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Configurations

Definition

A configuration is a complex matrix Φ ∈ Cd×n. We view it as an

ordered list of vectors {Φi}n−1i=0 in Cd .

d = The dimension,

n = The cardinality.

Some Definitions:

� Φ is a Tight-Frame (TF) if for every vector v ,

v =
n−1∑
i=0

〈v ,Φi 〉Φi .

Equivalently, Φ can be completed to a n × n orthogonal

matrix.

� A unit norm TF Φ is m-angular if {|〈Φi ,Φj〉|}i<j has

cardinality m. 1



m-angular tight-frames

� If m = 1, then Φ is called an Equiangular-Tight-Frame (ETF).

� m-angular TF arise often as minimizers of potential functions.

E.g. the Frame-Potential given by

FPp(Ψ) =
∑
i ,j

|〈Ψi ,Ψj〉|p, s.t. ∀i ||Ψi || = 1.

� In the special case n = d2, the ETF Φ is called a SIC-POVM.

In is conjectured (Zauner) to exist for all d ≥ 1.

� A set of Mutually Unbiased Bases (MUB) is m = 2-angular:

We have n = rd and

|〈Φi ,Φj〉|2 =


1 i = j

0 sd ≤ i < j < (s + 1)d

1/d otherwise

.
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Algebraic Configurations

Fix an algebraic closure Q/Q.

Definition

(a) A configurations Φ is Algebraic if all Φi ,j ∈ Q.

(b) Φ is Potentially Algebraic (PA) if there are phases etj
√
−1,

0 ≤ j < n and a unitary U ∈ U(d) such that

etj
√
−1UΦj ∈ Qd

.

� Often, minimaizers of potential functions solve algebraic

equations and thus are algebraic.

� The known examples of Zauner SIC-POVMs and maximal

MUBs are potentially algebraic.

� The entries of known algebraic MUBs are roots of unity.
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Algebraic Configurations

� The entries of known algebraic WH SIC-POVMs are is an

abelian extension field (Appleby, 2012)

E / Q(e2π
√
−1/d ,

»
(d − 1)(d + 3)).

� Observation: Φ is potentially algebraic ⇐⇒ there is a phase

diagonal matrix D s.t.

D∗(Φ∗Φ)D is algebraic.
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Automorphism Groups

The following actions on Φ preserve the multiset {|〈Φi ,Φj〉|}:

(i) Phasing: for α = (αi ) ∈ Rn, Let (α ∗ Φ)i := eαi

√
−1Φi .

(ii) Permutations: For π ∈ Sd , Let (π ∗ Φ)i := Φπ−1(i).

(iii) Rotation: For U ∈ U(d), Let U ∗ Φ := UΦ.

(iv) Complex Conjugation: Let (conj ∗ Φ) := Φ.

The combination of all such actions on the space of configurations

Conf(d , n) form a group, denoted by Σ(d , n).

Definition

The Automorphism Group of Φ is the group

Aut(Φ) := {g ∈ Σ(d , n) | g ∗ Φ = Φ}.
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Extended automorphism group

Let Φ be algebraic and let Gal(Q/Q)0 ⊂ Gal(Q/Q) be the

centralizer of complex conjugation. We can add

(v) Galois Conjugation: For σ ∈ Gal(Q/Q)0, let (σ ∗ Φ) := Φσ.

Let Σ∗(n, d) ⊃ Σ(n, d) be the group of actions on algebraic

configurations generated by (i)-(v).

Definition

For an algebraic Φ, the Extended Automorphism Group is the

group

Aut∗(Φ) := {g ∈ Σ∗(d , n) | g ∗ Φ = Φ}.

6



An Example

Let Φ = [a, b, c, d ] ∈ Conf(2, 4) (defined over Q(
√

2)) as in the

picture.

�

b

c

d

e a

U

−1

� Here is an automorphism and an extended automorphism.

