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Discrepancy Notation

Definition (Local Discrepancy)
If S is a class of sets in [0, 1]d , then for S ∈ S, the local discrepancy of a
point set P ⊆ [0, 1]d with respect to S, with |P| = n, is

D(P, S) = |S| − n−1|P ∩ S|

(Note that this is the “normalized” version of discrepancy).

This talk will focus on discrepancy with respect to the set C of corners
(boxes anchored at the origin) in the unit cube [0, 1]d . We define a corner
Cx ∈ C in terms of its largest point x = (x1, · · · , xd ):

Cx = {y ∈ [0, 1]d : 0 ≤ yi < xi for i = 1, · · · , d}
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Discrepancy Notation

Definition (Star-Discrepancy with respect to S)
D?
∞(P,S) = supS∈S |D(P,S)|

Definition (Minimal Star-Discrepancy with respect to S of an n-point
subset in [0, 1)d)

D?
∞(n, d) = inf{D?

∞(P,S) : P ⊂ Id , |P| = n}

Discrepancy results can also be stated in terms of the ‘inverse discrepancy,’
which gives the minimum number of points with discrepancy at most ε.

Definition (Inverse Discrepancy)
N?
∞(d , ε) = min{n : D?

∞(n, d) ≤ ε} = min{|P| : P ⊂ Id ,D?
∞(P) ≤ ε}
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Search for Bounds Based on Dimension

The asymptotic behavior of D?
∞(P, Cd ) (where C is the class of

corners in [0, 1]d ) is of order at most n−1 log(n)d−1: points which
achieve this are called low-discrepancy points

For some applications, the dimension d may be huge

Then the usual discrepancy bounds are of no help as n−1 log(n)d−1 is
increasing for n ≤ exp(d − 1): in practice, exp(d − 1) is prohibitively
large
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Vapnik-Cervonenkis Classes

Definition (VC Class)
A countable family F of measurable subsets of X is a VC-class if there is a
nonnegative integer v such that

|{A ∩ F : F ∈ F}| < 2v+1

for any point subset A ⊂ X with |A| = v + 1. The smallest such v is called
the VC-dimension of F .

In other words, F is a VC-class if there is some integer v such that any
subset of cardinality v + 1 cannot be “shattered” by sets in F .

Definition (Shattering)
F is said to shatter a point set A, |A| = n, if

|{A ∩ F : F ∈ F}| = 2n
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Examples of the VC Dimension
Class of Sets VC

Dimension

Semi-Infinite Intervals in R 1

Closed Intervals in R 2

Corners in Rd d
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Examples of the VC Dimension

Class of Sets VC
Dimension

Closed Halfspaces in Rd d + 1

Axis-Parallel Boxes in Rd 2d

Disks in R2 3

Balls in Rd d + 1

Convex Sets in Rd ∞
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Important Inequality for VC Classes

Lemma (Sauer-Shelah Lemma)
|{A ∩ F : F ∈ F}| ≤

∑v
i=0

(|A|
i
)

= O(|A|v )

(In other words: if the VC-dimension of F is v , then F can consist of at
most O(|A|v ) sets).

Proof: Induction on n+v (where |A| = n)
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Covering Numbers

Definition (Covering Number)
The covering number N (M, d , ε) of a metric space (M, d) is the smallest
number of closed ε-balls

B(x , ε) := {y ∈ M : d(x , y) ≤ ε}

that cover M. If there is no finite cover we set N (M, d , ε) =∞.

There are nice connections between covering/packing numbers and
VC-classes.
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Covering Numbers: `2 Distance
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Covering Numbers: Symmetric Difference of Corners
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VC-Classes and Discrepancy

The proofs we will discuss are heavily dependent on the fact that the set
of corners in [0, 1]d is a VC -class of dimension d . Some important features
that make VC-classes interesting/natural to study in discrepancy theory:

Low complexity

As discussed above, known geometric properties (i.e. connections
with covering numbers)

Direct implications for combinatorial discrepancy
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Upper Bounds for Discrepancy Based on Dimension

Theorem (Heinrich, Novak, Wasilkowski, Wozniakowski, ’01, Thm 1)
For all n, d ∈ N,

D?
∞(n, d) ≤ 2

√
2n−1/2

(
d log

(
d dn1/2

(2 log 2)1/2 e+ 1
)

+ log 2
)1/2

Theorem (Heinrich, Novak, Wasilkowski, Wozniakowski, ’01, Thm 3)
There is a positive number c such that for all n, d ∈ N,

D?
∞(n, d) ≤ cd1/2n−1/2 (and n?∞(d , ε) ≤ dc2dε−2e).

