Configurations, Automorphisms and Cohomology

Giora Dula¹ *Assaf Goldberger² Point Distribution Webinar, June 16 2021

²Tel-Aviv University assafg@post.tau.ac.il

¹ Netanya Accademic College giora@netanya.ac.il

Configurations

Definition

A configuration is a complex matrix $\Phi \in \mathbb{C}^{d \times n}$. We view it as an ordered list of vectors $\{\Phi_i\}_{i=0}^{n-1}$ in \mathbb{C}^d .

- d = The dimension,
- n =The cardinality.

Some Definitions:

• Φ is a Tight-Frame (TF) if for every vector v,

$$v = \sum_{i=0}^{n-1} \langle v, \Phi_i \rangle \Phi_i.$$

Equivalently, Φ can be completed to a $n \times n$ orthogonal matrix.

A unit norm TF Φ is *m*-angular if {|⟨Φ_i, Φ_j⟩|}_{i<j} has cardinality *m*.

m-angular tight-frames

- If m = 1, then Φ is called an Equiangular-Tight-Frame (ETF).
- *m*-angular TF arise often as minimizers of potential functions.
 E.g. the Frame-Potential given by

$$FP_{p}(\Psi) = \sum_{i,j} |\langle \Psi_{i}, \Psi_{j} \rangle|^{p}, ext{ s.t. } orall i ||\Psi_{i}|| = 1.$$

- In the special case n = d², the ETF Φ is called a SIC-POVM.
 In is conjectured (Zauner) to exist for all d ≥ 1.
- A set of Mutually Unbiased Bases (MUB) is m = 2-angular: We have n = rd and

$$|\langle \Phi_i, \Phi_j
angle|^2 = egin{cases} 1 & i=j \ 0 & sd \leq i < j < (s+1)d \ 1/d & ext{otherwise} \end{cases}$$

Algebraic Configurations

Fix an algebraic closure $\overline{\mathbb{Q}}/\mathbb{Q}$.

Definition

- (a) A configurations Φ is Algebraic if all $\Phi_{i,j} \in \overline{\mathbb{Q}}$.
- (b) Φ is Potentially Algebraic (PA) if there are phases $e^{t_j\sqrt{-1}}$, $0 \le j < n$ and a unitary $U \in U(d)$ such that

$$e^{t_j\sqrt{-1}}U\Phi_j\in\overline{\mathbb{Q}}^d.$$

- Often, minimaizers of potential functions solve algebraic equations and thus are algebraic.
- The known examples of Zauner SIC-POVMs and maximal MUBs are potentially algebraic.
- The entries of known algebraic MUBs are roots of unity.

• The entries of known algebraic WH SIC-POVMs are is an abelian extension field (Appleby, 2012)

$$E / \mathbb{Q}(e^{2\pi\sqrt{-1}/d}, \sqrt{(d-1)(d+3)}).$$

 Observation: Φ is potentially algebraic ⇐⇒ there is a phase diagonal matrix D s.t.

 $D^*(\Phi^*\Phi)D$ is algebraic.

Automorphism Groups

The following actions on Φ preserve the multiset $\{|\langle \Phi_i, \Phi_j \rangle|\}$:

- (i) Phasing: for $\alpha = (\alpha_i) \in \mathbb{R}^n$, Let $(\alpha * \Phi)_i := e^{\alpha_i \sqrt{-1}} \Phi_i$.
- (ii) Permutations: For $\pi \in S_d$, Let $(\pi * \Phi)_i := \Phi_{\pi^{-1}(i)}$.
- (iii) Rotation: For $U \in U(d)$, Let
- (iv) Complex Conjugation: Let $(conj * \Phi) := \overline{\Phi}$.

$$U * \Phi := U\Phi.$$

The combination of all such actions on the space of configurations Conf(d, n) form a group, denoted by $\Sigma(d, n)$.

Definition

The Automorphism Group of Φ is the group

$$\operatorname{Aut}(\Phi) := \{g \in \Sigma(d, n) \mid g * \Phi = \Phi\}.$$

Let Φ be algebraic and let $Gal(\overline{\mathbb{Q}}/\mathbb{Q})^0 \subset Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ be the centralizer of complex conjugation. We can add

(v) Galois Conjugation: For $\sigma \in Gal(\overline{\mathbb{Q}}/\mathbb{Q})^0$, let $(\sigma * \Phi) := \Phi^{\sigma}$.

