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This talk will present joint work with P. Dragnev, building on a
paper of Brauchart, Dragnev, Saff, Womersley (2018).

Use the sphere S2 as the setting for a familiar problem from
potential theory:

How does a charge placed on a conductor distribute to obtain
a configuration of minimal energy, in the presence of an
external field?

In the plane, with logarithmic interactions between charges, if
a charge is placed onto a domain Ω ⊂ C, what is the
equilibrium distribution of the charge?
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For example, on a bounded smooth finitely connected domain Ω,
we expect the charge to repulse itself as far as possible and reside
only on the outer boundary.
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Given a positive unit Borel measure µ as a charge distribution,
say with compact support in Ω̄, its potential at point z in the
plane is:

Uµ(z) =

∫
ln

1

|z − w |
dµ(w).

The logarithmic energy of the distribution is:

Iµ =

∫
Uµdµ =

∫ ∫
ln

1

|z − w |
dµ(w)dµ(z).

The minimal energy problem is to determine which positive
unit Borel measure µ supported in Ω̄ will minimize Iµ.
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When the ‘conductor’ Ω has positive logarithmic capacity:

The minimal energy infµ Iµ is finite and obtained by some µ.

The energy-minimizing measure is unique. Call it µE , the
equilibrium measure.
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What happens in the presence of an external electric field Q?

We expect that the external field will influence the equilibrium
distribution.

In general, the possible equilibrium supports in this case are
more diverse.
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For the right kinds of external fields (called ‘admissible’), there is a
theory of equilibrium measures which has similarities to the theory
without external fields.

For a conductor Ω in the plane in the
presence of an external field Q, place a unit charge on Ω according
to a measure µ. The external field influences the energy of the
system. The weighted energy of the measure µ in the presence of
Q is:

IQµ =

∫ ∫
ln

1

|z − w |
dµ(z)dµ(w) + 2

∫
Q(z)dµ(z).

The equilibrium measure in the presence of Q is then the positive
unit Borel measure which will minimize the weighted energy IQµ .
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A fundamental tool in this situation is the Frostman Theorem:

Theorem

In the external field situation described above, if Ω has positive
logarithmic capacity:

The minimal energy infµ I
Q
µ = VQ is finite.

The minimal energy VQ is obtained by a unique measure µQ .

For some constant FQ , UµQ (z) + Q(z) = FQ on supp(µQ),
and UµQ (z) + Q(z) ≥ FQ on all of C (q.e.).

The measure µQ is characterized by the previous item.

Note: the equilibrium measure has constant ‘weighted potential’
on its support. This is intuitively appealing, since if there were a
potential difference, a current would flow to equalize it.
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Now consider the same problem on the sphere S2.

If the sphere is a conductor,

and we place a unit positive charge on it

which is free to redistribute in the presence of an external field

what is the equilibrium given an external field Q?
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In this case, we can recover the planar problem via stereographic
projection: surface measure on the sphere corresponds to the
measure dA

(1+|z|2)2 in the plane, when the north pole of the sphere is

mapped to ∞.
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Brauchart, Dragnev, Saff, and Womersley were able to determine
what happens when the external field consists of finitely many
point charges that are sufficiently weak.
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Their result is the following (paraphrasing):

Theorem

(BDSW) Let a unit charge be placed uniformly on the sphere, and
then place finitely many sufficiently separated point charges on the
sphere (with logarithmic interactions). The energy-minimizing
charge distribution in the presence of these point charges is still
uniform, but the support excludes perfect spherical caps centered
on the point charges. The size of the caps can be explicitly
calculated.

In other words, each point charge has a ‘cap of influence’ where it
tends to repulse the charge on the sphere. ‘Sufficiently weak’
means that the caps should be disjoint.
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Images from Brauchart, Dragnev, Saff, and Womersely: Logarithmic and Riesz Equilibrium for Multiple Sources on
the Sphere: The Exceptional Case, Contemporary Computational Mathematics-A celebration of the 80th Birthday
of Ian Sloan, 179–203.
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My interest in the problem comes from a question raised in their
paper:

What’s going on here?
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A couple other views:
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It appears that the moment after caps of influence overlap, the
equilibrium support smooths out into a lobed shape. Can we
describe the shape?
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In the plane, when two circles combine in a potential theory setting
and smooth out into a single curve, it makes one think of a
Neumann Oval, which is a type of Quadrature Domain.
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‘Neumann Ovals’ are the way to overlap two circles in the
sense of the harmonic mean value theorem.

