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Configurations

Definition

A configuration is a complex matrix ® € C4*". We view it as an
ordered list of vectors {®; 7;01 in C¢.

d = The dimension,

n = The cardinality.

Some Definitions:

e ®isa if for every vector v,

n—1
v = Z(v, )P,
i=0

Equivalently, ® can be completed to a n X n orthogonal
matrix.

e A unit norm TF ® is m-angular if {|[(®;, ®;)|}i<; has
cardinality m.



m-angular tight-frames

e If m=1, then ® is called an Equiangular-Tight-Frame (ETF).
e m-angular TF arise often as minimizers of potential functions.
E.g. the Frame-Potential given by
FPo(W) =Y (Wi, W))IP, st. Vi ||| = 1.
ij
e In the special case n = d?, the ETF @ is called a SIC-POVM.
In is conjectured (Zauner) to exist for all d > 1.
e A set of Mutually Unbiased Bases (MUB) is m = 2-angular:
We have n = rd and
1 i=j
(P, 0)P=%0 sd<i<j<(s+1)d.
1/d otherwise



Algebraic Configurations

Fix an algebraic closure Q/Q.
Definition
(a) A configurations ® is Algebraic if all ®;; € Q.

(b) @ is Potentially Algebraic (PA) if there are phases e%V=1,
0 <j < nand a unitary U € U(d) such that

eV IUd; € Q7.

e Often, minimaizers of potential functions solve algebraic
equations and thus are algebraic.

e The known examples of Zauner SIC-POVMs and maximal
MUBs are potentially algebraic.

e The entries of known algebraic MUBs are roots of unity.



Algebraic Configurations

e The entries of known algebraic WH SIC-POVMs are is an
abelian extension field (Appleby, 2012)

E / Qv \/(d—1)(d + 3)).

e Observation: ® is potentially algebraic <= there is a phase
diagonal matrix D s.t.

D*(®*®)D is algebraic.



Automorphism Groups

The following actions on ® preserve the multiset {|(®;, ®;)|}:
(i) Phasing: for o = (a;) € R”, Let (o ®); := e®V 10,
(i) Permutations: For m € Sy, Let (m* )i = Proayy.
(iii) Rotation: For U € U(d), Let Ux®:=Ud.
(iv) Complex Conjugation: Let (conj x ®) := .
The combination of all such actions on the space of configurations
form a group, denoted by

Definition
The Automorphism Group of @ is the group

Aut(®) :={g e X(d,n) | g+d=d}.



Extended automorphism group

Let ® be algebraic and let Ga/(Q/Q)° C Gal(Q/Q) be the
centralizer of complex conjugation. We can add

(v) Galois Conjugation: For o € Gal(Q/Q)°, let (o * ®) := .
Let X*(n, d) D X(n, d) be the group of actions on algebraic
configurations generated by (i)-(v).

Definition
For an algebraic ®, the Extended Automorphism Group is the

group

Aut*™(®) == {g e X*(d,n) | g x> = d}.



An Example

Let ® = [a, b, ¢, d] € Conf(2,4) (defined over Q(1/2)) as in the

picture.
c
d b
’\ / \ U
Alemmnran 0 ——— 4

e Here is an automorphism and an extended automorphism.
Apply:

[a, b, ¢, d] Y [b,c,d,—a] RIEcS [b,c,d, a] pern [a, b, c, d],

[aa ba c, d] Ga_l‘3>i5 [a’ _ba G, _d] piE}se [aa ba G, d]



Automorphism group on the Grammian Matrix

Assume rank(®) = d. The Grammian G(®) := ®*® determines ¢

up to rotation. On
G(n,d) :=={®*d | & € Conf(n,d)}
the actions (i)-(v) reduce to the form
(i)+(ii) Monomial Matrices: M % G := MGM*.
(iv)+(v) Galois Conjugation g * G := GS5.
We denote the groups by Aut(G) and Aut*(G).
e We have Aut(G(®)) = Aut(P) and Aut™(G(P)) = Aut™(P).

e If G is not a nontrivial diagonal sum of blocks, then
Aut(G) C Aut*(G) are finite.



