Configurations, Automorphisms and Cohomology

Giora Dula ${ }^{1} \quad$ *Assaf Goldberger ${ }^{2}$
Point Distribution Webinar, June 162021
${ }^{2}$ Tel-Aviv University assafg@post.tau.ac.il
1 Netanya Accademic College giora@netanya.ac.il

Configurations

Definition

A configuration is a complex matrix $\Phi \in \mathbb{C}^{d \times n}$. We view it as an ordered list of vectors $\left\{\Phi_{i}\right\}_{i=0}^{n-1}$ in \mathbb{C}^{d}.
$d=$ The dimension,
$n=$ The cardinality.

Some Definitions:

- Φ is a Tight-Frame (TF) if for every vector v,

$$
v=\sum_{i=0}^{n-1}\left\langle v, \Phi_{i}\right\rangle \Phi_{i} .
$$

Equivalently, Φ can be completed to a $n \times n$ orthogonal matrix.

- A unit norm TF Φ is m-angular if $\left\{\left|\left\langle\Phi_{i}, \Phi_{j}\right\rangle\right|\right\}_{i<j}$ has cardinality m.

m-angular tight-frames

- If $m=1$, then Φ is called an Equiangular-Tight-Frame (ETF).
- m-angular TF arise often as minimizers of potential functions.
E.g. the Frame-Potential given by

$$
F P_{p}(\Psi)=\sum_{i, j}\left|\left\langle\Psi_{i}, \Psi_{j}\right\rangle\right|^{p} \text {, s.t. } \forall i\left\|\Psi_{i}\right\|=1
$$

- In the special case $n=d^{2}$, the ETF Φ is called a SIC-POVM. In is conjectured (Zauner) to exist for all $d \geq 1$.
- A set of Mutually Unbiased Bases (MUB) is $m=2$-angular:

We have $n=r d$ and

$$
\left|\left\langle\Phi_{i}, \Phi_{j}\right\rangle\right|^{2}= \begin{cases}1 & i=j \\ 0 & s d \leq i<j<(s+1) d \\ 1 / d & \text { otherwise }\end{cases}
$$

Algebraic Configurations

Fix an algebraic closure $\overline{\mathbb{Q}} / \mathbb{Q}$.

Definition

(a) A configurations ϕ is Algebraic if all $\Phi_{i, j} \in \overline{\mathbb{Q}}$.
(b) Φ is Potentially Algebraic (PA) if there are phases $e^{t_{j} \sqrt{-1}}$, $0 \leq j<n$ and a unitary $U \in U(d)$ such that

$$
e^{t_{j} \sqrt{-1}} U \Phi_{j} \in \overline{\mathbb{Q}}^{d} .
$$

- Often, minimaizers of potential functions solve algebraic equations and thus are algebraic.
- The known examples of Zauner SIC-POVMs and maximal MUBs are potentially algebraic.
- The entries of known algebraic MUBs are roots of unity.

Algebraic Configurations

- The entries of known algebraic WH SIC-POVMs are is an abelian extension field (Appleby, 2012)

$$
E / \mathbb{Q}\left(e^{2 \pi \sqrt{-1} / d}, \sqrt{(d-1)(d+3)}\right) .
$$

- Observation: Φ is potentially algebraic \Longleftrightarrow there is a phase diagonal matrix D s.t.

$$
D^{*}\left(\Phi^{*} \Phi\right) D \text { is algebraic. }
$$

Automorphism Groups

The following actions on Φ preserve the multiset $\left\{\left|\left\langle\Phi_{i}, \Phi_{j}\right\rangle\right|\right\}$:
(i) Phasing: for $\alpha=\left(\alpha_{i}\right) \in \mathbb{R}^{n}$, Let $\quad(\alpha * \Phi)_{i}:=e^{\alpha_{i} \sqrt{-1}} \Phi_{i}$.
(ii) Permutations: For $\pi \in S_{d}$, Let
$(\pi * \Phi)_{i}:=\Phi_{\pi^{-1}(i)}$.
(iii) Rotation: For $U \in U(d)$, Let $\quad U * \Phi:=U \Phi$.
(iv) Complex Conjugation: Let $\quad(\operatorname{conj} * \Phi):=\bar{\Phi}$.

The combination of all such actions on the space of configurations $\operatorname{Conf}(d, n)$ form a group, denoted by $\Sigma(d, n)$.

Definition

The Automorphism Group of Φ is the group

$$
\operatorname{Aut}(\Phi):=\{g \in \Sigma(d, n) \mid g * \Phi=\Phi\}
$$

Extended automorphism group

Let Φ be algebraic and let $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})^{0} \subset G a l(\overline{\mathbb{Q}} / \mathbb{Q})$ be the centralizer of complex conjugation. We can add
(v) Galois Conjugation: For $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})^{0}$, let $(\sigma * \Phi):=\Phi^{\sigma}$.

