z} \in \mathbb{Z}^s$ with  $gcd(z_j, N) = 1$  for all j = 1, ..., s. Then, for  $\alpha > 1$ , we have that

$$e_{N,s,lpha,\gamma}(oldsymbol{z}) - \mathcal{T}_{lpha}(N,oldsymbol{z}) \leq rac{1}{N^{lpha}}\sum_{\emptyset
eq \mathfrak{u}\subseteq\{1:s\}}\gamma_{\mathfrak{u}}\left(4\zeta(lpha)
ight)^{|\mathfrak{u}|}.$$

The difference between  $e_{N,s,\alpha,\gamma}(z)$  and its restriction to  $M_{N,s}$  satisfies:

#### Lemma (Truncation error)

Let  $\gamma = (\gamma_{\mathfrak{u}})_{\mathfrak{u} \subseteq \{1:s\}}$  be a sequence of positive weights and let  $\mathbf{z} \in \mathbb{Z}^s$ with  $gcd(z_j, N) = 1$  for all j = 1, ..., s. Then, for  $\alpha > 1$ , we have that

$$e_{N,s,lpha,oldsymbol{\gamma}}(oldsymbol{z}) - \mathcal{T}_{lpha}(N,oldsymbol{z}) \leq rac{1}{N^{lpha}}\sum_{\emptyset
eq \mathfrak{u}\subseteq\{1:s\}} \gamma_{\mathfrak{u}}\left(4\zeta(lpha)
ight)^{|\mathfrak{u}|}.$$

Under the same assumptions we obtain

$$e_{N,s,\alpha,\gamma}(\boldsymbol{z}) = \sum_{\boldsymbol{0}\neq\boldsymbol{h}\in\mathbb{Z}^s} \frac{\delta_N(\boldsymbol{h}\cdot\boldsymbol{z})}{r_{\alpha,\gamma}(\boldsymbol{h})} - \sum_{\boldsymbol{0}\neq\boldsymbol{h}\in M_{N,s}} \frac{\delta_N(\boldsymbol{h}\cdot\boldsymbol{z})}{r_{\alpha,\gamma}(\boldsymbol{h})} + \sum_{\boldsymbol{0}\neq\boldsymbol{h}\in M_{N,s}} \frac{\delta_N(\boldsymbol{h}\cdot\boldsymbol{z})}{r_{\alpha,\gamma}(\boldsymbol{h})}$$

### Connection with the worst-case error

The difference between  $e_{N,s,\alpha,\gamma}(z)$  and its restriction to  $M_{N,s}$  satisfies:

#### Lemma (Truncation error)

Let  $\gamma = (\gamma_{\mathfrak{u}})_{\mathfrak{u} \subseteq \{1:s\}}$  be a sequence of positive weights and let  $\mathbf{z} \in \mathbb{Z}^{s}$ with  $gcd(z_{j}, N) = 1$  for all j = 1, ..., s. Then, for  $\alpha > 1$ , we have that

$$e_{N,s,lpha,oldsymbol{\gamma}}(oldsymbol{z}) - \mathcal{T}_{lpha}(N,oldsymbol{z}) \leq rac{1}{N^{lpha}}\sum_{\emptyset
eq \mathfrak{u}\subseteq\{1:s\}} \gamma_{\mathfrak{u}}\left(4\zeta(lpha)
ight)^{|\mathfrak{u}|}.$$

Under the same assumptions we obtain

$$e_{N,s,\alpha,\gamma}(\boldsymbol{z}) = \sum_{\boldsymbol{0}\neq\boldsymbol{h}\in\mathbb{Z}^{s}} \frac{\delta_{N}(\boldsymbol{h}\cdot\boldsymbol{z})}{r_{\alpha,\gamma}(\boldsymbol{h})} - \sum_{\boldsymbol{0}\neq\boldsymbol{h}\in\mathcal{M}_{N,s}} \frac{\delta_{N}(\boldsymbol{h}\cdot\boldsymbol{z})}{r_{\alpha,\gamma}(\boldsymbol{h})} + \sum_{\boldsymbol{0}\neq\boldsymbol{h}\in\mathcal{M}_{N,s}} \frac{\delta_{N}(\boldsymbol{h}\cdot\boldsymbol{z})}{r_{\alpha,\gamma}(\boldsymbol{h})}$$
$$\leq \frac{1}{N^{\alpha}} \sum_{\emptyset\neq\boldsymbol{u}\subseteq\{1:s\}} \gamma_{\boldsymbol{u}} (4\zeta(\alpha))^{|\boldsymbol{u}|} + \sum_{\boldsymbol{0}\neq\boldsymbol{h}\in\mathcal{M}_{N,s}} \frac{\delta_{N}(\boldsymbol{h}\cdot\boldsymbol{z})}{r_{\alpha,\gamma}(\boldsymbol{h})}$$

### Connection with the worst-case error

The difference between  $e_{N,s,\alpha,\gamma}(z)$  and its restriction to  $M_{N,s}$  satisfies:

#### Lemma (Truncation error)

Let  $\gamma = (\gamma_u)_{u \subseteq \{1:s\}}$  be a sequence of positive weights and let  $z \in \mathbb{Z}^s$ with  $gcd(z_j, N) = 1$  for all j = 1, ..., s. Then, for  $\alpha > 1$ , we have that

$$e_{N,s,lpha,oldsymbol{\gamma}}(oldsymbol{z}) - \mathcal{T}_{lpha}(N,oldsymbol{z}) \leq rac{1}{N^{lpha}}\sum_{\emptyset
eq \mathfrak{u}\subseteq\{1:s\}} \gamma_{\mathfrak{u}}\left(4\zeta(lpha)
ight)^{|\mathfrak{u}|}$$