Example - The DetFourier Matrix

Consider the n? x n? matrix indexed by Z/n @ Z/n in both axes.
Let w = exp(2wyv/—1/n), and

odet(u,v)

DF(u,v) = -

(i) Yw, DF(u+ w,v+ w) = DF(u,w)DF(u,v)DF(v,w).
(i) VA € GLy(Z/n), DF(Au,Av) = DF(u,v)®tA).
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Example - The DetFourier Matrix

Consider the n? x n? matrix indexed by Z/n @ Z/n in both axes.
Let w = exp(2wyv/—1/n), and

wdet(u,v)

DF(u,v) = -

(i) Yw, DF(u+ w,v+ w) = DF(u,w)DF(u,v)DF(v,w).
(i) VA € GLy(Z/n), DF(Au,Av) = DF(u,v)®tA).

Hence the affine group has a homomorphism to
AGLy(Z/n) = GLy(Z/n) x (Z/n)?> — Aut*(DF).
The same automorphisms are shared by

(I, — DF)/2 = &*®, & € Conf((n® — n)/2, n?).



Example - Gabor Frames

The modulation and translation matrices are M = diag(. ..

and T € U(n) given by

1 i—j=1 modn
T,'_J' = ] .
0 otherwise
We have

MT = wTM.

Definition
The Weil-Heisenberg group is

WH(n) := {r?MPT*€ | a,b,c € Z/n}.

o Let g € C", ||g|| = 1. The Gabor frame is

g(g) - (Mchg) b,c€Z/n-

10



Gabor Frames

g is called the fiducial vector of G(g). We have
WH(n) — Aut(G(g)),

given by g — (x — gx).

11



Gabor Frames

g is called the fiducial vector of G(g). We have
WH(n) — Aut(G(g)),
given by g — (x — gx).

e Zauner SIC-POVMs are of type G(g) for some fiducial g.

e The normalizer of WH(n) in U(n) is called the Extended
Clifford Group, EC(n).

e Known Zauner SIC-POVMs (d # 2,3,8) admit an order 3
automorphism in EC(n) (augmented with phases and
permutations).

e Known Zauner SIC-POVMs are algebraic. They have
extended automorphisms (coming from Multiplets)

11



Abstract Automorphisms on Grammians

e Let X be a finite set. Let be the group of phase
monomial matrices on X. e.g. matrices M; () = «j, ;| =1
and m € Sx a permutation.

e Let G be a finite group.

Definition
An abstract automorphism group on X is a map ¢ : G — Mon(X)

which is a

p(gg') = ap(g)p(g), lal=1.

Observation
The set of all matrices in M € CX*X satisfying

p(g)Mp(g)" =M, VgeG

. We denote it by A(y). 12



Abstract Automorphisms on Grammians

Let ¢ : G — Mon(X) be an abstract automorphism group, and let
M € A(y) be a matrix.

o If M is self-adjoint positive semidefinite, then M = ®*® for a
configuration ®. We have a representation

G — Aut(®).

e If in addition M is an idempotent, then ® is a tight frame.

13



Extended Abstract Automorphisms on Grammians

Let K C C be a number-field, Galois over @, and let © C K* be a
subgroup of unit norm elements. Let

the subgroup of p-valued mon. matrices.

Definition
An Extended Abstract Automorphism Group on X is a pair (v, )
such that

v G — Gal(K/Q) is a homomorphism preserving .

@ G — Mon(X, u) is a map satisfying

(= is equality up to phases in y.)

14



Algebraic Matrix Algebras

e Given an extended automorphism Group (¢, ), the set
A(p,7) = {M € KX | o(g) M"&) (g)* = M, Vg € G}

is a matrix algebra over QQ.

e Again, self-adjoint idempotents correspond to algebraic TF &,
admitting a homomorphism G — Aut*(®).

ii5)



Examples

Let B3= the symmetry group of the 3D cube.
X= the set of all faces.

Define ¢ : G — Mon(X) = the permutation action on X.

Xp X2 X2 X2 X2 X1
X2 Xp X2 X2 X1 X2
Alp) = X2 X2 Xp X1 X2 X2
X2 X2 X1 Xp X2 X2
X2 X1 X2 X2 Xo X2
X1 X2 X2 X2 X2 X

xo = x3 =1/3,xp = —1/6 gives a self-adjoint idempotent of rank
2. The configuration is the perfect hexagon (up to phases).

16



Constructing Automorphisms from Group Theory

We need:

e A finite group G and a left action G ~ X.

e A number field K/Q and a homomorphism
v: G — Gal(K/Q).

e A subgroup of phases y C K*, stable under v(G).