Let $\Sigma^{*}(n, d) \supset \Sigma(n, d)$ be the group of actions on algebraic configurations generated by (i)-(v).

Definition

For an algebraic Φ, the Extended Automorphism Group is the group

$$
\operatorname{Aut}^{*}(\Phi):=\left\{g \in \Sigma^{*}(d, n) \mid g * \Phi=\Phi\right\} .
$$

An Example

Let $\Phi=[a, b, c, d] \in \operatorname{Conf}(2,4)$ (defined over $\mathbb{Q}(\sqrt{2}))$ as in the picture.

- Here is an automorphism and an extended automorphism. Apply:

$$
\begin{gathered}
{[a, b, c, d] \xrightarrow{U}[b, c, d,-a] \xrightarrow{\text { phase }}[b, c, d, a] \xrightarrow{\text { perm }}[a, b, c, d],} \\
{[a, b, c, d] \xrightarrow{\text { Galois }}[a,-b, c,-d] \xrightarrow{\text { phase }}[a, b, c, d] .}
\end{gathered}
$$

Automorphism group on the Grammian Matrix

Assume $\operatorname{rank}(\Phi)=d$. The Grammian $G(\Phi):=\Phi^{*} \Phi$ determines Φ up to rotation. On

$$
\mathcal{G}(n, d):=\left\{\Phi^{*} \Phi \mid \Phi \in \operatorname{Conf}(n, d)\right\}
$$

the actions (i)-(v) reduce to the form
(i)+(ii) Monomial Matrices: $\quad M * G:=M G M^{*}$.
(iv) + (v) Galois Conjugation $g * G:=G^{g}$.

We denote the groups by $\operatorname{Aut}(G)$ and $\operatorname{Aut}^{*}(G)$.

- We have $\operatorname{Aut}(G(\Phi))=\operatorname{Aut}(\Phi)$ and $\operatorname{Aut}^{*}(G(\Phi))=\operatorname{Aut}^{*}(\Phi)$.
- If G is not a nontrivial diagonal sum of blocks, then $\operatorname{Aut}(G) \subset \operatorname{Aut}^{*}(G)$ are finite.

Example - The DetFourier Matrix

Consider the $n^{2} \times n^{2}$ matrix indexed by $\mathbb{Z} / n \oplus \mathbb{Z} / n$ in both axes.
Let $\omega=\exp (2 \pi \sqrt{-1} / n)$, and

$$
D F(u, v)=\frac{\omega^{\operatorname{det}(u, v)}}{n}
$$

(i) $\forall w, \quad D F(u+w, v+w)=D F(u, w) D F(u, v) \overline{D F(v, w)}$.
(ii) $\forall A \in G L_{2}(\mathbb{Z} / n), \quad D F(A u, A v)=D F(u, v)^{\operatorname{det}(A)}$.

Example - The DetFourier Matrix

Consider the $n^{2} \times n^{2}$ matrix indexed by $\mathbb{Z} / n \oplus \mathbb{Z} / n$ in both axes.
Let $\omega=\exp (2 \pi \sqrt{-1} / n)$, and

$$
D F(u, v)=\frac{\omega^{\operatorname{det}(u, v)}}{n} .
$$

(i) $\forall w, \quad D F(u+w, v+w)=\operatorname{DF}(u, w) \operatorname{DF}(u, v) \overline{D F}(v, w)$.
(ii) $\forall A \in G L_{2}(\mathbb{Z} / n), \quad D F(A u, A v)=D F(u, v)^{\operatorname{det}(A)}$.

Hence the affine group has a homomorphism to

$$
A G L_{2}(\mathbb{Z} / n)=G L_{2}(\mathbb{Z} / n) \ltimes(\mathbb{Z} / n)^{2} \longrightarrow \operatorname{Aut}^{*}(D F) .
$$

Example - The DetFourier Matrix

Consider the $n^{2} \times n^{2}$ matrix indexed by $\mathbb{Z} / n \oplus \mathbb{Z} / n$ in both axes.
Let $\omega=\exp (2 \pi \sqrt{-1} / n)$, and

$$
D F(u, v)=\frac{\omega^{\operatorname{det}(u, v)}}{n} .
$$

(i) $\forall w, \quad D F(u+w, v+w)=\operatorname{DF}(u, w) D F(u, v) \overline{D F}(v, w)$.
(ii) $\forall A \in G L_{2}(\mathbb{Z} / n), \quad D F(A u, A v)=D F(u, v)^{\operatorname{det}(A)}$.

