Quadrature rules, Riesz energies, discrepancies and elliptic polynomials

J. Marzo
Universitat de Barcelona

Point distributions webinar 2021

Quadrature rules

Let $\mathbb{S}^{d}=\left\{x \in \mathbb{R}^{d+1}:|x|=1\right\}$

Quadrature rules

Let $\mathbb{S}^{d}=\left\{x \in \mathbb{R}^{d+1}:|x|=1\right\}$

We want to get an approximation of $\int_{\mathbb{S}^{d}} f d \sigma$ from $\left\{f\left(x_{j}\right)\right\}_{j=1}^{N}$ (and some weights) with error estimates.

Quadrature rules

Let $\mathbb{S}^{d}=\left\{x \in \mathbb{R}^{d+1}:|x|=1\right\}$

We want to get an approximation of $\int_{\mathbb{S}^{d}} f d \sigma$ from $\left\{f\left(x_{j}\right)\right\}_{j=1}^{N}$ (and some weights) with error estimates.

Let \mathcal{P}_{L} the space of polynomials in \mathbb{S}^{d} of degree at most L with the scalar product

$$
\langle P, Q\rangle=\int_{\mathbb{S}^{d}} P Q d \sigma
$$

for $P, Q \in \mathcal{P}_{L}$.

Quadrature rules

Let $\mathbb{S}^{d}=\left\{x \in \mathbb{R}^{d+1}:|x|=1\right\}$

We want to get an approximation of $\int_{\mathbb{S}^{d}} f d \sigma$ from $\left\{f\left(x_{j}\right)\right\}_{j=1}^{N}$ (and some weights) with error estimates.

Let \mathcal{P}_{L} the space of polynomials in \mathbb{S}^{d} of degree at most L with the scalar product

$$
\langle P, Q\rangle=\int_{\mathbb{S}^{d}} P Q d \sigma
$$

for $P, Q \in \mathcal{P}_{L}$.

Observe that

$$
\operatorname{dim} \mathcal{P}_{L}=h_{L, d} \sim L^{d}
$$

Fekete points

Let $\left\{x_{j}^{L}\right\}_{j=1}^{h_{L}} \subset \mathbb{S}^{d}$ be such that

$$
\left|\operatorname{det}\left(Q_{i}^{L}\left(x_{j}^{L}\right)\right)_{i, j}\right|
$$

is maximal where $Q_{1}^{L}, \ldots, Q_{h_{L}}^{L}$ is an ON basis of \mathcal{P}_{L}.

Fekete points

Let $\left\{x_{j}^{L}\right\}_{j=1}^{h_{L}} \subset \mathbb{S}^{d}$ be such that

$$
\left|\operatorname{det}\left(Q_{i}^{L}\left(x_{j}^{L}\right)\right)_{i, j}\right|
$$

is maximal where $Q_{1}^{L}, \ldots, Q_{h_{L}}^{L}$ is an ON basis of \mathcal{P}_{L}.

These sets of points are called Fekete (or extremal fundamental systems).

Rob Womersley web http://web.maths.unsw.edu.au/rsw/Sphere/ 529 Fekete points

For $x_{1}^{L}, \ldots, x_{h_{L}}^{L} \in \mathbb{S}^{d}$ Fekete points define

$$
\ell_{i}^{L}(x)=\frac{\operatorname{det}\left(\begin{array}{ccccc}
Q_{1}\left(x_{1}^{L}\right) & \cdots & Q_{1}(x) & \cdots & Q_{1}\left(x_{h_{L}}^{L}\right) \\
\vdots & & \vdots & & \vdots \\
Q_{h_{L}}\left(x_{1}^{L}\right) & \cdots & Q_{h_{L}}(x) & \cdots & Q_{h_{L}}\left(x_{h_{L}}^{L}\right)
\end{array}\right)}{\operatorname{det}\left(Q_{k}\left(x_{j}^{L}\right)\right)_{k, j}}
$$

the Lagrange polynomials.