Apply:

[a, b, c , d ]
U→ [b, c , d ,−a]

phase→ [b, c , d , a]
perm→ [a, b, c , d ],

[a, b, c , d ]
Galois→ [a,−b, c ,−d ]

phase→ [a, b, c , d ].
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Automorphism group on the Grammian Matrix

Assume rank(Φ) = d . The Grammian G (Φ) := Φ∗Φ determines Φ

up to rotation. On

G(n, d) := {Φ∗Φ | Φ ∈ Conf(n, d)}

the actions (i)-(v) reduce to the form

(i)+(ii) Monomial Matrices: M ∗ G := MGM∗.

(iv)+(v) Galois Conjugation g ∗ G := G g .

We denote the groups by Aut(G ) and Aut∗(G ).

� We have Aut(G (Φ)) = Aut(Φ) and Aut∗(G (Φ)) = Aut∗(Φ).

� If G is not a nontrivial diagonal sum of blocks, then

Aut(G ) ⊂ Aut∗(G ) are finite.
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Example - The DetFourier Matrix

Consider the n2 × n2 matrix indexed by Z/n ⊕ Z/n in both axes.

Let ω = exp(2π
√
−1/n), and

DF (u, v) =
ωdet(u,v)

n
.

(i) ∀w , DF (u + w , v + w) = DF (u,w)DF (u, v)DF (v ,w).

(ii) ∀A ∈ GL2(Z/n), DF (Au,Av) = DF (u, v)det(A).

Hence the affine group has a homomorphism to

AGL2(Z/n) = GL2(Z/n) n (Z/n)2 −→ Aut∗(DF ).

The same automorphisms are shared by

(In2 − DF )/2 = Φ∗Φ, Φ ∈ Conf((n2 − n)/2, n2).
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Example - Gabor Frames

The modulation and translation matrices are M = diag(. . . , τ i , . . .)

and T ∈ U(n) given by

Ti ,j =

1 i − j ≡ 1 mod n

0 otherwise
.

We have

MT = ωTM.

Definition

The Weil-Heisenberg group is

WH(n) := {τ aMbT c | a, b, c ∈ Z/n}.

� Let g ∈ Cn, ||g || = 1. The Gabor frame is

G(g) = (MbT cg) b,c∈Z/n.
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Gabor Frames

g is called the fiducial vector of G(g). We have

WH(n) 7→ Aut(G(g)),

given by g 7→ (x 7→ gx).

� Zauner SIC-POVMs are of type G(g) for some fiducial g .

� The normalizer of WH(n) in U(n) is called the Extended

Clifford Group, EC (n).

� Known Zauner SIC-POVMs (d 6= 2, 3, 8) admit an order 3

automorphism in EC (n) (augmented with phases and

permutations).

� Known Zauner SIC-POVMs are algebraic. They have

extended automorphisms (coming from Multiplets)
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Abstract Automorphisms on Grammians

� Let X be a finite set. Let Mon(X ) be the group of phase

monomial matrices on X . e.g. matrices Mj ,π(j) = αj , |αj | = 1

and π ∈ SX a permutation.

� Let G be a finite group.

Definition

An abstract automorphism group on X is a map ϕ : G → Mon(X )

which is a homomorphism up to a phase:

ϕ(gg ′) = αϕ(g)ϕ(g ′), |α| = 1.

Observation

The set of all matrices in M ∈ CX×X satisfying

ϕ(g)Mϕ(g)∗ = M, ∀g ∈ G

is a matrix algebra. We denote it by A(ϕ). 12



Abstract Automorphisms on Grammians

Let ϕ : G → Mon(X ) be an abstract automorphism group, and let

M ∈ A(ϕ) be a matrix.

� If M is self-adjoint positive semidefinite, then M = Φ∗Φ for a

configuration Φ. We have a representation

G → Aut(Φ).

� If in addition M is an idempotent, then Φ is a tight frame.
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Extended Abstract Automorphisms on Grammians

Let K ⊂ C be a number-field, Galois over Q, and let µ ⊂ K× be a

subgroup of unit norm elements. Let

Mon(X , µ) ⊂ Mon(X ) the subgroup of µ-valued mon. matrices.

Definition

An Extended Abstract Automorphism Group on X is a pair (γ, ϕ)

such that

1. γ : G → Gal(K/Q) is a homomorphism preserving µ.