Hence the affine group has a homomorphism to

$$
A G L_{2}(\mathbb{Z} / n)=G L_{2}(\mathbb{Z} / n) \ltimes(\mathbb{Z} / n)^{2} \longrightarrow \operatorname{Aut}^{*}(D F) .
$$

The same automorphisms are shared by

$$
\left(I_{n^{2}}-D F\right) / 2=\Phi^{*} \Phi, \quad \Phi \in \operatorname{Conf}\left(\left(n^{2}-n\right) / 2, n^{2}\right)
$$

Example - Gabor Frames

The modulation and translation matrices are $M=\operatorname{diag}\left(\ldots, \tau^{i}, \ldots\right)$ and $T \in U(n)$ given by

$$
T_{i, j}= \begin{cases}1 & i-j \equiv 1 \quad \bmod n \\ 0 & \text { otherwise }\end{cases}
$$

We have

$$
M T=\omega T M
$$

Definition

The Weil-Heisenberg group is

$$
W H(n):=\left\{\tau^{a} M^{b} T^{c} \mid a, b, c \in \mathbb{Z} / n\right\} .
$$

- Let $g \in \mathbb{C}^{n},\|g\|=1$. The Gabor frame is

$$
\mathcal{G}(g)=\left(M^{b} T^{c} g\right)_{b, c \in \mathbb{Z} / n} .
$$

Gabor Frames

g is called the fiducial vector of $\mathcal{G}(g)$. We have

$$
W H(n) \mapsto \operatorname{Aut}(\mathcal{G}(g))
$$

given by $g \mapsto(x \mapsto g x)$.

Gabor Frames

g is called the fiducial vector of $\mathcal{G}(g)$. We have

$$
W H(n) \mapsto \operatorname{Aut}(\mathcal{G}(g))
$$

given by $g \mapsto(x \mapsto g x)$.

- Zauner SIC-POVMs are of type $\mathcal{G}(g)$ for some fiducial g.
- The normalizer of $W H(n)$ in $U(n)$ is called the Extended Clifford Group, EC(n).
- Known Zauner SIC-POVMs $(d \neq 2,3,8)$ admit an order 3 automorphism in $E C(n)$ (augmented with phases and permutations).
- Known Zauner SIC-POVMs are algebraic. They have extended automorphisms (coming from Multiplets)

Abstract Automorphisms on Grammians

- Let X be a finite set. Let $\operatorname{Mon}(X)$ be the group of phase monomial matrices on X. e.g. matrices $M_{j, \pi(j)}=\alpha_{j},\left|\alpha_{j}\right|=1$ and $\pi \in S_{X}$ a permutation.
- Let G be a finite group.

Definition

An abstract automorphism group on X is a $\operatorname{map} \varphi: G \rightarrow \operatorname{Mon}(X)$ which is a homomorphism up to a phase:

$$
\varphi\left(g g^{\prime}\right)=\alpha \varphi(g) \varphi\left(g^{\prime}\right), \quad|\alpha|=1
$$

Observation

The set of all matrices in $M \in \mathbb{C}^{X \times X}$ satisfying

$$
\varphi(g) M \varphi(g)^{*}=M, \quad \forall g \in G
$$

is a matrix algebra. We denote it by $\mathcal{A}(\varphi)$.

Abstract Automorphisms on Grammians

Let $\varphi: G \rightarrow \operatorname{Mon}(X)$ be an abstract automorphism group, and let $M \in \mathcal{A}(\varphi)$ be a matrix.

- If M is self-adjoint positive semidefinite, then $M=\Phi^{*} \Phi$ for a configuration Φ. We have a representation

$$
G \rightarrow \operatorname{Aut}(\Phi)
$$

- If in addition M is an idempotent, then Φ is a tight frame.

Extended Abstract Automorphisms on Grammians

Let $K \subset \mathbb{C}$ be a number-field, Galois over \mathbb{Q}, and let $\mu \subset K^{\times}$be a subgroup of unit norm elements. Let
$\operatorname{Mon}(X, \mu) \subset \operatorname{Mon}(X)$ the subgroup of μ-valued mon. matrices.

Definition

An Extended Abstract Automorphism Group on X is a pair (γ, φ) such that

1. $\gamma: G \rightarrow G a l(K / \mathbb{Q})$ is a homomorphism preserving μ.
2. $\varphi: G \rightarrow \operatorname{Mon}(X, \mu)$ is a map satisfying

$$
\varphi\left(g g^{\prime}\right) \doteq \varphi(g) \varphi\left(g^{\prime}\right)^{\gamma(g)}
$$

$(\doteq$ is equality up to phases in μ.)

Algebraic Matrix Algebras

- Given an extended automorphism Group (φ, γ), the set

$$
\mathcal{A}(\varphi, \gamma):=\left\{M \in K^{X \times X} \mid \varphi(g) M^{\gamma(g)} \varphi(g)^{*}=M, \forall g \in G\right\}
$$

is a matrix algebra over \mathbb{Q}.

- Again, self-adjoint idempotents correspond to algebraic TF Φ, admitting a homomorphism $G \rightarrow \operatorname{Aut}^{*}(\Phi)$.