— we can define an action of G on KX*X:

(gM)X,y = (Mg‘lx,g‘ly)’Y(g)-

17



Constructing Automorphisms from Group Theory

We need:

e A finite group G and a left action G ~ X.

e A number field K/Q and a homomorphism
v: G — Gal(K/Q).

e A subgroup of phases y C K*, stable under v(G).

— we can define an action of G on KX*X:

(gM)X,y = (Mg‘lx,g‘ly)%g)-

e Let m(g) be the permutation of g on X. Then

A(m,v) ={M | gM = M}.

17



To give X, is the same as to give a list of subgroups {H; C G},
and then

x| |G/H:.

So this is completely group-theoretic.

e This program was carried out (in lverson, Jasper and Mixon,
2019). But without Galois and with a single H;.

18



To give X, is the same as to give a list of subgroups {H; C G},
and then

x| |G/H:.

So this is completely group-theoretic.

e This program was carried out (in lverson, Jasper and Mixon,
2019). But without Galois and with a single H;.

e \We want even more: To consider monomial actions.

e This means that 7 should be replaced by ¢ : G — Mon(X, 1),
satisfying the conditions explained above.

e We want ¢ to lift 7, i.e.
lo(g)] = m(g), (entrywise modulus).

e Here is where Cohomology comes in ...

18



We need

v(gg’) = plg)ple’)® (1)

lo(g)l = m(g) (2)
Let's try an easier condition first:

v(gg’) = p(g)ple’)® (3)

Write p(g) = 0(g)m(g), 0(g) diagonal. Then

/

v(gg') = d(gg")m(gg’) = d(gg)m(g)m(g')®

(&)m(g))(8(g")m(g")®) =
5(g)m(g)d(g")"n(g')®)

= 0(g)m(g)d(g')@n(g) 1 (g)m(g') ).

0(g)p(g')8) = (s

19



Equating,
i(gg’) = 5(g)m(g)d (') ().
We see that § is a . More precisely, let

Dx () = {X x X Diagonal matrices over j}.

Let G ~ D(u) by its action on KX*X_ The § defines a

cohomology class in
[6] € H(G, Dx(1)).
So we want to compute this cohomology.

Theorem (Eckmann-Shapiro Lemma)
If X = G/H, then

H'(G, Dx(w)) = H'(H, p).

More generally, if X = | |; G/H;, then

GDX// @HIH/I

20



Cohomology Basics

Let G be a group, acting on an Abelian group A. For any function
f:G"— A,
let d;f : G — A given by

f(gos---,8n-1) i=n
dif(go,8&1,---,8n) = { (g0, -, g gi+1,---,8n) 0<i<n,
gof 81,---18n) i=0.
and let .
df =Y (=1)dif, dod=0
i=0
Definition

f is a cocycle if df =0,

f is a coboundary if f = dh.

21
Coboundaries C Cocycles.



Cohomology Basics

o The nth-Cohomology Group is

n — cocycles

H"(G,A) = .
(&) n — coboundaries

o If F < G isis subgroup of G, then there is a natural
homomorphism

res : H"'(G,A) — H"(F, A),

given by restriction of cocycles.

22



0,1,2-Cohomology

e H°(G,A) = A® := The group of G-invariant elements.

e 1-cocycles are functions z : G — A such that

z(gg') = z(g) + gz(g).

e 1l-coboundaries are functions z : G — A such that

z(g) = ga— a, for a given a € A.

e If G acts trivially on A, then

HY(G, A) = Hom(G, A).

23



0,1,2-Cohomology

e 2-cocycles are functions z : G2 — A such that

goz(g1,82) + z(go, 8182) = z(&o&1, &) + z(&o, &1)-

e 2-coboundaries are functions z : G2 — A such that

z(g1,82) = u(g182) — u(g1) — g1u(g2)-

for some function u: G — A.

24



H! - Development

Recall: G ~ X, m(g) is the permutation matrix on X, we write

v(g) =d(g)m(g), d(g) € Dx(u) i.e. diagonal over p,
o(gg') = p(g)e(g')"8). (¢ is called H*-Develpoed action)

Then ¢ is a 1-cocycle w.r.t. G ~ Dx(u):

5(gg’) = d(g)m(g)d(g’) " n(g) "

Observation
Let
[0'] = [0] € H'(G, Dx(n)),

« 3D € Dx(p), ¢ = DpD™L.