For $x_{1}^{L}, \ldots, x_{h_{L}}^{L} \in \mathbb{S}^{d}$ Fekete points define

$$
\ell_{i}^{L}(x)=\frac{\operatorname{det}\left(\begin{array}{ccccc}
Q_{1}\left(x_{1}^{L}\right) & \cdots & Q_{1}(x) & \cdots & Q_{1}\left(x_{h_{L}}^{L}\right) \\
\vdots & & \vdots & & \vdots \\
Q_{h_{L}}\left(x_{1}^{L}\right) & \cdots & Q_{h_{L}}(x) & \cdots & Q_{h_{L}}\left(x_{h_{L}}^{L}\right)
\end{array}\right)}{\operatorname{det}\left(Q_{k}\left(x_{j}^{L}\right)\right)_{k, j}}
$$

the Lagrange polynomials.

Clearly

$$
\ell_{i}^{L}\left(x_{j}^{L}\right)=\delta_{i j},\left|\ell_{i}^{L}(x)\right| \leq 1 .
$$

For $Q \in \mathcal{P}_{L}$

$$
Q=\sum_{j=1}^{h_{L}} Q\left(x_{j}^{L}\right) \ell_{j}^{L}
$$

and

$$
\int_{\mathbb{S}^{d}} Q d \sigma=\sum_{j=1}^{h_{L}} Q\left(x_{j}^{L}\right) \int_{\mathbb{S}^{d}} \ell_{j}^{L} d \sigma=\sum_{j=1}^{h_{L}} Q\left(x_{j}^{L}\right) w_{j}^{L}
$$

where $w_{j}^{L}=\int_{\mathbb{S}^{d}} \ell_{j}^{L} d \sigma$ are the integration weights.

Theorem (M.-Ortega Cerdà 08) Fekete points are asymptotically uniformly distributed:

- for every $f \in \mathcal{C}\left(\mathbb{S}^{d}\right)$

$$
\frac{1}{h_{L}} \sum_{j=1}^{h_{L}} f\left(x_{j}^{L}\right) \longrightarrow \int_{\mathbb{S}^{d}} f d \sigma \quad \text { as } \quad L \rightarrow+\infty
$$

or equivalently

- the $\left(L^{\infty}\right)$ spherical cap discrepancy

$$
D_{\infty}\left(\left\{x_{j}^{L}\right\}_{j=1}^{h_{L}}\right)=\sup _{C \subset \mathbb{S}^{d}}\left|\frac{\#\left(\left\{x_{j}^{L}\right\}_{j=1}^{h_{L}} \cap C\right)}{h_{L}}-\sigma(C)\right|
$$

satisfies

$$
\lim _{L \rightarrow \infty} D_{\infty}\left(\left\{x_{j}^{L}\right\}_{j=1}^{h_{L}}\right)=0
$$

2π • weights corresponding to 256 Fekete points from Rob Womersley web http://web.maths.unsw.edu.au/rsw/Sphere/

Sobolev spaces

For $\ell \geq 0, \mathcal{H}_{\ell}$ is the space of the spherical harmonics of degree ℓ

$$
-\Delta Y=\ell(\ell+d-1) Y, \quad Y \in \mathcal{H}_{\ell}
$$

Sobolev spaces

For $\ell \geq 0, \mathcal{H}_{\ell}$ is the space of the spherical harmonics of degree ℓ

$$
-\Delta Y=\ell(\ell+d-1) Y, \quad Y \in \mathcal{H}_{\ell}
$$

Then $L^{2}\left(\mathbb{S}^{d}\right)=\bigoplus_{\ell \geq 0} \mathcal{H}_{\ell}$ and for $f \in L^{2}\left(\mathbb{S}^{d}\right)$ the Fourier expansion is

$$
f=\sum_{\ell, k} f_{\ell, k} Y_{\ell, k}, \quad f_{\ell, k}=\left\langle f, Y_{\ell, k}\right\rangle=\int_{\mathbb{S}^{d}} f Y_{\ell, k} d \sigma
$$

where $\left\{Y_{\ell, k}\right\}_{k=1}^{\operatorname{dim} \mathcal{H}_{\ell}}$ is an ON basis of \mathcal{H}_{ℓ}.

