MAPPING TO THE SPACE OF SPHERICAL HARMONICS

Alexey Glazyrin
The University of Texas Rio Grande Valley
November 11, 2020
Point Distributions Webinar

1. Mapping to spherical harmonics
2. Packing problems
3. Energy bounds
4. Constructing new configurations
5. Kissing number problem in dimension 3

SPHERICAL HARMONICS

A polynomial $P: \mathbb{R}^{d} \rightarrow \mathbb{C}$ is harmonic if $\Delta P=0$, where Δ is a Laplacian.

The restriction of a harmonic homogeneous polynomial P of degree k to \mathbb{S}^{d-1} is called a spherical harmonic of degree k.

SPHERICAL HARMONICS

A polynomial $P: \mathbb{R}^{d} \rightarrow \mathbb{C}$ is harmonic if $\Delta P=0$, where Δ is a Laplacian.

The restriction of a harmonic homogeneous polynomial P of degree k to \mathbb{S}^{d-1} is called a spherical harmonic of degree k.

The vector space of spherical harmonics of degree k, $\operatorname{Harm}_{k}\left(\mathbb{S}^{d-1}\right)$, has dimension

$$
h_{k}=\binom{d+k-2}{k}+\binom{d+k-3}{k-1}
$$

and a natural scalar product

$$
\langle\mathrm{P}, \mathrm{Q}\rangle=\int_{\mathbb{S}^{d}-1} \mathrm{P}(\mathrm{x}) \overline{\mathrm{Q}(\mathrm{x})} \mathrm{d} \mu(\mathrm{x})
$$

where μ is the normalized Lebesgue measure of the sphere.

DEFINING A MAPPING TO SPHERICAL HARMONICS

Let $\left\{e_{1}^{(k)}, \ldots, e_{h_{k}}^{(k)}\right\}$ be an orthonormal basis of $\operatorname{Harm}_{k}\left(\mathbb{S}^{d-1}\right)$.
Define a map $\phi_{\mathrm{k}}: \mathbb{S}^{\mathrm{d}-1} \rightarrow \mathbb{C}^{\mathrm{h}_{\mathrm{k}}}$ by

$$
\phi_{k}(x)=\frac{1}{\sqrt{h_{k}}}\left(e_{1}^{(k)}(x), \ldots, e_{h_{k}}^{(k)}(x)\right) .
$$

DEFINING A MAPPING TO SPHERICAL HARMONICS

Let $\left\{e_{1}^{(k)}, \ldots, e_{h_{k}}^{(k)}\right\}$ be an orthonormal basis of $\operatorname{Harm}_{k}\left(\mathbb{S}^{d-1}\right)$. Define a map $\phi_{\mathrm{k}}: \mathbb{S}^{\mathrm{d}-1} \rightarrow \mathbb{C}^{\mathrm{h}_{\mathrm{k}}}$ by

$$
\phi_{k}(x)=\frac{1}{\sqrt{h_{k}}}\left(e_{1}^{(k)}(x), \ldots, e_{h_{k}}^{(k)}(x)\right)
$$

It appears $\left\langle\phi_{k}(x), \phi_{k}(y)\right\rangle=\frac{1}{h_{k}} \sum_{i=1}^{h_{k}} e_{i}^{(k)}(x) \overline{e_{i}^{(k)}(y)}$ depends only on $\langle x, y\rangle$ and is the same for any choice of the orthonormal basis $\left\{e_{i}^{(k)}\right\}$.

All scalar products $\left\langle\phi_{\mathrm{k}}(\mathrm{x}), \phi_{\mathrm{k}}(\mathrm{y})\right\rangle$ are real and $\left\langle\phi_{\mathrm{k}}(\mathrm{x}), \phi_{\mathrm{k}}(\mathrm{x})\right\rangle=1$ for all $x \in \mathbb{S}^{d-1}$. Therefore, ϕ_{k} maps \mathbb{S}^{d-1} to $\mathbb{S}^{h_{k}-1}$.

ZONAL SPHERICAL FUNCTIONS

$$
\left\langle\phi_{\mathrm{k}}(\mathrm{x}), \phi_{\mathrm{k}}(\mathrm{y})\right\rangle=\mathrm{G}_{\mathrm{k}}(\langle\mathrm{x}, \mathrm{y}\rangle)
$$

where G_{k} are Gegenbauer polynomials, zonal spherical functions associated with $\operatorname{Harm}_{k}\left(\mathbb{S}^{d-1}\right)$.

ZONAL SPHERICAL FUNCTIONS

$$
\left\langle\phi_{\mathrm{k}}(\mathrm{x}), \phi_{\mathrm{k}}(\mathrm{y})\right\rangle=\mathrm{G}_{\mathrm{k}}(\langle\mathrm{x}, \mathrm{y}\rangle)
$$

where G_{k} are Gegenbauer polynomials, zonal spherical functions associated with $\operatorname{Harm}_{k}\left(\mathbb{S}^{d-1}\right)$.
$\mathrm{G}_{0}(\mathrm{t})=1$
$\mathrm{G}_{1}(\mathrm{t})=\mathrm{t}$
$G_{k}(t)=\frac{d+2 k-4}{d+k-3} t G_{k-1}(t)-\frac{k-1}{d+k-3} G_{k-2}(t)$