Under the same assumptions we obtain (using Jensen's inequality)

$$\begin{split} e_{N,s,\alpha,\gamma}(\boldsymbol{z}) &= \sum_{\boldsymbol{0} \neq \boldsymbol{h} \in \mathbb{Z}^s} \frac{\delta_N(\boldsymbol{h} \cdot \boldsymbol{z})}{r_{\alpha,\gamma}(\boldsymbol{h})} - \sum_{\boldsymbol{0} \neq \boldsymbol{h} \in M_{N,s}} \frac{\delta_N(\boldsymbol{h} \cdot \boldsymbol{z})}{r_{\alpha,\gamma}(\boldsymbol{h})} + \sum_{\boldsymbol{0} \neq \boldsymbol{h} \in M_{N,s}} \frac{\delta_N(\boldsymbol{h} \cdot \boldsymbol{z})}{r_{\alpha,\gamma}(\boldsymbol{h})} \\ &\leq \frac{1}{N^{\alpha}} \sum_{\emptyset \neq \mathfrak{u} \subseteq \{1:s\}} \gamma_{\mathfrak{u}} \left(4\zeta(\alpha)\right)^{|\mathfrak{u}|} + \left(\sum_{\boldsymbol{0} \neq \boldsymbol{h} \in M_{N,s}} \frac{\delta_N(\boldsymbol{h} \cdot \boldsymbol{z})}{r_{1,\gamma^{1/\alpha}}(\boldsymbol{h})}\right)^{\alpha}. \end{split}$$

# **Optimal coefficients modulo** *N*

For the limiting case  $\alpha = 1$ , we analogously introduce the quality measure

$$T(N, \mathbf{z}) := \sum_{\mathbf{0} \neq \mathbf{h} \in M_{N,s}} \frac{\delta_N(\mathbf{h} \cdot \mathbf{z})}{r_{1,\gamma}(\mathbf{h})}$$

as a quality criterion for good rank-1 lattice rules.

<sup>&</sup>lt;sup>1</sup>N.Korobov. *Number-theoretic methods in approximate analysis*. Fizmatigiz, 1963. N.Korobov. *On the computation of optimal coefficients*. Dokl. Akad. Nauk., 1982.

For the limiting case  $\alpha = 1$ , we analogously introduce the quality measure

$$T(N, \boldsymbol{z}) := \sum_{\boldsymbol{0} \neq \boldsymbol{h} \in M_{N,s}} \frac{\delta_N(\boldsymbol{h} \cdot \boldsymbol{z})}{r_{1,\gamma}(\boldsymbol{h})}$$

as a quality criterion for good rank-1 lattice rules.

As in Korobov works<sup>1</sup>, we introduce the concept of optimal coefficients.

#### Definition (Optimal coefficients modulo N)

For given  $N \in \mathbb{N}$  and positive weights  $\gamma = (\gamma_u)_{u \subseteq \{1:s\}}$ , the components  $z_1, \ldots, z_s$  of z are called optimal coefficients modulo N if for any  $\delta > 0$  it holds that

$$T(N, \mathbf{z}) \leq C(\boldsymbol{\gamma}, \delta) N^{-1+\delta},$$

where  $C(\gamma, \delta)$  is a positive constant independent of s and N.

<sup>&</sup>lt;sup>1</sup>N.Korobov. Number-theoretic methods in approximate analysis. Fizmatigiz, 1963. N.Korobov. On the computation of optimal coefficients. Dokl. Akad. Nauk., 1982.

The componentwise digit-by-digit algorithm

Therefore, different search algorithms were introduced:

<sup>&</sup>lt;sup>2</sup>N.Korobov. On the computation of optimal coefficients. Dokl. Akad. Nauk., 1982.

Therefore, different search algorithms were introduced:

Korobov (1963) and later Sloan and Reztsov (2002) introduced a component-by-component (CBC) construction to find good generating vectors *z*. (Greedy algorithm with complexity O(s N<sup>2</sup>) and search space size reduced to O(s N))

<sup>&</sup>lt;sup>2</sup>N.Korobov. On the computation of optimal coefficients. Dokl. Akad. Nauk., 1982.

Therefore, different search algorithms were introduced:

- Korobov (1963) and later Sloan and Reztsov (2002) introduced a component-by-component (CBC) construction to find good generating vectors *z*. (Greedy algorithm with complexity O(s N<sup>2</sup>) and search space size reduced to O(s N))
- The introduction of the fast CBC construction by Nuyens and Cools (2006) reduced the complexity of the algorithm to O(s N ln N).

<sup>&</sup>lt;sup>2</sup>N.Korobov. On the computation of optimal coefficients. Dokl. Akad. Nauk., 1982.

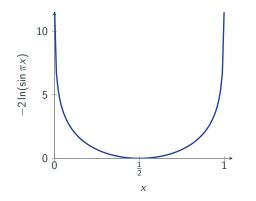
Therefore, different search algorithms were introduced:

- Korobov (1963) and later Sloan and Reztsov (2002) introduced a component-by-component (CBC) construction to find good generating vectors *z*. (Greedy algorithm with complexity O(s N<sup>2</sup>) and search space size reduced to O(s N))
- The introduction of the fast CBC construction by Nuyens and Cools (2006) reduced the complexity of the algorithm to O(s N ln N).
- We will explore a different construction algorithm which originates from an article by Korobov<sup>2</sup> (1982, 3<sup>1</sup>/<sub>2</sub> pages long).

<sup>&</sup>lt;sup>2</sup>N.Korobov. On the computation of optimal coefficients. Dokl. Akad. Nauk., 1982.

For  $x \in (0, 1)$  consider the Fourier series of the function  $-2\ln(\sin(\pi x))$  $-2\ln(\sin(\pi x)) = \ln(4) + \sum_{h \in \mathbb{Z} \setminus \{0\}} \frac{e^{2\pi i h x}}{|h|}.$ 

The relation to the error expression motivates us to define the quality function for our componentwise digit-by-digit (CBC-DBD) algorithm.