Let $\Sigma^*(n, d) \supset \Sigma(n, d)$ be the group of actions on algebraic configurations generated by (i)-(v).

Definition

For an algebraic $\Phi,$ the Extended Automorphism Group is the group

$$\operatorname{Aut}^*(\Phi) := \{g \in \Sigma^*(d, n) \mid g * \Phi = \Phi\}.$$

An Example

Let $\Phi = [a, b, c, d] \in Conf(2, 4)$ (defined over $\mathbb{Q}(\sqrt{2})$) as in the picture.

• Here is an automorphism and an extended automorphism. Apply:

$$\begin{split} [a, b, c, d] \xrightarrow{U} [b, c, d, -a] \xrightarrow{phase} [b, c, d, a] \xrightarrow{perm} [a, b, c, d], \\ [a, b, c, d] \xrightarrow{Galois} [a, -b, c, -d] \xrightarrow{phase} [a, b, c, d]. \end{split}$$

Automorphism group on the Grammian Matrix

Assume $rank(\Phi) = d$. The Grammian $G(\Phi) := \Phi^* \Phi$ determines Φ up to rotation. On

$$\mathcal{G}(n,d) := \{ \Phi^* \Phi \mid \Phi \in \mathbf{Conf}(n,d) \}$$

the actions (i)-(v) reduce to the form

(i)+(ii) Monomial Matrices: $M * G := MGM^*$. (iv)+(v) Galois Conjugation $g * G := G^g$.

We denote the groups by Aut(G) and $Aut^*(G)$.

- We have $\operatorname{Aut}(G(\Phi)) = \operatorname{Aut}(\Phi)$ and $\operatorname{Aut}^*(G(\Phi)) = \operatorname{Aut}^*(\Phi)$.
- If G is not a nontrivial diagonal sum of blocks, then Aut(G) ⊂ Aut*(G) are finite.

Example - The DetFourier Matrix

Consider the $n^2 \times n^2$ matrix indexed by $\mathbb{Z}/n \oplus \mathbb{Z}/n$ in both axes. Let $\omega = \exp(2\pi\sqrt{-1}/n)$, and

$$DF(u,v)=\frac{\omega^{\det(u,v)}}{n}.$$

(i) $\forall w$, DF(u+w, v+w) = DF(u, w)DF(u, v)DF(v, w). (ii) $\forall A \in GL_2(\mathbb{Z}/n)$, $DF(Au, Av) = DF(u, v)^{\det(A)}$.

Example - The DetFourier Matrix

Consider the $n^2 \times n^2$ matrix indexed by $\mathbb{Z}/n \oplus \mathbb{Z}/n$ in both axes. Let $\omega = \exp(2\pi\sqrt{-1}/n)$, and

$$DF(u,v)=\frac{\omega^{\det(u,v)}}{n}.$$

(i) $\forall w$, DF(u+w, v+w) = DF(u, w)DF(u, v)DF(v, w). (ii) $\forall A \in GL_2(\mathbb{Z}/n)$, $DF(Au, Av) = DF(u, v)^{\det(A)}$.

Hence the affine group has a homomorphism to

 $AGL_2(\mathbb{Z}/n) = GL_2(\mathbb{Z}/n) \ltimes (\mathbb{Z}/n)^2 \longrightarrow \operatorname{Aut}^*(DF).$

Example - The DetFourier Matrix

Consider the $n^2 \times n^2$ matrix indexed by $\mathbb{Z}/n \oplus \mathbb{Z}/n$ in both axes. Let $\omega = \exp(2\pi\sqrt{-1}/n)$, and

$$DF(u,v)=\frac{\omega^{\det(u,v)}}{n}.$$

(i) $\forall w$, $DF(u+w, v+w) = DF(u, w)DF(u, v)\overline{DF(v, w)}$. (ii) $\forall A \in GL_2(\mathbb{Z}/n)$, $DF(Au, Av) = DF(u, v)^{\det(A)}$.

