KULEUVEN

The spherical ensemble with external sources

Arno Kuijlaars, joint with Juan Criado del Rey KU Leuven, Belgium, preprint arXiv:2008.01017
Point Distributions Webinar, 10 February 2021

1 Outline

(1) Introduction

(2) Potential theory

(3) Vector equilibrium problem

(4) About the proof

1 Introduction: The spherical ensemble

n random points on the unit sphere $\mathbb{S}^{2} \subset \mathbb{R}^{3}$ with joint probability density

$$
\frac{1}{Z_{n}} \prod_{i=1}^{n-1} \prod_{j=i+1}^{n}\left\|x_{i}-x_{j}\right\|^{2}
$$

- Determinantal point process
- Eigenvalues of a random matrix

Krishnapur (2009)
Take independent Ginibre matrices A and B.
Compute eigenvalues of $A B^{-1}$.
Put points on \mathbb{S}^{2} with inverse stereographic projection.

1 The spherical ensemble with external charges

Fix $p_{0}, \ldots, p_{r} \in \mathbb{S}^{2}$ and $a_{0}, \ldots, a_{r}>0$. It creates probability density for points x_{1}, \ldots, x_{n} on the sphere

$$
\frac{1}{Z_{n}} \prod_{i=1}^{n-1} \prod_{j=i+1}^{n}\left\|x_{i}-x_{j}\right\|^{2} \cdot \prod_{j=1}^{n} \prod_{k=0}^{r}\left\|x_{j}-p_{k}\right\|^{2 n a_{k}}
$$

Each p_{k} creates a region around itself that is free from x_{j} 's in large n limit.

When a_{k} 's are small these regions are spherical caps

Brauchart, Dragnev, Saff, Womersley

When charges a_{k} are larger the regions start to overlap.

Figures from BDSW

- What region D is occupied by the free charges?
- D is known as the droplet.

1 Normal matrix model

Eigenvalues of complex Ginibre matrix have joint density

$$
\frac{1}{Z_{n}} \prod_{i=1}^{n} \prod_{j=i+1}^{n}\left|z_{i}-z_{j}\right|^{2} \prod_{j=1}^{n} e^{-n\left|z_{j}\right|^{2}}
$$

- Eigenvalues fill out a disk as $n \rightarrow \infty$.

Ginibre model with external sources (also arises as eigenvalues in a normal matrix model)

$$
\frac{1}{Z_{n}} \prod_{i=1}^{n} \prod_{j=i+1}^{n}\left|z_{i}-z_{j}\right|^{2} \prod_{j=1}^{n} e^{-n\left|z_{j}\right|^{2}} \prod_{j=1}^{n} \prod_{k=0}^{r}\left|z_{j}-q_{k}\right|^{2 n a_{k}}
$$

- Studied in detail for case $r=0$ by

Balogh, Bertola, Lee, McLaughlin 2015

$$
\frac{1}{Z_{n}} \prod_{i=1}^{n} \prod_{j=i+1}^{n}\left|z_{i}-z_{j}\right|^{2} \prod_{j=1}^{n} e^{-n\left|z_{j}\right|^{2}} \prod_{j=1}^{n}\left|z_{j}-q\right|^{2 n a}
$$

Change in droplet as a increases.

1 Motherbody

Average characteristic polynomial $\quad P_{n}(z)=\mathbb{E}\left[\prod_{j=1}^{n}\left(z-z_{j}\right)\right]$ is planar orthogonal polynomial with zeros that cluster around a contour as $n \rightarrow \infty$, known as the motherbody

- Planar orthogonality can be rewritten as orthogonality along a closed contour around q.