ZONAL SPHERICAL FUNCTIONS

$$
\left\langle\phi_{\mathrm{k}}(\mathrm{x}), \phi_{\mathrm{k}}(\mathrm{y})\right\rangle=\mathrm{G}_{\mathrm{k}}(\langle\mathrm{x}, \mathrm{y}\rangle),
$$

where G_{k} are Gegenbauer polynomials, zonal spherical functions associated with $\operatorname{Harm}_{k}\left(\mathbb{S}^{d-1}\right)$.
$G_{0}(\mathrm{t})=1$
$\mathrm{G}_{1}(\mathrm{t})=\mathrm{t}$
$G_{k}(\mathrm{t})=\frac{\mathrm{d}+2 \mathrm{k}-4}{\mathrm{~d}+\mathrm{k}-3} \mathrm{t} \mathrm{G}_{\mathrm{k}-1}(\mathrm{t})-\frac{\mathrm{k}-1}{\mathrm{~d}+\mathrm{k}-3} \mathrm{G}_{\mathrm{k}-2}(\mathrm{t})$
For $d=2$, Gegenbauer polynomials are Chebyshev polynomials of the first kind. The map ϕ_{k} corresponds to the k-cover of the circle.

ZONAL SPHERICAL FUNCTIONS

$$
\left\langle\phi_{\mathrm{k}}(\mathrm{x}), \phi_{\mathrm{k}}(\mathrm{y})\right\rangle=\mathrm{G}_{\mathrm{k}}(\langle\mathrm{x}, \mathrm{y}\rangle)
$$

where G_{k} are Gegenbauer polynomials, zonal spherical functions associated with $\operatorname{Harm}_{k}\left(\mathbb{S}^{d-1}\right)$.
$\mathrm{G}_{0}(\mathrm{t})=1$
$\mathrm{G}_{1}(\mathrm{t})=\mathrm{t}$
$G_{k}(\mathrm{t})=\frac{\mathrm{d}+2 \mathrm{k}-4}{\mathrm{~d}+\mathrm{k}-3} \mathrm{t} \mathrm{G}_{\mathrm{k}-1}(\mathrm{t})-\frac{\mathrm{k}-1}{\mathrm{~d}+\mathrm{k}-3} \mathrm{G}_{\mathrm{k}-2}(\mathrm{t})$
For $d=2$, Gegenbauer polynomials are Chebyshev polynomials of the first kind. The map ϕ_{k} corresponds to the k-cover of the circle.
ϕ_{k} is similar to the tensor power map $\mathrm{x} \rightarrow \mathrm{x}^{\otimes \mathrm{k}}$.

NON-NEGATIVE GEGENBAUER EXPANSIONS

ϕ_{k} is a map from \mathbb{S}^{d-1} to $\mathbb{S}^{h_{k}-1}$ such that for any x and y ,

$$
\left\langle\phi_{\mathrm{k}}(\mathrm{x}), \phi_{\mathrm{k}}(\mathrm{y})\right\rangle=\mathrm{G}_{\mathrm{k}}(\langle\mathrm{x}, \mathrm{y}\rangle)
$$

NON-NEGATIVE GEGENBAUER EXPANSIONS

ϕ_{k} is a map from \mathbb{S}^{d-1} to $\mathbb{S}^{h_{k}-1}$ such that for any x and y ,

$$
\left\langle\phi_{\mathrm{k}}(\mathrm{x}), \phi_{\mathrm{k}}(\mathrm{y})\right\rangle=\mathrm{G}_{\mathrm{k}}(\langle\mathrm{x}, \mathrm{y}\rangle) .
$$

For $\mathrm{P}(\mathrm{t})=\alpha_{1} \mathrm{G}_{\mathrm{i}_{1}}(\mathrm{t})+\ldots+\alpha_{l} \mathrm{G}_{\mathrm{i}_{l}}(\mathrm{t})$, where $\alpha_{\mathrm{i}}>0$ and $\sum \alpha_{\mathrm{i}}=1$, define

$$
\phi_{\mathrm{P}}(\mathrm{x})=\sqrt{\alpha_{1}} \phi_{\mathrm{i}_{1}}(\mathrm{x}) \oplus \ldots \oplus \sqrt{\alpha_{l}} \phi_{\mathrm{i}_{l}}(\mathrm{x}) .
$$

ϕ_{P} maps $\mathbb{S}^{\mathrm{d}-1}$ to \mathbb{S}^{H-1}, where $H=h_{\mathrm{i}_{1}}+\ldots+h_{\mathrm{i}_{1}}$, and for any x and y,

$$
\left\langle\phi_{\mathrm{P}}(\mathrm{x}), \phi_{\mathrm{P}}(\mathrm{y})\right\rangle=\mathrm{P}(\langle\mathrm{x}, \mathrm{y}\rangle) .
$$

SPHERE PACKING PROBLEMS

Problem

Given θ, find the maximal number of points in \mathbb{S}^{d-1} such that all pairwise geodesic distances are at least θ.

SPHERE PACKING PROBLEMS

Problem

Given θ, find the maximal number of points in \mathbb{S}^{d-1} such that all pairwise geodesic distances are at least θ.

When $\theta=\pi / 3$, the problem is known as a kissing number problem: what is the maximal number τ_{d} of non-overlapping unit balls touching a given unit ball in dimension d?

The kissing number is known in dimensions $2,3,4,8,24$:
$\tau_{2}=6, \tau_{3}=12$ [Schütte and van der Waerden, 1953], $\tau_{4}=24$
[Musin, 2003], $\tau_{8}=240$ and $\tau_{24}=196560$ [Odlyzko and Sloane, Levenshtein, 1979].

SPHERE PACKING PROBLEMS

Problem

Given θ, find the maximal number of points in \mathbb{S}^{d-1} such that all pairwise geodesic distances are at least θ.