Hence the affine group has a homomorphism to

$$AGL_2(\mathbb{Z}/n) = GL_2(\mathbb{Z}/n) \ltimes (\mathbb{Z}/n)^2 \longrightarrow \operatorname{Aut}^*(DF).$$

The same automorphisms are shared by

$$(I_{n^2} - DF)/2 = \Phi^* \Phi, \ \Phi \in \operatorname{Conf}((n^2 - n)/2, n^2).$$

Example - Gabor Frames

The modulation and translation matrices are $M = \text{diag}(\ldots, \tau^i, \ldots)$ and $T \in U(n)$ given by

$$T_{i,j} = egin{cases} 1 & i-j \equiv 1 \mod n \\ 0 & ext{otherwise} \end{cases}$$

We have

 $MT = \omega TM.$

Definition

The Weil-Heisenberg group is

$$WH(n) := \{\tau^a M^b T^c \mid a, b, c \in \mathbb{Z}/n\}.$$

• Let $g \in \mathbb{C}^n$, ||g|| = 1. The Gabor frame is $\mathcal{G}(g) = (M^b T^c g)_{b,c \in \mathbb{Z}/n}$.

Gabor Frames

g is called the fiducial vector of $\mathcal{G}(g)$. We have

```
WH(n) \mapsto \operatorname{Aut}(\mathcal{G}(g)),
```

given by $g \mapsto (x \mapsto gx)$.

Gabor Frames

g is called the fiducial vector of $\mathcal{G}(g)$. We have

 $WH(n) \mapsto \operatorname{Aut}(\mathcal{G}(g)),$

given by $g \mapsto (x \mapsto gx)$.

- Zauner SIC-POVMs are of type $\mathcal{G}(g)$ for some fiducial g.
- The normalizer of WH(n) in U(n) is called the Extended Clifford Group, EC(n).
- Known Zauner SIC-POVMs (d ≠ 2, 3, 8) admit an order 3 automorphism in EC(n) (augmented with phases and permutations).
- Known Zauner SIC-POVMs are algebraic. They have extended automorphisms (coming from Multiplets)

Abstract Automorphisms on Grammians

- Let X be a finite set. Let Mon(X) be the group of phase monomial matrices on X. e.g. matrices M_{j,π(j)} = α_j, |α_j| = 1 and π ∈ S_X a permutation.
- Let G be a finite group.

Definition

An abstract automorphism group on X is a map $\varphi : G \to Mon(X)$ which is a homomorphism up to a phase:

$$\varphi(gg') = \alpha \varphi(g) \varphi(g'), \quad |\alpha| = 1.$$

Observation

The set of all matrices in $M \in \mathbb{C}^{X \times X}$ satisfying

$$arphi(g)Marphi(g)^*=M, \ \ orall g\in G$$

is a matrix algebra. We denote it by $\mathcal{A}(\varphi)$.

Let $\varphi : G \to Mon(X)$ be an abstract automorphism group, and let $M \in \mathcal{A}(\varphi)$ be a matrix.

If M is self-adjoint positive semidefinite, then M = Φ*Φ for a configuration Φ. We have a representation

 $G \to \operatorname{Aut}(\Phi).$

• If in addition M is an idempotent, then Φ is a tight frame.

Extended Abstract Automorphisms on Grammians

Let $K \subset \mathbb{C}$ be a number-field, Galois over \mathbb{Q} , and let $\mu \subset K^{\times}$ be a subgroup of unit norm elements. Let

 $Mon(X, \mu) \subset Mon(X)$ the subgroup of μ -valued mon. matrices.

Definition An Extended Abstract Automorphism Group on X is a pair (γ, φ) such that $\gamma: \mathbf{G} \to \mathbf{Gal}(K/\mathbb{Q})$ is a homomorphism preserving μ . $\varphi: G \to Mon(X, \mu)$ is a map satisfying $\varphi(gg') \stackrel{\cdot}{=} \varphi(g)\varphi(g')^{\gamma(g)}.$ (\doteq is equality up to phases in μ .)

- Given an extended automorphism Group ($\varphi,\gamma)$, the set

 $\mathcal{A}(\varphi,\gamma) := \{ M \in K^{X \times X} \mid \varphi(g) \ M^{\gamma(g)} \ \varphi(g)^* = M, \ \forall g \in G \}$

is a matrix algebra over \mathbb{Q} .

