Order-optimal point configurations for function approximation

David Krieg
based on joint work with M. Sonnleitner

August 28th, 2020

Function approximation

Let F be a normed space of bounded functions on a bounded and convex domain $\Omega \subset \mathbb{R}^{d}$ with unit ball $B(F)$.

Let $P=\left\{x_{1}, \ldots, x_{n}\right\} \subset \Omega$ be finite. The elements of P are called the sampling points. We want to approximate a function $f \in F$ based on the knowledge of $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$, i.e., by algorithms

$$
S_{P}(f)=\varphi\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)
$$

where $\varphi: \mathbb{R}^{n} \rightarrow L_{\infty}(\Omega)$ is arbitrary (or linear).
The error is measured in the $L_{q}(\Omega)$-norm for some $1 \leq q \leq \infty$. We consider the minimal worst case error

$$
e^{\operatorname{lin}}\left(P, F \hookrightarrow L_{q}(\Omega)\right):=\inf _{S_{P}} \sup _{f \in B(F)}\left\|f-S_{P}(f)\right\|_{L_{q}(\Omega)}
$$

Sobolev spaces

The Sobolev space $W_{p}^{s}(\Omega)$ of smoothness $s \in \mathbb{N}$ and integrability $1 \leq p \leq \infty$ is the space

$$
W_{p}^{s}(\Omega)=\left\{f \in L_{p}(\Omega): \frac{\partial^{|\alpha|} f}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{d}^{\alpha_{d}}} \in L_{p}(\Omega) \text { for all } \alpha \in I(s, d)\right\}
$$

where $I(s, d)=\left\{\alpha \in \mathbb{N}_{0}^{d}:|\alpha|=s\right\}$, equipped with the norm

$$
\begin{aligned}
\|f\|_{W_{p}^{s}(\Omega)} & =\|f\|_{L_{p}(\Omega)}+|f|_{W_{p}^{s}(\Omega)} \\
|f|_{W_{p}^{s}(\Omega)} & =\| \| \frac{\partial^{|\alpha|} f}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{d}^{\alpha_{d}}}\left\|_{L_{p}(\Omega)}\right\|_{\ell_{p}(I(s, d))}
\end{aligned}
$$

We will assume that $s>d / p$ such that the space consists of continuous and bounded functions.

Optimal sampling points

Theorem 1 (Novak/Triebel, 2006)

$$
\inf _{\# P \leq n} e^{\operatorname{lin}}\left(P, W_{p}^{s}(\Omega) \hookrightarrow L_{q}(\Omega)\right) \asymp n^{-s / d+(1 / p-1 / q)_{+}}
$$

- The optimal order is achieved for point sets with covering radius of the optimal order

$$
h_{P, \Omega}:=\sup _{y \in \Omega} \operatorname{dist}(y, P) \asymp n^{-1 / d} .
$$

- Novak and Triebel prove the result for bounded Lipschitz domains. The proof is based on a result of Wendland (2001).
- The result is much older for special domains like the cube.

Questions

Suppose that we cannot choose the sampling points P.

- Is there a simple way to determine their quality?
- Find a characterization of all those (sequences of) point sets that achieve the optimal order of convergence.
- How good are random sampling points?

Many authors use the covering radius to bound the error of sampling based algorithms. But this does not seem right: If we measure the error in L_{q} and q is small, then a few large gaps in the point set should be OK as long as most gaps are small.

Main result

Theorem 2

We have for any nonempty and finite point set $P \subset \Omega$ that
$e^{\operatorname{lin}}\left(P, W_{p}^{s}(\Omega) \hookrightarrow L_{q}(\Omega)\right) \asymp \begin{cases}\|\operatorname{dist}(\cdot, P)\|_{L_{\infty}(\Omega)}^{s-d(1 / p-1 / q)} & \text { if } q \geq p, \\ \|\operatorname{dist}(\cdot, P)\|_{L_{\gamma}(\Omega)}^{s} & \text { if } q<p,\end{cases}$
where $\gamma=s(1 / q-1 / p)^{-1}$ and the implied constants are independent of P.