**Figure 3:** Behavior of the function  $-2\ln(\sin \pi x)$  on the interval [0, 1].

#### Definition (Digit-wise quality function)

Let  $x \in \mathbb{N}$  be an odd integer,  $n, s \in \mathbb{N}$  be positive integers, and let  $\gamma = (\gamma_u)_{u \subseteq \{1:s\}}$  be a sequence of positive weights. For  $1 \leq v \leq n$  and  $1 \leq r \leq s$  and positive integers  $z_1, \ldots, z_{r-1}$ , we define the quality function  $h_{r,v,\gamma} : \mathbb{Z} \to \mathbb{R}$  as

$$h_{r,v,\gamma}(x) := \sum_{k=v}^{n} \frac{1}{2^{k-v}} \sum_{\substack{m=1\\m\equiv 1 \pmod{2}}}^{2^{k}} \left[ \sum_{\substack{\emptyset \neq u \subseteq \{1:r-1\}}} \gamma_{u} \prod_{j \in u} \ln \frac{1}{\sin^{2}(\pi m z_{j}/2^{k})} + \sum_{\substack{w \subseteq \{1:r-1\}}} \gamma_{w \cup \{r\}} \left( \prod_{j \in w} \ln \frac{1}{\sin^{2}(\pi m z_{j}/2^{k})} \right) \ln \frac{1}{\sin^{2}(\pi m x/2^{v})} \right]$$

Based on  $h_{r,v,\gamma}$  the component-wise digit-by-digit (CBC-DBD) algorithm can be formulated as follows.

**Algorithm 1** Component-wise digit-by-digit construction

**Input:** Integer  $n \in \mathbb{N}$ , dimension *s* and positive weights  $\gamma = (\gamma_{\mathfrak{u}})_{\mathfrak{u} \subset \{1:s\}}$ .

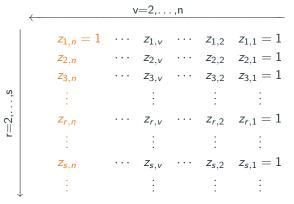
Set 
$$z_{1,n} = 1$$
 and  $z_{2,1} = \ldots = z_{s,1} = 1$ .  
for  $r = 2$  to  $s$  do  
for  $v = 2$  to  $n$  do  
 $z^* = \underset{z \in \{0,1\}}{\operatorname{argmin}} h_{r,v,\gamma}(z_{r,v-1} + 2^{v-1}z)$   
 $z_{r,v} = z_{r,v-1} + 2^{v-1}z^*$   
end for  
end for  
Set  $z = (z_1, \ldots, z_s)$  with  $z_r := z_{r,n}$  for  $r = 1, \ldots, s$ .  
Return: Generating vector  $z = (z_1, \ldots, z_s)$  for  $N = 2^n$ .

The resulting vector  $\mathbf{z} = (z_1, \ldots, z_s)$  is the generating vector of a lattice rule with  $N = 2^n$  points in *s* dimensions.

. *S*.

# Illustration of the CBC-DBD algorithm

• The generating vector *z* is constructed component-by-component, where each component is build up digit-by-digit.



- The size of the search space is of order  $\mathcal{O}(2ns) = \mathcal{O}(s \ln N)$ .
- The construction is extensible in the dimension s.
- Naïve implementation has time complexity  $\mathcal{O}(s^2 N \ln N)$ .

## Error convergence behavior (main result)

#### Theorem (A.E., P.Kritzer, D.Nuyens, O.Osisiogu)

Let  $N = 2^n$  and  $(\gamma_u)_{u \subseteq \{1:s\}}$ , with  $\gamma_u = \prod_{j \in u} \gamma_j$  and  $\gamma_j > 0$ , be product weights. Then the corresponding generating vector z, constructed by Algorithm 1, satisfies the following estimate:

$$T(N, \mathbf{z}) \leq \frac{1}{N} \left[ \prod_{j=1}^{s} (1 + \gamma_j (\ln 4 + 2(1 + \ln N))) + 2(1 + \ln N) \prod_{j=1}^{s} (1 + \gamma_j (2(1 + 2 \ln N))) \right].$$

## Error convergence behavior (main result)

#### Theorem (A.E., P.Kritzer, D.Nuyens, O.Osisiogu)

Let  $N = 2^n$  and  $(\gamma_u)_{u \subseteq \{1:s\}}$ , with  $\gamma_u = \prod_{j \in u} \gamma_j$  and  $\gamma_j > 0$ , be product weights. Then the corresponding generating vector  $\mathbf{z}$ , constructed by Algorithm 1, satisfies the following estimate:

$$T(N, \mathbf{z}) \leq \frac{1}{N} \left[ \prod_{j=1}^{s} (1 + \gamma_j (\ln 4 + 2(1 + \ln N))) + 2(1 + \ln N) \prod_{j=1}^{s} (1 + \gamma_j (2(1 + 2 \ln N))) \right].$$

Moreover, if the weights  $(\gamma_j)_{j=1}^s$  satisfy the condition

$$\sum_{j=1}^{\infty} \gamma_j < \infty,$$

then T(N, z) is bounded independently of the dimension s and  $z_1, \ldots, z_s$ are optimal coefficients modulo N. Theorem (A.E., P.Kritzer, D.Nuyens, O.Osisiogu)

Let  $N = 2^n$  and denote by  $\mathbf{z} = (z_1, \dots, z_s)$  the generating vector constructed by Algorithm 1. If the weights  $\gamma_{\mathfrak{u}} = \prod_{j \in \mathfrak{u}} \gamma_j$  satisfy the condition

$$\sum_{j=1}^{\infty} \gamma_j < \infty,$$

then for any  $\delta > 0$  and each  $\alpha > 1$  the worst-case error  $e_{N,s,\alpha,\gamma^{\alpha}}(z)$  satisfies

$$e_{N,s,\alpha,\boldsymbol{\gamma}^{\alpha}}(\boldsymbol{z}) \leq \frac{1}{N^{\alpha}} \left( \prod_{j=1}^{s} \left( 1 + \gamma_{j}^{\alpha}(4\zeta(\alpha)) \right) + C(\boldsymbol{\gamma},\delta) N^{\alpha\delta} \right)$$

with weight sequence  $\gamma^{\alpha} = (\gamma^{\alpha}_{\mathfrak{u}})_{\mathfrak{u} \subseteq \{1:s\}}$  and positive constant  $C(\gamma, \delta)$  independent of s and N.