Sobolev spaces

For $\ell \geq 0, \mathcal{H}_{\ell}$ is the space of the spherical harmonics of degree ℓ

$$
-\Delta Y=\ell(\ell+d-1) Y, \quad Y \in \mathcal{H}_{\ell}
$$

Then $L^{2}\left(\mathbb{S}^{d}\right)=\bigoplus_{\ell \geq 0} \mathcal{H}_{\ell}$ and for $f \in L^{2}\left(\mathbb{S}^{d}\right)$ the Fourier expansion is

$$
f=\sum_{\ell, k} f_{\ell, k} Y_{\ell, k}, \quad f_{\ell, k}=\left\langle f, Y_{\ell, k}\right\rangle=\int_{\mathbb{S}^{d}} f Y_{\ell, k} d \sigma
$$

where $\left\{Y_{\ell, k}\right\}_{k=1}^{\operatorname{dim}_{k} \mathcal{H}_{\ell}}$ is an ON basis of \mathcal{H}_{ℓ}. Given $s \geq 0$

$$
\mathbb{H}^{s}\left(\mathbb{S}^{d}\right)=\left\{f \in L^{2}\left(\mathbb{S}^{d}\right): \sum_{\ell=0}^{+\infty} \sum_{k=1}^{\operatorname{dim} \mathcal{H}_{\ell}}\left(1+\ell^{2}\right)^{s}\left|f_{\ell, k}\right|^{2}<+\infty\right\}
$$

with the norm

$$
\|f\|_{\mathbb{H}^{s}\left(\mathbb{S}^{d}\right)}=\left(\sum_{\ell=0}^{+\infty} \sum_{k=1}^{\operatorname{dim} \mathcal{H}_{\ell}}\left(1+\ell^{2}\right)^{s}\left|f_{\ell, k}\right|^{2}\right)^{1 / 2}
$$

$\mathbb{H}^{s}\left(\mathbb{S}^{d}\right)$ is continuously embedded in $\mathcal{C}^{k}\left(\mathbb{S}^{d}\right)$ if $s>k+d / 2$.

From Lu-Wang 21 (Gröchenig 20) and previous results from M.-Ortega Cerdà 08, we get the following:

From Lu-Wang 21 (Gröchenig 20) and previous results from M.-Ortega Cerdà 08, we get the following:

For any $\epsilon>0$, let $x_{1}, \ldots, x_{N} \in \mathbb{S}^{d}$ be a set of $N=h_{\lfloor(1+\epsilon) L\rfloor} \sim L^{d}$ Fekete points for $\mathcal{P}_{\lfloor(1+\epsilon) L\rfloor}$ and let w_{1}, \ldots, w_{N} be the corresponding weights. Then for $s>d / 2$

$$
\sup _{\|f\|_{H^{s} \leq 1} \leq}\left|\int_{\mathbb{S}^{d}} f d \sigma-\sum_{j=1}^{N} f\left(x_{j}\right) w_{j}\right| \lesssim N^{-s / d} .
$$

From Lu-Wang 21 (Gröchenig 20) and previous results from M.-Ortega Cerdà 08, we get the following:

For any $\epsilon>0$, let $x_{1}, \ldots, x_{N} \in \mathbb{S}^{d}$ be a set of $N=h_{\lfloor(1+\epsilon) L\rfloor} \sim L^{d}$ Fekete points for $\mathcal{P}_{\lfloor(1+\epsilon) L\rfloor}$ and let w_{1}, \ldots, w_{N} be the corresponding weights. Then for $s>d / 2$

$$
\sup _{\|f\|_{H^{s}} \leq 1}\left|\int_{\mathbb{S}^{d}} f d \sigma-\sum_{j=1}^{N} f\left(x_{j}\right) w_{j}\right| \lesssim N^{-s / d}
$$

By Brauchart-Hesse 07 this bound is optimal (see also Brandolini-Choirat-Colzani-Gigante-Seri-Travaglini 14).