When $\theta=\pi / 3$, the problem is known as a kissing number problem: what is the maximal number τ_{d} of non-overlapping unit balls touching a given unit ball in dimension d?

The kissing number is known in dimensions $2,3,4,8,24$:
$\tau_{2}=6, \tau_{3}=12$ [Schütte and van der Waerden, 1953], $\tau_{4}=24$
[Musin, 2003], $\tau_{8}=240$ and $\tau_{24}=196560$ [Odlyzko and Sloane, Levenshtein, 1979].

Asymptotic bound $\tau_{\mathrm{d}} \leq 2^{0.401 \mathrm{n}(1+\mathrm{o}(1))}$ [Kabatiansky and Levenshtein, 1978].

RESTRICTED DISTANCES

For a set $I \subset[-1,1]$, denote by $M_{d}(I)$ the maximum size of a set in \mathbb{S}^{d-1} with all pairwise scalar products in I.

RESTRICTED DISTANCES

For a set $\mathrm{I} \subset[-1,1]$, denote by $\mathrm{M}_{\mathrm{d}}(\mathrm{I})$ the maximum size of a set in \mathbb{S}^{d-1} with all pairwise scalar products in I.

The general sphere packing question asks for $M_{d}([-1, \cos \theta])$. In particular, $\tau_{d}=M_{d}([-1,1 / 2])$.

RESTRICTED DISTANCES

For a set $I \subset[-1,1]$, denote by $M_{d}(I)$ the maximum size of a set in \mathbb{S}^{d-1} with all pairwise scalar products in I.

The general sphere packing question asks for $M_{d}([-1, \cos \theta])$. In particular, $\tau_{d}=M_{d}([-1,1 / 2])$.

Theorem
Let $\mathrm{P}(\mathrm{t})=\alpha_{1} \mathrm{G}_{\mathrm{i}_{1}}(\mathrm{t})+\ldots+\alpha_{l} \mathrm{G}_{\mathrm{i}_{l}}(\mathrm{t})$, where $\alpha_{\mathrm{i}}>0$ and $\sum \alpha_{\mathrm{i}}=1$, and $H=h_{i_{1}}+\ldots+h_{i_{1}}$. Then $M_{d}(I) \leq M_{H}(P(I))$.

DELSARTE'S METHOD

Lemma

For $c>0, M_{d}([-1,-c]) \leq 1 / c+1$.

Proof.

The sum of elements in a Gram matrix is at least 0 .

DELSARTE'S METHOD

Lemma

For $c>0, M_{d}([-1,-c]) \leq 1 / c+1$.

Proof.

The sum of elements in a Gram matrix is at least 0 .
Theorem (Delsarte's method)
Let $\mathrm{P}(\mathrm{t})$ be a non-negative linear combination of Gegenbauer polynomials, $P(1)=1$, and $P(I) \subseteq[-1,-c]$ for $c>0$. Then $M_{d}(I) \leq 1 / c+1$.

DELSARTE'S METHOD

Lemma

For $c>0, M_{d}([-1,-c]) \leq 1 / c+1$.

Proof.

The sum of elements in a Gram matrix is at least 0 .
Theorem (Delsarte's method)
Let $\mathrm{P}(\mathrm{t})$ be a non-negative linear combination of Gegenbauer polynomials, $P(1)=1$, and $P(I) \subseteq[-1,-c]$ for $c>0$. Then $M_{d}(I) \leq 1 / c+1$.
$\tau_{8} \leq 240, \tau_{24} \leq 196560$, the asymptotic bound of Kabatiansky and Levenshtein are proven by using Delsarte's method with the right choice of P.

Theorem (Davenport and Hajós, 1951)

$M_{d}([-1,0))=d+1$.
Equivalently, among $d+2$ unit vectors there are always two with a non-obtuse angle between them.

Theorem (Davenport and Hajós, 1951)
$M_{d}([-1,0))=d+1$.
Equivalently, among $d+2$ unit vectors there are always two with a non-obtuse angle between them.

Theorem (Radon)

Any $d+2$ points in \mathbb{R}^{d} can be split into two sets whose convex hulls intersect.

Theorem (Davenport and Hajós, 1951)
$M_{d}([-1,0))=d+1$.
Equivalently, among $d+2$ unit vectors there are always two with a non-obtuse angle between them.

Theorem (Radon)

Any $d+2$ points in \mathbb{R}^{d} can be split into two sets whose convex hulls intersect.

Proof of the Davenport-Hajós bound.
Let v be a common point of two convex hulls from the Radon theorem. If all scalar products of unit vectors are negative then writing v as a positive combination of both sets, $v \cdot v<0$.

ORTHOPLEX BOUND

Theorem

Let $\mathrm{P}(\mathrm{t})=\alpha_{1} \mathrm{G}_{\mathrm{i}_{1}}(\mathrm{t})+\ldots+\alpha_{l} \mathrm{G}_{\mathrm{i}_{l}}(\mathrm{t})$, where $\alpha_{\mathrm{i}}>0$ and $\sum \alpha_{\mathrm{i}}=1$, and $H=h_{i_{1}}+\ldots+h_{i_{1}}$. If $P(I) \subseteq[-1,0)$ then $M_{d}(I) \leq H+1$.

ORTHOPLEX BOUND

Theorem

Let $\mathrm{P}(\mathrm{t})=\alpha_{1} \mathrm{G}_{\mathrm{i}_{1}}(\mathrm{t})+\ldots+\alpha_{l} \mathrm{G}_{\mathrm{i}_{l}}(\mathrm{t})$, where $\alpha_{\mathrm{i}}>0$ and $\sum \alpha_{\mathrm{i}}=1$, and $H=h_{i_{1}}+\ldots+h_{i_{1}}$. If $P(I) \subseteq[-1,0)$ then $M_{d}(I) \leq H+1$.