2. ϕ : G → Mon(X , µ) is a map satisfying

ϕ(gg ′)
•

= ϕ(g)ϕ(g ′)γ(g).

(
•

= is equality up to phases in µ.)
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Algebraic Matrix Algebras

� Given an extended automorphism Group (ϕ, γ), the set

A(ϕ, γ) := {M ∈ KX×X | ϕ(g) Mγ(g) ϕ(g)∗ = M, ∀g ∈ G}

is a matrix algebra over Q.

� Again, self-adjoint idempotents correspond to algebraic TF Φ,

admitting a homomorphism G → Aut∗(Φ).
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Examples

Let B3= the symmetry group of the 3D cube.

X= the set of all faces.

Define ϕ : G → Mon(X ) = the permutation action on X .

A(ϕ) =





x0 x2 x2 x2 x2 x1
x2 x0 x2 x2 x1 x2
x2 x2 x0 x1 x2 x2
x2 x2 x1 x0 x2 x2
x2 x1 x2 x2 x0 x2
x1 x2 x2 x2 x2 x0




.

x0 = x3 = 1/3, x2 = −1/6 gives a self-adjoint idempotent of rank

2. The configuration is the perfect hexagon (up to phases).
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Constructing Automorphisms from Group Theory

We need:

� A finite group G and a left action G y X .

� A number field K/Q and a homomorphism

γ : G → Gal(K/Q).

� A subgroup of phases µ ⊂ K×, stable under γ(G ).

=⇒ we can define an action of G on KX×X :

(gM)x ,y := (Mg−1x ,g−1y )γ(g).

� Let π(g) be the permutation of g on X . Then

A(π, γ) = {M | gM = M}.
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To give X , is the same as to give a list of subgroups {Hi ⊂ G},
and then

X ∼=
⊔
i

G/Hi .

So this is completely group-theoretic.

� This program was carried out (in Iverson, Jasper and Mixon,

2019). But without Galois and with a single Hi .

� We want even more: To consider monomial actions.

� This means that π should be replaced by ϕ : G → Mon(X , µ),

satisfying the conditions explained above.

� We want ϕ to lift π, i.e.

|ϕ(g)| = π(g), (entrywise modulus).

� Here is where Cohomology comes in . . .
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We need

ϕ(gg ′)
•

= ϕ(g)ϕ(g ′)γ(g) (1)

|ϕ(g)| = π(g) (2)

Let’s try an easier condition first:

ϕ(gg ′) = ϕ(g)ϕ(g ′)γ(g) (3)

Write ϕ(g) = δ(g)π(g), δ(g) diagonal. Then

ϕ(gg ′) = δ(gg ′)π(gg ′) = δ(gg ′)π(g)π(g ′)γ(g)

ϕ(g)ϕ(g ′)γ(g) = (δ(g)π(g))(δ(g ′)π(g ′))γ(g) =

= δ(g)π(g)δ(g ′)γ(g)π(g ′)γ(g)

= δ(g)π(g)δ(g ′)γ(g)π(g)−1π(g)π(g ′)γ(g).
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Equating,

δ(gg ′) = δ(g)π(g)δ(g ′)γ(g)π(g)−1.

We see that δ is a 1-cocycle. More precisely, let

DX (µ) = {X × X Diagonal matrices over µ}.

Let G y D(µ) by its action on KX×X . The δ defines a

cohomology class in

[δ] ∈ H1(G ,DX (µ)).

So we want to compute this cohomology.

Theorem (Eckmann-Shapiro Lemma)

If X ∼= G/H, then

H1(G ,DX (µ)) ∼= H1(H, µ).

More generally, if X ∼=
⊔

i G/Hi , then

H1(G ,DX (µ)) ∼=
⊕
i

H1(Hi , µ).
20



Cohomology Basics

Let G be a group, acting on an Abelian group A. For any function

f : Gn → A,

let di f : Gn+1 → A given by

di f (g0, g1, . . . , gn) =


f (g0, . . . , gn−1) i = n

f (g0, . . . , gi · gi+1, . . . , gn) 0 < i < n

g0f (g1, . . . , gn) i = 0.