Equal weights (Chebyshev quadrature)

Given $X_{N}=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{S}^{d}$ and $s>d / 2$

$$
N^{-s / d} \lesssim \sup _{\|f\|_{H^{s} \leq 1} \leq}\left|\int_{\mathbb{S}^{d}} f d \sigma-\frac{1}{N} \sum_{j=1}^{N} f\left(x_{j}\right)\right|=\operatorname{wce}\left(X_{N}, s\right) .
$$

Equal weights (Chebyshev quadrature)

Given $X_{N}=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{S}^{d}$ and $s>d / 2$

$$
N^{-s / d} \lesssim \sup _{\|f\|_{H^{s}} \leq 1}\left|\int_{\mathbb{S}^{d}} f d \sigma-\frac{1}{N} \sum_{j=1}^{N} f\left(x_{j}\right)\right|=\operatorname{wce}\left(X_{N}, s\right) .
$$

It can be shown that if $w c e\left(X_{N}, s\right) \sim N^{-s / d}$ for some $s>d / 2$ and all N (i.e. $\left(X_{N}\right)$ is a QMC design for $\left.H^{s}\right)$ then wce $\left(X_{N}, s^{\prime}\right) \sim N^{-s^{\prime} / d}$ for any $s \geq s^{\prime}>d / 2$.

Brauchart-Saff-Sloan-Womersley 14

Equal weights (Chebyshev quadrature)

Given $X_{N}=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{S}^{d}$ and $s>d / 2$

$$
N^{-s / d} \lesssim \sup _{\|f\|_{H^{s}} \leq 1}\left|\int_{\mathbb{S}^{d}} f d \sigma-\frac{1}{N} \sum_{j=1}^{N} f\left(x_{j}\right)\right|=\operatorname{wce}\left(X_{N}, s\right) .
$$

It can be shown that if $\operatorname{wce}\left(X_{N}, s\right) \sim N^{-s / d}$ for some $s>d / 2$ and all N (i.e. $\left(X_{N}\right)$ is a QMC design for $\left.H^{s}\right)$ then wce $\left(X_{N}, s^{\prime}\right) \sim N^{-s^{\prime} / d}$ for any $s \geq s^{\prime}>d / 2$.

Brauchart-Saff-Sloan-Womersley 14
Then it is natural to ask for the larger s such that $\left(X_{N}\right)$ is a QMC design for H^{s} (strength).

- Spherical t-designs, with $N \sim t^{d}$, form a QMC design for H^{s} for all $s>d / 2$.
- Spherical t-designs, with $N \sim t^{d}$, form a QMC design for H^{s} for all $s>d / 2$.
- For $\frac{d}{2}<s<\frac{d}{2}+1$

$$
\operatorname{wce}\left(X_{N}, s\right)^{2}=C_{s, d}-\frac{1}{N^{2}} \sum_{i, j}\left|x_{i}-x_{j}\right|^{2 s-d}
$$

asymptotic estimates of the maximal Riesz energy (Wagner 92) imply that energy maximizers form a sequence of QMC designs for H^{s} (By Stolarsky's formula wce $\left.\left(X_{N}, \frac{d+1}{2}\right) \equiv D_{2}\left(X_{N}\right) \leq D_{\infty}\left(X_{N}\right)\right)$.