Balogh, Bertola, Lee, McLaughlin 2015, Lee, Yang 2019

- This allows a Riemann-Hilbert asymptotic analysis

2 Outline

(1) Introduction

(2) Potential theory

(3) Vector equilibrium problem

(4) About the proof

2 Potential theory

Back to spherical model
$\frac{1}{Z_{n}} \prod_{i=1}^{n-1} \prod_{j=i+1}^{n}\left\|x_{i}-x_{j}\right\|^{2} \cdot \prod_{j=1}^{n} \prod_{k=0}^{r}\left\|x_{j}-p_{k}\right\|^{2^{i}}$

Fixed charge distribution $\quad \sigma=\sum_{k=0}^{r} a_{k} \delta_{p_{k}}$
Limiting distribution μ_{σ} of free charges is unique probability measure on \mathbb{S}^{2} that satisfies

$$
\begin{array}{ll}
U^{\mu_{\sigma}}+U^{\sigma}=\ell & \text { on } D=\operatorname{supp}\left(\mu_{\sigma}\right) \\
U^{\mu_{\sigma}}+U^{\sigma} \geq \ell & \text { on } \mathbb{S}^{2}
\end{array}
$$

Notation: $\quad U^{\mu}(x)=\int \log \frac{1}{} d \mu(y)$

2 Potential theory

Fixed charge distribution $\quad \sigma=\sum_{k=0}^{r} a_{k} \delta_{p_{k}}$
Limiting distribution μ_{σ} of free charges is unique probability measure on \mathbb{S}^{2} that satisfies

$$
\begin{array}{ll}
U^{\mu_{\sigma}}+U^{\sigma}=\ell & \text { on } D=\operatorname{supp}\left(\mu_{\sigma}\right) \\
U^{\mu_{\sigma}}+U^{\sigma} \geq \ell & \text { on } \mathbb{S}^{2}
\end{array}
$$

Lemma

$$
\mu_{\sigma}=(\lambda(D))^{-1} \lambda_{D}
$$

where λ_{D} is the restriction to D of the normalized Lebesgue measure λ on \mathbb{S}^{2}.

2 The motherbody

A motherbody for D is a probability measure σ^{*} on a one-dimensional subset of D such that

$$
\begin{array}{ll}
U^{\sigma^{*}}=(\lambda(D))^{-1} U^{\lambda_{D}}+\ell^{*} & \text { on } \mathbb{S}^{2} \backslash D, \\
U^{\sigma^{*}} \geq(\lambda(D))^{-1} U^{\lambda_{D}}+\ell^{*} & \text { on } D .
\end{array}
$$

In case of two points p_{0}, p_{1} with sufficiently large equal charges $a_{0}=a_{1}, \mathbb{S}^{2} \backslash D$ is an ellipse after stereographic projection onto the complex plane.

The motherbody is minimizer of equilibrium problem with external field
Criado del Rey - K

2 More external charges

We generalize this to $r+1$ points p_{0}, \ldots, p_{r} with symmetry

- p_{j} 's are located symmetrically around the north pole
- Equal charges $a_{0}=a_{1}=\cdots=a_{r}=a>0$

Motherbody will be supported on $r+1$ meridians on the sphere, connecting the north and south poles.

After stereographic projection these are $r+1$ half-rays in the
 complex plane.

2 More pictures for $r=2$ (three charges)

3 Outline

(1) Introduction

(2) Potential theory

(3) Vector equilibrium problem

(4) About the proof

3 Remove the symmetry

We expect three cases for the support Σ of the motherbody (after removing the symmetry)

- Bounded interval support (BIS): $\Sigma=\left[0, x_{1}\right]$
- Two interval support (TIS): $\quad \Sigma=\left[0, x_{1}\right] \cup\left[x_{2}, \infty\right)$
- Full interval support (FIS): $\quad \Sigma=[0, \infty)$

3 Vector equilibrium problem with r measures

Energy functional with input $q>0,0<t<1$ and integer $r \geq 1$

$$
\begin{aligned}
& \mathcal{E}\left(\mu_{1}, \ldots, \mu_{r}\right)=\sum_{j=1}^{r} I\left(\mu_{j}\right)-\sum_{j=1}^{r-1} I\left(\mu_{j}, \mu_{j+1}\right) \\
& -\frac{1-t}{t} \int \log \left|x+q^{-1}\right| d \mu_{1}(x)+\frac{r+t}{t} \int \log \left|x-(-1)^{r} q\right| d \mu_{r}(x)
\end{aligned}
$$

