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Function approximation

Let F' be a normed space of bounded functions on a bounded and
convex domain Q C R? with unit ball B(F).

Let P = {x1,...,x,} C Q be finite. The elements of P are called
the sampling points. We want to approximate a function f € F
based on the knowledge of f(x1),..., f(zy), i.e., by algorithms

Sp(f) = (f(21), .., f(zn)),
where p: R™ — Lo (Q) is arbitrary (or linear).

The error is measured in the L, (£2)-norm for some 1 < ¢ < co. We
consider the minimal worst case error

e™(P,F < Ly(Q)) :=inf sup | f = Sp(f

Sp f B(F )HLQ(Q)
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Sobolev spaces

The Sobolev space W;7(€2) of smoothness s € N and integrability
1 < p < oo is the space

olelf

: W € LP(Q) for all « S I(S,d)},
1l d

w3 = {1 < L,(@)
where I(s,d) = {a € Nd: |a| = s}, equipped with the norm

1 llws@) = I1f 2@ + [flws @)

|ev]
i = gl

tp(I(s,d))

Lp()

We will assume that s > d/p such that the space consists of
continuous and bounded functions.
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Optimal sampling points

g lin s - ,,—5/d+(1/p—1
#11£1£ne (P, Wp(Q) — Ly(Q) < n /d+(1/p=1/q)+

» The optimal order is achieved for point sets with covering
radius of the optimal order

hpg = sup dist(y, P) =< n~ /4,

yeQ

» Novak and Triebel prove the result for bounded Lipschitz
domains. The proof is based on a result of Wendland (2001).

» The result is much older for special domains like the cube.
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Questions

Suppose that we cannot choose the sampling points P.

» Is there a simple way to determine their quality?

» Find a characterization of all those (sequences of) point sets
that achieve the optimal order of convergence.

» How good are random sampling points?

Many authors use the covering radius to bound the error of
sampling based algorithms. But this does not seem right: If we
measure the error in L, and ¢ is small, then a few large gaps in the
point set should be OK as long as most gaps are small.
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Main result

We have for any nonempty and finite point set P C ) that

. | dist(-, P)||5 P~ ifg > p,
(P, W) < Ly(Q) = =
| dist(-, P[0 ifq <p,

1

where v = s(1/q — 1/p)~" and the implied constants are

independent of P.
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Main result

We have for any nonempty and finite point set P C Q) that

. | ist(, Py " ifa=p,
e (PWE(RQ) < Ly(Q)) =<
HdiSt('>P)HL.,(Q) ifq <p,

where v = s(1/q — 1/p)~! and the implied constants are
independent of P.

Up next:
» discussion of the proof,
» related results (including the integration problem),

» examples and open problems.
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Main result — What we are going to prove

We have for any nonempty and finite point set P C () that

e (P,W3(Q) = Ly() =
Hdist(-,P)H‘;(Q) if g <p,

1

where v = s(1/q — 1/p)~" and the implied constants are

independent of P.

Here, .
Wi (Q) = {f € Wy (R?) | supp f C Q}.

6/23



A useful result from information-based complexity

For any normed space F' of bounded functions (here F' = W;(Q))
define the radius of information

r(P) = sup {||fllL,): f € B(F), flp=0}.

r(P) < e(P) < 2r(P).

» See e.g. the book of Novak and Wozniakowski (2008).

> If F is a Hilbert space, we even have equality, also for e!(P).
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Proof of the lower bound. Let f. € B(F) with f.|p =0. Any
algorithm Sp of the form

Sp(f) = ¢(f(x1), ..., f(zn))

satisfies Sp(fs) = Sp(—f«). We call f, a fooling function. We
obtain that

sup [|Sp(f) = fllz,@)
feB(F)
> maX{HSP(f*) - f*HLq(Q)a 1Sp(fs) + f*HLq(Q)}

> || fell Ly (o)-
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Proof of the upper bound. Consider an interpolatory algorithm

Sp(f) = ¢(f(x1), ..., f(zn))

that maps f € B(F) to any function g € B(F) with g|p = f|p.

sup ||f = Sp(f)llL, @)
feB(F)
< sup | f=9 |z,
1.9€B(F): flp=glp 3~

< sup 12|, (0)-
heB(F): h|p=0
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A useful result from approximation theory

R ¢ There are constants m and C (de-
pending on s,p,d) such that any
function with a zero on each of the

I : m< subcubes of [0, 1] satisfies
. . sup | f(z)] < C|flws(o.1)9)-
° o x€[0,1]4

» "Small derivatives and enough zeros yield small functions.”

