Maximizing angle sums between Euclidean lines

Tongseok Lim \& Robert McCann

University of Toronto

Click on 'Talk 3' or preprint at www.math.toronto.edu/mccann

30 June 2021

A family of generalized Fejes Tóth problems

Which k lines through the origin in \mathbf{R}^{n+1} maximize the sum of the angles θ between them?

A family of generalized Fejes Tóth problems

Which k lines through the origin in \mathbf{R}^{n+1} maximize the sum of the angles θ between them? Equivalently,

Find a globally stable configuration of k charges on projective sphere $\mathbf{R P}^{n}$, which repel each other pairwise with a force independent of distance.

A family of generalized Fejes Tóth problems

Which k lines through the origin in \mathbf{R}^{n+1} maximize the sum of the angles θ between them? Equivalently,

Find a globally stable configuration of k charges on projective sphere $\mathbf{R P}^{n}$, which repel each other pairwise with a force independent of distance.

- Fejes Tóth conjecture (1959): Distribute the lines / charges as evenly as possible over an orthonormal basis of \mathbf{R}^{n+1}
- obvious for $k \leq n+1$;

A family of generalized Fejes Tóth problems

Which k lines through the origin in \mathbf{R}^{n+1} maximize the sum of the angles θ between them? Equivalently,

Find a globally stable configuration of k charges on projective sphere $\mathbf{R P}^{n}$, which repel each other pairwise with a force independent of distance.

- Fejes Tóth conjecture (1959): Distribute the lines / charges as evenly as possible over an orthonormal basis of \mathbf{R}^{n+1}
- obvious for $k \leq n+1$; also resolved affirmatively for all k with $n=1$ but remains open otherwise
- for $n=1$ and $k>2$ there are many inequivalent maximimizers as well (some of which accumulate to the uniform distribution)

To make progress, let the force increase with a power $b-1>0$ of the distance, so we maximze $\sum\left(\frac{\theta}{\pi}\right)^{b}$ instead

Identifying $\pm x \in \mathbf{S}^{n}$ yields $\mathbf{R} \mathbf{P}^{n}=\frac{2}{\pi} \mathbf{S}^{n} /\{+,-\}$ scaled to diameter 1. Let

$$
d_{\mathbf{R P}^{n}}(x, y)=\frac{2}{\pi} \min \left\{d_{\mathbf{S}^{n}}(x, y), \pi-d_{\mathbf{S}^{n}}(x, y)\right\}
$$

$$
\mathcal{P}\left(\mathbf{R P}^{n}\right)=\left\{0 \leq \mu \text { on } \mathbf{R} \mathbf{P}^{n} \mid \int_{\mathbf{R P}^{n}} d \mu=1\right\}
$$

Identifying $\pm x \in \mathbf{S}^{n}$ yields $\mathbf{R} \mathbf{P}^{n}=\frac{2}{\pi} \mathbf{S}^{n} /\{+,-\}$ scaled to diameter 1. Let

$$
\begin{gathered}
d_{\mathbf{R P}^{n}}(x, y)=\frac{2}{\pi} \min \left\{d_{\mathbf{S}^{n}}(x, y), \pi-d_{\mathbf{S}^{n}}(x, y)\right\} \\
\mathcal{P}\left(\mathbf{R P}^{n}\right)=\left\{0 \leq \mu \text { on } \mathbf{R P}^{n} \mid \int_{\mathbf{R P}^{n}} d \mu=1\right\}=\overline{\cup_{k=1}^{\infty} \mathcal{P}_{k}^{=}\left(\mathbf{R P}^{n}\right)} \\
\mathcal{P}_{k}^{=}\left(\mathbf{R} \mathbf{P}^{n}\right)=\left\{\mu \in \mathcal{P}\left(\mathbf{R P}^{n}\right) \left\lvert\, \mu=\frac{1}{k} \sum_{i=1}^{k} \delta_{x_{i}}\right., \quad x_{i} \in \mathbf{R P}^{n}\right\}
\end{gathered}
$$

