Sign Uncertainty Principle \approx Tug-of-war

\triangle Sign uncertainty principle
\square LP bounds for sphere packing
Why these problems are so challenging and surprising

We say $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is eventually nonnegative (E.NN.) if $f(x) \geq 0, \quad$ for all sufficiently large $|x|$. and we define

$$
r(f)=\text { last sign change of } f
$$

We say $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is eventually nonnegative (E.NN.) if $f(x) \geq 0, \quad$ for all sufficiently large $|x|$. and we define

$$
r(f)=\text { last sign change of } f .
$$

$$
\mathcal{A}_{+}(d)=\left\{\begin{array}{l}
f, \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right) \text { both even and real-valued } \\
\widehat{f}(0) \leq 0, f(0) \leq 0 \\
f \text { and } \widehat{f} \text { E.NN. }
\end{array}\right.
$$

$$
\mathcal{A}_{+}(d)=\left\{\begin{array}{l}
f, \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right) \text { both even and real-valued } \\
\widehat{f}(0) \leq 0, f(0) \leq 0 \\
f \text { and } \widehat{f} \text { E.NN. }
\end{array}\right.
$$

$$
\mathbb{A}_{+}(d)=\inf _{f \in \mathcal{A}_{+}(d) \backslash\{0\}} \sqrt{r(f) r(\widehat{f})} .
$$

$$
\mathcal{A}_{+}(d)=\left\{\begin{array}{l}
f, \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right) \text { both even and real-valued } \\
\widehat{f}(0) \leq 0, f(0) \leq 0 \\
f \text { and } \widehat{f} \text { E.NN. }
\end{array}\right.
$$

$$
\mathbb{A}_{+}(d)=\inf _{f \in \mathcal{A}_{+}(d) \backslash\{0\}} \sqrt{r(f) r(\widehat{f})} .
$$

Thm (Bourgain, Clozel, Kahane, 2010)

$$
\frac{1}{\sqrt{2 \pi e}} \leq \frac{\mathbb{A}_{+}(d)}{\sqrt{d}} \leq \frac{1+o(1)}{\sqrt{2 \pi}} .
$$

The proof has a reduction:

The proof has a reduction:

- We can assume f is radial

The proof has a reduction:

- We can assume f is radial
- We can assume $r(f)=r(\widehat{f})$ since $\sqrt{r(f) r(\widehat{f})}$ is scale invariant

The proof has a reduction:

- We can assume f is radial
- We can assume $r(f)=r(\widehat{f})$ since $\sqrt{r(f) r(\widehat{f})}$ is scale invariant
- We can assume $\widehat{f}=f$ by adding $f+\widehat{f}$

The proof has a reduction:

- We can assume f is radial
- We can assume $r(f)=r(\widehat{f})$ since $\sqrt{r(f) r(\widehat{f})}$ is scale invariant
- We can assume $\widehat{f}=f$ by adding $f+\widehat{f}$
- We can assume $f(0)=0$ subtracting $f(0) e^{-\pi x^{2}}$

The proof has a reduction:

- We can assume f is radial
- We can assume $r(f)=r(\widehat{f})$ since $\sqrt{r(f) r(\widehat{f})}$ is scale invariant
- We can assume $\widehat{f}=f$ by adding $f+\widehat{f}$
- We can assume $f(0)=0$ subtracting $f(0) e^{-\pi x^{2}}$

$$
\Longrightarrow \quad \mathbb{A}_{+}(d)=\inf \{r(f): f \text { radial, } \widehat{f}=f, f(0)=0, f \text { E.NN. }\}
$$

The proof has a reduction:

- We can assume f is radial
- We can assume $r(f)=r(\widehat{f})$ since $\sqrt{r(f) r(\widehat{f})}$ is scale invariant
- We can assume $\widehat{f}=f$ by adding $f+\widehat{f}$
- We can assume $f(0)=0$ subtracting $f(0) e^{-\pi x^{2}}$

$$
\Longrightarrow \quad \mathbb{A}_{+}(d)=\inf \{r(f): f \text { radial, } \widehat{f}=f, f(0)=0, f \text { E.NN. }\}
$$

$$
\mathcal{A}_{-}(d)=\left\{\begin{array}{l}
f, \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right) \text { both even and real-valued } \\
\widehat{f}(0) \leq 0,-f(0) \leq 0 \\
f \text { and }-\widehat{f} \text { eventually nonnegative (E.NN.) }
\end{array}\right.
$$

