Volumes spanned by k-point configurations in \mathbb{R}^d

Alex McDonald (joint work with Belmiro Galo)

Point Distribution Webinar July 2021

• For $E \subset \mathbb{R}^d$, define the distance set of E to be

$$\Delta(E) := \{ |x - y| : x, y \in E \}.$$

(ロ)、(型)、(E)、(E)、 E) の(()

For $E \subset \mathbb{R}^d$, define the distance set of E to be

$$\Delta(E) := \{ |x - y| : x, y \in E \}.$$

■ The Falconer distance problem asks, for compact E ⊂ ℝ^d, how large the Hausdorff dimension of E must be to ensure that Δ(E) has positive (1-dimensional) Lebesgue measure.

For $E \subset \mathbb{R}^d$, define the distance set of E to be

$$\Delta(E) := \{ |x - y| : x, y \in E \}.$$

- The Falconer distance problem asks, for compact E ⊂ ℝ^d, how large the Hausdorff dimension of E must be to ensure that Δ(E) has positive (1-dimensional) Lebesgue measure.
- Falconer (1986) proved that the threshold dim E > d+1/2 was sufficient, and that no threshold below d/2 is sufficient. The conjectured best threshold is d/2.

■ In 1999 Wolff proved the threshold 4/3 in dimension 2, and in 2005 Erdogan proved $\frac{d}{2} + \frac{1}{3}$ for $d \ge 3$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

In 1999 Wolff proved the threshold 4/3 in dimension 2, and in 2005 Erdogan proved $\frac{d}{2} + \frac{1}{3}$ for $d \ge 3$.

The best current results are

$$\begin{cases} 5/4, & d = 2(Guth, Iosevich, Ou, Wang) \\ 9/5, & d = 3(Du, Guth, Iosevich, Ou, Wang, Zhang) \\ \frac{d}{2} + \frac{1}{4}, & d \ge 4, d \text{ even } (Du, Iosevich, Ou, Wang, Zhang) \\ \frac{d}{2} + \frac{1}{4} + \frac{1}{4(d-1)}, & d \ge 4, d \text{ odd } (Du, Zhang) \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

If E is compact, for any s < dim E there is a probability measure μ supported on E such that

 $\mu(B_r(x)) \lesssim r^s$

and

$$I_{\mathfrak{s}}(\mu) := \int \int |x-y|^{-\mathfrak{s}} d\mu(x) d\mu(y) < \infty.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 If E is compact, for any s < dim E there is a probability measure μ supported on E such that

 $\mu(B_r(x)) \lesssim r^s$

and

$$I_{\mathfrak{s}}(\mu) := \int \int |x-y|^{-\mathfrak{s}} d\mu(x) d\mu(y) < \infty.$$

The measure μ is called a Frostman probability measure with exponent s.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Define a measure ν by

$$\int f(t) d\nu(t) = \int f(|x-y|) d\mu(x) d\mu(y).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Define a measure ν by

$$\int f(t) d\nu(t) = \int f(|x-y|) d\mu(x) d\mu(y).$$

• ν is a probability measure supported on $\Delta(E)$, so to prove $\Delta(E)$ has positive Lebesgue measure it suffices to show ν is absolutely continuous.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Strategy for Falconer problem

• Let φ^{ε} be an approximation to the identity, and let $\nu^{\varepsilon} = \varphi^{\varepsilon} * \nu$.

Strategy for Falconer problem

• Let φ^{ε} be an approximation to the identity, and let $\nu^{\varepsilon} = \varphi^{\varepsilon} * \nu$.

For $A \subset \mathbb{R}$, we have

$$\int_{\mathcal{A}} \nu^{\varepsilon}(t) \ dt \lesssim |\mathcal{A}|^{1/2} \| \nu^{\varepsilon} \|_{L^2}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Strategy for Falconer problem

• Let φ^{ε} be an approximation to the identity, and let $\nu^{\varepsilon} = \varphi^{\varepsilon} * \nu$.

For $A \subset \mathbb{R}$, we have

$$\int_{\mathcal{A}}
u^{arepsilon}(t) \ dt \lesssim |\mathcal{A}|^{1/2} \|
u^{arepsilon} \|_{L^2}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The left hand side has limit ν(A), so it suffices to prove a bound on ||ν^ε||_{L²} which is independent of ε.