Theorem (Orthoplex bound, Conway, Hardin, and Sloane, 1996)
$M_{d}\left(\left(-\frac{1}{\sqrt{d}}, \frac{1}{\sqrt{d}}\right)\right) \leq\binom{ d+1}{2}$.

ORTHOPLEX BOUND

Theorem

Let $\mathrm{P}(\mathrm{t})=\alpha_{1} \mathrm{G}_{\mathrm{i}_{1}}(\mathrm{t})+\ldots+\alpha_{l} \mathrm{G}_{\mathrm{i}_{l}}(\mathrm{t})$, where $\alpha_{\mathrm{i}}>0$ and $\sum \alpha_{\mathrm{i}}=1$, and $H=h_{i_{1}}+\ldots+h_{i_{1}}$. If $P(I) \subseteq[-1,0)$ then $M_{d}(I) \leq H+1$.

Theorem (Orthoplex bound, Conway, Hardin, and Sloane, 1996)
$M_{d}\left(\left(-\frac{1}{\sqrt{d}}, \frac{1}{\sqrt{d}}\right)\right) \leq\binom{ d+1}{2}$.

Proof.

Let $\mathrm{P}(\mathrm{t})=\mathrm{G}_{2}(\mathrm{t})=\frac{\mathrm{dt}^{2}-1}{\mathrm{~d}-1}$. Then $\mathrm{H}=\mathrm{h}_{2}=\binom{\mathrm{d}+1}{2}-1$. The bound follows from the theorem above.

ORTHOPLEX BOUND

Theorem

Let $\mathrm{P}(\mathrm{t})=\alpha_{1} \mathrm{G}_{\mathrm{i}_{1}}(\mathrm{t})+\ldots+\alpha_{l} \mathrm{G}_{\mathrm{i}_{l}}(\mathrm{t})$, where $\alpha_{\mathrm{i}}>0$ and $\sum \alpha_{\mathrm{i}}=1$, and $H=h_{i_{1}}+\ldots+h_{i_{1}}$. If $P(I) \subseteq[-1,0)$ then $M_{d}(I) \leq H+1$.

Theorem (Orthoplex bound, Conway, Hardin, and Sloane, 1996)
$M_{d}\left(\left(-\frac{1}{\sqrt{d}}, \frac{1}{\sqrt{d}}\right)\right) \leq\binom{ d+1}{2}$.

Proof.

Let $\mathrm{P}(\mathrm{t})=\mathrm{G}_{2}(\mathrm{t})=\frac{\mathrm{dt}^{2}-1}{\mathrm{~d}-1}$. Then $\mathrm{H}=\mathrm{h}_{2}=\binom{\mathrm{d}+1}{2}-1$. The bound follows from the theorem above.

The bound is sharp in a sense that for several configurations with more than $\binom{d+1}{2}$ points, scalar products are in $\left[-\frac{1}{\sqrt{d}}, \frac{1}{\sqrt{d}}\right]$.

TWO NEW BOUNDS

Theorem (G., 2020)
$M_{d}\left(\left[-1, \frac{1}{d}\right)\right) \leq \frac{d(d+3)}{2}$.

TWO NEW BOUNDS

Theorem (G., 2020)
$M_{d}\left(\left[-1, \frac{1}{d}\right)\right) \leq \frac{d(d+3)}{2}$.
Proof.
Take $\mathrm{P}(\mathrm{t})=\frac{1}{2} \mathrm{G}_{1}(\mathrm{t})+\frac{1}{2} \mathrm{G}_{2}(\mathrm{t})=$ const $\cdot(\mathrm{t}+1)(\mathrm{dt}-1)$ and perturb it. Then $H=h_{1}+h_{2}$ and $M_{d}\left(\left[-1, \frac{1}{d}\right)\right) \leq H+1=\frac{d(d+3)}{2}$.

TWO NEW BOUNDS

Theorem (G., 2020)
$M_{d}\left(\left[-1, \frac{1}{d}\right)\right) \leq \frac{d(d+3)}{2}$.
Proof.
Take $\mathrm{P}(\mathrm{t})=\frac{1}{2} \mathrm{G}_{1}(\mathrm{t})+\frac{1}{2} \mathrm{G}_{2}(\mathrm{t})=$ const $\cdot(\mathrm{t}+1)(\mathrm{dt}-1)$ and perturb it. Then $H=h_{1}+h_{2}$ and $M_{d}\left(\left[-1, \frac{1}{d}\right)\right) \leq H+1=\frac{d(d+3)}{2}$.

Theorem (G., 2020)
$M_{d}\left(\left[-1, \frac{1}{\sqrt{d}}\right)\right) \leq \frac{d(d+1)(d+5)}{6}$.

TWO NEW BOUNDS

Theorem (G., 2020)
$M_{d}\left(\left[-1, \frac{1}{d}\right)\right) \leq \frac{d(d+3)}{2}$.

Proof.

Take $\mathrm{P}(\mathrm{t})=\frac{1}{2} \mathrm{G}_{1}(\mathrm{t})+\frac{1}{2} \mathrm{G}_{2}(\mathrm{t})=$ const $\cdot(\mathrm{t}+1)(\mathrm{dt}-1)$ and perturb it. Then $H=h_{1}+h_{2}$ and $M_{d}\left(\left[-1, \frac{1}{d}\right)\right) \leq H+1=\frac{d(d+3)}{2}$.