Identifying $\pm x \in \mathbf{S}^{n}$ yields $\mathbf{R} \mathbf{P}^{n}=\frac{2}{\pi} \mathbf{S}^{n} /\{+,-\}$ scaled to diameter 1. Let

$$
\begin{gathered}
d_{\mathbf{R P}^{n}}(x, y)=\frac{2}{\pi} \min \left\{d_{\mathbf{S}^{n}}(x, y), \pi-d_{\mathbf{S}^{n}}(x, y)\right\} \\
\mathcal{P}\left(\mathbf{R P}^{n}\right)=\left\{0 \leq \mu \text { on } \mathbf{R P}^{n} \mid \int_{\mathbf{R P}^{n}} d \mu=1\right\}=\overline{\cup_{k=1}^{\infty} \mathcal{P}_{k}^{=}\left(\mathbf{R P}^{n}\right)} \\
\mathcal{P}_{k}^{=}\left(\mathbf{R} \mathbf{P}^{n}\right)=\left\{\mu \in \mathcal{P}\left(\mathbf{R} \mathbf{P}^{n}\right) \left\lvert\, \mu=\frac{1}{k} \sum_{i=1}^{k} \delta_{x_{i}}\right., \quad x_{i} \in \mathbf{R P}^{n}\right\}
\end{gathered}
$$

Fejes Tóth's problem becomes the case $b=1$ of

$$
\max _{\mu \in \mathcal{P}_{\bar{k}}\left(\mathbf{R P}^{n}\right)} E_{b}(\mu)
$$

where

$$
E_{b}(\mu)=\frac{1}{2} \iint d_{\mathbf{R P}^{n}}(x, y)^{b} d \mu(x) d \mu(y)
$$

F.T. Conjecture: standard basis $\left\{\hat{e}_{1}, \ldots, \hat{e}_{d+1}\right\}$ (i.e. maximal projective simplex) $\bar{\mu}_{k}=\frac{1}{k} \sum_{i=1}^{k} \delta_{\hat{e}_{(k \bmod d+1)}}$ achieves maximum for all $b \in[1, \infty]$.

Theorem (Discrete threshold for simplex maxima)

(a) For $k>n+1$, there exists $b_{\Delta^{n}}(k) \in[1, \infty)$ such that $\bar{\mu}_{k}$ maximizes $E_{b}(\mu)$ on $\mathcal{P}_{k}^{=}\left(\mathbf{R P}^{n}\right)$ if and only if $b \geq b_{\Delta^{n}}(k)$.
(b) $\bar{\mu}_{k}$ maximizes uniquely up to rotations if and only if $b>b_{\Delta^{n}}(k)$.

RMK: Fejes Tóth conjecture $\Longleftrightarrow b_{\Delta^{n}}(k)=1$ for all $k>n+1$
Note $2 E_{b}(\bar{\mu})=\frac{n}{n+1}$ for $\bar{\mu}=\bar{\mu}_{k}$ when $n+1$ divides k.

Theorem (Discrete threshold for simplex maxima)

(a) For $k>n+1$, there exists $b_{\Delta^{n}}(k) \in[1, \infty)$ such that $\bar{\mu}_{k}$ maximizes $E_{b}(\mu)$ on $\mathcal{P}_{k}^{=}\left(\mathbf{R P}^{n}\right)$ if and only if $b \geq b_{\Delta^{n}}(k)$.
(b) $\bar{\mu}_{k}$ maximizes uniquely up to rotations if and only if $b>b_{\Delta^{n}}(k)$.

RMK: Fejes Tóth conjecture $\Longleftrightarrow b_{\Delta^{n}}(k)=1$ for all $k>n+1$
Note $2 E_{b}(\bar{\mu})=\frac{n}{n+1}$ for $\bar{\mu}=\bar{\mu}_{k}$ when $n+1$ divides k.