Theorem 1 above can be proven using basic features of empirical process
theory, while the proof of Theorem 3 requires deeper results that make use
of the fact that the class of corners C is a VC-class of dimension d .
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Hoeffding’s Inequality vs. Bernstein’s Inequality

For X1, · · · ,Xn i.i.d random, E[Xi ] = 0, |Xi | ≤ 1 for each i , we have

Hoeffding’s Inequality

P(|
n∑

i=1
Xi | ≥ t) ≤ exp

(
− 2t2/n

)
Bernstein’s Inequality

P(|
n∑

i=1
Xi | ≥ t) ≤ 2 exp

(
− t2/2∑n

i=1 E[X 2
i ] + t/3

)
Thus, Bernstein’s inequality gives good bounds for random variables with
low variance.
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Proof of Theorem 1 (weak upper bound)

Take δ > 0 and replace set of corners with a finite set Γm, the
equidistant grid on [0, 1]d with mesh-size 1/m, where m = dd/δe

Then, we can show that the supremum in the definition of
?-discrepancy can be replaced with the maximum over the finite set
Γm with a possible decrease of the ?-discrepancy by δ:

D?
∞(p1, · · · ,pn) ≤ max

x∈Γm

∣∣∣x1 · · · xd −
1
n

n∑
i=1

1Cx(pi )
∣∣∣+ δ
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Proof of Theorem 1 (weak upper bound)

Let τ1, · · · , τn be iid uniform random variables and take
ξ

(i)
x = x1 · · · xd − 1[0,x)(τi ), i = 1, · · · , n

Obtain, via Hoeffding: P
(∣∣∣n−1∑n

i=1 ξ
(i)
x
∣∣∣ ≥ δ) ≤ 2 exp(−δ2n/2)

Then P(D?
∞(τ1, · · · , τn) ≤ 2δ) ≥ P(maxx∈Γm

∣∣∣n−1∑n
i=1 ξ

i
x

∣∣∣ ≤ δ)

= 1− P(maxx∈Γm

∣∣∣n−1∑n
i=1 ξ

i
x

∣∣∣ > δ) ≥ 1− 2(m + 1)d exp(−δ2n/2)
This is strictly positive for δ > δ0, where

δ2
0 = 2n−1

(
d logd dn1/2

2(log 2)1/2 + 1e+ log 2
)

Hence, for any δ > δ0 there are points τ1, · · · , τn such that
D?
∞(τ1, · · · , τn) ≤ 2δ. Thus D?

∞(n, d) ≤ 2δ0 and the proof is complete
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Sketch of Proof of Theorem 3 (strong upper bound)

To obtain the stronger upper bound D?
∞(n, d) ≤ cd1/2n−1/2, we use that

the set of corners in [0, 1]d is a VC-class of dimension d . Central to the
proof is the following VC-type inequality from Talagrand (combined with a
result of Haussler on covering numbers), from which the discrepancy
bound follows fairly easily.

Theorem (Heinrich, Novak, Wasilkowski, Wozniakowski, ’01, Thm 2)
There is a positive number K such that for each countable VC-class F
(subsets of X) and for each probability measure P on X, the following
holds: For all s ≥ Kv(F)1/2 and all natural n,

P
(
ω : sup

F∈F

∣∣∣P(F )− 1
n

n∑
i=1

1F (Xi (ω))
∣∣∣ ≥ sn−1/2

)
≤ 1

s
( Ks2

v(F)
)v(F)

e−2s2

where v(F) is the VC-dimension of F .
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Sketch of Proof of Theorem 3 (strong upper bound)

P
(
ω : sup

F∈F

∣∣∣P(F )− 1
n

n∑
i=1

1F (Xi (ω))
∣∣∣ ≥ sn−1/2

)
≤ 1

s
( Ks2

v(F)
)v(F)

e−2s2

First we show how the discrepancy bound follows from this VC-type
inequality:

