On a subsequence of random points

Julian Hofstadler

Point Distributions Webinar August 14, 2020 The talk is based on the paper '*The power of online thinning in reducing discrepancy*' by R. Dwivedi, O.N. Feldheim, O. Gurel-Gurevich, A. Ramdas.

We will proceed in the following order:

- Discrepancy and old results
- Thinning
- Discrepancy of a thinned sample

- Let $n, d \in \mathbb{N}$ and consider a set of n points in the d-dimensional unit cube, $P_n \subset [0, 1]^d$.
- The set of all axis parallel boxes in $[0,1]^d$ is given by \mathcal{B} .
- The discrepancy of P_n is defined as

$$D(P_n) = \sup_{B \in \mathcal{B}} |\#(B \cap P_n) - n\lambda(B)|$$

where λ denotes the Lebesgue measure.

• The Halton-Hammersly point set H_n satisfies

$$D(H_n) \leq C_d \cdot (\log n)^{d-1}.$$

It is an example for a *low-discrepancy set*.

• K. Roth showed that

$$D(P_n) \geq c_d (\log n)^{\frac{d-1}{2}}.$$

Let \mathcal{B}^* be the set of axis-parallel boxes anchored in 0. The star-discrepancy is given by

$$D^{\star}(P_n) = \sup_{B\in\mathcal{B}^{\star}} |\#(B\cap P_n) - n\lambda(B)|.$$

Theorem (HNWW, 2001)

With high probability a set of n iid uniformly distributed points satisfies

$$D^{\star}(P_n) \leq C \cdot \sqrt{d} \cdot \sqrt{n}.$$

The constant C is absolute and it was shown by Aistleitner that $C \leq 10$ is possible.

A result due to Doerr shows that $\mathbb{E}(D^*(P_n)) \ge K \cdot \sqrt{d} \cdot \sqrt{n}$, where K > 0 is an absolute constant.

So random points are good w.r.t. d, but still there are some questions:

- Can we achieve bounds where the order of *n* is log *n*?
- Is it possible to reduce the probability of clustering?
- What if we are allowed to reject some points?

Thinning may help to avoid clustering. We need:

- A sequence of iid random points (X_k)_{k∈ℕ}, uniformly distributed in [0, 1]^d.
- A sequence iid random variables (U_k)_{k∈ℕ}, uniformly distributed in [0, 1].
- A sequence of measurable functions $(f_k)_{k \in \mathbb{N}}$, $f_k : ([0, 1]^d)^k \times [0, 1]^d \to [0, 1].$

The above collection is called a *thinning strategy*.

If the first k points Z_1, \ldots, Z_k are already chosen and r is the number of rejections that were made so far we

- keep X_{k+r+1} if $f_k(Z_1, ..., Z_k, X_{k+r+1}) \ge U_k$,
- reject X_{k+r+1} if $f_k(Z_1, ..., Z_k, X_{k+r+1}) < U_k$.

In the case that X_{k+r+1} is rejected we have to keep X_{k+r+2} .

If all thinning functions f_k satisfy $f_k \ge 1 - \beta$ for some $0 < \beta < 1$, we say that the points Z_1, \ldots, Z_n are a $(1 + \beta)$ -thinned sample.

b) a) (E) b) a) (E) b) a)

Let μ be an absolutely continuous probability measure on $[0,1]^d$ whose density satisfies

$$1-\frac{\beta}{2} \le \rho(x) \le 1+\frac{\beta}{2}.$$

Then $\rho(x) - \frac{\beta}{2}$ defines a thinning function whose $(1 + \beta)$ thinned samples are distributed w.r.t. μ .

Idea: Define a thinning strategy via densities.

Assume we already know $\{Z_1, Z_2, \ldots, Z_t\} = P_t$.

- The counting measure is denoted by $\nu_t(A) = \#(A \cap P_t)$.
- The density for Z_{t+1} is given by ρ_t and may depend on P_t .
- The probability of $Z_{t+1} \in A$ is then given by

$$\mathbb{P}(Z_{t+1} \in A | P_t) = \mu_t(A) = \int_A \rho_t(x) dx.$$

• Additionally we would like to have $1 - \frac{\beta}{2} \le \rho_t \le 1 + \frac{\beta}{2}$ for all t, to have the thinning property.

Dyadic Intervals and Haar functions

Let $\ell \in \mathbb{N}_0$ and $k \in \{0, 1, \dots, 2^{\ell} - 1\}$.

- We call $I = [k2^{-\ell}, (k+1)2^{-\ell})$ dyadic interval with length $2^{-\ell}$.
- Splitting I into its left and right half I_{left}, I_{right} we define

$$h(x) = \begin{cases} 1 & \text{if } x \in I_{left} \\ -1 & \text{if } x \in I_{right} \\ 0 & \text{else} \end{cases}$$

as Haar function w.r.t. 1.

• The order of h is $\mathcal{O}(h) = -\log_2 |I_{left}| = -\log_2 |I_{right}| = \ell + 1$. The constant function $\chi_{[0,1]}$ has order 0.