$$
\mathcal{A}_{-}(d)=\left\{\begin{array}{l}
f, \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right) \text { both even and real-valued } \\
\widehat{f}(0) \leq 0,-f(0) \leq 0 \\
f \text { and }-\widehat{f} \text { eventually nonnegative (E.NN.) }
\end{array}\right.
$$

$$
\mathbb{A}_{-}(d)=\inf _{f \in \mathcal{A}_{-}(d) \backslash\{0\}} \sqrt{r(f) r(-\widehat{f})} .
$$

$$
\begin{aligned}
& \mathcal{A}_{-}(d)=\left\{\begin{array}{l}
f, \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right) \text { both even and real-valued } \\
\widehat{f}(0) \leq 0,-f(0) \leq 0 \\
f \text { and }-\widehat{f} \text { eventually nonnegative (E.NN.) }
\end{array}\right. \\
& \mathbb{A}_{-}(d)=\inf _{f \in \mathcal{A}_{-}(d) \backslash\{0\}} \sqrt{r(f) r(-\widehat{f})} .
\end{aligned}
$$

Thm (Cohn, Gonçalves, 2018)

$$
\begin{gathered}
\frac{1}{\sqrt{2 \pi e}} \leq \frac{\mathbb{A}_{-}(d)}{\sqrt{d}} \leq(1+o(1))\left(\frac{1}{\sqrt{2 \pi}}-0.079 \ldots\right) . \\
\mathbb{A}_{-}(d)=\inf \{r(f): f \text { radial, } \widehat{f}=-f, f(0)=0, f \text { E.NN. }\}
\end{gathered}
$$

$\mathbb{A}_{ \pm}(d) \gtrsim \sqrt{d} \rightsquigarrow \pm 1$ Uncertainty Principles

Thm (Gonçalves, Oliveira e Silva, Steinerberger, 2016; Cohn, Gonçalves, 2018)

Existence of Optimal: $\exists f \in \mathcal{A}_{ \pm}(d)$ such that

$$
r(f)=\mathbb{A}_{ \pm}(d)
$$

we can assume f radial, $\widehat{f}= \pm f$ and $f(0)=0$.
Multiple Roots: $f(|x|)$ has infinitely many double roots for $|x|>r(f)$.

Sphere Packing Problem

What is the most dense arrangement of non-overlapping equal spheres in $\mathbb{R}^{d} ? \rightsquigarrow \Delta(d)=$ largest density

Sphere Packing Problem

What is the most dense arrangement of non-overlapping equal spheres in \mathbb{R}^{d} ? $\rightsquigarrow \Delta(d)=$ largest density
(Thue, 1910)

honeycomb ~ 91\%
(Hales, 1998)

Cannonball Packing
~ 70\%

Thm (Cohn, Elkies, 2003) [Linear Programming Bounds]

Let

$$
\mathcal{A}_{L P}(d)=\left\{\begin{array}{l}
f, \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right) \text { radial and real-valued } \\
f(0)=\widehat{f}(0)=1 \\
f \text { E.NN. and } \widehat{f} \geq 0 .
\end{array}\right.
$$

$$
\text { and } \mathbb{A}_{L P}(d)=\inf _{f \in \mathcal{A}_{L P}(d)} r(f) \text {. Then }
$$

$$
\Delta(d) \leq \operatorname{vol}\left(\frac{1}{2} B^{d}\right) \mathbb{A}_{L P}(d)^{d}
$$

Thm (Cohn, Elkies, 2003) [Linear Programming Bounds]

Let

$$
\mathcal{A}_{L P}(d)=\left\{\begin{array}{l}
f, \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right) \text { radial and real-valued } \\
f(0)=\widehat{f}(0)=1 \\
f \text { E.NN. and } \widehat{f} \geq 0
\end{array}\right.
$$

and $\mathbb{A}_{L P}(d)=\inf _{f \in \mathcal{A}_{L P}(d)} r(f)$. Then

$$
\Delta(d) \leq \operatorname{vol}\left(\frac{1}{2} B^{d}\right) \mathbb{A}_{L P}(d)^{d} .
$$

Viazovska showed $\mathbb{A}_{L P}(8)=\sqrt{2}$ and $\mathbb{A}_{L P}(24)=\sqrt{4}$ with a construction using modular forms.

The Link between Sign Uncertainty and LP bounds
 - It is easy to show $\mathbb{A}_{L P}(d) \geq \mathbb{A}_{-}(d)$.

The Link between Sign Uncertainty and LP bounds

- It is easy to show $\mathbb{A}_{L P}(d) \geq \mathbb{A}_{-}(d)$.
- Strong Numerical evidence that $\mathbb{A}_{L P}(d)=\mathbb{A}_{-}(d)$.