Fast implementation of the algorithm

For the implementation we consider the special case of product weights  $\gamma_{\mathfrak{u}} = \prod_{j \in \mathfrak{u}} \gamma_j$  for a sequence of positive reals  $(\gamma_j)_{j \ge 1}$ .

For the implementation we consider the special case of product weights  $\gamma_{\mathfrak{u}} = \prod_{j \in \mathfrak{u}} \gamma_j$  for a sequence of positive reals  $(\gamma_j)_{j \ge 1}$ .

The digit-wise quality function  $h_{r,v,\gamma}(x)$  then equals

$$\sum_{k=\nu}^{n} \frac{1}{2^{k-\nu}} \sum_{\substack{m=1\\m\equiv 1 \pmod{2}}}^{2^{k}} \prod_{j=1}^{r-1} \left( 1 + \gamma_{j} \ln \frac{1}{\sin^{2}(\pi m z_{j}/2^{k})} \right) \left( 1 + \gamma_{r} \ln \frac{1}{\sin^{2}(\pi m x/2^{\nu})} \right).$$

For the implementation we consider the special case of product weights  $\gamma_{\mathfrak{u}} = \prod_{j \in \mathfrak{u}} \gamma_j$  for a sequence of positive reals  $(\gamma_j)_{j \ge 1}$ .

The digit-wise quality function  $h_{r,v,\gamma}(x)$  then equals

$$\sum_{k=\nu}^{n} \frac{1}{2^{k-\nu}} \sum_{\substack{m=1 \ \text{(mod 2)}}}^{2^{k}} \prod_{j=1}^{r-1} \left( 1 + \gamma_{j} \ln \frac{1}{\sin^{2}(\pi m z_{j}/2^{k})} \right) \left( 1 + \gamma_{r} \ln \frac{1}{\sin^{2}(\pi m x/2^{\nu})} \right).$$

A single evaluation of  $h_{r,v,\gamma}(x)$  requires  $\mathcal{O}(r \sum_{k=v}^{n} 2^{k-1})$  operations. The total cost of each inner loop over the v = 2, ..., n is therefore

$$\mathcal{O}\left(r\sum_{\nu=2}^{n}2\sum_{k=\nu}^{n}2^{k-1}\right) = \mathcal{O}\left(r\left(2^{n}n-2(2^{n}-1)\right)\right) = \mathcal{O}\left(r\,N\ln N\right).$$

For the implementation we consider the special case of product weights  $\gamma_{\mathfrak{u}} = \prod_{j \in \mathfrak{u}} \gamma_j$  for a sequence of positive reals  $(\gamma_j)_{j \ge 1}$ .

The digit-wise quality function  $h_{r,v,\gamma}(x)$  then equals

$$\sum_{k=\nu}^{n} \frac{1}{2^{k-\nu}} \sum_{\substack{m=1 \ \text{(mod 2)}}}^{2^{k}} \prod_{j=1}^{r-1} \left( 1 + \gamma_{j} \ln \frac{1}{\sin^{2}(\pi m z_{j}/2^{k})} \right) \left( 1 + \gamma_{r} \ln \frac{1}{\sin^{2}(\pi m x/2^{\nu})} \right).$$

A single evaluation of  $h_{r,v,\gamma}(x)$  requires  $\mathcal{O}(r \sum_{k=v}^{n} 2^{k-1})$  operations. The total cost of each inner loop over the v = 2, ..., n is therefore

$$\mathcal{O}\left(r\sum_{\nu=2}^{n}2\sum_{k=\nu}^{n}2^{k-1}\right) = \mathcal{O}\left(r\left(2^{n}n-2(2^{n}-1)\right)\right) = \mathcal{O}\left(rN\ln N\right).$$

Thus, a naïve implementation of the CBC-DBD algorithm has time complexity  $\mathcal{O}(s^2 N \ln N)$ .

### Fast implementation

A fast implementation can be obtained by evaluating  $h_{r,v,\gamma}(x) =$ 

$$\sum_{k=\nu}^{n} \frac{1}{2^{k-\nu}} \sum_{\substack{m=1 \ m \equiv 1 \pmod{2}}}^{2^{k}} \prod_{j=1}^{r-1} \left( 1 + \gamma_{j} \ln \frac{1}{\sin^{2}(\pi m z_{j}/2^{k})} \right) \left( 1 + \gamma_{r} \ln \frac{1}{\sin^{2}(\pi m x/2^{\nu})} \right)$$

in a more efficient manner.

### Fast implementation

A fast implementation can be obtained by evaluating  $h_{r,v,\gamma}(x) =$ 

$$\sum_{k=\nu}^{n} \frac{1}{2^{k-\nu}} \sum_{\substack{m=1 \ m \equiv 1 \pmod{2}}}^{2^{k}} \prod_{j=1}^{r-1} \left( 1 + \gamma_{j} \ln \frac{1}{\sin^{2}(\pi m z_{j}/2^{k})} \right) \left( 1 + \gamma_{r} \ln \frac{1}{\sin^{2}(\pi m x/2^{\nu})} \right)$$

in a more efficient manner.

For  $1 \le r < s$  let  $z_1, \ldots, z_r$  be constructed by Algorithm 1. For  $k \in \{2, \ldots, n\}$  and odd  $m \in \{1, \ldots, 2^k - 1\}$  define the term q(r, k, m) by

$$q(r, k, m) = \prod_{j=1}^{r} \left( 1 + \gamma_j \ln \frac{1}{\sin^2(\pi m z_j/2^k)} \right).$$

### Fast implementation

A fast implementation can be obtained by evaluating  $h_{r,v,\gamma}(x) =$ 

$$\sum_{k=\nu}^{n} \frac{1}{2^{k-\nu}} \sum_{\substack{m=1 \ m \equiv 1 \pmod{2}}}^{2^{k}} \prod_{j=1}^{r-1} \left( 1 + \gamma_{j} \ln \frac{1}{\sin^{2}(\pi m z_{j}/2^{k})} \right) \left( 1 + \gamma_{r} \ln \frac{1}{\sin^{2}(\pi m x/2^{\nu})} \right)$$

in a more efficient manner.