Theorem (G., 2020)
$M_{d}\left(\left[-1, \frac{1}{\sqrt{d}}\right)\right) \leq \frac{d(d+1)(d+5)}{6}$.

Proof.

Take $P(t)=\frac{2 \sqrt{d}}{(d+2)(\sqrt{d}+1)} G_{1}(t)+\frac{1}{\sqrt{d}+1} G_{2}(t)+\frac{d \sqrt{d}}{(d+2)(\sqrt{d}+1)} G_{3}(t)=$
const $\cdot\left(t+\frac{1}{\sqrt{d}}\right)^{2}\left(t-\frac{1}{\sqrt{d}}\right)$ and perturb it. Then $H=h_{1}+h_{2}+h_{3}$.
Therefore, $M_{d}\left(\left[-1, \frac{1}{\sqrt{d}}\right)\right) \leq H+1=\frac{d(d+1)(d+5)}{6}$.

MINIMIZING ENERGY

Problem

For a given potential F and size N, find the minimum energy
$E(d, N, F)=\min _{x} E_{F}(X)$ for $E_{F}(X)=\sum_{x, y \in X} F(\langle x, y\rangle)$, over all sets of points $X \subset \mathbb{S}^{d-1},|X|=N$.

MINIMIZING ENERGY

Problem

For a given potential F and size N, find the minimum energy $E(d, N, F)=\min _{x} E_{F}(X)$ for $E_{F}(X)=\sum_{x, y \in X} F(\langle x, y\rangle)$, over all sets of points $X \subset \mathbb{S}^{d-1},|X|=N$.

Theorem
Let $\mathrm{P}(\mathrm{t})=\alpha_{1} \mathrm{G}_{\mathrm{i}_{1}}(\mathrm{t})+\ldots+\alpha_{l} \mathrm{G}_{\mathrm{i}_{l}}(\mathrm{t})$, where $\alpha_{\mathrm{i}}>0$ and $\sum \alpha_{\mathrm{i}}=1$, and $H=h_{i_{1}}+\ldots+h_{i_{1}}$. For a continuous potential F and for any $N>0, E(d, N, F(P)) \geq E(H, N, F)$.

MINIMIZING ENERGY

Problem

For a given potential F and size N, find the minimum energy $E(d, N, F)=\min _{x} E_{F}(X)$ for $E_{F}(X)=\sum_{x, y \in X} F(\langle x, y\rangle)$, over all sets of points $X \subset \mathbb{S}^{d-1},|X|=N$.

Theorem

Let $\mathrm{P}(\mathrm{t})=\alpha_{1} \mathrm{G}_{\mathrm{i}_{1}}(\mathrm{t})+\ldots+\alpha_{l} \mathrm{G}_{\mathrm{i}_{l}}(\mathrm{t})$, where $\alpha_{\mathrm{i}}>0$ and $\sum \alpha_{\mathrm{i}}=1$, and $H=h_{i_{1}}+\ldots+h_{i_{1}}$. For a continuous potential F and for any $N>0, E(d, N, F(P)) \geq E(H, N, F)$.

Proof.

Let X be the minimizing set for $E(d, N, F(P))$. Then $E(H, N, F) \leq E_{F}\left(\phi_{P}(X)\right)=E(d, N, F(P))$.

REPEATED ORTHONORMAL BASES AND THE p-FRAME ENERGY

Theorem (G.-Park, 2020)
For $p \in\left[1,2 \log \frac{2 m+1}{2 m} / \log \frac{m+1}{m}\right], F(t)=|t|^{p}$, and $1 \leq m \leq d$, $E(d, d+m, F)=2 m$.

REPEATED ORTHONORMAL BASES AND THE p-FRAME ENERGY

Theorem (G.-Park, 2020)
For $p \in\left[1,2 \log \frac{2 m+1}{2 m} / \log \frac{m+1}{m}\right], F(t)=|t|^{p}$, and $1 \leq m \leq d$, $E(d, d+m, F)=2 m$.

Minimizers are repeated orthonormal bases - the vectors of an arbitrary orthonormal basis with m of them repeated twice.

REPEATED ORTHONORMAL BASES AND THE p-FRAME ENERGY

Theorem (G.-Park, 2020)
For $p \in\left[1,2 \log \frac{2 m+1}{2 m} / \log \frac{m+1}{m}\right], F(t)=|t|^{p}$, and $1 \leq m \leq d$, $E(d, d+m, F)=2 m$.

Minimizers are repeated orthonormal bases - the vectors of an arbitrary orthonormal basis with m of them repeated twice.

Conjecture (Park, 2019)
Repeated orthonormal bases with N vectors are energy minimizers for $F(t)=|t|^{p}, p \in[1, p(N)]$, for any $N \geq d$ and $p(N) \rightarrow 2$ when $N \rightarrow \infty$.

REPEATED MINIMIZERS

Theorem (G., 2020)
For $p \in\left[1,2 \log \frac{2 m+1}{2 m} / \log \frac{m+1}{m}\right], F(t)=\left|t+\frac{1}{d}\right|^{p}$, and
$1 \leq m \leq d+1, E(d, d+1+m, F)=2 m F(1)$. Minimizers are repeated regular simplices.

REPEATED MINIMIZERS

Theorem (G., 2020)
For $p \in\left[1,2 \log \frac{2 m+1}{2 m} / \log \frac{m+1}{m}\right], F(t)=\left|t+\frac{1}{d}\right|^{p}$, and
$1 \leq m \leq d+1, E(d, d+1+m, F)=2 m F(1)$. Minimizers are repeated regular simplices.

Proof.