Examples

Let $B_{3}=$ the symmetry group of the 3D cube.
$X=$ the set of all faces.
Define $\varphi: G \rightarrow \operatorname{Mon}(X)=$ the permutation action on X.

$$
\mathcal{A}(\varphi)=\left\{\left(\begin{array}{llllll}
x_{0} & x_{2} & x_{2} & x_{2} & x_{2} & x_{1} \\
x_{2} & x_{0} & x_{2} & x_{2} & x_{1} & x_{2} \\
x_{2} & x_{2} & x_{0} & x_{1} & x_{2} & x_{2} \\
x_{2} & x_{2} & x_{1} & x_{0} & x_{2} & x_{2} \\
x_{2} & x_{1} & x_{2} & x_{2} & x_{0} & x_{2} \\
x_{1} & x_{2} & x_{2} & x_{2} & x_{2} & x_{0}
\end{array}\right)\right\}
$$

$x_{0}=x_{3}=1 / 3, x_{2}=-1 / 6$ gives a self-adjoint idempotent of rank
2. The configuration is the perfect hexagon (up to phases).

Constructing Automorphisms from Group Theory

We need:

- A finite group G and a left action $G \curvearrowright X$.
- A number field K / \mathbb{Q} and a homomorphism $\gamma: G \rightarrow \operatorname{Gal}(K / \mathbb{Q})$.
- A subgroup of phases $\mu \subset K^{\times}$, stable under $\gamma(G)$.
\Longrightarrow we can define an action of G on $K^{X \times X}$:

$$
(g M)_{x, y}:=\left(M_{g^{-1} x, g^{-1} y}\right)^{\gamma(g)} .
$$

Constructing Automorphisms from Group Theory

We need:

- A finite group G and a left action $G \curvearrowright X$.
- A number field K / \mathbb{Q} and a homomorphism $\gamma: G \rightarrow \operatorname{Gal}(K / \mathbb{Q})$.
- A subgroup of phases $\mu \subset K^{\times}$, stable under $\gamma(G)$.
\Longrightarrow we can define an action of G on $K^{X \times X}$:

$$
(g M)_{x, y}:=\left(M_{g^{-1} x, g^{-1} y}\right)^{\gamma(g)} .
$$

- Let $\pi(g)$ be the permutation of g on X. Then

$$
\mathcal{A}(\pi, \gamma)=\{M \mid g M=M\} .
$$

To give X, is the same as to give a list of subgroups $\left\{H_{i} \subset G\right\}$, and then

$$
X \cong \bigsqcup_{i} G / H_{i}
$$

So this is completely group-theoretic.

- This program was carried out (in Iverson, Jasper and Mixon, 2019). But without Galois and with a single H_{i}.

To give X, is the same as to give a list of subgroups $\left\{H_{i} \subset G\right\}$, and then

$$
X \cong \bigsqcup_{i} G / H_{i}
$$

So this is completely group-theoretic.

- This program was carried out (in Iverson, Jasper and Mixon, 2019). But without Galois and with a single H_{i}.
- We want even more: To consider monomial actions.
- This means that π should be replaced by $\varphi: G \rightarrow \operatorname{Mon}(X, \mu)$, satisfying the conditions explained above.
- We want φ to lift π, i.e.

$$
|\varphi(g)|=\pi(g), \quad \text { (entrywise modulus). }
$$

- Here is where Cohomology comes in ...

We need

$$
\begin{align*}
\varphi\left(g g^{\prime}\right) & \doteq \varphi(g) \varphi\left(g^{\prime}\right)^{\gamma(g)} \tag{1}\\
|\varphi(g)| & =\pi(g) \tag{2}
\end{align*}
$$

Let's try an easier condition first:

$$
\begin{equation*}
\varphi\left(g g^{\prime}\right)=\varphi(g) \varphi\left(g^{\prime}\right)^{\gamma(g)} \tag{3}
\end{equation*}
$$

Write $\varphi(g)=\delta(g) \pi(g), \delta(g)$ diagonal. Then

$$
\varphi\left(g g^{\prime}\right)=\delta\left(g g^{\prime}\right) \pi\left(g g^{\prime}\right)=\delta\left(g g^{\prime}\right) \pi(g) \pi\left(g^{\prime}\right)^{\gamma(g)}
$$

$$
\begin{aligned}
\varphi(g) \varphi\left(g^{\prime}\right)^{\gamma(g)}= & (\delta(g) \pi(g))\left(\delta\left(g^{\prime}\right) \pi\left(g^{\prime}\right)\right)^{\gamma(g)}= \\
= & \delta(g) \pi(g) \delta\left(g^{\prime}\right)^{\gamma(g)} \pi\left(g^{\prime}\right)^{\gamma(g)} \\
& =\delta(g) \pi(g) \delta\left(g^{\prime}\right)^{\gamma(g)} \pi(g)^{-1} \pi(g) \pi\left(g^{\prime}\right)^{\gamma(g)}
\end{aligned}
$$

Equating,

$$
\delta\left(g g^{\prime}\right)=\delta(g) \pi(g) \delta\left(g^{\prime}\right)^{\gamma(g)} \pi(g)^{-1}
$$

We see that δ is a 1 -cocycle. More precisely, let

$$
D_{X}(\mu)=\{X \times X \text { Diagonal matrices over } \mu\}
$$

Let $G \curvearrowright D(\mu)$ by its action on $K^{X \times X}$. The δ defines a cohomology class in

$$
[\delta] \in H^{1}\left(G, D_{X}(\mu)\right)
$$

So we want to compute this cohomology.

