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Main result

Theorem 1
Let (X , ρ, µ) be a connected Ahlfors regular metric measure
space of dimension d and finite measure.

Then there exist positive constants c3 and c4 such that for
every sufficiently large N , there is a partition of X into N
regions of measure µ (X ) /N , each contained in a ball of
radius c3N−1/d and containing a ball of radius c4N−1/d .
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Outline of talk

I Applications to numerical integration

I Precedents: Equal area partitions of the unit sphere

I Dyadic cubes on Ahlfors regular spaces

I Construction of the partition
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Error bounds for positive weight quadrature rules

Let X be a smooth compact d -dimensional Riemannian
manifold without boundary. For any 1 6 p 6 +∞, α > d/p
and κ > 1/2 , for large enough N there exists a quadrature
rule with points {zj}N

j=1 and positive weights {ωj}N
j=1 such that∣∣∣∣∣∣

N∑
j=1

ωj f (zj)−
∫

X
f (x)dµ(x)

∣∣∣∣∣∣ 6 cN−α/d ‖f‖Wα,p

for all functions f ∈ Wα,p, the Sobolev class of functions f
with (I + ∆)α/2f ∈ Lp(X ).

(Brandolini et al. 2013; Brandolini et al. 2014)
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Equal area partition of the unit sphere

Stolarsky (1973) asserted the existence for any natural number
N of a partition of the unit sphere Sd ⊂ Rd+1 into N regions of
equal volume and diameter bounded as order O(N−1/d ) .

Feige and Schechtman (2002) gave a construction using a
directed tree of Voronoi cells that can be modified to satisfy
Stolarsky’s assertion (L 2007).

This construction could be further modified to yield an equal
measure partition of a compact connected Riemannian
manifold (L 2014).

(Stolarsky 1973; Feige and Schechtman 2002; L 2007; L 2014)
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The unit sphere Sd ⊂ Rd+1

Definition 2
The unit sphere Sd ⊂ Rd+1 is

Sd :=

{
x ∈ Rd+1

∣∣∣∣∣
d+1∑
k=1

x2
k = 1

}
.
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Equal-area partitions of Sd

Definition 3
An equal area partition of Sd is a nonempty finite set P of
Lebesgue measurable subsets of Sd , such that⋃

R∈P
R = Sd ,

and for each R ∈ P ,

σ(R) =
σ(Sd )

|P|
,

where σ is the Lebesgue area measure on Sd .
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Diameter bounded sets of partitions

Definition 4
The diameter of a region R ⊂ Rd+1 is defined by

diam R := sup{e(x, y) | x, y ∈ R},

where e(x, y) is the Rd+1 Euclidean distance
∥∥x − y

∥∥ .

Definition 5
A set Ξ of partitions of Sd ⊂ Rd+1 is diameter-bounded with
diameter bound K ∈ R+

if for all P ∈ Ξ , for each R ∈ P ,

diam R 6 K |P|−1/d .
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Partitions of S2 , S3 and Sd

Alexander (1972) uses the existence of a diameter-bounded set
of equal-area partitions of S2 to analyze the maximum sum of
distances between points, and suggests a construction for this
set. Alexander (1972) suggests a construction different from
Zhou (1995).

Zhou (1995) gives a construction for S2 . Saff (2003) and by
Sloan (2003) modify this to give a construction for S3 , which
generalizes to the EQ construction for Sd (L 2007).

(Alexander 1972; Zhou 1995; Saff 2003; Sloan 2003; L 2007)
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Stolarsky’s assertion on Sd

Stolarsky (1973) asserts the existence of a diameter-bounded
set of equal-area partitions of Sd for all d , but offers no
construction or existence proof.

Beck and Chen (1987) quotes Stolarsky. Bourgain and
Lindenstrauss (1988) quotes Beck and Chen.

Wagner (1993) implies the existence of an EQ -like construction
for Sd . Bourgain and Lindenstrauss (1993) gives a partial
construction.

Feige and Schechtman (2002) gives a construction which when
modified (L 2007) proves Stolarsky’s assertion.

(Stolarsky 1973; Beck and Chen 1987; Bourgain and Lindenstrauss 1988, 1993; Wagner 1993; Feige and

Schechtman 2002; L 2007)
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Spherical caps

The spherical cap S(p, θ) ∈ Sd is

S(p, θ) :=
{

q ∈ Sd | p · q > cos(θ)
}
.

For d > 1 , the area of a spherical cap of spherical radius θ is

µ(θ) := σ
(
S(p, θ)

)
= ω

∫ θ

0
(sin ξ)d−1dξ,

where ω = σ(Sd−1) .
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Outline of the modified Feige-Schechtman algorithm

1. Find spherical radius θc of caps with µ(θ) = σ(Sd )/N
2. Create an optimal packing of caps of spherical radius θc

3. Create a graph of kissing caps
4. Create a directed tree from graph
5. Create a Voronoi tessellation
6. Move area from V-cells towards the root of the tree
7. Split adjusted cells

(Feige and Schechtman 2002; L 2007)
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2. Create optimal packing of caps
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3. Create graph of kissing caps
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4. Create directed tree from graph
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5. Create Voronoi tessellation
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6. Move area from V-cells towards root
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Outline of proof the F-S bound

I Packing radius is θc = O(N−1/d ) .
I V-cells are in caps of spherical radius 2θc .
I Each V-cell has area larger than target area.
I Area is moved from V-cells of kissing packing caps.
I Adjusted cells are in caps of spherical radius 4θc .
I So Euclidean diameter is bounded above by

8θc = O(N−1/d ).