,

and let

df =
n∑

i=0

(−1)idi f , d ◦ d = 0.

Definition

1. f is a cocycle if df = 0,

2. f is a coboundary if f = dh.

Coboundaries ⊆ Cocycles.
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Cohomology Basics

� The nth-Cohomology Group is

Hn(G ,A) =
n − cocycles

n − coboundaries
.

� If F ≤ G is is subgroup of G , then there is a natural

homomorphism

res : Hn(G ,A)→ Hn(F ,A),

given by restriction of cocycles.
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0,1,2-Cohomology

� H0(G ,A) = AG := The group of G -invariant elements.

� 1-cocycles are functions z : G → A such that

z(gg ′) = z(g) + gz(g ′).

� 1-coboundaries are functions z : G → A such that

z(g) = ga− a, for a given a ∈ A.

� If G acts trivially on A, then

H1(G ,A) ∼= Hom(G ,A).
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0,1,2-Cohomology

� 2-cocycles are functions z : G 2 → A such that

g0z(g1, g2) + z(g0, g1g2) = z(g0g1, g2) + z(g0, g1).

� 2-coboundaries are functions z : G 2 → A such that

z(g1, g2) = u(g1g2)− u(g1)− g1u(g2).

for some function u : G → A.
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H1 - Development

Recall: G y X , π(g) is the permutation matrix on X , we write

ϕ(g) = δ(g)π(g), δ(g) ∈ DX (µ) i.e. diagonal over µ,

ϕ(gg ′) = ϕ(g)ϕ(g ′)γ(g). (ϕ is called H1-Develpoed action)

Then δ is a 1-cocycle w.r.t. G y DX (µ):

δ(gg ′) = δ(g)π(g)δ(g ′)γ(g)π(g)−1.

Observation

Let ϕ′(g) = δ′(g)π(g) and ϕ(g) = δ(g)π(g). Then

[δ′] = [δ] ∈ H1(G ,DX (µ)),

⇐⇒ ∃D ∈ DX (µ), ϕ′ = DϕD−1.
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H2-Developement

Suppose that we only want

ϕ(gg ′)
•

= ϕ(g)ϕ(g ′)γ(g).

Write

ϕ(gg ′) = α(g , g ′)ϕ(g)ϕ(g ′)γ(g), α(g , g ′) ∈ µ.

� Then α(g , g ′) is a 2-cocycle over µ.

� If ϕ and ϕ′ admit the same class [α] ∈ H2(G , µ), then

ϕ′(g) = δ0(g)ϕ(g), [δ0] ∈ H1(G ,DX (µ)).

� Monomial actions ϕ are controlled by H1(G ,DX (µ)) and

H2(G , µ).
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A Program for computing Symmetric Algebraic Configurations

(i) Choose a group G and an action G y X .

(ii) Choose a Number Field K , a Galois action

γ : G → Gal(K/Q) and a G -stable phase group µ ∈ K×.

(iii) Compute a monomial action ϕ : G → Mon(X , µ) using

cohomology.

(iv) Construct a basis to the algebra A(ϕ, γ).

(v) Study it’s structure and compute self-adjoint idempotents.

Generate configurations.

� The number of angles +1 ≤ the number of G -orbits in X ×X .
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Constructing a basis to A(ϕ, γ).

A(ϕ, γ) is an algebra over KG , the subfield of G -invariants.

(a) Compute the orbit decomposition X × X =
⊔

i Oi .

� Pick a point (xi , yi ) ∈ Oi for each i .

� For each i , pick a suitable value ξi ∈ K×.

� For each i there is at most one matrix Bi ∈ KX×X , supported

in Oi , having

(Bi )xi ,yi = ξi .

� The collection {Bi} spans over KG the algebra A(ϕ, γ).
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Orientability of Orbits

Definition

An orbit O ⊂ X ×X is orientable if for each point (x , y) ∈ O there

exist a ξ ∈ K× such that

ϕ(h)x ,xξ
γ(h)ϕ(h)∗y ,y = ξ, (4)

for all h ∈ G s.t. hx = x , hy = y .