Notation:

$$
\begin{aligned}
I(\mu, \nu) & =\iint \log \frac{1}{|x-y|} d \mu(x) d \nu(y) \\
I(\mu) & =I(\mu, \mu)
\end{aligned}
$$

3 Vector equilibrium problem with r measures

Energy functional with input $q>0,0<t<1$ and integer $r \geq 1$

$$
\begin{aligned}
& \mathcal{E}\left(\mu_{1}, \ldots, \mu_{r}\right)=\sum_{j=1}^{r} I\left(\mu_{j}\right)-\sum_{j=1}^{r-1} I\left(\mu_{j}, \mu_{j+1}\right) \\
& -\frac{1-t}{t} \int \log \left|x+q^{-1}\right| d \mu_{1}(x)+\frac{r+t}{t} \int \log \left|x-(-1)^{r} q\right| d \mu_{r}(x)
\end{aligned}
$$

Minimize $\mathcal{E}\left(\mu_{1}, \ldots, \mu_{r}\right)$ under conditions

- μ_{j} is supported on $[0, \infty)$ if j is odd, and on $(-\infty, 0]$ if j is even,
> $\quad \int d \mu_{j}=1+\frac{j-1}{t}$ for $j=1, \ldots, r$.

3 Main result

Theorem

(a) The vector equilibrium problem has a unique minimizer.
(b) The first component μ_{1} has support Σ_{1} that is either $\left[0, x_{1}\right]$, or $\left[0, x_{1}\right] \cup\left[x_{2}, \infty\right)$ or $[0, \infty)$.
(c) $\Phi(z)=t \int \frac{d \mu_{1}(s)}{z-s}+\frac{1-t}{z+q^{-1}}$ is an algebraic function with meromorphic continuation to an $r+1$ sheeted Riemann surface
(d) There is a domain U containing Σ_{1} with boundary

$$
\partial U: \quad z \Phi(z)=\frac{|z|^{\frac{2}{r+1}}}{1+|z|^{\frac{2}{r+1}}}
$$

3 Pictures (on different scales)

BIS: closed contour

TIS: two contours

FIS: closed contour ∂U is boundary of shaded region U

- BIS: $\Sigma_{1}=\left[0, x_{1}\right]$ and U is bounded
- TIS: $\Sigma_{1}=\left[0, x_{1}\right] \cup\left[x_{2}, \infty\right)$ and U has one bounded and one unbounded component
- FIS: $\Sigma_{1}=[0, \infty)$ and U is unbounded

3 Main result (cont.)

Theorem

(e) $\Omega=\left\{z \in \mathbb{C} \mid z^{r+1} \in U\right\} \quad$ is mapped by inverse stereographic projection to the droplet D

The points p_{0}, \ldots, p_{r} correspond to equidistant points in the plane on a circle with radius $q^{-\frac{1}{r+1}}>1$

The charges are

$$
a=\frac{1-t}{t(r+1)}>0
$$

(f) The measure μ_{1} gives the motherbody of D (after re-introducing the $r+1$-fold symmetry and mapping back to the unit sphere)

4 Outline

(1) Introduction

(2) Potential theory
(3) Vector equilibrium problem
(4) About the proof

4 Vector equilibrium problem

- Vector equilibrium problem is weakly admissible
- The measures μ_{2}, \ldots, μ_{r} have full supports $(-\infty, 0]$ or $[0, \infty)$ as they are balayage measures

$$
2 \mu_{k}=\operatorname{Bal}\left(\mu_{k-1}+\mu_{k+1} ;(-1)^{k+1}[0, \infty)\right), \quad \text { for } k=2,3, \ldots, r
$$

