Sign Uncertainty Principle ~ Tug-of-war

You are so Negative! You are so Positive!
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/A Sign uncertainty principle
[J LP bounds for sphere packing
(O Why these problems are so challenging and surprising




We say f : R — R is eventually nonnegative (E.NN.) if
f(x) >0, for all sufficiently large |x|.
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f, f € L}(RY) both even and real-valued

A_(d)={ F(0) <0, —F(0) <0

f and — f eventually nonnegative (E.NN.)

(d)=_ inf F)r(—f).
A-(d) = _ inf o V(Or(=F)

Thm (Cohn, Gongalves, 2018)

L A_(d) ,
2me = Vd S (1+O(1))(E—0.079...),

A_(d) = inf{r(f) : f radial, f = —f, (0) = 0, f E.NN.}

A+(d) > v/d ~» £1 Uncertainty Principles



Thm (Gongalves, Oliveira e Silva, Steinerberger, 2016;

Cohn, Gongalves, 2018)

Existence of Optimal: 3f € A, (d) such that

r(f) = Ax(d),
we can assume f radial, f = &f and f(0) = 0.

Multiple Roots: f(|x|) has infinitely many double roots
for |x| > r(f).
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Sphere Packing Problem

What is the most dense arrangement of non-overlapping
equal spheres in R9? ~ A(d) = largest density

(Thue, 1910) (Hales, 1998)

honeycomb ~ 91% Cannonball Packing
~70%



(Viazovska, 2016) (Viazovska, et al 2016)

E8 Lattice ~ 26% Leech Lattice x4 ~ 0.2%



Thm (Cohn, Elkies, 2003) [Linear Programming Bounds]

Let

f, f € L}(RY) radial and real-valued
Aip(d) = < F(0) = f(0) =1
f ENNN. and f > 0.

and A;p(d) = infrca,p(a) r(f). Then

A(d) < vol(3BY)ALp(d)?.




Thm (Cohn, Elkies, 2003) [Linear Programming Bounds]
Let

f, f € L}(RY) radial and real-valued
Aip(d) = < F(0) = f(0) =1
f ENNN. and f > 0.

and A;p(d) = infrca,p(a) r(f). Then

A(d) < vol(3BY)ALp(d)?.

Viazovska showed A p(8) = /2 and A, p(24) = /4 with
a construction using modular forms.




The Link between Sign Uncertainty and LP bounds
» It is easy to show A;p(d) > A_(d).



The Link between Sign Uncertainty and LP bounds
» It is easy to show A;p(d) > A_(d).
» Strong Numerical evidence that A, p(d) = A_(d).



The Link between Sign Uncertainty and LP bounds
» It is easy to show A;p(d) > A_(d).
» Strong Numerical evidence that A, p(d) = A_(d).

» From Viazovska's proof one can recover the functions
that show

A_(8)=v2 A_(24) = V4.



The Link between Sign Uncertainty and LP bounds
» It is easy to show A;p(d) > A_(d).
» Strong Numerical evidence that A, p(d) = A_(d).

» From Viazovska's proof one can recover the functions
that show

A(8)=Vv2 A_(24) =4,
» Cohn & G. (2018) showed that
A(12) = V2
and presented numerical evidence for the conjecture
Aup(d) = A_(d) ~ A4(d) ~ cV/d.



The Link between Sign Uncertainty and LP bounds
» It is easy to show A;p(d) > A_(d).
» Strong Numerical evidence that A, p(d) = A_(d).

» From Viazovska's proof one can recover the functions
that show

A(8)=Vv2 A_(24) =4,
» Cohn & G. (2018) showed that
A(12) = V2
and presented numerical evidence for the conjecture
Aup(d) = A_(d) ~ A4(d) ~ cV/d.

» Recent numerical evidence by Afkhami-Jeddi, Cohn et al
in connection with modular bootstraps for CFTs indicates

1
c=—=.31..
T



d Best Packing  A;p(d) A_(d) A (d)

1 Z 1 1 ??surprise
1 1

2 Honeycomb 7 =(4/3)4 7= (4/3)4 ?
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24 Leech N Va4 ?
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New Sign Uncertainty Principles
(G., Oliveira e Silva, Ramos — arXiv March 2020)

» Spherical Harmonics and Jacobi Polynomials (~
Spherical Designs and Quadrature).