Meaning: The monomial action ϕ does not destroy the value ξ of

a putative matrix A ∈ A(ϕ, γ).

� Basis matrices Bi exist only for orientable orbits Bi .

� Elements of A(ϕ, γ) must vanish at non-orientable orbits.

� The value ξ must be chosen carefully in order to comply with

condition (4).

� The appropriate element ξ can be found via cohomology.
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The Spectral Sequence

Let G ,X , γ, µ,K be given.

Definition

Two matrices A,B ∈ KX×X are phase-equivalnt, written

A ∼P B ⇐⇒ A = DBD−1, for D ∈ DX (µ).

Definition

A matrix A ∈ KX×X is Cohomology-Developed (CDM) w.r.t.

(G ,X , γ, µ,K ), if

∀g ∈ G , gA ∼P A.
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The Spectral Sequence

H0(G , (K×)X×X/ ∼P) = {CDMS with nonzero entries}/ ∼P .

� Wish to compute H0(G , (K×)X×X/ ∼P).

� This can be done in terms of a spectral sequence.

Suppose that

X ∼=
⊔
i

G/H, (5)

X × X ∼=
⊔
i

G/Fi , (6)

where Fi ⊂ H.
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The Spectral Sequence

Theorem

There exists a first quadrant cohomological spectral sequence

E i ,j
1 =⇒ H i+j(G ,MX×X/ ∼P) whose E1-page is:

H2(G , µ) H2(H, µ)

H1(G , µ) H1(H, µ)
⊕

i H
1(Fi ,K

×)

H0(H, µ)
⊕

i H
0(Fi ,K

×)

resGH

⊕resHFi .
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Orientability Conditions

H2(G , µ) H2(H, µ)

H1(G , µ) H1(H, µ)
⊕

i H
1(Fi ,K

×)

H0(H, µ)
⊕

i H
0(Fi ,K

×)

resGH

⊕resHFi .

Orbit Heads

H1-data

H2-data

d1

d2

d1, d2=Orientability Obstructions
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A formula for generating CDMs

We assume the X ∼= G/H is G -transitive. We need the following

ingredients:

H2-Data: A class in [α] ∈ H2(G , µ) such that

resGH ([α]) = [0] ∈ H2(H, µ).

� A trivialization λ : H → µ such that α|H×H = dλ.

H1-Data: A class [ε] ∈ H1(H, µ).

(i) Choose Coset Representatives {gi} for G/H.

(ii) Define a map for : G → H such that

g = for(g)g−1i , for a representative gi .
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A formula for generating CDMs

Let

δg ,i :=

Ç
ε(h)λ(h)α(g−1i , g)

α(h, 1)

åγ(gi )
,

where

h = for(g−1i g).

- Finally, let

δ(g) = diag(δg ,i )i .

Then

ϕ(g) = δ(g)π(g)

gives the desired monomial action.
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Cocyclic Matrices

In the special case X = G (action by left multiplication), the

resulting CDMs take the simple form

M = M(f ) =

Ç
α(x−1y , y−1)γ(x)

α(1, y−1)γ(y)
· f (x−1y)γ(x)

å
x ,y∈G

,

where f : G → K is an arbitrary function. We have

A(ϕ, γ) = {M(f ) | f : G → K} ,

an algebra over KG .

� M(f ) is called a Cocyclic matrix.

� We will address A(ϕ, γ) as the Cocyclic Algebra.
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Cocyclic Algebras

Cocyclic Algebras is already a rich source of examples of

configuration algebras. Let ω = exp(2
√
−1π/n).

� Gabor frames are a special case. Take G = Z/n × Z/n, the

2-cocycle α((a, b), (c , d)) = ωbc , and γ = id . We have

A(ϕ, γ) ∼= Mn(Q(ω)).

Minimal idempotents correspond to Gabor frames.