» This can be proven using a result of Wendland (2001) on
polynomial reproducing maps and results on best polynomial
approximation on W3 ([0,1]%), see the book of Maz'ya (1985).
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| We define r(z) to be the infimum
. .° |+ |.° ofall 0> 0 such that each of the
ACEEE m® open subcubes of x + [, o]¢
: J contains either a point of P or a
\ . | . point of R4\ Q.
\ T~

We call Q(z) = = + [~r(z),r(x)]¢ a good cube. Note that
Q(z)/2 contains an empty cube Q*(x) C Q of radius r(z)/2m.

Every f € Wg(Q) with f|p = 0 satisfies

£l @@y S ()t flws@e))-
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There is an efficient covering of () by good cubes.

There are points 11, . ..,yn € S such that
> The cubes Q; = Q(y;) cover Q.
» The cubes QF = Q*(yi) are pairwise disjoint.

> Every y € R? is contained in at most 2% of the cubes Q;.

Proof. The function r is upper semi-continuous. Choose ¥ as a
maximizer of 7 on €2, and recursively y; as a maximizer of r on
O\ U, Qi- The rest of the proof is homework. O
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Putting things together

Proof of the upper bound. Let f be from the unit ball of W;(Rd)
such that f|p = 0. Then

s d
171G 0y < DG 0 S Dol

and Holder's inequality gives us

(X ) e )

N—— N——
i ki
S dist(y,P)7 dy Jo, 102 f W)l dy

and using the efficiency of the covering,

< (/Qdist(y,PWdy)qsm.
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Putting things together

Proof of the lower bound. Recall that the Q) are disjoint and
empty subsets of Q. Let T} transform Q} linearly into [—1, 1]%.

We take any nonnegative smooth function v with support in the
cube [—1,1]% and 9(0) > 0 and let 1; = 1 o T;. Define the fooling

function
_ Yo gt '
[ O‘W%’HW;(Q)

[

By optimizing the «;, we obtain the lower bound

[fellLy) 2 [1dist( P7 q)-
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Back to the theorem

We have for any nonempty and finite point set P C () that

| | dist(- P S ifa =,
(P, WE(Q) < Ly(Q)) < -
| dist(-,P)H‘;(Q) if g <p,

where v = s(1/p — 1/q)~! and the implied constants are

independent of P.

The result may be extended to ...
» ... a wider range of (isotropic) function spaces.

» ... more general domains.
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Integration

The minimal worst-case error for the integration problem on a
function space F' is

e(P,F,INT) := inf sup |/Qf(:c)dx—;a¢f(a:i)

a; ER feB(F

» Smolyak/Bakhvalov (1971): The infimum does not change if
we also allow nonlinear algorithms.

We have for any nonempty and finite point set P C () that

e(P,W;(€),INT) = ||dist(~,P)||sty(Q),

where vy = s(1 — 1/p)~L.
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Characterization of optimal sampling points

A sequence of n-point sets P, is optimal for L,(2)-approximation
or integration on W7 (€2) in the sense that the minimal worst case
error has the optimal order of convergence if and only if

H dist(-,P)HLW(Q) = n~ /4,

where v = s(1/q — 1/p)~* for g < p (with ¢ = 1 for the
integration problem) and v = oo for ¢ > p.

> The quantity || dist(-, P)||1. (o) is also called the distortion of
the point set P (or of the quantizer that "rounds” elements
from Q to elements of P).
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Example: Data with a big hole

For n € N, let P, be an n-point set and let B,, be a ball of radius
rn. Assume that the covering radius of P, in Q\ B,, is of optimal
order n=1/4,

» The point sets are order-optimal if and only if

rn < m~ LA+ ().

~1/d

» Compare with the size n of the other holes.
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Example: Random sampling points

Let P, be a set of n independent, uniformly distributed points.
Then we have in various ways

Hd ( P)H n1/d if v < o0,
ist(-, =
Ly (@) (n/logn)~14 if v = cc.

Precise statements may be found in Cohort (2004).

Random data is optimal for Lq(S2)-approximation (integration) on
W;(Q) if and only if ¢ < p.

19/23



Some open questions

> We did not manage to prove the result for the integration
problem for general Triebel Lizorkin spaces.

> We believe that the results hold for more general domains
(including all bounded Lipschitz domains) and manifolds.

» We can only guess how optimal point sets look like for
function spaces of mixed smoothness (i.e., the derivatives up
sd .
to order ﬁ are bounded). So far, the best known point
s..0x%,
sets in the Hilbert-case are:

® % ‘o.'..o

< Sparse grids for small ~ ®e &% 07

. . . b ‘.0 0 .ﬁ'*.
dimensions [T. ulirich/Sickel] e - "‘,..,. ’.
ee0 0 %.:| bl
. ‘.’:‘.:.0 ..lo'-
Random points for large « . @ s .*°«
. . ¢ .° o qv
dimensions [m. utirich/k] —> . -":'“".s .;’:
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