For  $1 \le r < s$  let  $z_1, \ldots, z_r$  be constructed by Algorithm 1. For  $k \in \{2, \ldots, n\}$  and odd  $m \in \{1, \ldots, 2^k - 1\}$  define the term q(r, k, m) by

$$q(r,k,m) = \prod_{j=1}^{\infty} \left( 1 + \gamma_j \ln \frac{1}{\sin^2(\pi m z_j/2^k)} \right).$$

This way, the function  $h_{r,v,\gamma}(x)$  can be rewritten as

$$h_{r,v,\gamma}(x) = \sum_{k=v}^{n} \frac{1}{2^{k-v}} \sum_{\substack{m=1 \ m \equiv 1 \ (\text{mod } 2)}}^{2^{k}} q(r-1,k,m) \left(1 + \gamma_{r} \ln \frac{1}{\sin^{2}(\pi m x/2^{v})}\right)$$

We can thus compute and store q(r-1, k, m) for all values of k and m at cost O(N) and compute q(r, k, m) via the recurrence relation

$$q(r, k, m) = q(r-1, k, m) \left(1 + \gamma_r \ln \frac{1}{\sin^2(\pi m z_r/2^k)}\right)$$

This way, a single evaluation of  $h_{r,v,\gamma}(x)$  requires only  $\mathcal{O}(\sum_{k=v}^{n} 2^{k-1})$  operations, each inner loop  $\mathcal{O}(N \ln N)$  operations.

We can thus compute and store q(r-1, k, m) for all values of k and m at cost O(N) and compute q(r, k, m) via the recurrence relation

$$q(r,k,m) = q(r-1,k,m) \left(1 + \gamma_r \ln \frac{1}{\sin^2(\pi m z_r/2^k)}\right).$$

This way, a single evaluation of  $h_{r,v,\gamma}(x)$  requires only  $\mathcal{O}(\sum_{k=v}^{n} 2^{k-1})$  operations, each inner loop  $\mathcal{O}(N \ln N)$  operations.

#### Theorem (Fast implementation)

Let  $n, s \in \mathbb{N}$  and  $N = 2^n$ . For a given positive weight sequence  $\gamma = (\gamma_j)_{j=1}^s$ , a generating vector  $\mathbf{z} = (z_1, \ldots, z_s)$  can be computed via Algorithm 1 using  $\mathcal{O}(s \operatorname{N} \ln N)$  operations and requiring  $\mathcal{O}(N)$  memory.

This algorithm has time complexity  $O(s N \ln N)$  and does not require the use of fast Fourier transforms (FFTs)!

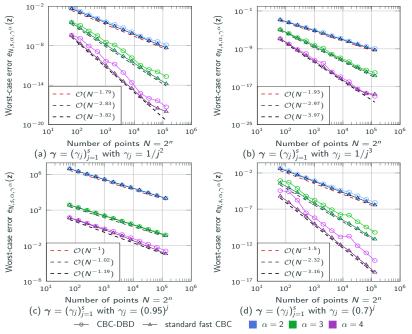
Numerical results

Consider the convergence behavior of  $e_{N,s,\alpha,\gamma^{\alpha}}(z)$  for generating vectors constructed by the CBC-DBD algorithm and the fast CBC algorithm<sup>3</sup>.

- Use product weights sequences γ = (γ<sub>u</sub>)<sub>u⊆{1:s}</sub> with γ<sub>u</sub> = ∏<sub>j∈u</sub> γ<sub>j</sub> and consider the worst-case error e<sub>N,s,α,γ<sup>α</sup></sub> for α = 2, 3, 4.
- The generators  $z_{cbc-dbd}$  are constructed by the CBC-DBD algorithm with *n*, *s* and weights  $(\gamma_j)_{j=1}^s$  as input.
- The generators  $z_{cbc}$  are constructed by the fast CBC algorithm for  $N = 2^n$  using the error  $e_{N,s,\alpha,\gamma^{\alpha}}$  as quality function.
- The error values of generators constructed by the standard fast CBC algorithm are used as a benchmark for our CBC-DBD construction.

<sup>&</sup>lt;sup>3</sup>D. Nuyens, R. Cools. *Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points.* J. Complexity 22, 4–28, 2006.

Error convergence in the space  $E_{s,\gamma}^{\alpha}$  with  $\gamma_{\mathfrak{u}} = \prod_{j \in \mathfrak{u}} \gamma_j$ , s = 100,  $\alpha = 2, 3, 4$ .



24/35

## **Computation times**

Table 1: Computation times (in seconds) for constructing generating vectors z of lattice rules with  $N = 2^n$  points in s dimensions via the CBC-DBD algorithm (**bold font**) and the standard fast CBC construction (normal font). Constructed for weights of the form  $\gamma_{\mathfrak{u}} = \prod_{j \in \mathfrak{u}} \gamma_j$ . For the fast CBC construction the smoothness parameter  $\alpha = 2$  was used.