Main result

Theorem 2

We have for any nonempty and finite point set $P \subset \Omega$ that

$$
e^{\operatorname{lin}}\left(P, W_{p}^{s}(\Omega) \hookrightarrow L_{q}(\Omega)\right) \asymp \begin{cases}\|\operatorname{dist}(\cdot, P)\|_{L_{\infty}(\Omega)}^{s-d(1 / p-1 / q)} & \text { if } q \geq p \\ \|\operatorname{dist}(\cdot, P)\|_{L_{\gamma}(\Omega)}^{s} & \text { if } q<p\end{cases}
$$

where $\gamma=s(1 / q-1 / p)^{-1}$ and the implied constants are independent of P.

Up next:

- discussion of the proof,
- related results (including the integration problem),
- examples and open problems.

Main result - What we are going to prove

Theorem 2

We have for any nonempty and finite point set $P \subset \Omega$ that

where $\gamma=s(1 / q-1 / p)^{-1}$ and the implied constants are independent of P.

Here,

$$
\dot{W}_{p}^{s}(\Omega)=\left\{f \in W_{p}^{s}\left(\mathbb{R}^{d}\right) \mid \operatorname{supp} f \subset \bar{\Omega}\right\}
$$

A useful result from information-based complexity

For any normed space F of bounded functions (here $F=\dot{\dot{W}_{p}^{s}}(\Omega)$), define the radius of information

$$
r(P)=\sup \left\{\|f\|_{L_{q}(\Omega)}: f \in B(F),\left.f\right|_{P}=0\right\} .
$$

Lemma 1 (Folklore)

$$
r(P) \leq e(P) \leq 2 r(P) .
$$

- See e.g. the book of Novak and Woźniakowski (2008).
- If F is a Hilbert space, we even have equality, also for $e^{\operatorname{lin}}(P)$.

Proof of the lower bound. Let $f_{*} \in B(F)$ with $\left.f_{*}\right|_{P}=0$. Any algorithm S_{P} of the form

$$
S_{P}(f)=\varphi\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)
$$

satisfies $S_{P}\left(f_{*}\right)=S_{P}\left(-f_{*}\right)$. We call f_{*} a fooling function. We obtain that

$$
\begin{aligned}
& \sup _{f \in B(F)}\left\|S_{P}(f)-f\right\|_{L_{q}(\Omega)} \\
& \geq \max \left\{\left\|S_{P}\left(f_{*}\right)-f_{*}\right\|_{L_{q}(\Omega)},\left\|S_{P}\left(f_{*}\right)+f_{*}\right\|_{L_{q}(\Omega)}\right\} \\
& \geq\left\|f_{*}\right\|_{L_{q}(\Omega)}
\end{aligned}
$$

Proof of the upper bound. Consider an interpolatory algorithm

$$
S_{P}(f)=\varphi\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)
$$

that maps $f \in B(F)$ to any function $g \in B(F)$ with $\left.g\right|_{P}=\left.f\right|_{P}$.

$$
\begin{aligned}
& \sup _{f \in B(F)}\left\|f-S_{P}(f)\right\|_{L_{q}(\Omega)} \\
& \leq \sup _{f, g \in B(F):\left.f\right|_{P}=\left.g\right|_{P}}\|\underbrace{f-g}_{2 h}\|_{L_{q}(\Omega)} \\
& \leq \sup _{h \in B(F):\left.h\right|_{P}=0}\|2 h\|_{L_{q}(\Omega)}
\end{aligned}
$$

A useful result from approximation theory

There are constants m and C (depending on s, p, d) such that any function with a zero on each of the m^{d} subcubes of $[0,1]^{d}$ satisfies

$$
\sup _{x \in[0,1]^{d}}|f(x)| \leq C|f|_{W_{p}^{s}\left([0,1]^{d}\right)} .
$$

- "Small derivatives and enough zeros yield small functions."
- This can be proven using a result of Wendland (2001) on polynomial reproducing maps and results on best polynomial approximation on $W_{p}^{s}\left([0,1]^{d}\right)$, see the book of Maz'ya (1985).

We define $r(x)$ to be the infimum of all $\varrho>0$ such that each of the m^{d} open subcubes of $x+[-\varrho, \varrho]^{d}$ contains either a point of P or a point of $\mathbb{R}^{d} \backslash \Omega$.

We call $Q(x)=x+[-r(x), r(x)]^{d}$ a good cube. Note that $Q(x) / 2$ contains an empty cube $Q^{*}(x) \subset \Omega$ of radius $r(x) / 2 m$.