Theorem (Eckmann-Shapiro Lemma)

If $X \cong G / H$, then

$$
H^{1}\left(G, D_{X}(\mu)\right) \cong H^{1}(H, \mu) .
$$

More generally, if $X \cong \bigsqcup_{i} G / H_{i}$, then

$$
H^{1}\left(G, D_{X}(\mu)\right) \cong \bigoplus_{i} H^{1}\left(H_{i}, \mu\right) .
$$

Cohomology Basics

Let G be a group, acting on an Abelian group A. For any function

$$
f: G^{n} \rightarrow A
$$

let $d_{i} f: G^{n+1} \rightarrow A$ given by

$$
d_{i} f\left(g_{0}, g_{1}, \ldots, g_{n}\right)= \begin{cases}f\left(g_{0}, \ldots, g_{n-1}\right) & i=n \\ f\left(g_{0}, \ldots, g_{i} \cdot g_{i+1}, \ldots, g_{n}\right) & 0<i<n, \\ g_{0} f\left(g_{1}, \ldots, g_{n}\right) & i=0 .\end{cases}
$$

and let

$$
d f=\sum_{i=0}^{n}(-1)^{i} d_{i} f, \quad d \circ d=0 .
$$

Definition

$$
f \text { is a cocycle if } d f=0,
$$

$$
f \text { is a coboundary if } f=d h \text {. }
$$

Coboundaries \subseteq Cocycles.

Cohomology Basics

- The n th-Cohomology Group is

$$
H^{n}(G, A)=\frac{n-\text { cocycles }}{n-\text { coboundaries }} .
$$

- If $F \leq G$ is is subgroup of G, then there is a natural homomorphism

$$
\text { res : } H^{n}(G, A) \rightarrow H^{n}(F, A)
$$

given by restriction of cocycles.

0,1,2-Cohomology

- $H^{0}(G, A)=A^{G}:=$ The group of G-invariant elements.
- 1-cocycles are functions $z: G \rightarrow A$ such that

$$
z\left(g g^{\prime}\right)=z(g)+g z\left(g^{\prime}\right)
$$

- 1-coboundaries are functions z:G $\rightarrow A$ such that

$$
z(g)=g a-a, \text { for a given } a \in A
$$

- If G acts trivially on A, then

$$
H^{1}(G, A) \cong H o m(G, A)
$$

0,1,2-Cohomology

- 2-cocycles are functions $z: G^{2} \rightarrow A$ such that

$$
g_{0} z\left(g_{1}, g_{2}\right)+z\left(g_{0}, g_{1} g_{2}\right)=z\left(g_{0} g_{1}, g_{2}\right)+z\left(g_{0}, g_{1}\right)
$$

- 2-coboundaries are functions $z: G^{2} \rightarrow A$ such that

$$
z\left(g_{1}, g_{2}\right)=u\left(g_{1} g_{2}\right)-u\left(g_{1}\right)-g_{1} u\left(g_{2}\right)
$$

for some function $u: G \rightarrow A$.

Recall: $G \curvearrowright X, \pi(g)$ is the permutation matrix on X, we write

$$
\begin{aligned}
\varphi(g) & =\delta(g) \pi(g), \quad \delta(g) \in D_{X}(\mu) \text { i.e. diagonal over } \mu, \\
\varphi\left(g g^{\prime}\right) & =\varphi(g) \varphi\left(g^{\prime}\right)^{\gamma(g)} .\left(\varphi \text { is called } H^{1} \text {-Develpoed action }\right)
\end{aligned}
$$

Then δ is a 1 -cocycle w.r.t. $G \curvearrowright D_{X}(\mu)$:

$$
\delta\left(g g^{\prime}\right)=\delta(g) \pi(g) \delta\left(g^{\prime}\right)^{\gamma(g)} \pi(g)^{-1}
$$

Observation

Let $\varphi^{\prime}(g)=\delta^{\prime}(g) \pi(g)$ and $\varphi(g)=\delta(g) \pi(g)$. Then
$\left[\delta^{\prime}\right]=[\delta] \in H^{1}\left(G, D_{X}(\mu)\right)$,

$$
\Longleftrightarrow \exists D \in D_{X}(\mu), \varphi^{\prime}=D \varphi D^{-1} .
$$

H^{2}-Developement

Suppose that we only want

$$
\varphi\left(g g^{\prime}\right) \doteq \varphi(g) \varphi\left(g^{\prime}\right)^{\gamma(g)}
$$

