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spherical harmonics

A polynomial P : Rd → C is harmonic if ∆P = 0, where ∆ is a
Laplacian.

The restriction of a harmonic homogeneous polynomial P of
degree k to Sd−1 is called a spherical harmonic of degree k.
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spherical harmonics

A polynomial P : Rd → C is harmonic if ∆P = 0, where ∆ is a
Laplacian.

The restriction of a harmonic homogeneous polynomial P of
degree k to Sd−1 is called a spherical harmonic of degree k.

The vector space of spherical harmonics of degree k,
Harmk(Sd−1), has dimension

hk =

(
d+ k− 2

k

)
+

(
d+ k− 3
k− 1

)
,

and a natural scalar product

⟨P,Q⟩ =
∫
Sd−1

P(x)Q(x)dµ(x),

where µ is the normalized Lebesgue measure of the sphere.
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defining a mapping to spherical harmonics

Let {e(k)1 , . . ., e(k)hk
} be an orthonormal basis of Harmk(Sd−1).

Define a map ϕk : Sd−1 → Chk by

ϕk(x) =
1√
hk

(e(k)1 (x), . . . , e(k)hk
(x)).
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defining a mapping to spherical harmonics

Let {e(k)1 , . . ., e(k)hk
} be an orthonormal basis of Harmk(Sd−1).

Define a map ϕk : Sd−1 → Chk by

ϕk(x) =
1√
hk

(e(k)1 (x), . . . , e(k)hk
(x)).

It appears ⟨ϕk(x), ϕk(y)⟩ = 1
hk

∑hk
i=1 e

(k)
i (x)e(k)i (y) depends only

on ⟨x, y⟩ and is the same for any choice of the orthonormal
basis {e(k)i }.

All scalar products ⟨ϕk(x), ϕk(y)⟩ are real and ⟨ϕk(x), ϕk(x)⟩ = 1
for all x ∈ Sd−1. Therefore, ϕk maps Sd−1 to Shk−1.
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zonal spherical functions

⟨ϕk(x), ϕk(y)⟩ = Gk(⟨x, y⟩),

where Gk are Gegenbauer polynomials, zonal spherical
functions associated with Harmk(Sd−1).

4



zonal spherical functions

⟨ϕk(x), ϕk(y)⟩ = Gk(⟨x, y⟩),

where Gk are Gegenbauer polynomials, zonal spherical
functions associated with Harmk(Sd−1).

G0(t) = 1
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Gk(t) = d+2k−4
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For d = 2, Gegenbauer polynomials are Chebyshev
polynomials of the first kind. The map ϕk corresponds to the
k-cover of the circle.
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zonal spherical functions

⟨ϕk(x), ϕk(y)⟩ = Gk(⟨x, y⟩),

where Gk are Gegenbauer polynomials, zonal spherical
functions associated with Harmk(Sd−1).

G0(t) = 1

G1(t) = t

Gk(t) = d+2k−4
d+k−3 tGk−1(t)− k−1

d+k−3Gk−2(t)

For d = 2, Gegenbauer polynomials are Chebyshev
polynomials of the first kind. The map ϕk corresponds to the
k-cover of the circle.

ϕk is similar to the tensor power map x → x⊗k.
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non-negative gegenbauer expansions

ϕk is a map from Sd−1 to Shk−1 such that for any x and y,

⟨ϕk(x), ϕk(y)⟩ = Gk(⟨x, y⟩).
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non-negative gegenbauer expansions

ϕk is a map from Sd−1 to Shk−1 such that for any x and y,

⟨ϕk(x), ϕk(y)⟩ = Gk(⟨x, y⟩).

For P(t) = α1Gi1(t) + . . .+ αlGil(t), where αi > 0 and
∑

αi = 1,
define

ϕP(x) =
√
α1ϕi1(x)⊕ . . .⊕√

αlϕil(x).

ϕP maps Sd−1 to SH−1, where H = hi1 + . . .+ hil , and for any x
and y,

⟨ϕP(x), ϕP(y)⟩ = P(⟨x, y⟩).
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sphere packing problems

Problem
Given θ, find the maximal number of points in Sd−1 such that
all pairwise geodesic distances are at least θ.
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sphere packing problems

Problem
Given θ, find the maximal number of points in Sd−1 such that
all pairwise geodesic distances are at least θ.

When θ = π/3, the problem is known as a kissing number
problem: what is the maximal number τd of non-overlapping
unit balls touching a given unit ball in dimension d?

The kissing number is known in dimensions 2, 3, 4, 8, 24:
τ2 = 6, τ3 = 12 [Schütte and van der Waerden, 1953], τ4 = 24
[Musin, 2003], τ8 = 240 and τ24 = 196560 [Odlyzko and Sloane,
Levenshtein, 1979].
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sphere packing problems

Problem
Given θ, find the maximal number of points in Sd−1 such that
all pairwise geodesic distances are at least θ.