Lemma 2

Every $f \in \dot{W_{p}^{s}}(\Omega)$ with $\left.f\right|_{P}=0$ satisfies

$$
\|f\|_{L_{q}(Q(x))} \lesssim r(x)^{s(1+d / \gamma)}|f|_{W_{p}^{s}(Q(x))}
$$

There is an efficient covering of Ω by good cubes.

Lemma 3

There are points $y_{1}, \ldots, y_{N} \in \bar{\Omega}$ such that

- The cubes $Q_{i}=Q\left(y_{i}\right)$ cover $\bar{\Omega}$.
- The cubes $Q_{i}^{*}=Q^{*}\left(y_{i}\right)$ are pairwise disjoint.
- Every $y \in \mathbb{R}^{d}$ is contained in at most 2^{d} of the cubes Q_{i}.

Proof. The function r is upper semi-continuous. Choose y_{1} as a maximizer of r on $\bar{\Omega}$, and recursively y_{k} as a maximizer of r on $\bar{\Omega} \backslash \bigcup_{i<k} Q_{i}$. The rest of the proof is homework.

Putting things together

Proof of the upper bound. Let f be from the unit ball of $\dot{W}_{p}^{s}\left(\mathbb{R}^{d}\right)$ such that $\left.f\right|_{P}=0$. Then

$$
\|f\|_{L_{q}(\Omega)}^{q} \leq \sum\|f\|_{L_{q}\left(Q_{i}\right)}^{q} \lesssim \sum r_{i}^{s q(1+d / \gamma)}|f|_{W_{p}^{s}\left(Q_{i}\right)}^{q}
$$

and Hölder's inequality gives us

$$
\leq(\sum \underbrace{r_{i}^{\gamma+d}(y, P)^{\gamma} \mathrm{d} y}_{\int_{Q_{i}^{*}}})^{q s / \gamma}(\sum \underbrace{|f|_{W_{p}^{s}\left(Q_{i}\right)}^{p}}_{\int_{Q_{i}}\left|\partial^{\alpha} f(y)\right|^{p} \mathrm{~d} y})^{q / p}
$$

and using the efficiency of the covering,

$$
\lesssim\left(\int_{\Omega} \operatorname{dist}(y, P)^{\gamma} \mathrm{d} y\right)^{q s / \gamma}
$$

Putting things together

Proof of the lower bound. Recall that the Q_{i}^{*} are disjoint and empty subsets of Ω. Let T_{i} transform Q_{i}^{*} linearly into $[-1,1]^{d}$.
We take any nonnegative smooth function ψ with support in the cube $[-1,1]^{d}$ and $\psi(0)>0$ and let $\psi_{i}=\psi \circ T_{i}$. Define the fooling function

$$
f_{*}=\frac{\sum \alpha_{i} \psi_{i}}{\left\|\sum \alpha_{i} \psi_{i}\right\|_{W_{p}^{s}(\Omega)}}
$$

By optimizing the α_{i}, we obtain the lower bound

$$
\left\|f_{*}\right\|_{L_{q}(\Omega)} \gtrsim\|\operatorname{dist}(\cdot, P)\|_{L_{\gamma}(\Omega)}^{s}
$$

Back to the theorem

Theorem 2

We have for any nonempty and finite point set $P \subset \Omega$ that
$e^{\operatorname{lin}}\left(P, W_{p}^{s}(\Omega) \hookrightarrow L_{q}(\Omega)\right) \asymp \begin{cases}\|\operatorname{dist}(\cdot, P)\|_{L_{\infty}(\Omega)}^{s-d(1 / p-1 / q)} & \text { if } q \geq p, \\ \|\operatorname{dist}(\cdot, P)\|_{L_{\gamma}(\Omega)}^{s} & \text { if } q<p,\end{cases}$
where $\gamma=s(1 / p-1 / q)^{-1}$ and the implied constants are independent of P.

The result may be extended to ...

- ... a wider range of (isotropic) function spaces.
- ... more general domains.