 Again, self-adjoint idempotents correspond to algebraic TF Φ, admitting a homomorphism G → Aut^{*}(Φ).

Examples

Let B_3 = the symmetry group of the 3D cube.

X = the set of all faces.

Define $\varphi: G \to Mon(X) =$ the permutation action on X.

$$\mathcal{A}(\varphi) = \left\{ \begin{pmatrix} x_0 & x_2 & x_2 & x_2 & x_2 & x_1 \\ x_2 & x_0 & x_2 & x_2 & x_1 & x_2 \\ x_2 & x_2 & x_0 & x_1 & x_2 & x_2 \\ x_2 & x_2 & x_1 & x_0 & x_2 & x_2 \\ x_2 & x_1 & x_2 & x_2 & x_0 & x_2 \\ x_1 & x_2 & x_2 & x_2 & x_2 & x_0 \end{pmatrix} \right\}$$

 $x_0 = x_3 = 1/3, x_2 = -1/6$ gives a self-adjoint idempotent of rank 2. The configuration is the perfect hexagon (up to phases).

Constructing Automorphisms from Group Theory

We need:

- A finite group G and a left action $G \curvearrowright X$.
- A number field K/Q and a homomorphism

 γ: G → Gal(K/Q).
- A subgroup of phases $\mu \subset K^{\times}$, stable under $\gamma(G)$.
- \implies we can define an action of G on $K^{X \times X}$:

$$(gM)_{x,y} := (M_{g^{-1}x,g^{-1}y})^{\gamma(g)}.$$

Constructing Automorphisms from Group Theory

We need:

- A finite group G and a left action $G \curvearrowright X$.
- A number field K/Q and a homomorphism

 γ: G → Gal(K/Q).
- A subgroup of phases $\mu \subset K^{\times}$, stable under $\gamma(G)$.
- \implies we can define an action of G on $K^{X \times X}$:

$$(gM)_{x,y} := (M_{g^{-1}x,g^{-1}y})^{\gamma(g)}.$$

• Let $\pi(g)$ be the permutation of g on X. Then

$$\mathcal{A}(\pi,\gamma) = \{ M \mid gM = M \}.$$

To give X, is the same as to give a list of subgroups $\{H_i \subset G\}$, and then

$$X\cong \bigsqcup_i G/H_i.$$

So this is completely group-theoretic.

• This program was carried out (in Iverson, Jasper and Mixon, 2019). But without Galois and with a single *H_i*.

To give X, is the same as to give a list of subgroups $\{H_i \subset G\}$, and then

$$X\cong \bigsqcup_i G/H_i.$$

So this is completely group-theoretic.

- This program was carried out (in Iverson, Jasper and Mixon, 2019). But without Galois and with a single *H_i*.
- We want even more: To consider monomial actions.
- This means that π should be replaced by φ : G → Mon(X, μ), satisfying the conditions explained above.
- We want φ to lift π , i.e.

 $|\varphi(g)| = \pi(g)$, (entrywise modulus).

• Here is where Cohomology comes in ...

We need

$$\varphi(gg') \doteq \varphi(g)\varphi(g')^{\gamma(g)} \tag{1}$$
$$|\varphi(g)| = \pi(g) \tag{2}$$

Let's try an easier condition first:

$$\varphi(gg') = \varphi(g)\varphi(g')^{\gamma(g)} \tag{3}$$

Write $\varphi(g) = \delta(g)\pi(g)$, $\delta(g)$ diagonal. Then

$$\varphi(gg') = \delta(gg')\pi(gg') = \delta(gg')\pi(g)\pi(g')^{\gamma(g)}$$

$$\begin{split} \varphi(g)\varphi(g')^{\gamma(g)} &= (\delta(g)\pi(g))(\delta(g')\pi(g'))^{\gamma(g)} = \\ &= \delta(g)\pi(g)\delta(g')^{\gamma(g)}\pi(g')^{\gamma(g)} \\ &= \delta(g)\pi(g)\delta(g')^{\gamma(g)}\pi(g)^{-1}\pi(g)\pi(g')^{\gamma(g)}. \end{split}$$

Equating,

 $\delta(gg') = \delta(g)\pi(g)\delta(g')^{\gamma(g)}\pi(g)^{-1}.$

We see that δ is a 1-cocycle. More precisely, let

 $D_X(\mu) = \{X \times X \text{ Diagonal matrices over } \mu\}.$

Let $G \curvearrowright D(\mu)$ by its action on $K^{X \times X}$. The δ defines a cohomology class in

 $[\delta] \in H^1(G, D_X(\mu)).$

So we want to compute this cohomology.