When θ = π/3, the problem is known as a kissing number
problem: what is the maximal number τd of non-overlapping
unit balls touching a given unit ball in dimension d?

The kissing number is known in dimensions 2, 3, 4, 8, 24:
τ2 = 6, τ3 = 12 [Schütte and van der Waerden, 1953], τ4 = 24
[Musin, 2003], τ8 = 240 and τ24 = 196560 [Odlyzko and Sloane,
Levenshtein, 1979].

Asymptotic bound τd ≤ 20.401n(1+o(1)) [Kabatiansky and
Levenshtein, 1978].
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restricted distances

For a set I ⊂ [−1, 1], denote by Md(I) the maximum size of a set
in Sd−1 with all pairwise scalar products in I.

Theorem
Let P(t) = α1Gi1(t) + . . .+ αlGil(t), where αi > 0 and

∑
αi = 1,

and H = hi1 + . . .+ hil . Then Md(I) ≤ MH(P(I)).
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delsarte’s method

Lemma
For c > 0, Md([−1,−c]) ≤ 1/c+ 1.

Proof.
The sum of elements in a Gram matrix is at least 0.

Theorem (Delsarte’s method)
Let P(t) be a non-negative linear combination of Gegenbauer
polynomials, P(1) = 1, and P(I) ⊆ [−1,−c] for c > 0. Then
Md(I) ≤ 1/c+ 1.
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delsarte’s method

Lemma
For c > 0, Md([−1,−c]) ≤ 1/c+ 1.

Proof.
The sum of elements in a Gram matrix is at least 0.

Theorem (Delsarte’s method)
Let P(t) be a non-negative linear combination of Gegenbauer
polynomials, P(1) = 1, and P(I) ⊆ [−1,−c] for c > 0. Then
Md(I) ≤ 1/c+ 1.

τ8 ≤ 240, τ24 ≤ 196560, the asymptotic bound of Kabatiansky
and Levenshtein are proven by using Delsarte’s method with
the right choice of P.
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d+ 2 points

Theorem (Davenport and Hajós, 1951)
Md([−1, 0)) = d+ 1.

Equivalently, among d+ 2 unit vectors there are always two
with a non-obtuse angle between them.

Theorem (Radon)
Any d+ 2 points in Rd can be split into two sets whose convex
hulls intersect.

Proof of the Davenport-Hajós bound.
Let v be a common point of two convex hulls from the Radon
theorem. If all scalar products of unit vectors are negative then
writing v as a positive combination of both sets, v · v < 0.
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orthoplex bound

Theorem
Let P(t) = α1Gi1(t) + . . .+ αlGil(t), where αi > 0 and

∑
αi = 1,

and H = hi1 + . . .+ hil . If P(I) ⊆ [−1, 0) then Md(I) ≤ H+ 1.

Theorem (Orthoplex bound, Conway, Hardin, and Sloane, 1996)
Md((− 1√

d
, 1√

d
)) ≤

(d+1
2
)
.

Proof.
Let P(t) = G2(t) = dt2−1

d−1 . Then H = h2 =
(d+1

2
)
− 1. The bound

follows from the theorem above.
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orthoplex bound

Theorem
Let P(t) = α1Gi1(t) + . . .+ αlGil(t), where αi > 0 and

∑
αi = 1,

and H = hi1 + . . .+ hil . If P(I) ⊆ [−1, 0) then Md(I) ≤ H+ 1.

Theorem (Orthoplex bound, Conway, Hardin, and Sloane, 1996)
Md((− 1√

d
, 1√

d
)) ≤

(d+1
2
)
.

Proof.
Let P(t) = G2(t) = dt2−1

d−1 . Then H = h2 =
(d+1

2
)
− 1. The bound

follows from the theorem above.

The bound is sharp in a sense that for several configurations
with more than

(d+1
2
)
points, scalar products are in [− 1√

d
, 1√

d
].
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two new bounds

Theorem (G., 2020)
Md([−1, 1

d)) ≤
d(d+3)

2 .

Proof.
Take P(t) = 1

2G1(t) + 1
2G2(t) = const · (t+ 1)(dt− 1) and perturb

it. Then H = h1 + h2 and Md([−1, 1
d)) ≤ H+ 1 = d(d+3)

2 .

Theorem (G., 2020)
Md([−1, 1√

d
)) ≤ d(d+1)(d+5)

6 .

Proof.
Take P(t) = 2

√
d

(d+2)(
√
d+1)

G1(t) + 1√
d+1

G2(t) + d
√
d

(d+2)(
√
d+1)

G3(t) =
const · (t+ 1√

d
)2(t− 1√

d
) and perturb it. Then H = h1 + h2 + h3.