Integration

The minimal worst-case error for the integration problem on a function space F is

$$
e(P, F, \mathrm{INT}):=\inf _{a_{i} \in \mathbb{R}} \sup _{f \in B(F)}\left|\int_{\Omega} f(x) \mathrm{d} x-\sum_{i=1}^{n} a_{i} f\left(x_{i}\right)\right|
$$

- Smolyak/Bakhvalov (1971): The infimum does not change if we also allow nonlinear algorithms.

Theorem 3

We have for any nonempty and finite point set $P \subset \Omega$ that

$$
e\left(P, W_{p}^{s}(\Omega), \mathrm{INT}\right) \asymp\|\operatorname{dist}(\cdot, P)\|_{L_{\gamma}(\Omega)}^{s}
$$

where $\gamma=s(1-1 / p)^{-1}$.

Characterization of optimal sampling points

Corollary 1

A sequence of n-point sets P_{n} is optimal for $L_{q}(\Omega)$-approximation or integration on $W_{p}^{s}(\Omega)$ in the sense that the minimal worst case error has the optimal order of convergence if and only if

$$
\|\operatorname{dist}(\cdot, P)\|_{L_{\gamma}(\Omega)} \asymp n^{-1 / d},
$$

where $\gamma=s(1 / q-1 / p)^{-1}$ for $q<p$ (with $q=1$ for the integration problem) and $\gamma=\infty$ for $q \geq p$.

- The quantity $\|\operatorname{dist}(\cdot, P)\|_{L_{\gamma}(\Omega)}$ is also called the distortion of the point set P (or of the quantizer that "rounds" elements from Ω to elements of P).

Example: Data with a big hole

For $n \in \mathbb{N}$, let P_{n} be an n-point set and let B_{n} be a ball of radius r_{n}. Assume that the covering radius of P_{n} in $\Omega \backslash B_{n}$ is of optimal order $n^{-1 / d}$.

- The point sets are order-optimal if and only if

$$
r_{n} \lesssim n^{-1 / d+1 /(\gamma+d)}
$$

- Compare with the size $n^{-1 / d}$ of the other holes.

Example: Random sampling points

Let P_{n} be a set of n independent, uniformly distributed points.
Then we have in various ways

$$
\|\operatorname{dist}(\cdot, P)\|_{L_{\gamma}(\Omega)} \asymp \begin{cases}n^{-1 / d} & \text { if } \gamma<\infty \\ (n / \log n)^{-1 / d} & \text { if } \gamma=\infty\end{cases}
$$

Precise statements may be found in Cohort (2004).

Corollary 2

Random data is optimal for $L_{q}(\Omega)$-approximation (integration) on $W_{p}^{s}(\Omega)$ if and only if $q<p$.

Some open questions

- We did not manage to prove the result for the integration problem for general Triebel Lizorkin spaces.
- We believe that the results hold for more general domains (including all bounded Lipschitz domains) and manifolds.
- We can only guess how optimal point sets look like for function spaces of mixed smoothness (i.e., the derivatives up to order $\frac{\partial^{s d}}{\partial x_{1}^{s} \ldots \partial x_{d}^{s}}$ are bounded). So far, the best known point sets in the Hilbert-case are:

\leftarrow Sparse grids for small dimensions [T. Ullirich/Sickel]

Random points for large dimensions [M. Ullrich/K.] \rightarrow

References I

居 P. Cohort.
Limit theorems for random normalized distortion.
Ann. Appl. Probab., 14(1):118-143, 2004.
(i. D. Krieg and M. Ullrich.

Function values are enough for L_{2}-approximation.
arXiv:1905.02516, 2019.
囯 V. G. Maz'ja.
Sobolev spaces.
Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1985.

Translated from the Russian by T. O. Shaposhnikova.

References II

E. Novak and H. Triebel.

Function Spaces in Lipschitz Domains and Optimal Rates of Convergence for Sampling.
Constr. Approx., 23:325-350, 2006.
圊 E. Novak and H. Woźniakowski.
Tractability of multivariate problems. Vol. 1: Linear information, volume 6 of EMS Tracts in Mathematics.
European Mathematical Society (EMS), Zürich, 2008.
囯 W. Sickel and T. Ullrich.
The smolyak algorithm, sampling on sparse grids and function spaces of dominating mixed smoothness.
East J. Approx., 13(4):387-425, 2007.

References III

圊 H. Wendland.
Scattered Data Approximation. Cambridge University Press, 2004.