(Feige and Schechtman 2002; L 2007)
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Ahlfors regular space

Definition 6
An Ahlfors regular metric measure space of dimension d > 0
is a complete metric space X with a Borel measure µ with
positive constants c1 and c2 such that all open metric balls
B(x, r) with x ∈ X , 0 < r 6 diam(X ) satisfy the bounds

c1rd 6 µ (B(x, r)) 6 c2rd .

(David and Semmes 1997; Gromov 2007)
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Dyadic cubes

Definition 7
A collection of open subsets of X ,

{
Qk
α ⊂ X : k ∈ Z, α ∈ Ik

}
is a family of dyadic cubes of X if there exist three constants
δ ∈ (0, 1) and 0 < a0 6 a1, with the following properties:

µ

(
X \

⋃
α∈Ik

Qk
α

)
= 0 for all k . (1)

Qk
α ∩ Qk

β = ∅ for each k and α 6= β. (2)

If ` > k then either Q`
β ⊂ Qk

α or Q`
β ∩ Qk

α = ∅. (3)

Each Qk
α contains a ball B(zk

α, a0δ
k ). (4)

Each Qk
α is contained in the ball B(zk

α, a1δ
k ). (5)

(David 1988; Christ 1990)
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Dyadic cubes on Ahlfors regular spaces

David (1988) showed that Ahlfors regular metric measure
spaces contained in Euclidean spaces admit a dyadic cube
decomposition. By the Assouad embedding theorem this
decomposition holds for Ahlfors regular metric measure spaces.

Christ (1990) gave a construction of a dyadic cube
decomposition for the more general case of spaces of
homogeneous type.

Theorem 8
Let X be an Ahlfors regular metric measure space of
dimension d. Then there exists a family of dyadic cubes as in
Definition 7.

(Assouad 1983; David 1988; Christ 1990; David and Semmes 1990; David 1991)
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The construction of an equal measure partition

Let (X , ρ, µ) be a connected Ahlfors regular metric measure
space of dimension d with constants 0 < c1 < c2 as per
Definition 6. In addition, let{

Qk
α : k ∈ Z, α ∈ Ik

}
be a family of dyadic cubes on X , as per Theorem 8, with
properties as per Definition 7.

Assume without loss of generality that µ (X ) = 1.
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Outline of the construction

We construct a partition of X into N regions of measure 1/N
as follows.

1. Determine a generation n of large cubes
2. Create an adjacency graph Γ

3. Create a directed spanning tree T from Γ

4. Determine an upper bound M
5. Determine a generation m of small cubes
6. Split leaf nodes into regions
7. Split non-leaf non-root nodes into regions
8. Split the root node into regions

(Feige and Schechtman 2002; L 2007)
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Step 1: Determine a generation n of large cubes

For “large enough” N let n be the only integer such that

a0δ
n+1 <

(
2

c1N

)1/d

6 a0δ
n,

so that

µ(Qn
α) > 2/N

for all α ∈ In .
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Step 2: Create an adjacency graph Γ

Using the cubes of generation n , create a connected graph Γ

with a vertex for each index α ∈ In and an edge (α, β)

for each pair of centre points zn
α, zn

β that satisfy

B(zn
α, a1δ

n) ∩ B(zn
β, a1δ

n) 6= ∅ .
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Step 3: Create a directed spanning tree T from Γ

Take any spanning tree S of Γ .

Mark a centre vertex as the root.

Create the directed tree T from S by directing the edges from
the leaves towards the root:

(α, β) ∈ T means T has an edge from child α to parent β .

(Riordan 1958; Ore 1962)



Outline Applications Precedents Dyadic cubes Construction

Step 4: Determine an upper bound M

Determine M independent of N so that

µ

Qn
β ∪

⋃
(α,β)∈T

Qn
α

 <
M
N

for all α, β in generation n .
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Step 5: Determine a generation m of small cubes

Let m := n + k , where k is a positive integer independent of
N such that

µ(Qm
η ) 6 µ

(
B
(

zm
η , a1δ

m
))
<

1
MN

for all η in generation m .
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Step 6: Split leaf nodes into regions

For each leaf node β , let Nβ := bN µ(Qn
β)c.

This is the maximum number of regions of measure 1/N that
fit into Qn

β .

Choose Nβ cubes of generation m within Qn
β to be the nuclei

of regions.

Extend each nucleus into a region of measure 1/N within Qn
β .

Let Wβ be the rest of Qn
β .
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Step 7: Split non-leaf non-root nodes into regions

For each non-leaf node β other than the root, let

Xβ := Qn
β ∪

⋃
(α,β)∈T Wα .

Let Nβ := bN µ(Xβ)c.

Choose Nβ cubes of generation m within Qn
β to be the nuclei

of regions.

Take a subset Wβ of Qn
β, disjoint from these nuclei,

of measure µ (Xβ)− Nβ/N .

Extend each nucleus into a region of measure 1/N within
Xβ \Wβ .
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Step 8: Split the root node into regions

For the root node γ , define Xγ := Qn
γ ∪

⋃
(β,γ)∈T Wβ .

We have µ(Xγ) = Nγ/N , where Nγ := N −
∑
α6=γ Nα .

Choose Nγ cubes of generation m within Qn
γ to be the nuclei

of regions.

Extend each nucleus into a region of measure 1/N within Xγ.
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