Therefore, Md([−1, 1√
d
)) ≤ H+ 1 = d(d+1)(d+5)

6 .
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minimizing energy

Problem
For a given potential F and size N, find the minimum energy
E(d,N, F) = minX EF(X) for EF(X) =

∑
x,y∈X

F(⟨x, y⟩), over all sets of

points X ⊂ Sd−1, |X| = N.

Theorem
Let P(t) = α1Gi1(t) + . . .+ αlGil(t), where αi > 0 and

∑
αi = 1,

and H = hi1 + . . .+ hil . For a continuous potential F and for any
N > 0, E(d,N, F(P)) ≥ E(H,N, F).

Proof.
Let X be the minimizing set for E(d,N, F(P)). Then
E(H,N, F) ≤ EF(ϕP(X)) = E(d,N, F(P)).
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repeated orthonormal bases and the p-frame energy

Theorem (G.-Park, 2020)
For p ∈ [1, 2 log 2m+1

2m / log m+1
m ], F(t) = |t|p, and 1 ≤ m ≤ d,

E(d,d+m, F) = 2m.

Conjecture (Park, 2019)
Repeated orthonormal bases with N vectors are energy
minimizers for F(t) = |t|p, p ∈ [1,p(N)], for any N ≥ d and
p(N) → 2 when N → ∞.
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repeated minimizers

Theorem (G., 2020)
For p ∈ [1, 2 log 2m+1

2m / log m+1
m ], F(t) = |t+ 1

d |
p, and

1 ≤ m ≤ d+ 1, E(d,d+ 1+m, F) = 2mF(1). Minimizers are
repeated regular simplices.

Proof.
Take P(t) = dt+1

d+1 . Use ϕP and repeated orthonormal bases.

Theorem (G., 2020)
For p ∈ [1, 2 log 2m+1

2m / log m+1
m ], F(t) = |t2 − α2|p, α2 < 1

d , and
1 ≤ m ≤

(d+1
2
)
, E(d,

(d+1
2
)
+m, F) ≥ 2mF(1). The bound is sharp

for repeated equiangular sets of size
(d+1

2
)
.

Proof.
Take P(t) = t2−α2

1−α2 . Use ϕP and repeated orthonormal bases.
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constructing new configurations

[Bondarenko, 2008] The image of the set of 120 non-opposite
minimal vectors of E8 under ϕ2 is the set of 120 vectors in S34

with scalar products ± 1
7 .

Question
How can we get nice configurations via mapping to the space
of spherical harmonics?
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[Miezaki, 2019 and 2020] Images of sharp configurations under
ϕ2 are nice sets.

Question
How can we get nice configurations via mapping to the space
of spherical harmonics?
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spherical designs

For a positive integer t, a finite set X ⊂ Sd−1 is called a
spherical t-design if

∫
Sd−1

f(x)dµ(x) = 1
|X|

∑
v∈X

f(v)

holds for all polynomials f of degree ≤ t.
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spherical designs

For a positive integer t, a finite set X ⊂ Sd−1 is called a
spherical t-design if

∫
Sd−1

f(x)dµ(x) = 1
|X|

∑
v∈X

f(v)

holds for all polynomials f of degree ≤ t.

A finite set X ⊂ Sd−1 is called a (unit norm) tight frame if the
above condition holds for all homogeneous polynomials of
degree 2.

Tight frames ↔ Antipodal 3-designs ↔ Projective 1-designs
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tight frames in the space of spherical harmonics

Theorem (G., 2020)
If X is a 2k-design in Sd−1 then ϕl(X) is a tight frame in Shl−1 for
all l ≤ k.

Lemma (Sidel’nikov; Venkov; Benedetto and Fickus)
X is a tight frame in Sd−1 if and only if 1

|X|2
∑

x,y∈X⟨x, y⟩2 = 1
d .

Proof of the theorem.

1
|X|2

∑
x,y∈X

Gl(⟨x, y⟩)2 =
∫

Sd−1

∫
Sd−1

Gl(⟨x, y⟩)2dµ(x)dµ(y) =
1
hl
.
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tight frames in the space of spherical harmonics

Let X be a 2k-design in Sd−1. Let P(t) = α1Gi1(t) + . . .+ αlGil(t),
where αi > 0,

∑
αi = 1, {i1, . . . , il} ⊆ {1, . . . , k} and

H = hi1 + . . .+ hil . Then

1
|X|2

∑
x,y∈X

P(⟨x, y⟩)2 =
∫

Sd−1

∫
Sd−1

P(⟨x, y⟩)2dµ(x)dµ(y) =

=
α2
1

hi1
+ . . .+

α2
l

hil
≥ (α1 + . . .+ αl)

2

hi1 + . . .+ hil
=

1
H

and the equality holds when αj =
hij
H .