Take $P(t)=\frac{d t+1}{d+1}$. Use ϕ_{P} and repeated orthonormal bases.

REPEATED MINIMIZERS

Theorem (G., 2020)
For $p \in\left[1,2 \log \frac{2 m+1}{2 m} / \log \frac{m+1}{m}\right], F(t)=\left|t+\frac{1}{d}\right|^{p}$, and
$1 \leq m \leq d+1, E(d, d+1+m, F)=2 m F(1)$. Minimizers are repeated regular simplices.

Proof.

Take $P(t)=\frac{d t+1}{d+1}$. Use ϕ_{P} and repeated orthonormal bases.
Theorem (G., 2020)
For $p \in\left[1,2 \log \frac{2 m+1}{2 m} / \log \frac{m+1}{m}\right], F(t)=\left|t^{2}-\alpha^{2}\right|^{p}, \alpha^{2}<\frac{1}{d}$, and $1 \leq m \leq\binom{ d+1}{2}, E\left(d,\binom{d+1}{2}+m, F\right) \geq 2 m F(1)$. The bound is sharp for repeated equiangular sets of size $\binom{d+1}{2}$.

REPEATED MINIMIZERS

Theorem (G., 2020)
For $p \in\left[1,2 \log \frac{2 m+1}{2 m} / \log \frac{m+1}{m}\right], F(t)=\left|t+\frac{1}{d}\right|^{p}$, and
$1 \leq m \leq d+1, E(d, d+1+m, F)=2 m F(1)$. Minimizers are repeated regular simplices.

Proof.

Take $P(t)=\frac{d t+1}{d+1}$. Use ϕ_{P} and repeated orthonormal bases.
Theorem (G., 2020)
For $p \in\left[1,2 \log \frac{2 m+1}{2 m} / \log \frac{m+1}{m}\right], F(t)=\left|t^{2}-\alpha^{2}\right|^{p}, \alpha^{2}<\frac{1}{d}$, and $1 \leq m \leq\binom{ d+1}{2}, \mathrm{E}\left(\mathrm{d},\binom{\mathrm{d}+1}{2}+\mathrm{m}, \mathrm{F}\right) \geq 2 \mathrm{mF}(1)$. The bound is sharp for repeated equiangular sets of size $\binom{d+1}{2}$.

Proof.

Take $P(t)=\frac{t^{2}-\alpha^{2}}{1-\alpha^{2}}$. Use ϕ_{P} and repeated orthonormal bases.

CONSTRUCTING NEW CONFIGURATIONS

[Bondarenko, 2008] The image of the set of 120 non-opposite minimal vectors of E_{8} under ϕ_{2} is the set of 120 vectors in \mathbb{S}^{34} with scalar products $\pm \frac{1}{7}$.

CONSTRUCTING NEW CONFIGURATIONS

[Bondarenko, 2008] The image of the set of 120 non-opposite minimal vectors of E_{8} under ϕ_{2} is the set of 120 vectors in \mathbb{S}^{34} with scalar products $\pm \frac{1}{7}$.
[Miezaki, 2019 and 2020] Images of sharp configurations under ϕ_{2} are nice sets.

CONSTRUCTING NEW CONFIGURATIONS

[Bondarenko, 2008] The image of the set of 120 non-opposite minimal vectors of E_{8} under ϕ_{2} is the set of 120 vectors in \mathbb{S}^{34} with scalar products $\pm \frac{1}{7}$.
[Miezaki, 2019 and 2020] Images of sharp configurations under ϕ_{2} are nice sets.

Question

How can we get nice configurations via mapping to the space of spherical harmonics?

SPHERICAL DESIGNS

For a positive integer t , a finite set $\mathrm{X} \subset \mathbb{S}^{\mathrm{d}-1}$ is called a spherical t-design if

$$
\int_{\mathbb{S}^{d}-1} f(x) d \mu(x)=\frac{1}{|X|} \sum_{v \in X} f(v)
$$

holds for all polynomials f of degree $\leq t$.

SPHERICAL DESIGNS

For a positive integer t , a finite set $\mathrm{X} \subset \mathbb{S}^{d-1}$ is called a spherical t-design if

$$
\int_{\mathbb{S}^{d}-1} f(x) d \mu(x)=\frac{1}{|X|} \sum_{v \in X} f(v)
$$

holds for all polynomials f of degree $\leq t$.
A finite set $X \subset \mathbb{S}^{d-1}$ is called a (unit norm) tight frame if the above condition holds for all homogeneous polynomials of degree 2.

Tight frames \leftrightarrow Antipodal 3-designs \leftrightarrow Projective 1-designs

TIGHT FRAMES IN THE SPACE OF SPHERICAL HARMONICS

Theorem (G., 2020)
If X is a $2 k$-design in \mathbb{S}^{d-1} then $\phi_{l}(X)$ is a tight frame in $\mathbb{S}^{h_{l}-1}$ for all l $\leq k$.

TIGHT FRAMES IN THE SPACE OF SPHERICAL HARMONICS

Theorem (G., 2020)
If X is a $2 k$-design in \mathbb{S}^{d-1} then $\phi_{l}(X)$ is a tight frame in $\mathbb{S}^{h_{l}-1}$ for all l $\leq k$.

Lemma (Sidel'nikov; Venkov; Benedetto and Fickus)
X is a tight frame in \mathbb{S}^{d-1} if and only if $\frac{1}{|X|^{2}} \sum_{x, y \in X}\langle x, y\rangle^{2}=\frac{1}{d}$.