|               | <i>s</i> = 50 | s = 100       | <i>s</i> = 500 | s = 1000       | <i>s</i> = 2000 |
|---------------|---------------|---------------|----------------|----------------|-----------------|
| <i>n</i> = 10 | 0.038         | 0.075         | 0.37           | 0.743          | 1.485           |
|               | <b>0.061</b>  | <b>0.119</b>  | <b>0.595</b>   | <b>1.184</b>   | <b>2.371</b>    |
| n = 12        | 0.047         | 0.096         | 0.476          | 0.951          | 1.897           |
|               | <b>0.093</b>  | <b>0.185</b>  | <b>0.922</b>   | <b>1.843</b>   | <b>3.685</b>    |
| <i>n</i> = 14 | 0.068         | 0.138         | 0.674          | 1.339          | 2.676           |
|               | <b>0.155</b>  | <b>0.31</b>   | <b>1.547</b>   | <b>3.081</b>   | <b>6.166</b>    |
| <i>n</i> = 16 | 0.165         | 0.304         | 1.423          | 2.845          | 5.626           |
|               | <b>0.344</b>  | <b>0.678</b>  | <b>3.394</b>   | <b>6.804</b>   | <b>13.624</b>   |
| n = 18        | 0.586         | 1.053         | 4.746          | 9.497          | 18.867          |
|               | <b>1.145</b>  | <b>2.293</b>  | <b>11.63</b>   | <b>23.1</b>    | <b>46.184</b>   |
| n = 20        | 3.357         | 6.203         | 28.935         | 57.438         | 114.284         |
|               | <b>6.31</b>   | <b>12.757</b> | <b>64.102</b>  | <b>128.897</b> | <b>257.454</b>  |

# **Polynomial lattice rules**

Consider functions  $f:[0,1]^s 
ightarrow \mathbb{R}$  given by their Walsh series

$$f(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbb{N}_0^s} \hat{f}(\mathbf{k}) \operatorname{wal}_{\mathbf{k}}(\mathbf{x}) \quad \text{with} \quad \hat{f}(\mathbf{k}) := \int_{[0,1]^s} f(\mathbf{x}) \operatorname{\overline{wal}}_{\mathbf{k}}(\mathbf{x}) \operatorname{d}\mathbf{x}$$

with wal<sub>k</sub>(x) =  $\prod_{j=1}^{s} \operatorname{wal}_{k_j}(x_j)$  and wal<sub>k</sub>(x) =  $e^{2\pi i (\kappa_0 \xi_1 + \kappa_1 \xi_2 + \dots + \kappa_{s-1} \xi_s)/b}$ for base *b* representations  $k = \kappa_0 + \kappa_1 b + \dots + \kappa_{s-1} b^{s-1}$  and  $x = \xi_1 b^{-1} + \xi_2 b^{-2} + \dots$  with coefficients  $\kappa_i, \xi_i \in \{0, 1, \dots, b-1\}$ . Consider functions  $f:[0,1]^s 
ightarrow \mathbb{R}$  given by their Walsh series

$$f(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbb{N}_0^s} \hat{f}(\mathbf{k}) \operatorname{wal}_{\mathbf{k}}(\mathbf{x}) \quad \text{with} \quad \hat{f}(\mathbf{k}) := \int_{[0,1]^s} f(\mathbf{x}) \operatorname{\overline{wal}}_{\mathbf{k}}(\mathbf{x}) \operatorname{d}\mathbf{x}$$

with wal<sub>k</sub>(x) =  $\prod_{j=1}^{s} \operatorname{wal}_{k_j}(x_j)$  and wal<sub>k</sub>(x) =  $e^{2\pi i (\kappa_0 \xi_1 + \kappa_1 \xi_2 + \dots + \kappa_{s-1} \xi_s)/b}$ for base *b* representations  $k = \kappa_0 + \kappa_1 b + \dots + \kappa_{s-1} b^{s-1}$  and  $x = \xi_1 b^{-1} + \xi_2 b^{-2} + \dots$  with coefficients  $\kappa_i, \xi_i \in \{0, 1, \dots, b-1\}$ .

We introduce a function to measure the decay of the Walsh coefficients:

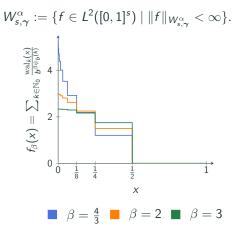
$$r_{lpha}(m{k}) := \prod_{j=1}^{s} r_{lpha}(k_j) \quad ext{and} \quad r_{lpha,m{\gamma}}(m{k}) := \gamma_{ ext{supp}(m{k})}^{-1} \prod_{j \in ext{supp}(m{k})} b^{lpha \psi_b(k_j)}$$

with  $\psi_b(k) = \lfloor \log_b(k) \rfloor$ .

### Weighted Walsh space

Define the norm of the Banach space  $W^{\alpha}_{s,\gamma}$  as  $\|f\|_{W^{\alpha}_{s,\gamma}} := \sup_{\pmb{k} \in \mathbb{N}^s_0} |\hat{f}(\pmb{k})| \, r_{\alpha,\gamma}(\pmb{k})$ 

and for  $\alpha>1$  and positive weights define the weighted function space



### **Polynomial lattice rules**

Denote by  $\mathbb{F}_b[x]$  the set of all polynomials over  $\mathbb{F}_b$  and define the map  $v_m : \mathbb{F}_b((x^{-1})) \to [0, 1)$  by

$$v_m\left(\sum_{\ell=1}^{\infty}t_\ell\,x^{-\ell}\right)=\sum_{\ell=1}^mt_\ell\,b^{-\ell}.$$

For  $n \in \mathbb{N}_0$  with base *b* expansion  $n = n_0 + n_1 b + \cdots + n_a b^a$ , we associate *n* with the polynomial  $n(x) := \sum_{k=0}^{a} n_k x^k \in \mathbb{F}_b[x]$ .

### **Polynomial lattice rules**

Denote by  $\mathbb{F}_b[x]$  the set of all polynomials over  $\mathbb{F}_b$  and define the map  $v_m : \mathbb{F}_b((x^{-1})) \to [0, 1)$  by

$$v_m\left(\sum_{\ell=1}^{\infty}t_\ell\,x^{-\ell}\right)=\sum_{\ell=1}^mt_\ell\,b^{-\ell}.$$

For  $n \in \mathbb{N}_0$  with base *b* expansion  $n = n_0 + n_1 b + \dots + n_a b^a$ , we associate *n* with the polynomial  $n(x) := \sum_{k=0}^{a} n_k x^k \in \mathbb{F}_b[x]$ .