- Spherical t-designs, with $N \sim t^{d}$, form a QMC design for H^{s} for all $s>d / 2$.
- For $\frac{d}{2}<s<\frac{d}{2}+1$

$$
\operatorname{wce}\left(X_{N}, s\right)^{2}=C_{s, d}-\frac{1}{N^{2}} \sum_{i, j}\left|x_{i}-x_{j}\right|^{2 s-d}
$$

asymptotic estimates of the maximal Riesz energy (Wagner 92) imply that energy maximizers form a sequence of QMC designs for H^{s} (By Stolarsky's formula wce $\left.\left(X_{N}, \frac{d+1}{2}\right) \equiv D_{2}\left(X_{N}\right) \leq D_{\infty}\left(X_{N}\right)\right)$.

- Numerical results for the strength in \mathbb{S}^{2} :

Fekete points 3/2
Coulomb energy minimizers 2
Logarithmic energy minimizers 3

- Spherical t-designs, with $N \sim t^{d}$, form a QMC design for H^{s} for all $s>d / 2$.
- For $\frac{d}{2}<s<\frac{d}{2}+1$

$$
\operatorname{wce}\left(X_{N}, s\right)^{2}=C_{s, d}-\frac{1}{N^{2}} \sum_{i, j}\left|x_{i}-x_{j}\right|^{2 s-d}
$$

asymptotic estimates of the maximal Riesz energy (Wagner 92) imply that energy maximizers form a sequence of QMC designs for H^{s} (By Stolarsky's formula wce $\left.\left(X_{N}, \frac{d+1}{2}\right) \equiv D_{2}\left(X_{N}\right) \leq D_{\infty}\left(X_{N}\right)\right)$.

- Numerical results for the strength in \mathbb{S}^{2} :

Fekete points $3 / 2$
Coulomb energy minimizers 2
Logarithmic energy minimizers 3

- Random configurations (in expectation):

Uniform and independent points are not QMC for any $s>d / 2$ Jittered sampling points are QMC if $\frac{d}{2}<s<\frac{d}{2}+1$ Spherical ensemble: Hirao 18, Berman 19 (concentration)

Extremal energies in \mathbb{S}^{2}

Define for $s<2$ and $x_{1}, \ldots, x_{N} \in \mathbb{S}^{2}$

$$
E_{s}(x)=\sum_{i \neq j} \frac{1}{\left|x_{i}-x_{j}\right|^{s}} \quad \text { and } \quad E_{\log }(x)=\sum_{i \neq j} \log \frac{1}{\left|x_{i}-x_{j}\right|^{\prime}}
$$

Recall the conjecture about the extremal energy (Borodachov-Hardin-Saff 19)
$\mathcal{E}_{s}(N)=\frac{2^{1-s}}{2-s} N^{2}+\frac{(\sqrt{3} / 2)^{s / 2} \zeta_{\Lambda_{2}}(s)}{(4 \pi)^{s / 2}} N^{1+s / 2}+o\left(N^{1+s / 2}\right), \quad N \rightarrow+\infty$
Observe that
$E_{-2}(x)=\sum_{i, j}\left|x_{i}-x_{j}\right|^{2}=\sum_{i, j}\left(2-2 x_{i} \cdot x_{j}\right)=2 N^{2}-2\left|\sum_{i=1}^{N} x_{i}\right|^{2} \leq 2 N^{2}$,
any configuration with 0 center of mass (vanishing dipole) attains the maximum $\mathcal{E}_{-2}(N)=2 N^{2}$.

Upper bounds for $0<s<2$

Rakhmanov-Saff-Zhou 94 (area regular partition)
For $\epsilon>0$

$$
\mathcal{E}_{s}(N) \leq \frac{2^{1-s}}{2-s} N^{2}-\frac{1}{(2 \sqrt{2 \pi})^{s}}(1+\epsilon) N^{1+s / 2}
$$

for $N \geq N_{0}(\epsilon, s)$.
Alishahi-Zamani 15 (spherical ensemble)

$$
\mathbb{E}_{X_{N}}\left[E_{s}\left(X_{N}\right)\right] \leq \frac{2^{1-s}}{2-s} N^{2}-\frac{\Gamma\left(1-\frac{s}{2}\right)}{2^{s}} N^{1+s / 2}
$$

for $N \geq 2$.