Theorem (Continuum threshold for simplex maxima)

If $n+1$ divides k then there exists $b_{\Delta^{n}} \in[1, \infty)$ such that (c) $\bar{\mu}=\mu_{k}$ maximizes E_{b} over the full set $\mathcal{P}\left(\mathbf{R P}^{n}\right)$ iff $b \geq b_{\Delta^{n}}$, (d) $\bar{\mu}$ maximizes uniquely on $\mathcal{P}\left(\mathbf{R P}^{n}\right)$ up to rotations iff $b>b_{\Delta^{n}}$

Theorem (Discrete threshold for simplex maxima)

(a) For $k>n+1$, there exists $b_{\Delta^{n}}(k) \in[1, \infty)$ such that $\bar{\mu}_{k}$ maximizes $E_{b}(\mu)$ on $\mathcal{P}_{k}^{=}\left(\mathbf{R P}^{n}\right)$ if and only if $b \geq b_{\Delta^{n}}(k)$.
(b) $\bar{\mu}_{k}$ maximizes uniquely up to rotations if and only if $b>b_{\Delta^{n}}(k)$.

RMK: Fejes Tóth conjecture $\Longleftrightarrow b_{\Delta^{n}}(k)=1$ for all $k>n+1$
Note $2 E_{b}(\bar{\mu})=\frac{n}{n+1}$ for $\bar{\mu}=\bar{\mu}_{k}$ when $n+1$ divides k.

Theorem (Continuum threshold for simplex maxima)

If $n+1$ divides k then there exists $b_{\Delta^{n}} \in[1, \infty)$ such that
(c) $\bar{\mu}=\mu_{k}$ maximizes E_{b} over the full set $\mathcal{P}\left(\mathbf{R P}^{n}\right)$ iff $b \geq b_{\Delta^{n}}$, (d) $\bar{\mu}$ maximizes uniquely on $\mathcal{P}\left(\mathbf{R P}^{n}\right)$ up to rotations iff $b>b_{\Delta^{n}}$ (e) $b_{\Delta^{n}}<2$

RMK: (e) improves $b_{\Delta^{n}} \leq 2$ (Bilyk, Glazyrin, Matzke, Park, Vlasiuk)
$b=2$ is the threshold for mild repulsion in attractive-repulsive models

ASIDE: a different but related energy optimization

Balagué, Carrillo, Laurent, Raoul '13; Attractive-repulsive potentials If

$$
\mu \in \arg \min _{\mu \in \mathcal{P}\left(\mathbf{R}^{n}\right)} E_{a, b}(\mu)
$$

for $b \in(2-n, a)$ where

$$
E_{a, b}(\mu):=\iint_{\mathbf{R}^{n} \times \mathbf{R}^{n}}\left(\frac{|x|^{a}}{a}-\frac{|x|^{b}}{b}\right) d \mu(x) d \mu(y)
$$

then spt μ has Hausdorff dimension $\geq 2-b$
e.g. $a=2$

Easy proof (apart from 'only if'):

- $0 \leq d_{\mathbf{R P}^{n}}(x, y) \leq 1$ with equality iff $x=y$ or $x \perp y$
- $d_{\mathbf{R P}^{n}}(x, y)^{b} \geq d_{\mathbf{R P}^{n}}(x, y)^{b+\epsilon}$ with the same conditions for equality
- $\left(\right.$ spt $\left.\hat{\mu}_{k}\right)=\left\{\hat{e}_{1}, \ldots, \hat{e}_{n+1}\right\}^{2}$ lies in the equality set
- if $\hat{\mu}_{k}$ maximizes E_{b} for some b, it also maximized for all $b+\epsilon>b$
- and every measure not supported in the equality set does strictly worse

Easy proof (apart from 'only if'):