4 Vector equilibrium problem

- The measures μ_{2}, \ldots, μ_{r} have full supports $(-\infty, 0]$ or $[0, \infty)$ as they are balayage measures
- μ_{1} also minimizes

$$
\begin{aligned}
& \quad \begin{aligned}
& \frac{1}{2} \iint \log \frac{1}{|x-y|} d \mu(x) d \mu(y) \\
& \quad+\frac{1}{2} \iint \log \frac{1}{\left|x^{1 / r}-y^{1 / r}\right|} d \mu(x) d \mu(y)
\end{aligned} \\
& +\int\left(\left(1-\frac{1}{t}\right) \log \left(x+q^{-1}\right)+\left(1+\frac{r}{t}\right) \log \left(x^{1 / r}+q^{1 / r}\right)\right) d \mu(x)
\end{aligned}
$$

among probability measures μ on $[0, \infty)$
Equilibrium problem for Muttalib-Borodin ensemble
Claeys Romano 2014, K 2016, Molag 2020
μ_{1} is the balayage measure $\operatorname{Bal}\left(-\left(\frac{1}{t}-1\right) \delta_{-q}+\mu_{2} ;[0, \infty)\right)$ provided that this is positive

- This happens in FIS (full interval support) case.

There are four possibilities for the support Σ_{1} of μ_{1}

- $\Sigma_{1}=\left[0, x_{1}\right] \quad$ with $0<x_{1}<\infty$

BIS TIS

UIS (unbounded interval support) does not happen for $0<q \leq 1$, BIS does not happen for $q \geq 1$.
This is proved with iterated balayage algorithm
Dragnev Kuijlaars 1999

4 Monotonicity properties

$\mu_{1}=\mu_{1, t}$ and $\Sigma_{1}=\Sigma_{1, t}$ vary with $t \in(0,1)$
Fix $0<q<1$
Theorem
(a) $\Sigma_{1, t}$ increases with t.
(b) $t \mu_{1, t}$ increases with t.
(c) There are two critical values $0<t_{1, c r}<t_{2, c r}<1$ such that BIS in case $0<t \leq t_{1, c r}$
TIS in case $t_{1, c r}<t<t_{2, c r}$
FIS in case $t_{2, c r} \leq t<1$
(a) is implied by (b) and (b) follows from further analysis of iterated balayage algorithm (+some other tricks)
(c) follows from explicit calculations in BIS and FIS cases.

4 Riemann surface

Riemann surface \mathcal{R} with $r+1$ sheets

$$
\left(\Sigma_{j}=\operatorname{supp}\left(\mu_{j}\right)\right)
$$

$$
\begin{aligned}
\mathcal{R}^{(1)} & =\mathbb{C} \backslash \Sigma_{1}, \\
\mathcal{R}^{(j)} & =\mathbb{C} \backslash\left(\Sigma_{j-1} \cup \Sigma_{j}\right) \quad \text { for } j=2, \ldots, r, \\
\mathcal{R}^{(r+1)} & =\mathbb{C} \backslash \Sigma_{r} .
\end{aligned}
$$

- Meromorphic function Φ is given on j th sheet by

$$
\Phi^{(j)}(z)=t \int \frac{d \mu_{j}(s)}{z-s}-t \int \frac{d \mu_{j-1}(s)}{z-s}, \quad z \in \mathcal{R}^{(j)}
$$

with $\mu_{0}=\left(1-\frac{1}{t}\right) \delta_{-q^{-1}}$ and $\mu_{r+1}=\left(1+\frac{r}{t}\right) \delta_{(-1)^{r} q}$

- $z \Phi(z)$ has degree 2 .

4 Droplet and spherical Schwarz function

- $\partial U: z \Phi(z)=\frac{|z|^{\frac{2}{r+1}}}{1+|z|^{\frac{2}{r+1}}}$ is boundary of domain U.
- If $\Omega=\left\{z \mid z^{r+1} \in U\right\} \quad$ and $\quad S(z)=z^{r} \Phi\left(z^{r+1}\right)$ then

$$
\partial \Omega: \quad S(z)=\frac{\bar{z}}{1+|z|^{2}}
$$

$S(z)$ is the spherical Schwarz function of $\partial \Omega$

- Monotonicity of Ω in parameter t is crucial to prove that Ω is the stereographic projection of the droplet.

4 Final remark

Thank you for your attention !

