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Outline

The talk is based on the paper ’The power of online thinning in
reducing discrepancy’ by R. Dwivedi, O.N. Feldheim, O.
Gurel-Gurevich, A. Ramdas.

We will proceed in the following order:

Discrepancy and old results

Thinning

Discrepancy of a thinned sample
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Introduction and Notation

Let n, d ∈ N and consider a set of n points in the
d-dimensional unit cube, Pn ⊂ [0, 1]d .

The set of all axis parallel boxes in [0, 1]d is given by B.

The discrepancy of Pn is defined as

D(Pn) = sup
B∈B
|#(B ∩ Pn)− nλ(B)|

where λ denotes the Lebesgue measure.
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Old results

The Halton-Hammersly point set Hn satisfies

D(Hn) ≤ Cd · (log n)d−1.

It is an example for a low-discrepancy set.

K. Roth showed that

D(Pn) ≥ cd(log n)
d−1
2 .
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Bounds in the high dimensional setting

Let B? be the set of axis-parallel boxes anchored in 0. The
star-discrepancy is given by

D?(Pn) = sup
B∈B?

|#(B ∩ Pn)− nλ(B)|.

Theorem (HNWW, 2001)

With high probability a set of n iid uniformly distributed points
satisfies

D?(Pn) ≤ C ·
√
d ·
√
n.

The constant C is absolute and it was shown by Aistleitner that
C ≤ 10 is possible.
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Random points

A result due to Doerr shows that E(D?(Pn)) ≥ K ·
√
d ·
√
n, where

K > 0 is an absolute constant.

So random points are good w.r.t. d , but still there are some
questions:

Can we achieve bounds where the order of n is log n?

Is it possible to reduce the probability of clustering?

What if we are allowed to reject some points?
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Thinning

Thinning may help to avoid clustering. We need:

A sequence of iid random points (Xk)k∈N, uniformly
distributed in [0, 1]d .

A sequence iid random variables (Uk)k∈N, uniformly
distributed in [0, 1].

A sequence of measurable functions (fk)k∈N,
fk : ([0, 1]d)k × [0, 1]d → [0, 1].

The above collection is called a thinning strategy.
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Thinning II

If the first k points Z1, . . . ,Zk are already chosen and r is the
number of rejections that were made so far we

keep Xk+r+1 if fk(Z1, . . . ,Zk ,Xk+r+1) ≥ Uk ,

reject Xk+r+1 if fk(Z1, . . . ,Zk ,Xk+r+1) < Uk .

In the case that Xk+r+1 is rejected we have to keep Xk+r+2.

If all thinning functions fk satisfy fk ≥ 1− β for some 0 < β < 1,
we say that the points Z1, . . . ,Zn are a (1 + β)-thinned sample.

Julian Hofstadler On a subsequence of random points



(1 + β)-thinning

Lemma

Let µ be an absolutely continuous probability measure on [0, 1]d

whose density satisfies

1− β

2
≤ ρ(x) ≤ 1 +

β

2
.

Then ρ(x)− β
2 defines a thinning function whose (1 + β) thinned

samples are distributed w.r.t. µ.

Idea: Define a thinning strategy via densities.
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Conditional densities - Notation

Assume we already know {Z1,Z2, . . . ,Zt} = Pt .

The counting measure is denoted by νt(A) = #(A ∩ Pt).

The density for Zt+1 is given by ρt and may depend on Pt .

The probability of Zt+1 ∈ A is then given by

P(Zt+1 ∈ A |Pt) = µt(A) =

∫
A
ρt(x)dx .

Additionally we would like to have 1− β
2 ≤ ρt ≤ 1 + β

2 for all
t, to have the thinning property.
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Dyadic Intervals and Haar functions

Let ` ∈ N0 and k ∈ {0, 1, . . . , 2` − 1}.

We call I = [k2−`, (k + 1)2−`) dyadic interval with length 2−`.

Splitting I into its left and right half Ileft , Iright we define

h(x) =


1 if x ∈ Ileft

−1 if x ∈ Iright

0 else

as Haar function w.r.t. I .

The order of h is O(h) = − log2 |Ileft | = − log2 |Iright | = `+ 1.
The constant function χ[0,1] has order 0.
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Haar functions - multidimensional case

Let I1, I2, . . . , Id be dyadic intervals of length 2−`1 , 2−`2 , . . . , 2−`d

with associated Haar functions h1, h2, . . . , hd .

The rectangle R = I1 × I2 × · · · × Id is called a dyadic
rectangle of size |R| = 2−`, where ` =

∑d
i=1 `i .

The Haar function w.r.t. R is given by

H(x) = h1(x1) · h2(x2) · · · hd(xd),

and its order is given by O(H) =
∑d

i=1O(hi ). Again, the
constant function is the only function of order 0.

We define the set H`m = {H : m ≤ O(H) ≤ `} as set of Haar
functions which have order between m and `.
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Connecting Haar functions and conditional densities

For any Haar function H we define H+ = {x ∈ [0, 1]d : H(x) = 1}
and H− = {x ∈ [0, 1]d : H(x) = −1}. (Note that |H+| = |H−|, if
H has at least order 1.)

So we can use
νt(H) := νt(H

+)− νt(H−)

to see if there are more points in H+ or H−.