- $0 \leq d_{\mathrm{RP}^{n}}(x, y) \leq 1$ with equality iff $x=y$ or $x \perp y$
- $d_{\mathbf{R P}^{n}}(x, y)^{b} \geq d_{\mathbf{R P}^{n}}(x, y)^{b+\epsilon}$ with the same conditions for equality
- $\left(\right.$ spt $\left.\hat{\mu}_{k}\right)=\left\{\hat{e}_{1}, \ldots, \hat{e}_{n+1}\right\}^{2}$ lies in the equality set
- if $\hat{\mu}_{k}$ maximizes E_{b} for some b, it also maximized for all $b+\epsilon>b$
- and every measure not supported in the equality set does strictly worse
- nonunique $n=b=1=\frac{k}{3}$ maximizer implies $b_{\Delta^{n}}(k) \geq 1$ if $k>n+1$
- we argued $b_{\Delta^{n}}(k)<\infty$ in an earlier work, simplified by Bilyk et al, who also observed $k<\infty$ follows as a consequence of Turan's (1941) theorem, which identifies the graph $T(k, n+1)=K_{\left\lceil\frac{k}{n+1}\right\rceil, \ldots,\left\lceil\frac{k}{n+1}\right\rceil,\left\lfloor\frac{k}{n+1}\right\rfloor, \ldots,\left\lfloor\frac{k}{n+1}\right\rfloor}$ free of $(n+2)$-cliques that has the maximal number of edges
- 'only if' asserts $\operatorname{argmax} E_{\infty} \subset \operatorname{argmax} E_{b_{\Delta^{n}}(k)}$ strictly

'only if' follows from a local optimality result $\forall b>1$:

OPTIMAL TRANSPORT:

L^{p}-Kantorovich-Rubinstein-Wasserstein distance d_{p} on $\mu, \nu \in \mathcal{P}\left(\mathbf{R P}^{n}\right)$

$$
\begin{array}{rlrl}
d_{p}(\mu, \nu) & :=\inf _{X \sim \mu, Y \sim \nu}\left\|d_{\mathbf{R P}^{n}}(X, Y)\right\|_{L^{p}} & p \in[1, \infty] \\
& =\min _{0 \leq \gamma \in \Gamma(\mu, \nu)}\left(\iint_{\mathbf{R P}^{n} \times \mathbf{R P}^{n}} d_{\left.\mathbf{R P}^{n}(x, y)^{p} d \gamma(x, y)\right)^{1 / p}}\right. & p \in[1, \infty)
\end{array}
$$

- $p<\infty$: metrizes weak-* convergence of measures
- $d_{\infty}=\lim _{p \rightarrow \infty} d_{p}$ metrizes a much finer topology
- in this finer topology, $E_{b}(\mu)$ can have more local maxima
- c.f. McCann (PhD 1994, HJM 2006) stable binary stars

Weighted maximal projective simplices

$$
\begin{aligned}
& \text { For } 0 \leq m_{1} \leq m_{2} \leq \cdots \leq m_{n+1} \text { with } \sum_{i=1}^{n+1} m_{i}=1 \text { set } \\
& \vec{m}=\left(m_{1}, \ldots, m_{n+1}\right)
\end{aligned}
$$

$$
\mu_{\vec{m}}=\sum_{i=1}^{n+1} m_{i} \delta_{\hat{e}_{i}}
$$

Theorem (Weighted simplices are strict d_{∞}-locally maxima

Given $\epsilon>0$ and $n \in \mathbf{N}$ there exists $r=r_{n}(\epsilon)$ such that if $b \geq 1+\epsilon$, $m_{1} \geq \epsilon$ and $\mu \in \mathcal{P}\left(\mathbf{R P}^{n}\right)$ satisfy $d_{\infty}\left(\mu, \mu_{\vec{m}}\right)<r$ then $E_{b}(\mu) \leq E_{b}\left(\mu_{\vec{m}}\right)$ and the inequality is strict unless μ is a rotate of $\mu_{\vec{m}}$

Weighted maximal projective simplices

$$
\begin{aligned}
& \text { For } 0 \leq m_{1} \leq m_{2} \leq \cdots \leq m_{n+1} \text { with } \sum_{i=1}^{n+1} m_{i}=1 \text { set } \\
& \vec{m}=\left(m_{1}, \ldots, m_{n+1}\right)
\end{aligned}
$$

$$
\mu_{\vec{m}}=\sum_{i=1}^{n+1} m_{i} \delta_{\hat{e}_{i}}
$$

Theorem (Weighted simplices are strict d_{∞}-locally maxima

Given $\epsilon>0$ and $n \in \mathbf{N}$ there exists $r=r_{n}(\epsilon)$ such that if $b \geq 1+\epsilon$, $m_{1} \geq \epsilon$ and $\mu \in \mathcal{P}\left(\mathbf{R P}^{n}\right)$ satisfy $d_{\infty}\left(\mu, \mu_{\vec{m}}\right)<r$ then $E_{b}(\mu) \leq E_{b}\left(\mu_{\vec{m}}\right)$ and the inequality is strict unless μ is a rotate of $\mu_{\vec{m}}$