Approximate the set of corners C by

CQ = {[0, x) : x = (x1, · · · , xd ) ∈ ([0, 1] ∩Q)d

Take s = λv(CQ)1/2, choose λ0 so that Kλ2 ≤ e2λ2 for all λ ≥ λ0.
Then for λ > max(K , λ0, 1), the RHS of the VC-inequality above is
strictly smaller than 1

This ensures the existence of a point set P with star-discrepancy less
than cd1/2n−1/2, where c is some positive number.
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Sketch of Proof of Talagrand’s VC Inequality

Desired Result: For a class of sets F and i.i.d random variables such that
there exists a V > 0 with X1, · · · ,Xn satisfying N (F , dP , ε) ≤

(
V
ε

)v

where dP(C1,C2) = P(C1∆C2),

P
(
ω : sup

F∈F

∣∣∣P(F )− 1
n

n∑
i=1

1F (Xi (ω))
∣∣∣ ≥ sn−1/2

)
≤ 1

s
( Ks2

v(F)
)v(F)

e−2s2

Note: The covering number condition for VC classes, as used in the proof
of the upper bound for discrepancy with respect to corners, is a result of
Haussler (1995).
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Sketch of Proof of Talagrand’s VC Inequality

Idea: first study Gaussian processes (Xt)t∈T for which N(T , d , ε) ≤ (A/ε)v

for some constants A, v and 0 < ε < σ = (supt∈T E[X 2
t ])1/2

Obtain bounds on tails of supremum by breaking index set into
suitable pieces
Partitioning the index set T into N pieces each of diameter ≤ a ≤ σ,
we can obtain a bound on P(supt∈T Xt ≥ u) that depends on
E[supt∈T Xt ].
We need to control both N, the number of pieces, and the
expectation.
Instead of the crude partition, take an (essentially) dyadic partition:
the union of sets Pl , for p ≤ l ≤ q, such that each set in Pl has
diameter ≤ 4−l+1.
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Sketch of Proof of Talagrand’s VC Inequality

For the general (non-Gaussian) case:

Use same partitioning scheme
Bound on P

(
supt∈T Xt ≥ u

)
looks slightly different (a bit more

complicated) in non-Gaussian case, but still requires controlling
E[supt∈T Xt ]
For indices whose corresponding random variables have small
variance, it is easy (via Bernstein’s inequality) to control the tails and
get a good bound on E[supt∈T Xt ].
Then, bound the cardinality on the set of remaining random variables
(with large variance): its contribution is controlled.
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Aistleitner’s Improvement with Dyadic Partitioning

Theorem (Aistleitner, 2011)
D?
∞(n, d) ≤ 9.65d1/2n−1/2

Approximate with a finite set – roughly Nd/2 sampling points are
needed, as in the previously known proofs
Use direct dyadic partitioning argument rather than “black-box” of
VC-inequality
Express the indicator function 1Cx as a sum of indicator functions for
a few sets with large variance and many with small variance. Use
Bernstein’s inequality (rather than Hoeffding) on the many variables
with small variance leads to an improvement in the bound.
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Sketch of Aistleitner’s Proof

Use Gnewuch’s bounds on covering and bracketing numbers.

(Bracketing is a more restricted notion of covering: a finite set ∆ of pairs
of points of [0, 1]d is an ε-bracketing cover if for every pair (x , z) ∈ ∆, the
estimate λ(Cz)− λ(Cx ) ≤ ε holds, and for every y ∈ [0, 1]d , there is a pair
(x , z) such that x ≤ y ≤ z .)

Gnewuch bounds:

N ([0, 1]d , λ, ε) ≤ (2e)d (ε−1 + 1)d

N[]([0, 1]d , λ, ε) ≤ 2d−1ed (ε−1 + 1)d
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Sketch of Aistleitner’s Proof
d=1 and d=2: theorem is clear (known examples), so assume d ≥ 3
Let K = d(log2 n − log2 d)/2e.
For 1 ≤ k ≤ K − 1, let Γk be a 2−k cover for which |Γk | satisfies
Gnewuch covering bound
Let ΓK be a 2−K bracketing cover for which |ΓK | satisfies Gnewuch
bracketing bound

Fix x ∈ [0, 1]d , pick the pair (vK ,wK ) = (vK (x),wK (x)) in the
bracketing cover for which vK ≤ x ≤ wK . Then define

where, in the above, vk(x) ∈ Γk for 1 ≤ k ≤ K − 1
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Sketch of Aistleitner’s Proof
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Sketch of Aistleitner’s Proof

For 0 ≤ k ≤ K − 1, if Ak is the set of all sets of the form
Cpk+1(x) \ Cpk (x), Ak has at most |Γk+1| ≤ (2e)d (2k+1 + 1)d elements.
If AK is the set of all sets of the form CwK (x) \ CpK (x), AK has at
most |ΓK | ≤ 2d−1ed (2K + 1)d elements.