TIGHT FRAMES IN THE SPACE OF SPHERICAL HARMONICS

Theorem (G., 2020)
If X is a $2 k$-design in \mathbb{S}^{d-1} then $\phi_{l}(X)$ is a tight frame in $\mathbb{S}^{h_{l}-1}$ for all $\mathrm{l} \leq \mathrm{k}$.

Lemma (Sidel'nikov; Venkov; Benedetto and Fickus)
X is a tight frame in \mathbb{S}^{d-1} if and only if $\frac{1}{|X|^{2}} \sum_{x, y \in X}\langle x, y\rangle^{2}=\frac{1}{d}$.
Proof of the theorem.

$$
\frac{1}{|X|^{2}} \sum_{x, y \in X} G_{l}(\langle x, y\rangle)^{2}=\int_{\mathbb{S}^{d-1}} \int_{\mathbb{S}^{d-1}} G_{l}(\langle x, y\rangle)^{2} d \mu(x) d \mu(y)=\frac{1}{h_{l}} .
$$

TIGHT FRAMES IN THE SPACE OF SPHERICAL HARMONICS

Let X be a 2 k -design in $\mathbb{S}^{\mathrm{d}-1}$. Let $\mathrm{P}(\mathrm{t})=\alpha_{1} \mathrm{G}_{\mathrm{i}_{1}}(\mathrm{t})+\ldots+\alpha_{l} \mathrm{G}_{\mathrm{i}_{l}}(\mathrm{t})$, where $\alpha_{i}>0, \sum \alpha_{i}=1,\left\{i_{1}, \ldots, i_{l}\right\} \subseteq\{1, \ldots, k\}$ and $H=h_{i_{1}}+\ldots+h_{i_{1}}$. Then

$$
\begin{aligned}
& \frac{1}{|X|^{2}} \sum_{x, y \in X} P(\langle x, y\rangle)^{2}=\int_{\mathbb{S}^{d}-1} \int_{\mathbb{S}^{d}-1} P(\langle x, y\rangle)^{2} d \mu(x) d \mu(y)= \\
& \quad=\frac{\alpha_{1}^{2}}{h_{i_{1}}}+\ldots+\frac{\alpha_{l}^{2}}{h_{i_{1}}} \geq \frac{\left(\alpha_{1}+\ldots+\alpha_{l}\right)^{2}}{h_{i_{1}}+\ldots+h_{i_{l}}}=\frac{1}{H}
\end{aligned}
$$

and the equality holds when $\alpha_{j}=\frac{h_{i_{j}}}{H}$.

TIGHT FRAMES IN THE SPACE OF SPHERICAL HARMONICS

Let X be a 2 k -design in $\mathbb{S}^{\mathrm{d}-1}$. Let $\mathrm{P}(\mathrm{t})=\alpha_{1} \mathrm{G}_{\mathrm{i}_{1}}(\mathrm{t})+\ldots+\alpha_{l} \mathrm{G}_{\mathrm{i}_{1}}(\mathrm{t})$, where $\alpha_{i}>0, \sum \alpha_{i}=1,\left\{i_{1}, \ldots, i_{l}\right\} \subseteq\{1, \ldots, k\}$ and $\mathrm{H}=\mathrm{h}_{\mathrm{i}_{1}}+\ldots+\mathrm{h}_{\mathrm{i},}$. Then

$$
\begin{gathered}
\frac{1}{|X|^{2}} \sum_{x, y \in X} P(\langle x, y\rangle)^{2}=\iint_{\mathbb{S}^{d}-1} \int_{\mathbb{S}^{d}-1} P(\langle x, y\rangle)^{2} d \mu(x) d \mu(y)= \\
\quad=\frac{\alpha_{1}^{2}}{h_{i_{1}}}+\ldots+\frac{\alpha_{1}^{2}}{h_{i_{1}}} \geq \frac{\left(\alpha_{1}+\ldots+\alpha_{1}\right)^{2}}{h_{i_{1}}+\ldots+h_{i_{1}}}=\frac{1}{H}
\end{gathered}
$$

and the equality holds when $\alpha_{j}=\frac{h_{i j}}{H}$.
Theorem (G., 2020)
If X is a $2 k$-design in \mathbb{S}^{d-1} and $\left\{i_{1}, \ldots, i_{i}\right\}$ is a subset of $\{1, \ldots, k\}$ then $\phi_{P}(X)$ is a tight frame in \mathbb{S}^{H-1}, where $H=h_{i_{1}}+\ldots+h_{i_{1}}$ and $P(t)=\frac{h_{i_{1}}}{H} G_{i_{1}}(t)+\ldots \frac{h_{i_{1}}}{H} G_{i_{1}}(t)$.

KISSING NUMBER PROBLEM IN DIMENSION 3

Theorem
 $\tau_{3} \leq 12$.

KISSING NUMBER PROBLEM IN DIMENSION 3

Theorem

$\tau_{3} \leq 12$.
Let $\mathrm{P}(\mathrm{t})=0.09465869+0.17273741 \mathrm{G}_{1}(\mathrm{t})+0.33128438 \mathrm{G}_{2}(\mathrm{t})+$ $0.17275228 \mathrm{G}_{3}(\mathrm{t})+0.18905584 \mathrm{G}_{4}(\mathrm{t})+0.00334265 \mathrm{G}_{5}(\mathrm{t})+$ $0.03616728 \mathrm{G}_{9}(\mathrm{t})$.