- crucial for proving $\operatorname{argmax} E_{\infty} \subset \operatorname{argmax} E_{b_{\Delta^{n}}(k)}$ strictly (i.e. 'only if')
- e.g. $\mu_{\epsilon} \in \underset{\mathcal{P}_{\bar{k}}\left(\mathbf{R P}^{n}\right)}{\operatorname{argmax}} E_{b_{\Delta^{n}}(k)-\epsilon} d_{2^{2}}$-accumulates to $\mu_{0} \in \underset{\mathcal{P}_{\bar{k}}\left(\mathbf{R P}^{n}\right)}{\operatorname{argmax}} E_{b_{\Delta^{n}}(k)}$
- on the discrete measures $\mathcal{P}_{k}^{=}\left(\mathbf{R P}^{n}\right), d_{\infty}$ gives the same topology as d_{2}
- On the full space $\mathcal{P}\left(\mathbf{R}^{n}\right)$, the argument is more subtle: if $d_{2}\left(\mu_{\epsilon}, \bar{\mu}\right) \rightarrow 0$ the Euler-Lagrange equation satisfied by μ_{ϵ} implies $d_{\infty}\left(\mu_{\epsilon}, \mu_{\vec{m}}\right) \rightarrow 0$ for spt $\mu_{\vec{m}}$ an approximately maximal simplex with approximately uniform weights $\vec{m}=\left(m_{1}, \ldots, m_{n+1}\right)$; energetic maximality of μ_{ϵ} implies both approximations are exact
- On the full space $\mathcal{P}\left(\mathbf{R}^{n}\right)$, the argument is more subtle: if $d_{2}\left(\mu_{\epsilon}, \bar{\mu}\right) \rightarrow 0$ the Euler-Lagrange equation satisfied by μ_{ϵ} implies $d_{\infty}\left(\mu_{\epsilon}, \mu_{\vec{m}}\right) \rightarrow 0$ for spt $\mu_{\vec{m}}$ an approximately maximal simplex with approximately uniform weights $\vec{m}=\left(m_{1}, \ldots, m_{n+1}\right)$; energetic maximality of μ_{ϵ} implies both approximations are exact
- The d_{∞}-local maximizer theorem relies on the following estimate, which follows approximately from control of the ℓ_{2} norm on \mathbf{R}^{n} by the ℓ_{1} norm

Lemma

Given $C \in(0,1)$ there exists $r=r_{n}(C)>0$ such that $d_{\infty}\left(\nu_{i}, \delta_{\hat{e}_{i}}\right)<r$ for all $i=1, \ldots, n$ implies $\exists \bar{x}=\bar{x}\left(\nu_{1}, \ldots, \nu_{n}\right)$ such that
$\sum_{i=1}^{n} \int\left(1-d_{\mathbf{R P}^{n}}(x, y)\right) d \nu_{i}(y) \geq \operatorname{Cd}_{\mathbf{R P}^{n}}(x, \bar{x}) \quad$ whenever $d_{\mathbf{R P}^{n}}\left(x, x_{n+1}\right)<r$

For $b>1$, if $d_{\infty}\left(\mu, \mu_{\vec{m}}\right)<r$, this can be used to show we gain more energy than we lose by collapsing any mass of μ near \hat{e}_{n+1} to \bar{x}

Further evidence for Fejes Tóth's conjecture?

Corollary (Discontinuous bifurcation unless $b_{\Delta^{n}}=1$)
Fix $n \in \mathbf{N}$. No curve $\left(\mu_{b}\right)_{b>0}$ of optimizers

$$
\mu_{b} \in \underset{\mathcal{P}\left(\mathbf{R P}^{n}\right)}{\operatorname{argmax}} E_{b}
$$

can be d_{∞}-continuous at $b=b_{\Delta^{n}}$ except possibly if $b_{\Delta^{n}}=1$.