Let X1, · · · ,Xn be i.i.d. uniformly distributed random variables on [0, 1]d .

Use Bernstein’s inequality to bound, for I in Ak with k ≥ 2

P
(∣∣∣1n

n∑
j=1

1I(Xj)− λ(I)
∣∣∣ > t

)
(for k = 0, 1, the intervals are larger, and Hoeffding’s inequality gives a
better bound)
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Sketch of Aistleitner’s Proof
Then...

Writing Bk =
⋃

I∈Ak

(∣∣∣ 1
n
∑n

j=1 1I(Xj)− λ(I)
∣∣∣ > ck

√
d/n

)
Choose constants ck appropriately so that P(B0),P(B1),P(B2) ≤ 1

4 ,
and P(Bk) ≤ 2−k for higher k. Then

K∑
k=0

P(Bk) ≤ 3
4 +

K∑
k=3

2−k < 1

This ensures the existence of a realization X1(ω), · · · ,Xn(ω), such
that ω /∈

⋃K
k=0 Bk

Then for any x ∈ [0, 1]d , use the estimates (with constants) from the
finite partition to find c such that

P
(∣∣∣1n

n∑
j=1

1Cx (Xj(ω))− x
∣∣∣ > c

√
d/n

)
In the end, c ≈ 9.65.
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Improvements on Constant

A number of improvements have been made on the constant in the
previous proof:

c ≈ 9: Pasing and Weiss 2018 – uses Aistleitner’s method combined
with an improvement on the bound for bracketing covers

N[](d , ε) ≤ 2d−2ed (ε−1 + 1)d + 1
2(ε−1 + 1)

c ≈ 2.7868: Doerr 2016
c ≈ 2.5287: Gnewuch and Hebbinghaus 2019
c ≈ 2.4968: Pasing and Weiss 2020 – again, Aistleitner’s method
combined with a new improvement on the bound for bracketing covers

N[](d , ε) ≤ max(1.1d−101, 1)dd

d! (ε−1 + 1)d
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Lower Bound
Hinrichs built upon the ideas in HNWW by using the VC-property of the
class of corners to improve the lower bound on the star-discrepancy that is
polynomial in d/n (like the upper bound).

Theorem (Hinrichs, 2003, Thm 1)
There exist constants c, ε0 > 0 such that

D?
∞(n, d) ≥ min(ε0, cd/n)

There is also a theorem of Doerr regarding the lower bound for the
expected discrepancy of a random point set:

Theorem (Doerr, 2014, Thm 1)
There is constant k such that if d ≤ n and P is an n-point subset chosen
independently and uniformly at random from [0, 1]d ,

E[D?
∞(P, Cd )] ≥ K

√
d/n.

M. Mastrianni (University of Minnesota) Discrepancy Bounds wrt the Dimension October 21, 2020 29 / 33



Lower Bound

Theorem (Hinrichs, 2003, Thm 4)
Let F be a VC-class of dimension v which is closed under intersections and
let P be a probability measure. Assume that there exists a constant κ > 0
such that N(F , dP, ε) ≥ (κε)−v for all ε > 0. Then there exist constants
c, ε0 > 0 such that for all n and all P ⊂ X with |P| = n,

D?
∞(P) ≥ min(ε0, cv/n).

Above, dP = P(C1∆C2).

The proof of this theorem makes use of the Sauer-Shelah Lemma.
As the set of corners is a VC class, Theorem 4 implies Theorem 2 once it
is shown there is some κ > 0 such that N(C, dP, ε) ≥ (κε)−d for all ε > 0.
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Open Problems

Upper bound: D?
∞(n, d) . (d/n)1/2

Lower bound: D?
∞(n, d) & d/n

Close the gap!

Find points that satisfy the stronger upper bound
constructively – this is more useful for problems involving
high-dimensional integration with Quasi-Monte Carlo methods
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