� Taking α = 1 instead, gives a different algebra:

A(ϕ′, γ) ∼= Q(ω)n
2
.
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Examples (Twisted Gabor Frames)

Let

α((a, b), (c , d)) := ωbc+χ(a,c),

where

n · χ(a, c) := ’a + c − â− ĉ ,

0 ≤¤�(x mod n) < n, ¤�(x mod n) ≡ x mod n.

� This leads to configurations Φ ∈ Conf(d , d2).

� They are not phase equivalent to Gabor frames. They are

generated by certain two unitary matrices M̃, T̃ with

M̃9 = T̃ 3 = I ; M̃T̃ = ωT̃ M̃.

� One cannot replace M̃ = ω1/3M, T̃ = T .
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Examples (Gabor Cubes (Conjectural))

Let G = Z/n × Z/n × Z/n. Let

α((v0, v1, v2), (u0, u1, u2)) = ωv0u1+v1u2−v2u0 .

� Conjecture:

A(ϕ, γ) ∼= Mn(Q(ω))n.

� The minimal idempotents are of rank n. They correspond to

Φ ∈ Conf(n, n3).

� They form a Gabor Cube (see figure).
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Gabor Cube (Conjectural)

� Every layer is a n × n2 Gabor frame.

� Moreover, this is true for many 2-dim affine subspaces of

(Z/n)3.

� The system is generated by 3 unitary operators M1,M2,M3

with Mn
i = I and

∀i , MiMi+1 = ωMi+1Mi .

40



Example: A5

Let G = A5, the alternating group, and let

G y X := {{i , j} | 1 ≤ i < j ≤ 5}.

� We first choose α = ε = 0. We get a permutation action on

CX×X .

A(ϕ, γ) ∼= Q3.

� There are 3 minimal idempotents, E0,E1,E2 of ranks 1, 4, 5.
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Example: A5

The configuration in Conf(4, 10) has Gram matrix

G (Φ) =



1 1
6

1
6

1
6 −2

3 −2
3

1
6

1
6 −2

3
1
6

1
6 1 1

6
1
6

1
6

1
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3 −2
3 −2

3
1
6

1
6

1
6 1 1

6 −2
3

1
6 −2

3
1
6

1
6 −2

3
1
6

1
6

1
6 1 1

6 −2
3

1
6 −2

3
1
6 −2

3

−2
3

1
6 −2

3
1
6 1 1

6
1
6 −2

3
1
6

1
6
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3

1
6

1
6 −2

3
1
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3
1
6

1
6

1
6

1
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3

1
6

1
6 −2

3 1 1
6

1
6

1
6

1
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3
1
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3

1
6

1
6 1 1

6
1
6

−2
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3
1
6

1
6

1
6

1
6

1
6

1
6 1 −2

3
1
6

1
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3

1
6

1
6

1
6

1
6 −2

3 1



.
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Example: A5

On the other hand, X ∼= G/H with H ∼= S3, and choose

ε : H → {±1}, ε = sign.

�

A(ϕ, γ) ∼= Q×Q(
√

5).

� There are 3 idempotents, E0,E1,E2 of ranks 4, 3, 3. The latter

two are Galois conjugates.
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Example: A5

The Gram matrix of the resulting Φ ∈ Conf(4, 10) is

G (Φ) =



1 1
2

1
2

1
2 0 0 1

2
1
2 0 1

2
1
2 1 1

2
1
2

1
2

1
2 0 0 0 −1

2
1
2

1
2 1 1

2 0 −1
2 0 −1

2
1
2 0

1
2

1
2

1
2 1 −1

2 0 −1
2 0 −1

2 0

0 1
2 0 −1

2 1 1
2

1
2 0 1

2 −1
2

0 1
2 −1

2 0 1
2 1 0 1

2 −1
2 −1

2
1
2 0 0 −1

2
1
2 0 1 1

2
1
2

1
2

1
2 0 −1

2 0 0 1
2

1
2 1 −1

2
1
2

0 0 1
2 −1

2
1
2 −1

2
1
2 −1

2 1 0
1
2 −1

2 0 0 −1
2 −1

2
1
2

1
2 0 1



.
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THANK YOU
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