Haar functions - multidimensional case

Let I_1, I_2, \ldots, I_d be dyadic intervals of length $2^{-\ell_1}, 2^{-\ell_2}, \ldots, 2^{-\ell_d}$ with associated Haar functions h_1, h_2, \ldots, h_d .

- The rectangle $R = I_1 \times I_2 \times \cdots \times I_d$ is called a dyadic rectangle of size $|R| = 2^{-\ell}$, where $\ell = \sum_{i=1}^d \ell_i$.
- The Haar function w.r.t. R is given by

$$H(x) = h_1(x_1) \cdot h_2(x_2) \cdots h_d(x_d),$$

and its order is given by $\mathcal{O}(H) = \sum_{i=1}^{d} \mathcal{O}(h_i)$. Again, the constant function is the only function of order 0.

• We define the set $\mathcal{H}_m^{\ell} = \{H \colon m \leq \mathcal{O}(H) \leq \ell\}$ as set of Haar functions which have order between m and ℓ .

For any Haar function H we define $H^+ = \{x \in [0, 1]^d : H(x) = 1\}$ and $H^- = \{x \in [0, 1]^d : H(x) = -1\}$. (Note that $|H^+| = |H^-|$, if H has at least order 1.)

So we can use

$$\nu_t(H) := \nu_t(H^+) - \nu_t(H^-)$$

to see if there are more points in H^+ or H^- .

We want to use ν_t to see how well distributed the already given points are w.r.t. supp $H = H^+ \cup H^-$.

We define the densities $(
ho_t)_{t\in\mathbb{N}_0}$ as

$$\rho_t(x) = 1 - \frac{\beta}{2W(\ell)} \sum_{H \in \mathcal{H}_1^{\ell}} \operatorname{sgn}(\nu_t(H))H(x),$$

where $\ell = \ell(t) = \lfloor \log_2 t \rfloor$, $\beta \in (0, 1)$ and $W(\ell) = \sum_{i=1}^{\ell} {d-1+i \choose d-1}$. We have

$$1-\frac{\beta}{2}\leq \rho_t(x)\leq 1+\frac{\beta}{2},$$

i.e. the requirements of the 'thinning lemma' are fulfilled. We will denote this process by $Z = (Z_t)_{t \in \mathbb{N}}$ form here on. Inside the sum we see

$$sgn(\nu_t(H))H(x) = \begin{cases} -1 & \text{if } x \in H^+ \text{ and } \nu_t(H^+) < \nu_t(H^-) \\ 1 & \text{if } x \in H^- \text{ and } \nu_t(H^+) < \nu_t(H^-) \\ -1 & \text{if } x \in H^- \text{ and } \nu_t(H^-) < \nu_t(H^+) \\ 1 & \text{if } x \in H^+ \text{ and } \nu_t(H^-) < \nu_t(H^+) \\ 0 & \text{else.} \end{cases}$$

-

æ

Set
$$\theta = \theta_{\ell} = \frac{\beta}{W(\ell)}$$

The process defined by the conditional densities $(\rho_t)_{t\in\mathbb{N}}$ is θ -balancing for \mathcal{H}_1^{ℓ} . In particular this means that for any $H \in \mathcal{H}_1^{\ell}$ and any t there holds

1)
$$\kappa \leq \mu_t(H^+ \cup H^-) \leq 3\kappa$$

2) $\mu_t(H^+) \geq \mu_t(H^-) + \theta_\ell \kappa$ if $sgn(\nu_t(H)) = -1$
3) $\mu_t(H^-) \geq \mu_t(H^+) + \theta_\ell \kappa$ if $sgn(\nu_t(H)) = 1$,
where $\kappa = |H^+| = |H^-|$.

Let Z be a process which is θ -balancing for \mathcal{H}_1^{ℓ} . If for some Haar function $H \in \mathcal{H}_1^{\ell}$ and for some $0 \leq s$ we have that

$$\mathbb{E}\left(\exp\left(\theta\frac{|\nu_{\mathfrak{s}}(H^+)-\nu_{\mathfrak{s}}(H^-)|}{2}\right)\right) < \frac{150}{\theta^2},$$

then for all $s \leq t$ it holds

$$\mathbb{E}\left(\exp\left(\theta\frac{|\nu_t(H^+)-\nu_t(H^-)|}{2}\right)\right) < \frac{150}{\theta^2}.$$

For the process Z and any Haar function H we have

$$\mathbb{E}\left(\exp\left(\frac{\beta|\nu_n(H)|}{2W(\ell)}\right)\right) < \frac{C W(\ell)^2}{\beta^2}$$

where C > 0 is an absolute constant.

Sketch of proof: Use the balancing property for Haar functions with 'large' support. For those with 'small' support we use 'domination' by a binomially distributed random variable.