On a Neumann Oval, the integral of a harmonic function is
the linear combination of function values at 2 nodes, just as in
a disc the integral is a multiple of the function value at the
center.

As the coefficients at each node in the linear combination
increase, the region grows from a union of 2 discs, into a
lobed shape, and finally into a convex shape.

There are corresponding shapes for any number of nodes.
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A Quadrature Domain is a domain Ω in the plane where
integrating functions in a given test class (usually, harmonic L1,
Bergman Space A2, integrable analytic AL1, etc.) coincides with
taking a linear combination of point evaluations of the functions
and their derivatives. The same coefficients and points should
work for any function in the test class:∫

Ω
h(z)dA =

∑
i ,j

ci ,jh
(j)(zi ).

The number of terms in the sum is the ‘order’ of the Q.D., and the
points of evaluation zi are called the ‘nodes.’

Alan Legg
Logarithmic Equilibrium on the Sphere in the Presence of Multiple Point Charges



Examples of Q.D.’s:
Disc (the only Q.D. of order 1)
Neumann Oval (order 2 with distinct nodes)
Cardioid/Limacon (order 2 with single node)
Several overlapped discs merged together in the right way
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These domains are very appealing in complex analysis, because
they automatically enjoy many strong properties.

Algebraic Boundary

Algebraic proper maps to the unit disc

Maps between Quadrature Domains are algebraic

Algebraic Bergman Kernel

Meromorphic Schwarz Function
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In fact, any bounded simply connected Q.D. is a rational
image of the unit disc. So a conformal map from the disc to a
Neumann Oval is of the form

f (z) =
A

z − B
+

C

z − D

Similarly for higher numbers of nodes: the boundary of a Q.D.
is always algebraic.
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About the ‘Schwarz Function:’

Given a bounded real analytic curve in the plane, there is a
neighborhood of the curve where the function z̄ extends to be
analytic.

This continuation is called the Schwarz Function S(z) when
the curve is the boundary of a domain Ω.

To be a quadrature domain means that the Schwarz function
extends meromorphically throughout Ω with finitely many
poles. The poles are the quadrature nodes.
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For example, on the unit circle, z̄ = 1
z , which extends

meromorphically all the way inside the disc and has a pole at
0, which is the node of evaluation for the harmonic mean
value theorem.

In general, if the Schwarz function of Ω is meromorphic and
h(z) is integrable and analytic,∫

Ω h(z)dz ∧ dz̄ =
∫

Ω d(h(z)z̄dz).

So by Stokes’s Theorem,∫
Ω hdz ∧ dz̄ =

∫
∂Ω z̄h(z)dz =

∫
∂Ω h(z)S(z)dz . Since S is

meromorphic, this just becomes a linear combination of
evaluations of h(z) and its derivatives by the Residue
Theorem.
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Back to the problem at hand:

This region of charge exclusion looks like a Neumann Oval (Q.D.)
which was stereographically projected onto S2. And it was made in
a similar way, by overlapping two circles in a potential-theoretic
way.
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That turns out to be a good inspiration. In fact, we can prove that
the region of exclusion is the projection of a Q.D., using classical
Complex Analysis after a stereographic projection.
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Assume for now that the complement of the equilibrium support is
smooth and simply connected. Rotate the sphere so that the north
pole is in the equilibrium support. Then project stereographically
to the plane. As described in the BDSW paper, we can write a
planar formulation of the Frostman condition of constant weighted
potential of the equilibrium measure.
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Let Ω ⊂ C be the stereographically projected support of the
equilibrium measure (unbounded by our choice of north pole), and
assume its complement (the projected region of charge exclusion)
is smooth and simply connected. The Frostman Theorem condition
will involve a potential, the external field from the 2 point charges,
and some pieces arising from the distortion caused by the
stereographic projection.