Theorem (Eckmann-Shapiro Lemma)

If $X \cong G/H$, then

 $H^1(G, D_X(\mu)) \cong H^1(H, \mu).$

More generally, if $X \cong \bigsqcup_i G/H_i$, then

 $\overline{H^1(G,D_X(\mu))}\cong \bigoplus_i \overline{H^1(H_i,\mu)}.$

Cohomology Basics

Let G be a group, acting on an Abelian group A. For any function $f: G^n \to A$,

let $d_i f : G^{n+1} \to A$ given by

$$d_i f(g_0, g_1, \dots, g_n) = \begin{cases} f(g_0, \dots, g_{n-1}) & i = n \\ f(g_0, \dots, g_i \cdot g_{i+1}, \dots, g_n) & 0 < i < n \\ g_0 f(g_1, \dots, g_n) & i = 0. \end{cases}$$

and let

$$df = \sum_{i=0}^n (-1)^i d_i f, \quad d \circ d = 0.$$

Definition

1.
$$f$$
 is a cocycle if $df = 0$,

f is a coboundary if f = dh.

Coboundaries \subseteq Cocycles.

Cohomology Basics

• The *n*th-Cohomology Group is

$$H^n(G,A) = \frac{n - \text{cocycles}}{n - \text{coboundaries}}.$$

If F ≤ G is is subgroup of G, then there is a natural homomorphism

res :
$$H^n(G, A) \to H^n(F, A)$$
,

given by restriction of cocycles.

0,1,2-Cohomology

- $H^0(G, A) = A^G :=$ The group of *G*-invariant elements.
- 1-cocycles are functions $z: G \rightarrow A$ such that

z(gg')=z(g)+gz(g').

• 1-coboundaries are functions $z : G \rightarrow A$ such that

z(g) = ga - a, for a given $a \in A$.

• If G acts trivially on A, then

 $H^1(G,A) \cong Hom(G,A).$

• 2-cocycles are functions $z: G^2 \rightarrow A$ such that

 $g_0z(g_1,g_2) + z(g_0,g_1g_2) = z(g_0g_1,g_2) + z(g_0,g_1).$

• 2-coboundaries are functions $z: G^2 \rightarrow A$ such that

 $z(g_1,g_2) = u(g_1g_2) - u(g_1) - g_1u(g_2).$

for some function $u : G \rightarrow A$.

H¹ - Development

Recall: $G \curvearrowright X$, $\pi(g)$ is the permutation matrix on X, we write $\varphi(g) = \delta(g)\pi(g), \quad \delta(g) \in D_X(\mu)$ i.e. diagonal over μ , $\varphi(gg') = \varphi(g)\varphi(g')^{\gamma(g)}$. (φ is called H^1 -Develpoed action) Then δ is a 1-cocycle w.r.t. $G \curvearrowright D_X(\mu)$:

 $\delta(gg') = \delta(g)\pi(g)\delta(g')^{\gamma(g)}\pi(g)^{-1}.$

Observation Let $\varphi'(g) = \delta'(g)\pi(g)$ and $\varphi(g) = \delta(g)\pi(g)$. Then $[\delta'] = [\delta] \in H^1(G, D_X(\mu)),$ $\iff \exists D \in D_X(\mu), \ \varphi' = D\varphi D^{-1}.$

H²-Developement

Suppose that we only want

$$\varphi(gg') \doteq \varphi(g)\varphi(g')^{\gamma(g)}.$$

Write

$$arphi(\mathsf{g}\mathsf{g}')=lpha(\mathsf{g},\mathsf{g}')arphi(\mathsf{g})arphi(\mathsf{g}')^{\gamma(\mathsf{g})}, \ \ lpha(\mathsf{g},\mathsf{g}')\in\mu.$$

- Then $\alpha(g,g')$ is a 2-cocycle over μ .
- If φ and φ' admit the same class $[\alpha] \in H^2(G,\mu)$, then

 $arphi'(g) = \delta_0(g) arphi(g), \ \ [\delta_0] \in H^1(G, D_X(\mu)).$

• Monomial actions φ are controlled by $H^1(G, D_X(\mu))$ and $H^2(G, \mu)$.