Write

$$
\varphi\left(g g^{\prime}\right)=\alpha\left(g, g^{\prime}\right) \varphi(g) \varphi\left(g^{\prime}\right)^{\gamma(g)}, \quad \alpha\left(g, g^{\prime}\right) \in \mu
$$

- Then $\alpha\left(g, g^{\prime}\right)$ is a 2 -cocycle over μ.
- If φ and φ^{\prime} admit the same class $[\alpha] \in H^{2}(G, \mu)$, then

$$
\varphi^{\prime}(g)=\delta_{0}(g) \varphi(g), \quad\left[\delta_{0}\right] \in H^{1}\left(G, D_{X}(\mu)\right)
$$

- Monomial actions φ are controlled by $H^{1}\left(G, D_{X}(\mu)\right)$ and $H^{2}(G, \mu)$.

A Program for computing Symmetric Algebraic Configurations

(i) Choose a group G and an action $G \curvearrowright X$.
(ii) Choose a Number Field K, a Galois action $\gamma: G \rightarrow G a l(K / \mathbb{Q})$ and a G-stable phase group $\mu \in K^{\times}$.
(iii) Compute a monomial action $\varphi: G \rightarrow \operatorname{Mon}(X, \mu)$ using cohomology.
(iv) Construct a basis to the algebra $\mathcal{A}(\varphi, \gamma)$.
(v) Study it's structure and compute self-adjoint idempotents. Generate configurations.

- The number of angles $+1 \leq$ the number of G-orbits in $X \times X$.

Constructing a basis to $\mathcal{A}(\varphi, \gamma)$.

$\mathcal{A}(\varphi, \gamma)$ is an algebra over K^{G}, the subfield of G-invariants.
(a) Compute the orbit decomposition $X \times X=\bigsqcup_{i} O_{i}$.

- Pick a point $\left(x_{i}, y_{i}\right) \in O_{i}$ for each i.
- For each i, pick a suitable value $\xi_{i} \in K^{\times}$.
- For each i there is at most one matrix $B_{i} \in K^{X \times X}$, supported in O_{i}, having

$$
\left(B_{i}\right)_{x_{i}, y_{i}}=\xi_{i} .
$$

- The collection $\left\{B_{i}\right\}$ spans over K^{G} the algebra $\mathcal{A}(\varphi, \gamma)$.

Orientability of Orbits

Definition

An orbit $O \subset X \times X$ is orientable if for each point $(x, y) \in O$ there exist a $\xi \in K^{\times}$such that

$$
\begin{equation*}
\varphi(h)_{x, x} \xi^{\gamma(h)} \varphi(h)_{y, y}^{*}=\xi \tag{4}
\end{equation*}
$$

for all $h \in G$ s.t. $h x=x, h y=y$.
Meaning: The monomial action φ does not destroy the value ξ of a putative matrix $A \in \mathcal{A}(\varphi, \gamma)$.

- Basis matrices B_{i} exist only for orientable orbits B_{i}.
- Elements of $\mathcal{A}(\varphi, \gamma)$ must vanish at non-orientable orbits.
- The value ξ must be chosen carefully in order to comply with condition (4).
- The appropriate element ξ can be found via cohomology.

The Spectral Sequence

Let G, X, γ, μ, K be given.

Definition

Two matrices $A, B \in K^{X \times X}$ are phase-equivalnt, written

$$
A \sim_{P} B \Longleftrightarrow A=D B D^{-1}, \text { for } D \in D_{X}(\mu)
$$

Definition

A matrix $A \in K^{X \times X}$ is Cohomology-Developed (CDM) w.r.t.
(G, X, γ, μ, K), if

$$
\forall g \in G, \quad g A \sim_{p} A .
$$

The Spectral Sequence

$$
H^{0}\left(G,\left(K^{\times}\right)^{X \times X} / \sim_{P}\right)=\{\text { CDMS with nonzero entries }\} / \sim_{P}
$$

- Wish to compute $H^{0}\left(G,\left(K^{\times}\right)^{X \times X} / \sim_{P}\right)$.
- This can be done in terms of a spectral sequence.

Suppose that

$$
\begin{array}{r}
X \cong \bigsqcup_{i} G / H \\
X \times X \cong \bigsqcup_{i} G / F_{i} \tag{6}
\end{array}
$$

where $F_{i} \subset H$.