25



H?-Developement

Suppose that we only want

v(gg’) = p(g)p(g')®.
Write

v(gg’) = alg. &' )p(g)e(e')8), alg,g) € .

e Then a(g,g’) is a 2-cocycle over p.
e If ¢ and ¢’ admit the same class [a] € H?(G, i), then

¢'(8) = do(g)e(g), [do] € H'(G, Dx(w)).

e Monomial actions ¢ are controlled by H'(G, Dx(p)) and
H?(G, ).

26



A Program for computing Symmetric Algebraic Configurations

(i) Choose a group G and an action G ~ X.

(i) Choose a Number Field K, a Galois action
~v: G — Gal(K/Q) and a G-stable phase group p € K*.

(iii) Compute a monomial action ¢ : G — Mon(X, 1) using
cohomology.

(iv) Construct a basis to the algebra A(p, 7).

(v) Study it's structure and compute self-adjoint idempotents.
Generate configurations.

e The number of angles +1 < the number of G-orbits in X x X.

27



Constructing a basis to A(y, 7).

A(p,7) is an algebra over K¢, the subfield of G-invariants.

(a) Compute the orbit decomposition X x X =| |; O;.
e Pick a point (x;,y;) € O; for each i.
e For each /, pick a suitable value & € K*.

e For each i there is at most one matrix B; € KX*X | supported
in O;, having

(Bi)xiys = &i-
e The collection {B;} spans over K¢ the algebra A(¢p, 7).

28



Orientability of Orbits

Definition
An orbit O C X x X is orientable if for each point (x, y) € O there
exist a £ € K* such that

W(h)x,xgﬂ”(h)‘ﬁ(h);,y =¢,

forall he Gst. hx=x,hy =y.

Meaning: The monomial action ¢ & of
a putative matrix A € A(p, 7).

Basis matrices B; exist only for orientable orbits B;.
Elements of A(¢y,y) must vanish at non-orientable orbits.
The value £ must be chosen carefully in order to comply with
condition (4).

The appropriate element £ can be found via cohomology.

29



The Spectral Sequence

Let G, X,~, u, K be given.

Definition

Two matrices A, B € KX*X are phase-equivalnt, written
p

A~p B < A= DBD™ ', for D € Dx(p).

Definition
A matrix A € KX*X is Cohomology-Developed (CDM) w.r.t.

(G, X,~v, u, K), if

Vg € G, gA~pA.

30



The Spectral Sequence

HO(G,(K*)**X/ ~p) = {CDMS with nonzero entries}/ ~p .

e Wish to compute HO(G, (K*)*X/ ~p).

e This can be done in terms of a spectral sequence.

Suppose that
X=||G/H, (5)

XXX%UGFL (6)

where F; C H.

31



The Spectral Sequence

Theorem
There exists a first quadrant cohomological spectral sequence

E{’j — H'H(G, Mxxx/ ~p) whose Ei-page is:

H2(G, 1)~ H2(H, p)
QaresH_
HY(G, 1) — HY(H,p) — @; H*(Fi, K*) -
HO(H, 1) — @, HO(Fi, K*)

32



Orientability Conditions

resH

H?(G, ) — H*(H, )

EBresH
HY(G, 1) — HYH, 1) — @, H(Fi, K*) -

HO(H, 1) —— @; H(Fi, K*)

33



Orientability Conditions

resG
EBres’t-’,
(6.1 — ()3 @y HF )

HO(H, 1) @, HO(Fi, K*)



Orientability Conditions

H?-data

N\

resG

HY(G, p) *> @, H'(Fi, K*) -
e

Hl_data HO(H’ M) @i HO(E7K><)

N
Orbit Heads



Orientability Conditions

H?-data

d

EBresH
HY(G, 1) HHl(Fu K*) -

_

Hl_data HO(H7 M) @i HO(F,',KX)
N
Orbit Heads

d1, do=Orientability Obstructions

33



A formula for generating CDMs

We assume the X = G/H is G-transitive. We need the following
ingredients:

H?-Data: A class in [a] € H?(G, i) such that
G _ 2
resij([a]) = [0] € H*(H, ).

e A trivialization A : H — u such that o|yxy = dA.
H!-Data: A class [¢] € H}(H, ).