Elliptic polynomials (SU(2) or Kostlan-Shub-Smale)

We want to study the random points in the sphere associated with roots of random polynomials

$$
\sum_{j=0}^{N} \sqrt{\binom{N}{j}} a_{j} z^{j}
$$

via the stereographic projection, where a_{j} are normal (complex) random i.i.d.

The probability distribution corresponds to the classical unitarily invariant Hermitian structure in the space of homogeneous polynomials. Armentano-Beltrán-Shub (11)

$$
\mathbb{E}_{X_{N}}\left[E_{\log }\left(X_{N}\right)\right]=\left(\frac{1}{2}-\log 2\right) N^{2}-\frac{N}{2} \log N-\left(\frac{1}{2}-\log 2\right) N
$$

The probability distribution corresponds to the classical unitarily invariant Hermitian structure in the space of homogeneous polynomials. Armentano-Beltrán-Shub (11)

$$
\mathbb{E}_{X_{N}}\left[E_{\log }\left(X_{N}\right)\right]=\left(\frac{1}{2}-\log 2\right) N^{2}-\frac{N}{2} \log N-\left(\frac{1}{2}-\log 2\right) N .
$$

Considering a more general framework of holomorphic sections on Riemann surfaces. Zelditch-Zhong (08), Feng-Zelditch (13)

$$
\mathbb{E}_{X_{N}}\left[E_{s}\left(X_{N}\right)\right]=\frac{2^{1-s}}{2-s} N^{2}+C(s) N^{1+s / 2}+O\left(N^{(1+s) / 2}(\log N)^{1-s / 2}\right), N \rightarrow+\infty
$$

No explicit value for $C(s)$ and cannot recover the logarithmic case.

Our results (M. and Víctor de la Torre (21))

Our results (M. and Víctor de la Torre (21))

V. de la Torre

Our results (M. and Víctor de la Torre (21))

Consider $f(z)=\sum_{j=0}^{N} \sqrt{\binom{N}{j}} a_{j} z^{j}$ as a Gaussian field. Computing the joint intensities of the zero sets by using Hammersley's formulas for GAFs

Our results (M. and Víctor de la Torre (21))

Consider $f(z)=\sum_{j=0}^{N} \sqrt{\binom{N}{j}} a_{j} z^{j}$ as a Gaussian field. Computing the joint intensities of the zero sets by using Hammersley's formulas for GAFs

- If $x_{1}, \ldots, x_{N} \in \mathbb{S}^{2}$ are N points drawn as the zeros of elliptic polynomials $X_{N}=\left\{x_{1}, \ldots, x_{N}\right\}$
$\mathbb{E}_{X_{N}}\left[E_{s}\left(X_{N}\right)\right]=\frac{2^{1-s}}{2-s} N^{2}+C(s) N^{1+s / 2}+\frac{s C(s-2)}{16} N^{s / 2}+o\left(N^{s / 2}\right), N \rightarrow+\infty$
where

$$
C(s)=\frac{2}{2^{s+1}}\left(1+\frac{s}{2}\right) \Gamma\left(1-\frac{s}{2}\right) \zeta\left(1-\frac{s}{2}\right) .
$$

$\mathbb{E}_{X_{N}}\left[E_{-2}\left(X_{N}\right)\right]=2 N^{2}-8 \zeta(3) \frac{1}{N}+o\left(N^{-1}\right), N \rightarrow+\infty$

- By using the expression of $\mathbb{E}_{X_{N}}\left[E_{s}\left(X_{N}\right)\right]$ for $-4<s \leq-2$ we get that for the zeros of elliptic polynomials

$$
\mathbb{E}_{X_{N}}\left[\operatorname{wce}\left(X_{N}, s\right)\right]=O\left(N^{-s / 2}\right)
$$

for $1<s<3$ and no they are not QMC in expectation for H^{s} if $s>3$.

Thank you!