The Spectral Sequence

Theorem

There exists a first quadrant cohomological spectral sequence $E_{1}^{i, j} \Longrightarrow H^{i+j}\left(G, M_{X \times X} / \sim_{p}\right)$ whose E_{1}-page is:

$$
\begin{aligned}
H^{2}(G, \mu) \xrightarrow{\text { res }_{H}^{G}} & H^{2}(H, \mu) \\
H^{1}(G, \mu) \longrightarrow & H^{1}(H, \mu) \xrightarrow{\oplus \text { res }_{F}^{H}} \bigoplus_{i} H^{1}\left(F_{i}, K^{\times}\right) . \\
& H^{0}(H, \mu) \longrightarrow \bigoplus_{i} H^{0}\left(F_{i}, K^{\times}\right)
\end{aligned}
$$

Orientability Conditions

$$
\begin{aligned}
& H^{2}(G, \mu) \xrightarrow{\operatorname{res}_{H}^{G}} H^{2}(H, \mu) \\
& H^{1}(G, \mu) \longrightarrow H^{1}(H, \mu) \xrightarrow{\oplus \operatorname{res}_{F}^{H}} \bigoplus_{i} H^{1}\left(F_{i}, K^{\times}\right) . \\
& H^{0}(H, \mu) \longrightarrow \bigoplus_{i} H^{0}\left(F_{i}, K^{\times}\right)
\end{aligned}
$$

Orientability Conditions

Orientability Conditions

Orientability Conditions

$d_{1}, d_{2}=$ Orientability Obstructions

A formula for generating CDMs

We assume the $X \cong G / H$ is G-transitive. We need the following ingredients:
$\underline{H^{2} \text {-Data: A class in }[\alpha] \in H^{2}(G, \mu) \text { such that }}$

$$
\operatorname{res}_{H}^{G}([\alpha])=[0] \in H^{2}(H, \mu) .
$$

- A trivialization $\lambda: H \rightarrow \mu$ such that $\left.\alpha\right|_{H \times H}=d \lambda$.
$\underline{H^{1} \text {-Data: } A \text { class }[\varepsilon] \in H^{1}(H, \mu) . ~}$
(i) Choose Coset Representatives $\left\{g_{i}\right\}$ for G / H.
(ii) Define a map for: $G \rightarrow H$ such that

$$
g=\text { for }(g) g_{i}^{-1}, \quad \text { for a representative } g_{i}
$$

A formula for generating CDMs

Let

$$
\delta_{g, i}:=\left(\frac{\varepsilon(h) \lambda(h) \alpha\left(g_{i}^{-1}, g\right)}{\alpha(h, 1)}\right)^{\gamma\left(g_{i}\right)}
$$

where

$$
h=\operatorname{for}\left(g_{i}^{-1} g\right)
$$

- Finally, let

$$
\delta(g)=\operatorname{diag}\left(\delta_{g, i}\right)_{i}
$$

Then

$$
\varphi(g)=\delta(g) \pi(g)
$$

gives the desired monomial action.

Cocyclic Matrices

In the special case $X=G$ (action by left multiplication), the resulting CDMs take the simple form

$$
M=M(f)=\left(\frac{\alpha\left(x^{-1} y, y^{-1}\right)^{\gamma(x)}}{\alpha\left(1, y^{-1}\right)^{\gamma(y)}} \cdot f\left(x^{-1} y\right)^{\gamma(x)}\right)_{x, y \in G}
$$

where $f: G \rightarrow K$ is an arbitrary function. We have

$$
\mathcal{A}(\varphi, \gamma)=\{M(f) \mid f: G \rightarrow K\}
$$

an algebra over K^{G}.

- $M(f)$ is called a Cocyclic matrix.
- We will address $\mathcal{A}(\varphi, \gamma)$ as the Cocyclic Algebra.

Cocyclic Algebras

Cocyclic Algebras is already a rich source of examples of configuration algebras. Let $\omega=\exp (2 \sqrt{-1} \pi / n)$.

- Gabor frames are a special case. Take $G=\mathbb{Z} / n \times \mathbb{Z} / n$, the 2-cocycle $\alpha((a, b),(c, d))=\omega^{b c}$, and $\gamma=i d$. We have

$$
\mathcal{A}(\varphi, \gamma) \cong M_{n}(\mathbb{Q}(\omega))
$$

Minimal idempotents correspond to Gabor frames.

- Taking $\alpha=1$ instead, gives a different algebra:

$$
\mathcal{A}\left(\varphi^{\prime}, \gamma\right) \cong \mathbb{Q}(\omega)^{n^{2}}
$$

Examples (Twisted Gabor Frames)

Let

$$
\alpha((a, b),(c, d)):=\omega^{b c+\chi(a, c)}
$$

where

$$
\begin{gathered}
n \cdot \chi(a, c):=\widehat{a+c}-\widehat{a}-\widehat{c} \\
0 \leq \widehat{(x \bmod n)}<n, \quad \overline{(x \bmod n)} \equiv x \quad \bmod n .
\end{gathered}
$$

- This leads to configurations $\Phi \in \operatorname{Conf}\left(d, d^{2}\right)$.
- They are not phase equivalent to Gabor frames. They are generated by certain two unitary matrices \tilde{M}, \tilde{T} with

$$
\tilde{M}^{9}=\tilde{T}^{3}=1 ; \quad \tilde{M} \tilde{T}=\omega \tilde{T} \tilde{M}
$$

- One cannot replace $\tilde{M}=\omega^{1 / 3} M, \tilde{T}=T$.