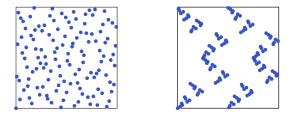
#### Polynomial lattice point set

Let *b* be prime and choose  $p \in \mathbb{F}_b[x]$  with deg(p) = m, and let  $g \in \mathbb{F}_b[x]$ . Then the point set P(g, p), defined as the collection of the  $b^m$  points

$$\boldsymbol{x}_n := \left( \boldsymbol{v}_m \left( \frac{\boldsymbol{n}(x) \, \boldsymbol{g}_1(x)}{\boldsymbol{p}(x)} \right), \dots, \boldsymbol{v}_m \left( \frac{\boldsymbol{n}(x) \, \boldsymbol{g}_s(x)}{\boldsymbol{p}(x)} \right) \right) \in [0, 1)^s$$

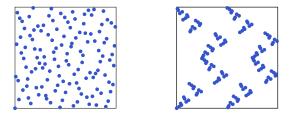
for  $n \in \mathbb{F}_b[x]$  with deg(n) < m, is called a polynomial lattice.

### Integration error for PLR



Polynomial lattice node sets with  $2^7$  points in base b = 2 with irreducible polynomial  $f = x^7 + x^3 + 1 \in \mathbb{F}_2[x]$  and the two generating vectors  $g_1 = (x^4 + x^2 + 1, x^2 + x)$  (left) and  $g_2 = (x^3 + 1, x^2 + x)$  (right).

### Integration error for PLR



Polynomial lattice node sets with  $2^7$  points in base b = 2 with irreducible polynomial  $f = x^7 + x^3 + 1 \in \mathbb{F}_2[x]$  and the two generating vectors  $g_1 = (x^4 + x^2 + 1, x^2 + x)$  (left) and  $g_2 = (x^3 + 1, x^2 + x)$  (right).

Also here the integration error can be represented in terms of the series coefficients, that is,

$$Q_{b^m}(f; P(\boldsymbol{g}, p)) - I(f) = \sum_{\boldsymbol{0} \neq \boldsymbol{k} \in \mathcal{D}(\boldsymbol{g}, p)} \hat{f}(\boldsymbol{k})$$

with dual net  $\mathcal{D}(\boldsymbol{g}, p) = \{ \boldsymbol{k} \in \mathbb{N}_0^s \mid \operatorname{tr}_m(\boldsymbol{k}) \cdot \boldsymbol{g} \equiv 0 \pmod{p} \}.$ 

• As for lattice rules, define the quantities

$$T(\boldsymbol{g},p) := \sum_{\boldsymbol{0} \neq \boldsymbol{k} \in A_p(\boldsymbol{g})} (r_{1,\gamma}(\boldsymbol{k}))^{-1}, \qquad T_{\alpha}(\boldsymbol{g},p) := \sum_{\boldsymbol{0} \neq \boldsymbol{k} \in A_p(\boldsymbol{g})} (r_{\alpha,\gamma}(\boldsymbol{k}))^{-1}$$

with index set given by  $A_p(\boldsymbol{g}) = \{ \boldsymbol{k} \in \{0, 1, \dots, b^m - 1\}^s \mid \boldsymbol{k} \in \mathcal{D}(\boldsymbol{g}, p) \}.$ 

• As for lattice rules, define the quantities

$$T(\boldsymbol{g},p) := \sum_{\boldsymbol{0} \neq \boldsymbol{k} \in A_p(\boldsymbol{g})} (r_{1,\gamma}(\boldsymbol{k}))^{-1}, \qquad T_{\alpha}(\boldsymbol{g},p) := \sum_{\boldsymbol{0} \neq \boldsymbol{k} \in A_p(\boldsymbol{g})} (r_{\alpha,\gamma}(\boldsymbol{k}))^{-1}$$

with index set given by  $A_p(\boldsymbol{g}) = \{ \boldsymbol{k} \in \{0, 1, \dots, b^m - 1\}^s \mid \boldsymbol{k} \in \mathcal{D}(\boldsymbol{g}, p) \}.$ 

• Relate the quality measure  $T(\boldsymbol{g}, p)$  to the worst-case error expression for polynomial lattice rules in the space  $W_{s,\gamma}^{\alpha}$ .

• As for lattice rules, define the quantities

$$T(\boldsymbol{g},p) := \sum_{\boldsymbol{0} \neq \boldsymbol{k} \in A_p(\boldsymbol{g})} (r_{1,\boldsymbol{\gamma}}(\boldsymbol{k}))^{-1}, \qquad T_{\alpha}(\boldsymbol{g},p) := \sum_{\boldsymbol{0} \neq \boldsymbol{k} \in A_p(\boldsymbol{g})} (r_{\alpha,\boldsymbol{\gamma}}(\boldsymbol{k}))^{-1}$$

with index set given by  $A_p(\boldsymbol{g}) = \{ \boldsymbol{k} \in \{0, 1, \dots, b^m - 1\}^s \mid \boldsymbol{k} \in \mathcal{D}(\boldsymbol{g}, p) \}.$ 

• Relate the quality measure  $T(\mathbf{g}, p)$  to the worst-case error expression for polynomial lattice rules in the space  $W_{s,\gamma}^{\alpha}$ .

• Introduce the digit-wise quality function and formulate a component-by-component digit-by-digit construction algorithm.