Theorem (G., 2020)
If X is a 2k-design in Sd−1 and {i1, . . . , il} is a subset of
{1, . . . , k} then ϕP(X) is a tight frame in SH−1, where
H = hi1 + . . .+ hil and P(t) = hi1

H Gi1(t) + . . .
hil
H Gil(t).

18



tight frames in the space of spherical harmonics

Let X be a 2k-design in Sd−1. Let P(t) = α1Gi1(t) + . . .+ αlGil(t),
where αi > 0,

∑
αi = 1, {i1, . . . , il} ⊆ {1, . . . , k} and

H = hi1 + . . .+ hil . Then

1
|X|2

∑
x,y∈X

P(⟨x, y⟩)2 =
∫

Sd−1

∫
Sd−1

P(⟨x, y⟩)2dµ(x)dµ(y) =

=
α2
1

hi1
+ . . .+

α2
l

hil
≥ (α1 + . . .+ αl)

2

hi1 + . . .+ hil
=

1
H

and the equality holds when αj =
hij
H .

Theorem (G., 2020)
If X is a 2k-design in Sd−1 and {i1, . . . , il} is a subset of
{1, . . . , k} then ϕP(X) is a tight frame in SH−1, where
H = hi1 + . . .+ hil and P(t) = hi1

H Gi1(t) + . . .
hil
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kissing number problem in dimension 3

Theorem
τ3 ≤ 12.

Lemma
If X is a set of points in S2 with all pairwise scalar products ≤ 1

2
then for any x ∈ X,

∑
y∈X P(⟨x, y⟩) ≤ 1.23.

Proof of the theorem.
For |X| = N,

∑
x,y∈X P(⟨x, y⟩) ≤ 1.23N and ≥ 0.09465869N2 so

N ≤ 1.23/0.09465869 ≈ 12.99405263
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kissing number problem in dimension 3

Theorem
τ3 ≤ 12.

Let P(t) = 0.09465869+ 0.17273741 G1(t) + 0.33128438G2(t) +
0.17275228G3(t) + 0.18905584G4(t) + 0.00334265G5(t) +
0.03616728G9(t).
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proof of the lemma

Lemma
If X is a set of points in S2 with all pairwise scalar products ≤ 1

2
then for any x ∈ X,

∑
y∈X P(⟨x, y⟩) ≤ 1.23.
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proof of the lemma

Lemma
If X is a set of points in S2 with all pairwise scalar products ≤ 1

2
then for any x ∈ X,

∑
y∈X P(⟨x, y⟩) ≤ 1.23.

P(t) is negative on [−1/
√
2, 1/2]. A positive contribution to the

sum can be made only by points in the open spherical cap C
with the center −x and the angular radius π/4. No more than 3
points with pairwise angular distances at least π/3 can fit in C.
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proof of the lemma

Lemma
If X is a set of points in S2 with all pairwise scalar products ≤ 1

2
then for any x ∈ X,

∑
y∈X P(⟨x, y⟩) ≤ 1.23.

P(t) is negative on [−1/
√
2, 1/2]. A positive contribution to the

sum can be made only by points in the open spherical cap C
with the center −x and the angular radius π/4. No more than 3
points with pairwise angular distances at least π/3 can fit in C.

Case 1. There is one point in C. Then∑
y∈X

P(⟨x, y⟩) ≤ P(1) + max
t∈[−1,−1/

√
2]
P(t) ≤ 1.23.
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proof of the lemma

Case 2. There are two points y, z in C. To maximize the sum of
values of P, −x should lie on the geodesic between y and z and
the angular distance between y and z should be π/3. Denoting
⟨x, y⟩ = t, we find ⟨x, z⟩ = α(t) = 1

2 t−
√
3
2
√
1− t2 and

t ∈ I = [− cosπ/12,−1/
√
2]. Then

∑
y∈X

P(⟨x, y⟩) ≤ P(1) + max
t∈I

(P(t) + P(α(t))) ≤ 1.23.
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proof of the lemma

Case 3. There are three points y, z,w in C. To maximize the sum
of values of P, the points y, z,w should form a regular triangle
with the sides of length π/3. Rotating the triangle with respect
to the point furthest from x, we can increase the sum. The
rotation stops either when one of the points reaches the
boundary of C, or there are two points that are in the same
distance from x. In the former case, we are left with two points
in C. In the latter case, if ⟨x, y⟩ = ⟨x, z⟩ = t then
⟨x,w⟩ = β(t) = 2

3 t−
2
3

√
3
2 − 2t2 and t ∈ J = [−

√
2
4 − 1

2 ,−
√

2
3 ].

Then

∑
y∈X

P(⟨x, y⟩) ≤ P(1) + max
t∈J

(2P(t) + P(β(t))) ≤ 1.23.
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THANK YOU!
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