We want to use νt to see how well distributed the already given
points are w.r.t. suppH = H+ ∪ H−.
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The process

We define the densities (ρt)t∈N0 as

ρt(x) = 1− β

2W (`)

∑
H∈H`1

sgn(νt(H))H(x),

where ` = `(t) = blog2 tc, β ∈ (0, 1) and W (`) =
∑`

i=1

(d−1+i
d−1

)
.

We have

1− β

2
≤ ρt(x) ≤ 1 +

β

2
,

i.e. the requirements of the ’thinning lemma’ are fulfilled.
We will denote this process by Z = (Zt)t∈N form here on.
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The process - a closer look

Inside the sum we see

sgn(νt(H))H(x) =



−1 if x ∈ H+ and νt(H
+) < νt(H

−)

1 if x ∈ H− and νt(H
+) < νt(H

−)

−1 if x ∈ H− and νt(H
−) < νt(H

+)

1 if x ∈ H+ and νt(H
−) < νt(H

+)

0 else.
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The process - properites

Set θ = θ` = β
W (`) .

Lemma

The process defined by the conditional densities (ρt)t∈N is
θ-balancing for H`1. In particular this means that for any H ∈ H`1
and any t there holds

1) κ ≤ µt(H+ ∪ H−) ≤ 3κ

2) µt(H
+) ≥ µt(H−) + θ`κ if sgn(νt(H)) = −1

3) µt(H
−) ≥ µt(H+) + θ`κ if sgn(νt(H)) = 1,

where κ = |H+| = |H−|.
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Concentration properties of balancing processes

Lemma

Let Z be a process which is θ-balancing for H`1. If for some Haar
function H ∈ H`1 and for some 0 ≤ s we have that

E
(

exp

(
θ
|νs(H+)− νs(H−)|

2

))
<

150

θ2
,

then for all s ≤ t it holds

E
(

exp

(
θ
|νt(H+)− νt(H−)|

2

))
<

150

θ2
.
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A first concentration bound for our process

Lemma

For the process Z and any Haar function H we have

E
(

exp

(
β|νn(H)|
2W (`)

))
<

C W (`)2

β2
,

where C > 0 is an absolute constant.

Sketch of proof: Use the balancing property for Haar functions
with ’large’ support. For those with ’small’ support we use
’domination’ by a binomially distributed random variable.
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Lattice rectangles

We say that R is a 2−`-lattice rectangle if R is an axis-parallel
rectangle with corners on 2−`Zd ∩ [0, 1]d , i.e. R has the form

R = [a12−`, b12−`)× [a22−`, b22−`)× · · · × [ad2−`, bd2−`),

where ai , bi ∈ {0, 1, . . . , 2`} for 1 ≤ i ≤ d .

Lemma

If R is a 2−`-lattice rectangle, then there exist disjoint dyadic
rectangles D1, . . . ,Dk , where k ≤ (2`)d , of size at least 2−`d such
that

k⋃
i=1

Di = R.
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A concentration bound for lattice rectangles

If we combine everything we saw so far we can proof a more
general concentration bound.

Lemma

For any 2−`-lattice rectangle R we have

E
(

exp

(
β|D(R,Pn)|
2W (`)(2`)d

))
<

C W (`)2

β2
,

where C > 0 is an absolute constant.
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Sketch of proof

First we estimate the discrepancy in terms of Haar functions, i.e.
for some ’suitable’ coefficients aj(H) we have

|D(R,Pn)| ≤
k∑

j=1

∑
H∈Hd`

1

|aj(H)| · |νn(H)|,

such that
∑k

j=1

∑
H∈Hd`

1
|aj(H)| ≤ 1.

Due to Jensen’s inequality we have

e
∑k

j=1

∑
H∈Hd`

1

|aj (H)|β
2W (`)

·|νn(H)|
≤

k∑
j=1

∑
H∈Hd`

1

|aj(H)| · e
β

2W (`)
|νn(H)|

,

which allows to use the previous concentration bound.
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Main results

Theorem

The process Z generates a sequence such that for any n ∈ N and
any q > 0 it holds

P
(
D(Pn) ≥ (log2 n)2d

β

(
q + 1000 + 100d2 log2 n

))
≤ β−2e

−q
50 .

Corollary

For the process Z we almost surely have

lim sup
n→∞

D(Pn)

(log2(n))2d+1
≤ 100(d2 + 1)

β
.

Sketch of Proof: Use Markov’s inequality, approximation of
axis-parallel rectangles by lattice rectangles and the concentration
bound.
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Open questions

Due to numerical simulations Dwivedi et al. conjecture that the
process Z satisfies

lim sup
n→∞

D(Pn)

(log2(n))
3d
2
+1

<∞.

In the same paper they also describe another technique, called the
greedy Haar strategy, for which they conjecture that this produces
a sequence Z such that

lim sup
n→∞

D(Pn)

(log2(n))d+1
<∞.

However, for this strategy there are only results from simulations.
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More open questions

There is even more work to do

At some points the authors think one could do better.

Are there other thinning strategies which perform better?

Is it possible to achieve a bound of the form C
√
n · d?

Thinned samples w.r.t. other discrepancies, e.g. on the
sphere.

Can we use thinned samples in approximation methods which
work with random points?
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Thank you for your attention!
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