A Program for computing Symmetric Algebraic Configurations

- (i) Choose a group G and an action $G \curvearrowright X$.
- (ii) Choose a Number Field K, a Galois action $\gamma: G \to Gal(K/\mathbb{Q})$ and a G-stable phase group $\mu \in K^{\times}$.
- (iii) Compute a monomial action $\varphi : G \to Mon(X, \mu)$ using cohomology.
- (iv) Construct a basis to the algebra $\mathcal{A}(\varphi, \gamma)$.
- (v) Study it's structure and compute self-adjoint idempotents. Generate configurations.
 - The number of angles $+1 \leq$ the number of *G*-orbits in $X \times X$.

 $\mathcal{A}(\varphi,\gamma)$ is an algebra over $\mathcal{K}^{\mathcal{G}}$, the subfield of \mathcal{G} -invariants.

- (a) Compute the orbit decomposition $X \times X = \bigsqcup_i O_i$.
 - Pick a point $(x_i, y_i) \in O_i$ for each *i*.
 - For each *i*, pick a suitable value $\xi_i \in K^{\times}$.
 - For each *i* there is at most one matrix B_i ∈ K^{X×X}, supported in O_i, having

$$(B_i)_{x_i,y_i}=\xi_i.$$

• The collection $\{B_i\}$ spans over K^G the algebra $\mathcal{A}(\varphi, \gamma)$.

Orientability of Orbits

Definition

An orbit $O \subset X \times X$ is orientable if for each point $(x, y) \in O$ there exist a $\xi \in K^{\times}$ such that

$$\varphi(h)_{x,x}\xi^{\gamma(h)}\varphi(h)_{y,y}^* = \xi, \qquad (4)$$

for all $h \in G$ s.t. hx = x, hy = y.

Meaning: The monomial action φ does not destroy the value ξ of a putative matrix $A \in \mathcal{A}(\varphi, \gamma)$.

- Basis matrices B_i exist only for orientable orbits B_i .
- Elements of $\mathcal{A}(\varphi, \gamma)$ must vanish at non-orientable orbits.
- The value ξ must be chosen carefully in order to comply with condition (4).
- The appropriate element ξ can be found via cohomology.

The Spectral Sequence

Let G, X, γ, μ, K be given.

Definition

Two matrices $A, B \in K^{X \times X}$ are phase-equivalnt, written

$$A\sim_P B\iff A=DBD^{-1}, \ \ ext{for} \ \ D\in D_X(\mu).$$

Definition

A matrix $A \in K^{X \times X}$ is Cohomology-Developed (CDM) w.r.t. (G, X, γ, μ, K), if $\forall g \in G, gA \sim_P A.$ $H^0(G, (K^{\times})^{X \times X} / \sim_P) = \{ CDMS \text{ with nonzero entries} \} / \sim_P .$

- Wish to compute $H^0(G, (K^{\times})^{X \times X} / \sim_P)$.
- This can be done in terms of a spectral sequence.

Suppose that

$$X \cong \bigsqcup_{i} G/H,$$
(5)
$$X \times X \cong \bigsqcup_{i} G/F_{i},$$
(6)

where $F_i \subset H$.