» Fourier Series, Bessel-Dini Series.
» Discrete Fourier and Hankel Transf..

» Functions of the Hamming cube (Complexity of Boolean
Functions).

» Hankel Transf., Hilbert Transf. and other Smooth Conv.
Kernels.



For f : Zgq+1 — C we define the DFT
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For f : Zyq+1 — C we define the DFT

q
n) — ¢ Z f(n)ef27rix€m

m=—q

(=

x={n V2q+1)

Thm
Let

f, f Zing+1 — R both even and real-valued
dlsc
Ll = £(0) < 0, ££(0) < 0.

Then

AT*[q] := min{y\/k(F) k(£F)} = /2q9 + 1,
where k(f) = min{k > 0: f(n) > 0if n > k}.




disc
Numerical evidence that ﬁTj[Lq] — A_(1)

-1 Uncertainty
Solid = Numerical for q=5408, k=105
Dashed = Best visual match of known Optimal




Numerical evidence for

Adisc i
Sl L (1) (g )

1 2 3 4

R r~ 0.55 ~ 1/sqrt(2 golden ratio)

0.5

+1 Uncertainty
Solid=Numerical for q=5692, k=60



The function g — k = A¥*[q] is a stairway: | k — gL (k)
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The function g — k = A¥*[q] is a stairway: | k — gL (k)

k=5 AAAAAAAAAAAAAAAAAAAAAAAA r——

It turns out that (numerically):

: k2 — 2k + 2
" (k) = {—jLJ —5,8,13,18,25,32, ...
2 k>4
g™ (k) & | (k — 1)? x golden.ratio| . = 6,14,25.40,58,79, . ..
Adisc[q] k 1

= lim =1
2q+1 00 jum ’
T VT koo Jogitmeky 1 V2
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In higher dimensions we use a Disc. Hankel Transf.

. 2 In o Japa(d)
Hdlsc (m) = — f(n ¢ .n = nth—zero of Jy/m_
S = ) b a/2-1]

n

if d=1 it is a translated DFT.




In higher dimensions we use a Disc. Hankel Transf.

. 2 &, Japa(dE)
Hdlsc (m) = — f(n ¢ .n = nth—zero of Jy/o_
S = ) b @/2-1]

if d=1 it is a translated DFT.

Let |
| f, Hof - {1,.,q} > R
AL"ld,q] = Hyf(0) <0, ££(0) < 0.
and
AL*[d, q] == min{\/k(f) k(£Hqf)}.
Then jygsc(a.q 2 \/2Tjg+1
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q— k= A%[d, q] is a stairway

— A4 (d) numerically (g — o0)




adeid,q)

vV 27 jg+1

q— k= A%[d, q] is a stairway

— A (d) numerically (g — o0)

7™ (2, k) ~ {MJ — 4,7,11,16,21, 28, 35, 43,52, 62, ..

k>4

7" (8, k) ~ V{J ., =%46.9.12,16,20,25,30,36,42, ..,
>4

7™ (24, k) ~ L%J — 4,5,8,10,13,15,19,22,26,29, .. .,
k>4

7P (12, k) ~ VZHHL —3,5.8,11,15,19,24,29.35 41, ...
>3

+ 4



numerically

Jadis<[d q]

V2T g +1
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V2 (d=1,12)




numerically

_jAdisc d,

2 Ly (44, V2, VR (d=1,2,8,24)

V2T g1

jAdfc[d,q] 1

L EN V2 (d=1,12

\/27Uq+1 V2 ( )
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numerically

_j disc
B2 1, (45, V2, VA (d=1,2,8,24)
V2T g1
Ingeidal ! V2 (d=1,12)
Vg V2 ’ ’
d Best Packing  A;p(d) A (d) A (d)
1 Y/ 1 1 7777
1 1
2 Honeycomb 7= (4/3)4 7= (4/3)4 ?
8 E8 V2 V2 ?
12 ? ? ? V2
24 Leech Va4 V4 ?

There are Thm’s to be proven here!