The Link between Sign Uncertainty and LP bounds

- It is easy to show $\mathbb{A}_{L P}(d) \geq \mathbb{A}_{-}(d)$.
- Strong Numerical evidence that $\mathbb{A}_{L P}(d)=\mathbb{A}_{-}(d)$.
- From Viazovska's proof one can recover the functions that show

$$
\mathbb{A}_{-}(8)=\sqrt{2} \quad \mathbb{A}_{-}(24)=\sqrt{4} .
$$

The Link between Sign Uncertainty and LP bounds

- It is easy to show $\mathbb{A}_{L P}(d) \geq \mathbb{A}_{-}(d)$.
- Strong Numerical evidence that $\mathbb{A}_{L p}(d)=\mathbb{A}_{-}(d)$.
- From Viazovska's proof one can recover the functions that show

$$
\mathbb{A}_{-}(8)=\sqrt{2} \quad \mathbb{A}_{-}(24)=\sqrt{4} .
$$

- Cohn \& G. (2018) showed that

$$
\mathbb{A}_{+}(12)=\sqrt{2}
$$

and presented numerical evidence for the conjecture

$$
\mathbb{A}_{L P}(d)=\mathbb{A}_{-}(d) \sim \mathbb{A}_{+}(d) \sim c \sqrt{d} .
$$

The Link between Sign Uncertainty and LP bounds

- It is easy to show $\mathbb{A}_{L P}(d) \geq \mathbb{A}_{-}(d)$.
- Strong Numerical evidence that $\mathbb{A}_{L P}(d)=\mathbb{A}_{-}(d)$.
- From Viazovska's proof one can recover the functions that show

$$
\mathbb{A}_{-}(8)=\sqrt{2} \quad \mathbb{A}_{-}(24)=\sqrt{4} .
$$

- Cohn \& G. (2018) showed that

$$
\mathbb{A}_{+}(12)=\sqrt{2}
$$

and presented numerical evidence for the conjecture

$$
\mathbb{A}_{L P}(d)=\mathbb{A}_{-}(d) \sim \mathbb{A}_{+}(d) \sim c \sqrt{d}
$$

- Recent numerical evidence by Afkhami-Jeddi, Cohn et al in connection with modular bootstraps for CFTs indicates

$$
c=\frac{1}{\pi}=.31 \ldots
$$

d	Best Packing	$\mathbb{A}_{L P}(d)$	$\mathbb{A}_{-}(d)$	$\mathbb{A}_{+}(d)$
1	\mathbb{Z}	1	1	$? ?$ surprise
2	Honeycomb	$?=(4 / 3)^{\frac{1}{4}}$	$?=(4 / 3)^{\frac{1}{4}}$	$?$
8	$E 8$	$\sqrt{2}$	$\sqrt{2}$	$?$
12	$?$	$?$	$?$	$\sqrt{2}$
24	Leech	$\sqrt{4}$	$\sqrt{4}$	$?$

New Sign Uncertainty Principles
 (G., Oliveira e Silva, Ramos - arXiv March 2020)

- Spherical Harmonics and Jacobi Polynomials (\rightsquigarrow Spherical Designs and Quadrature).

New Sign Uncertainty Principles
 (G., Oliveira e Silva, Ramos - arXiv March 2020)

- Spherical Harmonics and Jacobi Polynomials (\rightsquigarrow Spherical Designs and Quadrature).
- Fourier Series, Bessel-Dini Series.

New Sign Uncertainty Principles
 (G., Oliveira e Silva, Ramos - arXiv March 2020)

- Spherical Harmonics and Jacobi Polynomials (\rightsquigarrow Spherical Designs and Quadrature).
- Fourier Series, Bessel-Dini Series.
- Discrete Fourier and Hankel Transf..

New Sign Uncertainty Principles
 (G., Oliveira e Silva, Ramos - arXiv March 2020)

- Spherical Harmonics and Jacobi Polynomials (\rightsquigarrow Spherical Designs and Quadrature).
- Fourier Series, Bessel-Dini Series.
- Discrete Fourier and Hankel Transf..
- Functions of the Hamming cube (Complexity of Boolean Functions).

New Sign Uncertainty Principles (G., Oliveira e Silva, Ramos - arXiv March 2020)

- Spherical Harmonics and Jacobi Polynomials (\rightsquigarrow Spherical Designs and Quadrature).
- Fourier Series, Bessel-Dini Series.
- Discrete Fourier and Hankel Transf..
- Functions of the Hamming cube (Complexity of Boolean Functions).
- Hankel Transf., Hilbert Transf. and other Smooth Conv. Kernels.