KISSING NUMBER PROBLEM IN DIMENSION 3

Theorem

$\tau_{3} \leq 12$.
Let $\mathrm{P}(\mathrm{t})=0.09465869+0.17273741 \mathrm{G}_{1}(\mathrm{t})+0.33128438 \mathrm{G}_{2}(\mathrm{t})+$ $0.17275228 \mathrm{G}_{3}(\mathrm{t})+0.18905584 \mathrm{G}_{4}(\mathrm{t})+0.00334265 \mathrm{G}_{5}(\mathrm{t})+$ $0.03616728 \mathrm{G}_{9}(\mathrm{t})$.

Lemma

If X is a set of points in \mathbb{S}^{2} with all pairwise scalar products $\leq \frac{1}{2}$ then for any $x \in X, \sum_{y \in X} P(\langle x, y\rangle) \leq 1.23$.

KISSING NUMBER PROBLEM IN DIMENSION 3

Theorem

$\tau_{3} \leq 12$.
Let $\mathrm{P}(\mathrm{t})=0.09465869+0.17273741 \mathrm{G}_{1}(\mathrm{t})+0.33128438 \mathrm{G}_{2}(\mathrm{t})+$ $0.17275228 \mathrm{G}_{3}(\mathrm{t})+0.18905584 \mathrm{G}_{4}(\mathrm{t})+0.00334265 \mathrm{G}_{5}(\mathrm{t})+$ $0.03616728 \mathrm{G}_{9}(\mathrm{t})$.

Lemma

If X is a set of points in \mathbb{S}^{2} with all pairwise scalar products $\leq \frac{1}{2}$ then for any $x \in X, \sum_{y \in X} P(\langle x, y\rangle) \leq 1.23$.

Proof of the theorem.
For $|X|=N, \sum_{x, y \in X} P(\langle x, y\rangle) \leq 1.23 N$ and $\geq 0.09465869 N^{2}$ so
$N \leq 1.23 / 0.09465869 \approx 12.99405263$

PROOF OF THE LEMMA

Lemma

If X is a set of points in \mathbb{S}^{2} with all pairwise scalar products $\leq \frac{1}{2}$ then for any $x \in X, \sum_{y \in X} P(\langle x, y\rangle) \leq 1.23$.

PROOF OF THE LEMMA

Lemma

If X is a set of points in \mathbb{S}^{2} with all pairwise scalar products $\leq \frac{1}{2}$ then for any $x \in X, \sum_{y \in X} P(\langle x, y\rangle) \leq 1.23$.
$P(t)$ is negative on $[-1 / \sqrt{2}, 1 / 2]$. A positive contribution to the sum can be made only by points in the open spherical cap C with the center $-x$ and the angular radius $\pi / 4$. No more than 3 points with pairwise angular distances at least $\pi / 3$ can fit in C .

PROOF OF THE LEMMA

Lemma

If X is a set of points in \mathbb{S}^{2} with all pairwise scalar products $\leq \frac{1}{2}$ then for any $x \in X, \sum_{y \in X} P(\langle x, y\rangle) \leq 1.23$.
$P(t)$ is negative on $[-1 / \sqrt{2}, 1 / 2]$. A positive contribution to the sum can be made only by points in the open spherical cap C with the center $-x$ and the angular radius $\pi / 4$. No more than 3 points with pairwise angular distances at least $\pi / 3$ can fit in C .

Case 1 . There is one point in C . Then

$$
\sum_{y \in X} P(\langle x, y\rangle) \leq P(1)+\max _{t \in[-1,-1 / \sqrt{2}]} P(t) \leq 1.23
$$

PROOF OF THE LEMMA

Case 2. There are two points y, z in C. To maximize the sum of values of $P,-x$ should lie on the geodesic between y and z and the angular distance between y and z should be $\pi / 3$. Denoting $\langle\mathrm{x}, \mathrm{y}\rangle=\mathrm{t}$, we find $\langle\mathrm{x}, \mathrm{z}\rangle=\alpha(\mathrm{t})=\frac{1}{2} \mathrm{t}-\frac{\sqrt{3}}{2} \sqrt{1-\mathrm{t}^{2}}$ and $t \in I=[-\cos \pi / 12,-1 / \sqrt{2}]$. Then

$$
\sum_{y \in \mathrm{X}} \mathrm{P}(\langle\mathrm{x}, \mathrm{y}\rangle) \leq \mathrm{P}(1)+\max _{\mathrm{t} \in \mathrm{I}}(\mathrm{P}(\mathrm{t})+\mathrm{P}(\alpha(\mathrm{t}))) \leq 1.23 .
$$

PROOF OF THE LEMMA

Case 3. There are three points y, z, w in C. To maximize the sum of values of P, the points y, z, w should form a regular triangle with the sides of length $\pi / 3$. Rotating the triangle with respect to the point furthest from x, we can increase the sum. The rotation stops either when one of the points reaches the boundary of C , or there are two points that are in the same distance from x. In the former case, we are left with two points in C . In the latter case, if $\langle\mathrm{x}, \mathrm{y}\rangle=\langle\mathrm{x}, \mathrm{z}\rangle=\mathrm{t}$ then
$\langle x, w\rangle=\beta(t)=\frac{2}{3} t-\frac{2}{3} \sqrt{\frac{3}{2}-2 t^{2}}$ and $t \in J=\left[-\frac{\sqrt{2}}{4}-\frac{1}{2},-\sqrt{\frac{2}{3}}\right]$.
Then

$$
\sum_{y \in X} \mathrm{P}(\langle\mathrm{x}, \mathrm{y}\rangle) \leq \mathrm{P}(1)+\max _{\mathrm{t} \in \mathrm{~J}}(2 \mathrm{P}(\mathrm{t})+\mathrm{P}(\beta(\mathrm{t}))) \leq 1.23
$$

THANK YOU!