The Spectral Sequence

Theorem

There exists a first quadrant cohomological spectral sequence $E_1^{i,j} \implies H^{i+j}(G, M_{X \times X} / \sim_P)$ whose E_1 -page is:

$$H^{2}(G,\mu) \xrightarrow{\operatorname{res}_{H}^{G}} H^{2}(H,\mu)$$
$$H^{1}(G,\mu) \longrightarrow H^{1}(H,\mu) \xrightarrow{\oplus \operatorname{res}_{F_{i}}^{H}} \bigoplus_{i} H^{1}(F_{i},K^{\times})$$

$$H^0(H,\mu) \longrightarrow \bigoplus_i H^0(F_i,K^{\times})$$

$$H^{2}(G,\mu) \xrightarrow{\operatorname{res}_{H}^{G}} H^{2}(H,\mu)$$

$$H^{1}(G,\mu) \longrightarrow H^{1}(H,\mu) \xrightarrow{\oplus \operatorname{res}_{F_{i}}^{H}} \bigoplus_{i} H^{1}(F_{i},K^{\times}) \cdot$$

$$H^{0}(H,\mu) \longrightarrow \bigoplus_{i} H^{0}(F_{i},K^{\times})$$

$$\begin{array}{c} H^{2}(G,\mu) \xrightarrow{\operatorname{res}_{H}^{G}} H^{2}(H,\mu) \\ H^{1}(G,\mu) \longrightarrow H^{1}(H,\mu) \xrightarrow{\oplus \operatorname{res}_{F_{i}}^{H}} \bigoplus_{i} H^{1}(F_{i},K^{\times}) \\ H^{0}(H,\mu) \longrightarrow \bigoplus_{i} H^{0}(F_{i},K^{\times}) \end{array}$$

d₁, d₂=Orientability Obstructions

A formula for generating CDMs

We assume the $X \cong G/H$ is G-transitive. We need the following ingredients:

<u>*H*</u>²-Data: A class in $[\alpha] \in H^2(G, \mu)$ such that

 $\operatorname{res}_{H}^{G}([\alpha]) = [0] \in H^{2}(H, \mu).$

• A trivialization $\lambda : H \to \mu$ such that $\alpha|_{H \times H} = d\lambda$. <u>H</u>¹-Data: A class $[\varepsilon] \in H^1(H, \mu)$.

> (i) Choose Coset Representatives $\{g_i\}$ for G/H. (ii) Define a map for : $G \to H$ such that

> > $g = for(g)g_i^{-1}$, for a representative g_i .

A formula for generating CDMs

Let

$$\delta_{g,i} := \left(\frac{\varepsilon(h)\lambda(h)\alpha(g_i^{-1},g)}{\alpha(h,1)}\right)^{\gamma(g_i)},$$

where

$$h = for(g_i^{-1}g).$$

- Finally, let

$$\delta(g) = diag(\delta_{g,i})_i.$$

Then

$$\varphi(g) = \delta(g)\pi(g)$$

gives the desired monomial action.

Cocyclic Matrices

In the special case X = G (action by left multiplication), the resulting CDMs take the simple form

$$M = M(f) = \left(\frac{\alpha(x^{-1}y, y^{-1})^{\gamma(x)}}{\alpha(1, y^{-1})^{\gamma(y)}} \cdot f(x^{-1}y)^{\gamma(x)}\right)_{x, y \in G},$$

where $f : G \to K$ is an arbitrary function. We have

 $\mathcal{A}(\varphi,\gamma) = \{ M(f) \mid f : G \to K \},\$

an algebra over K^G .

- M(f) is called a Cocyclic matrix.
- We will address $\mathcal{A}(\varphi, \gamma)$ as the Cocyclic Algebra.

Cocyclic Algebras is already a rich source of examples of configuration algebras. Let $\omega = \exp(2\sqrt{-1}\pi/n)$.

• Gabor frames are a special case. Take $G = \mathbb{Z}/n \times \mathbb{Z}/n$, the 2-cocycle $\alpha((a, b), (c, d)) = \omega^{bc}$, and $\gamma = id$. We have

$$\mathcal{A}(\varphi,\gamma)\cong M_n(\mathbb{Q}(\omega)).$$

Minimal idempotents correspond to Gabor frames.