Lattice rectangles

We say that R is a $2^{-\ell}$ -lattice rectangle if R is an axis-parallel rectangle with corners on $2^{-\ell}\mathbb{Z}^d \cap [0,1]^d$, i.e. R has the form

$$R = [a_1 2^{-\ell}, b_1 2^{-\ell}) \times [a_2 2^{-\ell}, b_2 2^{-\ell}) \times \cdots \times [a_d 2^{-\ell}, b_d 2^{-\ell}),$$

where $a_i, b_i \in \{0, 1, ..., 2^{\ell}\}$ for $1 \le i \le d$.

Lemma

If R is a $2^{-\ell}$ -lattice rectangle, then there exist disjoint dyadic rectangles D_1, \ldots, D_k , where $k \leq (2\ell)^d$, of size at least $2^{-\ell d}$ such that

$$\bigcup_{i=1}^k D_i = R.$$

If we combine everything we saw so far we can proof a more general concentration bound.

Lemma

For any $2^{-\ell}$ -lattice rectangle R we have

$$\mathbb{E}\left(\exp\left(\frac{\beta|D(R,P_n)|}{2W(\ell)(2\ell)^d}\right)\right) < \frac{C W(\ell)^2}{\beta^2},$$

where C > 0 is an absolute constant.

First we estimate the discrepancy in terms of Haar functions, i.e. for some 'suitable' coefficients $a_i(H)$ we have

$$|D(R,P_n)| \leq \sum_{j=1}^k \sum_{H \in \mathcal{H}_1^{d\ell}} |a_j(H)| \cdot |\nu_n(H)|,$$

such that
$$\sum_{j=1}^{k} \sum_{H \in \mathcal{H}_{1}^{d\ell}} |a_{j}(H)| \leq 1$$
.

Due to Jensen's inequality we have

$$e^{\sum_{j=1}^k \sum_{H\in \mathcal{H}_1^d} rac{|a_j(H)|eta}{2W(\ell)}\cdot|
u_n(H)|} \leq \sum_{j=1}^k \sum_{H\in \mathcal{H}_1^{d\ell}} |a_j(H)|\cdot e^{rac{eta}{2W(\ell)}|
u_n(H)|},$$

which allows to use the previous concentration bound.

Theorem

The process Z generates a sequence such that for any $n\in\mathbb{N}$ and any q>0 it holds

$$\mathbb{P}\left(D(P_n) \geq \frac{(\log_2 n)^{2d}}{\beta} \left(q + 1000 + 100d^2 \log_2 n\right)\right) \leq \beta^{-2} e^{\frac{-q}{50}}.$$

Corollary

For the process Z we almost surely have

$$\limsup_{n\to\infty}\frac{D(P_n)}{(\log_2(n))^{2d+1}}\leq\frac{100(d^2+1)}{\beta}.$$

Sketch of Proof: Use Markov's inequality, approximation of axis-parallel rectangles by lattice rectangles and the concentration bound.

Due to numerical simulations Dwivedi et al. conjecture that the process Z satisfies

$$\limsup_{n\to\infty}\frac{D(P_n)}{(\log_2(n))^{\frac{3d}{2}+1}}<\infty.$$

In the same paper they also describe another technique, called the greedy Haar strategy, for which they conjecture that this produces a sequence Z such that

$$\limsup_{n\to\infty}\frac{D(P_n)}{(\log_2(n))^{d+1}}<\infty.$$

However, for this strategy there are only results from simulations.

There is even more work to do

- At some points the authors think one could do better.
- Are there other thinning strategies which perform better?
- Is it possible to achieve a bound of the form $C\sqrt{n \cdot d}$?
- Thinned samples w.r.t. other discrepancies, e.g. on the sphere.
- Can we use thinned samples in approximation methods which work with random points?

Thank you for your attention!

Julian Hofstadler On a subsequence of random points

Main paper:

R. Dwivedi, O. N. Feldheim, O. Gurel-Gurevich, and A. Ramdas. The power of online thinning in reducing discrepancy. *Probability Theory and Related Fields*, 174(1-2):103-131, 2019.

More on thinning and random choices:

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. *SIAM journal on computing*, 29(1):180-200, 1999.

Y. Peres, K. Talwar, and U. Wieder. Graphical balanced allocations and the $(1 + \beta)$ -choice process. *Random Structures & Algorithms*, 47(4):760-775, 2015.

Discrepancy theory:

C. Aistleitner. Covering numbers, dyadic chaining and discrepancy. *Journal of Complexity*, 27(6):531-540, 2011.

★ Ξ →

D. Bilyk. On roth's orthogonal function method in discrepancy theory. *Unif. Distrib. Theory*, 6(1):143-184, 2011.

J. Dick and F. Pillichshammer. Digital nets and sequences: discrepancy theory and quasi-Monte Carlo integration. *Cambridge University Press*, 2010.

B. Doerr. A lower bound for the discrepancy of a random point set. Journal of Complexity, 30(1):16-20, 2014.

S. Heinrich, E. Novak, G. Wasilkowski, and H. Wozniakowski. The inverse of the star-discrepancy depends linearly on the dimension. *Acta Arithmetica*, 96:279-302, 01 2001.

J. Matousek. Geometric discrepancy: An illustrated guide, volume 18. *Springer Science & Business Media*, 2009.

→ < Ξ → <</p>