For $f: \mathbb{Z}_{2 q+1} \rightarrow \mathbb{C}$ we define the DFT

$$
\widehat{f}(n)=\left.\ell \sum_{m=-q}^{q} f(n) e^{-2 \pi i x \ell m}\right|_{x=\ell n}\left(\ell=\frac{1}{\sqrt{2 q+1}}\right)
$$

For $f: \mathbb{Z}_{2 q+1} \rightarrow \mathbb{C}$ we define the DFT

$$
\widehat{f}(n)=\left.\ell \sum_{m=-q}^{q} f(n) e^{-2 \pi i x \ell m}\right|_{x=\ell n} \quad\left(\ell=\frac{1}{\sqrt{2 q+1}}\right)
$$

Thm

Let
$\mathcal{A}_{ \pm}^{\text {disc }}[q]=\left\{\begin{array}{l}f, \widehat{f}: \mathbb{Z}_{2 q+1} \rightarrow \mathbb{R} \text { both even and real-valued } \\ \widehat{f}(0) \leq 0, \pm f(0) \leq 0 .\end{array}\right.$
Then

$$
\mathbb{A}_{ \pm}^{\text {disc }}[q]:=\min \{\sqrt{k(f) k(\pm \widehat{f})}\} \gtrsim \sqrt{2 q+1},
$$

where $k(f)=\min \{k>0: f(n) \geq 0$ if $n \geq k\}$.

Numerical evidence that $\frac{\mathbb{A}_{l}^{\text {disc }}[q]}{\sqrt{2 q+1}} \rightarrow \mathbb{A}_{-}(1)$

Numerical evidence for

The function $q \mapsto k=\mathbb{A}_{ \pm}^{\text {disc }}[q]$ is a stairway: $k \mapsto q_{ \pm}^{\text {jump }}(k)$

The function $q \mapsto k=\mathbb{A}_{ \pm}^{\text {disc }}[q]$ is a stairway: $k \mapsto q_{ \pm}^{\text {jump }}(k)$

It turns out that (numerically):

$$
q_{-}^{j u m p}(k)=\left\lfloor\frac{k^{2}-2 k+2}{2}\right\rfloor_{k \geq 4}=5,8,13,18,25,32, \ldots
$$

$$
q_{+}^{\text {jump }}(k) \approx\left\lfloor(k-1)^{2} \times \text { golden. ratio }\right\rfloor_{k \geq 3}=6,14,25,40,58,79, \ldots
$$

In higher dimensions we use a Disc. Hankel Transf.

$$
H_{d}^{\text {disc }}(f)(m)=\frac{2}{j_{q+1}} \sum_{n=1}^{q} f(n) \frac{J_{d / 2-1}\left(\frac{j j_{j} n}{j_{q+1}}\right)}{J_{d / 2}\left(j_{n}\right)^{2}} \quad\left[j_{n}=n^{\text {th }} \text {-zero of } J_{d / 2-1}\right]
$$

if $\mathrm{d}=1$ it is a translated DFT.

In higher dimensions we use a Disc. Hankel Transf.

$$
H_{d}^{\text {disc }}(f)(m)=\frac{2}{j_{q+1}} \sum_{n=1}^{q} f(n) \frac{J_{d / 2-1}\left(\frac{j j_{j} j_{n}}{j_{q+1}}\right)}{J_{d / 2}\left(j_{n}\right)^{2}} \quad\left[j_{n}=n^{\text {th }} \text {-zero of } J_{d / 2-1}\right]
$$

if $\mathrm{d}=1$ it is a translated DFT.
Let

$$
\mathcal{A}_{ \pm}^{\text {disc }}[d, q]=\left\{\begin{array}{l}
f, H_{d} f:\{1, . ., q\} \rightarrow \mathbb{R} \\
H_{d} f(0) \leq 0, \pm f(0) \leq 0 .
\end{array}\right.
$$

and

$$
\mathbb{A}_{ \pm}^{\text {disc }}[d, q]:=\min \left\{\sqrt{k(f) k\left(\pm H_{d} f\right)}\right\} .
$$