• Taking $\alpha = 1$ instead, gives a different algebra:

$$\mathcal{A}(\varphi',\gamma)\cong \mathbb{Q}(\omega)^{n^2}.$$

Examples (Twisted Gabor Frames)

Let

$$\alpha((a,b),(c,d)) := \omega^{bc+\chi(a,c)},$$

where

$$n \cdot \chi(a, c) := \widehat{a + c} - \widehat{a} - \widehat{c},$$
$$0 \le \widehat{(x \mod n)} < n, \quad \widehat{(x \mod n)} \equiv x \mod n.$$

- This leads to configurations $\Phi \in \mathbf{Conf}(d, d^2)$.
- They are not phase equivalent to Gabor frames. They are generated by certain two unitary matrices *M*, *T* with

$$\tilde{M}^9 = \tilde{T}^3 = I; \quad \tilde{M}\tilde{T} = \omega \tilde{T}\tilde{M}.$$

• One cannot replace $\tilde{M} = \omega^{1/3} M$, $\tilde{T} = T$.

Examples (Gabor Cubes (Conjectural))

Let $G = \mathbb{Z}/n \times \mathbb{Z}/n \times \mathbb{Z}/n$. Let

$$\alpha((v_0, v_1, v_2), (u_0, u_1, u_2)) = \omega^{v_0 u_1 + v_1 u_2 - v_2 u_0}$$

• Conjecture:

$$\mathcal{A}(\varphi,\gamma)\cong M_n(\mathbb{Q}(\omega))^n.$$

- The minimal idempotents are of rank n. They correspond to Φ ∈ Conf(n, n³).
- They form a Gabor Cube (see figure).

Gabor Cube (Conjectural)

- Every layer is a $n \times n^2$ Gabor frame.
- Moreover, this is true for many 2-dim affine subspaces of $(\mathbb{Z}/n)^3$.
- The system is generated by 3 unitary operators M₁, M₂, M₃ with Mⁿ_i = I and

$$\forall i, \quad M_i M_{i+1} = \omega M_{i+1} M_i.$$

Let $G = A_5$, the alternating group, and let

$$G \frown X := \{\{i, j\} \mid 1 \le i < j \le 5\}.$$

• We first choose $\alpha = \varepsilon = 0$. We get a permutation action on $\mathbb{C}^{X \times X}$.

$$\mathcal{A}(\varphi,\gamma)\cong\mathbb{Q}^3.$$

• There are 3 minimal idempotents, E_0, E_1, E_2 of ranks 1, 4, 5.

Example: A₅

The configuration in Conf(4, 10) has Gram matrix

$$G(\Phi) = \begin{pmatrix} 1 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & -\frac{2}{3} & -\frac{2}{3} & \frac{1}{6} & \frac{1}{6} & -\frac{2}{3} & \frac{1}{6} \\ \frac{1}{6} & 1 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & -\frac{2}{3} & -\frac{2}{3} & -\frac{2}{3} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & 1 & \frac{1}{6} & -\frac{2}{3} & \frac{1}{6} & -\frac{2}{3} & \frac{1}{6} & -\frac{2}{3} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 1 & \frac{1}{6} & -\frac{2}{3} & \frac{1}{6} & -\frac{2}{3} & \frac{1}{6} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{1}{6} & -\frac{2}{3} & \frac{1}{6} & 1 & \frac{1}{6} & \frac{1}{6} & -\frac{2}{3} & \frac{1}{6} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{1}{6} & \frac{1}{6} & -\frac{2}{3} & \frac{1}{6} & 1 & -\frac{2}{3} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & -\frac{2}{3} & -\frac{2}{3} & \frac{1}{6} & \frac{1}{6} & -\frac{2}{3} & 1 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & -\frac{2}{3} & -\frac{2}{3} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & -\frac{2}{3} & -\frac{2}{3} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & -\frac{2}{3} & -\frac{2}{3} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & -\frac{2}{3} & 1 \end{pmatrix}$$

On the other hand, $X \cong G/H$ with $H \cong S_3$, and choose

$$\varepsilon: H \to \{\pm 1\}, \ \varepsilon = sign.$$

$$\mathcal{A}(\varphi,\gamma)\cong\mathbb{Q}\times\mathbb{Q}(\sqrt{5}).$$

• There are 3 idempotents, *E*₀, *E*₁, *E*₂ of ranks 4, 3, 3. The latter two are Galois conjugates.

Example: A₅

The Gram matrix of the resulting $\Phi \in Conf(4, 10)$ is

$$G(\Phi) = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 1 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 1 & \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 & \frac{1}{2} & 1 & 0 & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & 0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 1 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & 0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & 1 \end{pmatrix}$$

THANK YOU