Let the point charges be q1, q2, and let their planar projections
be located at z1, z2 ∈ C, Q = q1 + q2. Ω will satisfy:

Q + 1

π

∫
Ω

1

(1 + |w |2)2
ln

1

|z − w |
dAw+q1 ln

1

|z − z1|
+q2 ln

1

|z − z2|

+(Q + 1) ln
√

1 + |z |2 = const,

valid for z ∈ Ω.

Note: this projected version does not involve an admissible
external field-but it does involve a ‘weakly admissible’ external
field.
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Consider the integral as occurring within a large radius that
goes to ∞.

Differentiate in z , and use Green’s Theorem in the form of the
C∞ version of the Cauchy Integral Formula: for a function φ
smooth up to the boundary of a bounded smooth domain D,

φ(z) =
1

2πi

∫
∂D

φ(w)

w − z
dw +

1

2πi

∫ ∫
D

dϕ/dw̄

w − z
dAw .

After some algebra, and noticing that some terms vanish as
the radius goes to ∞, you’ll get:

1
2πi

∫
∂Ωc

1
w+ 1

w̄

1
w−z dw = q1

Q+1
1

z1−z + q2
Q+1

1
z2−z .
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This formula itself can be differentiated in z however many
times we want:

1
2πi

∫
∂Ωc

1
w+ 1

w̄

1
(w−z)m dw = q1

Q+1
1

(z1−z)m + q2
Q+1

1
(z2−z)m .

This holds for positive integers m.

But now by linearity/partial fractions, notice that this amounts
to saying that for any rational function R with poles in Ω:
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1

2πi

∫
∂Ωc

1

w + 1
w̄

R(w)dw =
q1

Q + 1
R(z1) +

q2

Q + 1
R(z2).

That’s starting to look like a quadrature domain with 2 nodes!

To confirm our suspicion, use Mergelyan’s Theorem. The
rational R in the above equality can be replaced by uniform
approximation to be any h ∈ A∞(Ωc). Then write the
function values on the right side in terms of the Cauchy
Integral Formula, rearrange and get:∫

∂Ωc

(
1

w + 1
w̄

− 1

w − z1
− 1

w − z2
)h(w)dw = 0.
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By the structure of the orthogonal complement of the Hardy Space
on a smooth bounded domain,there is a function H ∈ A∞(Ωc)
giving on the boundary:

1
w+ 1

w̄

− 1
w−z1

− 1
w−z2

= H(w),

for any w ∈ ∂Ωc .
Now solve for w̄ : it has the boundary values of a meromorphic
function. In other words, Ωc is a Quadrature Domain!
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Using the Argument Principle, you can conclude that the Schwarz
function S(w) has exactly 2 poles, which means Ωc is a
Quadrature Domain of order 2.

For example, you can tell 1
w+ 1

S

has exactly 2 poles, which means

w + 1
S has exactly 2 roots. On the other hand, w + 1

w̄ = 1+|w |2
w̄ ,

which has the same winding number as w (numerator has
argument 0, conjugating negates, and so does being in the
denominator). Using zeroes − poles = winding , you can rig the
arithmetic to give you that S has 2 poles.
In other words, our initial suspicion was correct-the region of
charge exclusion on the sphere is the stereographic preimage of a
quadrature domain of order 2: a Neumann Oval.
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With some extra bookkeeping in the calculations, the same idea
will extend to any finite number of charges. A set of n point
charges will result in a region of charge exclusion which is the
stereographic preimage of a Q.D. with n nodes in the plane.
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The approach we just saw is reliant on enough smoothness to
use Stokes’ Theorem, and becomes awkward when the
complement of the equilibrium support is disconnected.

The connectedness can be handled by balayage: the problem
can be solved for a single component, because disconnected
regions of charge exclusion do not interact.

There is an alternate approach which gives the result without
assumptions on boundary smoothness.

It turns out that the density of the equilibrium measure is
always the Laplacian of the external field, throughout the
equilibrium support regardless of boundary
(Hedenmalm-Makarov). This allows analyzing the Frostman
Condition directly.

This yields boundary information in a “weakly holomorphic”
sense, which by Weyl’s Lemma is legitimately holomorphic. In
particular, a meromorphic Schwarz function arises, leading
again to a quadrature domain.