Further evidence for Fejes Tóth's conjecture?

Corollary (Discontinuous bifurcation unless $b_{\Delta^{n}}=1$)

Fix $n \in \mathbf{N}$. No curve $\left(\mu_{b}\right)_{b>0}$ of optimizers

$$
\mu_{b} \in \underset{\mathcal{P}\left(\mathbf{R P}^{n}\right)}{\operatorname{argmax}} E_{b}
$$

can be d_{∞}-continuous at $b=b_{\Delta^{n}}$ except possibly if $b_{\Delta^{n}}=1$.

Corollary (On connectedness of the threshold set of optimizers)

Fix $n \in \mathbf{N}$. If the set of threshold optimizers

$$
\underset{\mathcal{P}\left(\mathbf{R P}^{n}\right)}{\operatorname{argmax}} E_{b_{\Delta^{n}}}
$$

forms a d_{∞}-connected subset of $\mathcal{P}\left(\mathbf{R P}^{n}\right)$, then $b_{\Delta^{n}}=1$.

Bilyk-Glazyrin-Matzke-Park-Vlasiuk bound: $b_{\Delta^{n}} \leq 2$

Set $f_{b}(t):=\left(\frac{2}{\pi} \arccos (t)\right)^{b}$ and $g(t):=1-t^{2}$

Proof: $f_{b}(t):=\left(\frac{2}{\pi} \arccos (t)\right)^{b}$ yields

$$
E_{b}(\mu)=\iint_{\mathbf{R P}^{n} \times \mathbf{R P}^{n}} f_{b}(x \cdot y) d \mu(x) d \mu(y)=: F^{f_{b}}(\mu)
$$

For $b \geq 2$ we have $f_{b}(t) \leq g(t):=1-t^{2}$ with equality iff $t \in\{-1,0,1\}$. Thus

$$
E_{2}(\mu) \leq F^{g}(\mu) \leq F^{g}(\sigma)=F^{g}(\bar{\mu})=E_{2}(\bar{\mu})
$$

where $\sigma=$ normalized surface area and $\bar{\mu}=\frac{1}{n+1} \sum \delta_{\hat{e}_{i}}$. The first inequality is strict unless $\mu=\mu_{\vec{m}}$ for some $\vec{m}=\left(m_{1}, \ldots m_{n+1}\right)$.

Proof: $f_{b}(t):=\left(\frac{2}{\pi} \arccos (t)\right)^{b}$ yields

$$
E_{b}(\mu)=\iint_{\mathbf{R P}^{n} \times \mathbf{R P}^{n}} f_{b}(x \cdot y) d \mu(x) d \mu(y)=: F^{f_{b}}(\mu)
$$

For $b \geq 2$ we have $f_{b}(t) \leq g(t):=1-t^{2}$ with equality iff $t \in\{-1,0,1\}$. Thus

$$
E_{2}(\mu) \leq F^{g}(\mu) \leq F^{g}(\sigma)=F^{g}(\bar{\mu})=E_{2}(\bar{\mu})
$$

where $\sigma=$ normalized surface area and $\bar{\mu}=\frac{1}{n+1} \sum \delta_{\hat{e}_{i}}$. The first inequality is strict unless $\mu=\mu_{\vec{m}}$ for some $\vec{m}=\left(m_{1}, \ldots m_{n+1}\right)$. Here the blue (in)equalities are known and follow from Cauchy-Schwartz

$$
\iint_{\mathbf{S}^{n} \times \mathbf{S}^{n}}(x \cdot y)^{2} d \mu(x) d \mu(y)=\operatorname{Tr}\left[I(\mu)^{2}\right] \geq \frac{1}{n+1}(\operatorname{Tr} I(\mu))^{2}=\frac{1}{n+1}
$$

for the moment of inertia tensor

$$
I(\mu)=\left(I_{i j}(\mu)_{i, j=1}^{n+1} \quad I_{i j}(\mu)=\int_{\mathbf{R}^{n}} x_{i} x_{j} d \mu(x)\right.
$$

Thank you!