Then $j_{\mathrm{A}}^{\text {disc }[d, q]}$ $\gtrsim \sqrt{2 \pi j_{q+1}}$

$$
\begin{aligned}
& \frac{j_{d_{ \pm}^{\text {disc }[d, q]}}}{\sqrt{2 \pi j_{q+1}}} \rightarrow \mathbb{A}_{ \pm}(d) \text { numerically }(q \rightarrow \infty) \\
& q \mapsto k=\mathbb{A}_{ \pm}^{\text {disc }}[d, q] \text { is a stairway }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{j_{\mathbb{A}}^{d_{1} \text { isc }[d, q]}}{} \sqrt{2 \pi j_{q+1}} \rightarrow \mathbb{A}_{ \pm}(d) \text { numerically }(q \rightarrow \infty) \\
& q \mapsto k=\mathbb{A}_{ \pm}^{\text {disc }}[d, q] \text { is a stairway }
\end{aligned}
$$

$q_{-}^{j u m p}(2, k) \approx\left\lfloor\frac{\sqrt{3}\left(k^{2}-2 k+2\right)}{4}\right\rfloor_{k \geq 4}=4,7,11,16,21,28,35,43,52,62,$. $q_{-}^{j u m p}(\mathbf{8}, k) \approx\left\lfloor\frac{k^{2}}{4}\right\rfloor_{k \geq 4}=4,6,9,12,16,20,25,30,36,42, \ldots$, $q_{-}^{j u m p}(24, k) \approx\left\lfloor\frac{k^{2}+6 k-8}{8}\right\rfloor_{k \geq 4}=4,5,8,10,13,15,19,22,26,29, \ldots$, $q_{+}^{j u m p}(12, k) \approx\left\lfloor\frac{k^{2}+2 k-1}{4}\right\rfloor_{k \geq 3}=3,5,8,11,15,19,24,29,35,41, \ldots$,

numerically

$$
\begin{aligned}
& \frac{j_{\mathbb{A}_{-}^{\text {disc }[d, q]}}}{\sqrt{2 \pi j_{q+1}}} \rightarrow 1,\left(\frac{4}{3}\right)^{\frac{1}{4}}, \sqrt{2}, \sqrt{4} \quad(d=1,2,8,24) \\
& \frac{j_{\mathbb{A}_{-}^{d i s c}[d, q]}}{\sqrt{2 \pi j_{q+1}}} \rightarrow \frac{1}{\sqrt{2 \text { golden.ratio }}}, \sqrt{2} \quad(d=1,12)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{j_{\mathbb{A}_{-}^{\text {disc }[d, q]}}}{\sqrt{2 \pi j_{q+1}}} \rightarrow 1,\left(\frac{4}{3}\right)^{\frac{1}{4}}, \sqrt{2}, \sqrt{4} \quad(d=1,2,8,24) \\
& \frac{j_{\mathbb{A}_{-}^{d i s c}[d, q]}}{\sqrt{2 \pi j_{q+1}}} \rightarrow \frac{1}{\sqrt{2 \text { golden.ratio }}}, \sqrt{2} \quad(d=1,12)
\end{aligned}
$$

d Best Packing $\mathbb{A}_{L P}(d)$
1
\mathbb{Z}
1

$\mathbb{A}_{-}(d)$	$\mathbb{A}_{+}(d)$
1	$? ? ? ?$

2 Honeycomb $?=(4 / 3)^{\frac{1}{4}} \quad ?=(4 / 3)^{\frac{1}{4}} \quad$?
8
E8
$\sqrt{2}$
$\sqrt{2}$
?
12
?
?
?
$\sqrt{2}$
24
Leech
$\sqrt{4}$
$\sqrt{4}$
?

$$
\begin{aligned}
& \frac{j_{\mathbb{A}_{-}^{d i s c}[d, q]}}{\sqrt{2 \pi j_{q+1}}} \rightarrow 1,\left(\frac{4}{3}\right)^{\frac{1}{4}}, \sqrt{2}, \sqrt{4} \quad(d=1,2,8,24) \\
& \frac{j_{\mathbb{A}_{+}^{d i s c}[d, q]}}{\sqrt{2 \pi j_{q+1}}} \rightarrow \frac{1}{\sqrt{2 \text { golden.ratio }}}, \sqrt{2} \quad(d=1,12)
\end{aligned}
$$

d	Best Packing	$\mathbb{A}_{L P}(d)$	$\mathbb{A}_{-}(d)$	$\mathbb{A}_{+}(d)$
1	\mathbb{Z}	1	1	$? ? ? ?$

2 Honeycomb $?=(4 / 3)^{\frac{1}{4}} \quad ?=(4 / 3)^{\frac{1}{4}} \quad$?

8	E8	$\sqrt{2}$	$\sqrt{2}$	$?$
12	$?$	$?$	$?$	$\sqrt{2}$
24	Leech	$\sqrt{4}$	$\sqrt{4}$	$?$

There are Thm's to be proven here!