Alan Legg
Logarithmic Equilibrium on the Sphere in the Presence of Multiple Point Charges



The approach we just saw is reliant on enough smoothness to
use Stokes’ Theorem, and becomes awkward when the
complement of the equilibrium support is disconnected.

The connectedness can be handled by balayage: the problem
can be solved for a single component, because disconnected
regions of charge exclusion do not interact.

There is an alternate approach which gives the result without
assumptions on boundary smoothness.

It turns out that the density of the equilibrium measure is
always the Laplacian of the external field, throughout the
equilibrium support regardless of boundary
(Hedenmalm-Makarov). This allows analyzing the Frostman
Condition directly.

This yields boundary information in a “weakly holomorphic”
sense, which by Weyl’s Lemma is legitimately holomorphic. In
particular, a meromorphic Schwarz function arises, leading
again to a quadrature domain.

Alan Legg
Logarithmic Equilibrium on the Sphere in the Presence of Multiple Point Charges



The approach we just saw is reliant on enough smoothness to
use Stokes’ Theorem, and becomes awkward when the
complement of the equilibrium support is disconnected.

The connectedness can be handled by balayage: the problem
can be solved for a single component, because disconnected
regions of charge exclusion do not interact.

There is an alternate approach which gives the result without
assumptions on boundary smoothness.

It turns out that the density of the equilibrium measure is
always the Laplacian of the external field, throughout the
equilibrium support regardless of boundary
(Hedenmalm-Makarov). This allows analyzing the Frostman
Condition directly.

This yields boundary information in a “weakly holomorphic”
sense, which by Weyl’s Lemma is legitimately holomorphic. In
particular, a meromorphic Schwarz function arises, leading
again to a quadrature domain.

Alan Legg
Logarithmic Equilibrium on the Sphere in the Presence of Multiple Point Charges



The approach we just saw is reliant on enough smoothness to
use Stokes’ Theorem, and becomes awkward when the
complement of the equilibrium support is disconnected.

The connectedness can be handled by balayage: the problem
can be solved for a single component, because disconnected
regions of charge exclusion do not interact.

There is an alternate approach which gives the result without
assumptions on boundary smoothness.

It turns out that the density of the equilibrium measure is
always the Laplacian of the external field, throughout the
equilibrium support regardless of boundary
(Hedenmalm-Makarov). This allows analyzing the Frostman
Condition directly.

This yields boundary information in a “weakly holomorphic”
sense, which by Weyl’s Lemma is legitimately holomorphic. In
particular, a meromorphic Schwarz function arises, leading
again to a quadrature domain.

Alan Legg
Logarithmic Equilibrium on the Sphere in the Presence of Multiple Point Charges



Kuijlaars and Criado del Rey have independently studied
solutions to the present problem in the case of two symmetric
charges, and the case of several symmetrically positioned
equal charges.

Via conformal mapping, the quadrature domain approach we
just saw obtains exact solutions in the case of two equal
charges. In principle, the case of two asymmetric charges can
be thought of this way also (the region of charge exclusion is
either 2 discs or simply connected). The relationship between
the conformal mapping parameters, quadrature data in the
plane and charge locations on the sphere turns out to be
algebraic, but unpleasant.

A useful tool for analysis in all cases is the “Spherical Schwarz
Function” S(z)/(1 + zS(z)), which incorporates the
stereographically projected spherical area measure into the
usual Schwarz function S(z).
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Two symmetric point charges of intensity q = 41−3
√

41
82 at the

points (±16
25 , 0,−

3
√

41
25 ) of the unit sphere.
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Two asymmetric point charges placed at (−0.95, 0,−0.31) and
(0.62, 0,−0.79) with respective intensities. q1 = 0.12, q2 = 0.07.

Alan Legg
Logarithmic Equilibrium on the Sphere in the Presence of Multiple Point Charges



3 and 4 point configurations
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Further questions:
1) Does the equilibrium support itself (as opposed to the
complement) have a generalized ‘quadrature’ structure (called a
“mother body”?) This question arises from Kuijlaars and Criado
del Rey’s approach.
2) What happens on other manifolds?
3) What happens for other potentials, such as Riesz potentials of
different exponent?
4) What happens in higher dimension? It is known that quadrature
domains are not as well behaved in higher dimensions, and the
connection to complex analysis likely breaks down.
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Thanks!
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