(i) Choose Coset Representatives {g;} for G/H.
(ii) Define a map for : G — H such that

g= for(g)g,._l, for a representative g;.

34



A formula for generating CDMs

Let &)
. e(MA(h)a(g !, g)\ "
e a(h,1) '
where
h = for(g; 'g).
- Finally, let
i(g) = diag(dg,i)i-
Then

v(g) = 0(g)r(g)

gives the desired monomial action.

85



Cocyclic Matrices

In the special case X = G (action by left multiplication), the
resulting CDMs take the simple form

-1, ,—1)y(x)
M = M(f) _ a(X Y>3/ ) . f(X—ly)'y(X)
oL,y 1700 s

where f : G — K is an arbitrary function. We have
Alp,y) ={M(f) | f: G = K},
an algebra over K€,

e M(f) is called a Cocyclic matrix.

e We will address A(y, ) as the Cocyclic Algebra.

36



Cocyclic Algebras

Cocyclic Algebras is already a rich source of examples of
configuration algebras. Let w = exp(2v/—17/n).

e Gabor frames are a special case. Take G = Z/n x Z/n, the
2-cocycle a((a, b), (¢, d)) = wbe, and v = id. We have

A(p,7) = Ma(Q(w)).

Minimal idempotents correspond to Gabor frames.

e Taking a = 1 instead, gives a different algebra:

A(@',7) = Qw)™.

37



Examples (Twisted Gabor Frames)

Let
a((a, b), (¢, d)) := wbetx(a),

where

—

n-x(a,c):=a+c—a—r¢,

0<(x modn)<n, (x modn)=x mod n.

e This leads to configurations ® € Conf(d, d?).
e They are not phase equivalent to Gabor frames. They are
generated by certain two unitary matrices M, T with
M =T3=1, MT =wTM.
e One cannot replace M = w3M, T = T.

38



Examples (Gabor Cubes (Conjectural))

Let G=Z/nXxZ/nx Z/n. Let

a((vo, vi, v2), (Uo, Uz, tp)) = wYorntvirz—vato,

e Conjecture:
A(p,7) = Ma(Q(w))"-

e The minimal idempotents are of rank n. They correspond to
® € Conf(n, n%).
e They form a Gabor Cube (see figure).

39



Gabor Cube (Conjectural)

e Every layer is a n x n®> Gabor frame.
e Moreover, this is true for many 2-dim affine subspaces of

(Z/n)’.
e The system is generated by 3 unitary operators My, My, M3
with M{" = | and

Vi, MiMit1 = wM; 1 M.

40



Example: As

Let G = As, the alternating group, and let

GAX:={{ij}|1<i<j<5}.

o We first choose o = ¢ = 0. We get a permutation action on
(CXXX.

Alp,7) 2 Q.

e There are 3 minimal idempotents, Eg, E1, E> of ranks 1,4,5.

41



Example: As

The configuration in Conf(4,10) has Gram matrix

O =[O NN N[ =[O —[© O —H[O N M

AN N[O =[O =[O O O =[O =[O ™ M

O ANM =[O N[ AN[M =[O —H[© ™ OO

O AN AN =[O =[O NN ™ —H[©O—[©O O

AN =[O =[O NN H[© ™ NN —H[© —[|©O O

A O AN —H[© ™ —H[© O AN O —H[©O

O[O —H[© ™ —H[© NN —H[O AN —[O N

O =[O ™ O AN =[O N[O ][O NN

O ™ —H[©O O O O NN N[O

™ =[O O =[O AN N =[O =[O N[O

42



Example: As

On the other hand, X = G/H with H = S3, and choose

e:H— {£1}, e=sign.

A(,7) = Q x Q(v5).

o There are 3 idempotents, Eg, E1, Ep of ranks 4,3,3. The latter
two are Galois conjugates.

43



Example: As

The Gram matrix of the resulting ¢ € Conf(4, 10) is

—lNHN O O HaHNHNHNN O

O O HAaHNHNHNHNHN — O

N O HN O O HlaHIN v N

N O O HANHN O N[N H [N

O HNHIN O Hln ™ O N[N

O HN O HAN ™ HANHIN O NN

N HIN N A HN O AN O N O

—HNHIN —H HN O HN O HNHINN O

N HANHNAHNHNN O O O HN

™ HNHNHN O O HNHIN O =N
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