## Formulation of the CBC-DBD construction for PLRs

#### Definition (Digit-wise quality function)

Let  $q \in \mathbb{F}_b[x]$ ,  $m, s \in \mathbb{N}$ , and let  $\gamma = (\gamma_u)_{u \subseteq \{1:s\}}$  with  $\gamma_u = \prod_{j \in u} \gamma_j$  be product weights. For integers  $w \in \{1:m\}$ ,  $r \in \{1:s\}$ , and polynomials  $g_1, \ldots, g_{r-1} \in \mathbb{F}_b[x]$  with  $gcd(g_j, x) = 1$ , we define the quality function  $h_{r,w,m,\gamma} : \mathbb{F}_b[x] \to \mathbb{R}$  as

$$\begin{split} h_{r,w,m,\gamma}(q) \\ &:= \sum_{t=w}^{m} \frac{1}{b^{t-w}} \sum_{\substack{\ell=1\\ \ell \not\equiv 0 \pmod{b}}}^{b^{t-1}} \left( 1 + \gamma_{r}(1-b) \left( \left\lfloor \log_{b} \left( v_{w} \left( \frac{\ell(x) q(x)}{x^{w}} \right) \right) \right\rfloor + 1 \right) \right) \times \\ &\times \prod_{j=1}^{r-1} \left( 1 + \gamma_{j}(1-b) \left( \left\lfloor \log_{b} \left( v_{t} \left( \frac{\ell(x) g_{j}(x)}{x^{t}} \right) \right) \right\rfloor + 1 \right) \right). \end{split}$$

Based on  $h_{r,w,m,\gamma}$  the component-wise digit-by-digit (CBC-DBD) algorithm for polynomial lattice rules can be formulated as follows.

## Formulation of the CBC-DBD construction for PLRs

#### Algorithm 2 Component-wise digit-by-digit construction

**Input:** Integer  $n \in \mathbb{N}$ , dimension *s* and positive weights  $\gamma = (\gamma_{\mathfrak{u}})_{\mathfrak{u} \subseteq \{1:s\}}$ .

Set 
$$g_{1,m} = 1$$
 and  $g_{2,1} = \ldots = g_{s,1} = 1$ .  
for  $r = 2$  to  $s$  do  
for  $w = 2$  to  $m$  do  
 $g^* = \underset{g \in \mathbb{F}_b}{\operatorname{argmin}} h_{r,w,m,\gamma}(g_{r,w-1} + x^{w-1}g)$   
 $g_{r,w} = g_{r,w-1} + g^* x^{w-1}$   
end for  
end for

Set 
$$\boldsymbol{g} = (g_1, \ldots, g_s)$$
 with  $g_r := g_{r,m}$  for  $r = 1, \ldots, s$ .

**Return:** Generating vector  $\boldsymbol{g} = (g_1, \ldots, g_s) \in (\mathbb{F}_b[x])^s$  with deg $(g_j) < m$ .

• For ease of computations, we fix b = 2 in the numerical experiments.

### Error convergence behavior (main result)

#### Theorem (A.E., P.Kritzer, O.Osisiogu, T.Stepaniuk)

Let b be prime, let  $m, s \in \mathbb{N}$  with  $m \ge 4$ , let  $N = b^m$ , and let  $(\gamma_j)_{j\ge 1}$  be positive product weights satisfying

$$\sum_{j\geq 1}\gamma_j<\infty.$$

Also, denote by **g** the generating vector obtained by Algorithm 2, run for the weight sequence  $\gamma = (\gamma_j)_{j \ge 1}$ . Then, for any  $\delta > 0$  and each  $\alpha > 1$ , the generating vector **g** satisfies

$$e_{b^m,s,lpha,\gamma^lpha}(oldsymbol{g}) \leq rac{1}{\mathcal{N}^lpha} \left( \mathcal{C}(\gamma^lpha) + ar{\mathcal{C}}\left(\gamma,\delta
ight) \, \mathcal{N}^{lpha\delta} 
ight),$$

with positive constants  $C(\gamma^{\alpha})$  and  $\overline{C}(\gamma, \delta)$ , which are independent of the dimension s and the number of points N.

### Error convergence behavior (main result)

#### Theorem (A.E., P.Kritzer, O.Osisiogu, T.Stepaniuk)

Let b be prime, let  $m, s \in \mathbb{N}$  with  $m \ge 4$ , let  $N = b^m$ , and let  $(\gamma_j)_{j\ge 1}$  be positive product weights satisfying

$$\sum_{j\geq 1}\gamma_j<\infty.$$

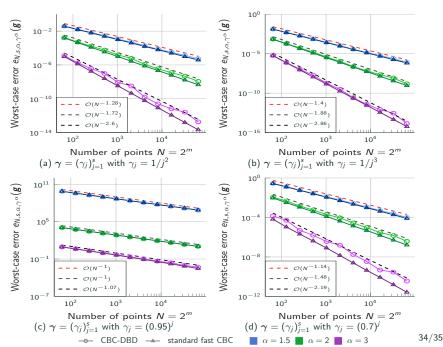
Also, denote by **g** the generating vector obtained by Algorithm 2, run for the weight sequence  $\gamma = (\gamma_j)_{j\geq 1}$ . Then, for any  $\delta > 0$  and each  $\alpha > 1$ , the generating vector **g** satisfies

$$e_{b^m,s,lpha,\gamma^lpha}(oldsymbol{g}) \leq rac{1}{\mathcal{N}^lpha} \left( \mathcal{C}(\gamma^lpha) + ar{\mathcal{C}}\left(\gamma,\delta
ight) \, \mathcal{N}^{lpha\delta} 
ight),$$

with positive constants  $C(\gamma^{\alpha})$  and  $\overline{C}(\gamma, \delta)$ , which are independent of the dimension s and the number of points N.

#### • Fast construction using only $\mathcal{O}(s \, m \, 2^m)$ operations available

Error convergence in the space  $W_{s,\gamma}^{\alpha}$  with  $\gamma_{\mathfrak{u}} = \prod_{j \in \mathfrak{u}} \gamma_j, s = 100, \alpha = 1.5, 2, 3.$ 



# Thank you for your attention!



- A. Ebert, P. Kritzer, D. Nuyens, O.Osisiogu. *Digit-by-digit and* component-by-component constructions of lattice rules for periodic functions with unknown smoothness. Available on arXiv
- A. Ebert, P. Kritzer, O.Osisiogu, T.Stepaniuk.
   Component-by-component digit-by-digit construction of good polynomial lattice rules in weighted Walsh spaces. Available on arXiv