Examples (Gabor Cubes (Conjectural))

$$
\begin{aligned}
& \text { Let } G=\mathbb{Z} / n \times \mathbb{Z} / n \times \mathbb{Z} / n \text {. Let } \\
& \qquad \alpha\left(\left(v_{0}, v_{1}, v_{2}\right),\left(u_{0}, u_{1}, u_{2}\right)\right)=\omega^{v_{0} u_{1}+v_{1} u_{2}-v_{2} u_{0}}
\end{aligned}
$$

- Conjecture:

$$
\mathcal{A}(\varphi, \gamma) \cong M_{n}(\mathbb{Q}(\omega))^{n} .
$$

- The minimal idempotents are of rank n. They correspond to $\Phi \in \operatorname{Conf}\left(n, n^{3}\right)$.
- They form a Gabor Cube (see figure).

Gabor Cube (Conjectural)

- Every layer is a $n \times n^{2}$ Gabor frame.
- Moreover, this is true for many 2-dim affine subspaces of $(\mathbb{Z} / n)^{3}$.
- The system is generated by 3 unitary operators M_{1}, M_{2}, M_{3} with $M_{i}^{n}=I$ and

$$
\forall i, \quad M_{i} M_{i+1}=\omega M_{i+1} M_{i}
$$

Example: A_{5}

Let $G=A_{5}$, the alternating group, and let

$$
G \curvearrowright X:=\{\{i, j\} \mid 1 \leq i<j \leq 5\} .
$$

- We first choose $\alpha=\varepsilon=0$. We get a permutation action on $\mathbb{C}^{X \times X}$ 。

$$
\mathcal{A}(\varphi, \gamma) \cong \mathbb{Q}^{3} .
$$

- There are 3 minimal idempotents, E_{0}, E_{1}, E_{2} of ranks $1,4,5$.

Example: A_{5}

The configuration in $\operatorname{Conf}(4,10)$ has Gram matrix
$G(\Phi)=\left(\begin{array}{rrrrrrrrrr}1 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & -\frac{2}{3} & -\frac{2}{3} & \frac{1}{6} & \frac{1}{6} & -\frac{2}{3} & \frac{1}{6} \\ \frac{1}{6} & 1 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & -\frac{2}{3} & -\frac{2}{3} & -\frac{2}{3} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & 1 & \frac{1}{6} & -\frac{2}{3} & \frac{1}{6} & -\frac{2}{3} & \frac{1}{6} & \frac{1}{6} & -\frac{2}{3} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 1 & \frac{1}{6} & -\frac{2}{3} & \frac{1}{6} & -\frac{2}{3} & \frac{1}{6} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{1}{6} & -\frac{2}{3} & \frac{1}{6} & 1 & \frac{1}{6} & \frac{1}{6} & -\frac{2}{3} & \frac{1}{6} & \frac{1}{6} \\ -\frac{2}{3} & \frac{1}{6} & \frac{1}{6} & -\frac{2}{3} & \frac{1}{6} & 1 & -\frac{2}{3} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & -\frac{2}{3} & -\frac{2}{3} & \frac{1}{6} & \frac{1}{6} & -\frac{2}{3} & 1 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & -\frac{2}{3} & \frac{1}{6} & -\frac{2}{3} & -\frac{2}{3} & \frac{1}{6} & \frac{1}{6} & 1 & \frac{1}{6} & \frac{1}{6} \\ -\frac{2}{3} & -\frac{2}{3} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 1 & -\frac{2}{3} \\ \frac{1}{6} & \frac{1}{6} & -\frac{2}{3} & -\frac{2}{3} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & -\frac{2}{3} & 1\end{array}\right)$.

Example: A_{5}

On the other hand, $X \cong G / H$ with $H \cong S_{3}$, and choose

$$
\varepsilon: H \rightarrow\{ \pm 1\}, \quad \varepsilon=\text { sign. }
$$

$$
\mathcal{A}(\varphi, \gamma) \cong \mathbb{Q} \times \mathbb{Q}(\sqrt{5})
$$

- There are 3 idempotents, E_{0}, E_{1}, E_{2} of ranks $4,3,3$. The latter two are Galois conjugates.

Example: A_{5}

The Gram matrix of the resulting $\Phi \in \operatorname{Conf}(4,10)$ is

$$
G(\Phi)=\left(\begin{array}{rrrrrrrrrr}
1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & -\frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 1 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 1 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\
0 & \frac{1}{2} & 0 & -\frac{1}{2} & 1 & \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} & -\frac{1}{2} \\
0 & \frac{1}{2} & -\frac{1}{2} & 0 & \frac{1}{2} & 1 & 0 & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & 0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 1 & -\frac{1}{2} & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & 1 & 0 \\
\frac{1}{2} & -\frac{1}{2} & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & 1
\end{array}\right) .
$$

THANK YOU