Strategy for configuration problems

This strategy generalizes easily.

- This strategy generalizes easily.
- Given $\Phi: (\mathbb{R}^d)^N \to \mathbb{R}^M$, define ν by

$$\int f(t) d\nu(t) = \int f(\Phi(x^1, ..., x^N)) d\mu(x^1) \cdots d\mu(x^N).$$

This strategy generalizes easily.

• Given $\Phi: (\mathbb{R}^d)^N \to \mathbb{R}^M$, define ν by

$$\int f(t) d\nu(t) = \int f(\Phi(x^1,...,x^N)) d\mu(x^1) \cdots d\mu(x^N).$$

■ If $\|\nu^{\varepsilon}\|_{L^2}$ is bounded independent of ε , then $\{\Phi(x^1, ..., x^N) : x^i \in E\}$ has positive measure.

• A (k + 1)-point configuration in \mathbb{R}^d is simply an element of $(\mathbb{R}^d)^{k+1}$, i.e., a k + 1 tuple $x = (x^1, ..., x^{k+1})$ where each $x^i = (x_1^i, ..., x_d^i)$ is a vector in \mathbb{R}^d .

- A (k + 1)-point configuration in \mathbb{R}^d is simply an element of $(\mathbb{R}^d)^{k+1}$, i.e., a k + 1 tuple $x = (x^1, ..., x^{k+1})$ where each $x^i = (x_1^i, ..., x_d^i)$ is a vector in \mathbb{R}^d .
- We say (k + 1)-point configurations x and y are congruent, and write $x \sim y$, if there exists $\theta \in O(\mathbb{R}^d), z \in \mathbb{R}^d$ such that for all i = 1, ..., k + 1 we have $y^i = \theta x^i + z$ (briefly, $y = \theta x + z$).

- A (k + 1)-point configuration in \mathbb{R}^d is simply an element of $(\mathbb{R}^d)^{k+1}$, i.e., a k + 1 tuple $x = (x^1, ..., x^{k+1})$ where each $x^i = (x_1^i, ..., x_d^i)$ is a vector in \mathbb{R}^d .
- We say (k + 1)-point configurations x and y are congruent, and write x ~ y, if there exists θ ∈ O(ℝ^d), z ∈ ℝ^d such that for all i = 1, ..., k + 1 we have yⁱ = θxⁱ + z (briefly, y = θx + z).

Given E ⊂ ℝ^d, let Δ_k(E) denote the set of congruence classes determined by E.

- A (k + 1)-point configuration in \mathbb{R}^d is simply an element of $(\mathbb{R}^d)^{k+1}$, i.e., a k + 1 tuple $x = (x^1, ..., x^{k+1})$ where each $x^i = (x_1^i, ..., x_d^i)$ is a vector in \mathbb{R}^d .
- We say (k + 1)-point configurations x and y are congruent, and write x ~ y, if there exists θ ∈ O(ℝ^d), z ∈ ℝ^d such that for all i = 1, ..., k + 1 we have yⁱ = θxⁱ + z (briefly, y = θx + z).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Given E ⊂ ℝ^d, let Δ_k(E) denote the set of congruence classes determined by E.
- We may identify $\Delta(E)$ with $\Delta_1(E)$.

■ Question: Given a compact set E ⊂ ℝ^d, how large must dim E be to ensure Δ_k(E) has positive measure?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Question: Given a compact set E ⊂ ℝ^d, how large must dim E be to ensure Δ_k(E) has positive measure?
- In order to pose this question, we must choose a measure on $\Delta_k(E)$.

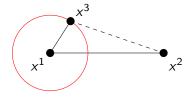
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Question: Given a compact set E ⊂ ℝ^d, how large must dim E be to ensure Δ_k(E) has positive measure?
- In order to pose this question, we must choose a measure on $\Delta_k(E)$.
- The choice of measure depends on whether $k \leq d$ or k > d.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Question: Given a compact set E ⊂ ℝ^d, how large must dim E be to ensure Δ_k(E) has positive measure?
- In order to pose this question, we must choose a measure on $\Delta_k(E)$.
- The choice of measure depends on whether $k \leq d$ or k > d.
- When k ≤ d, each of the pairwise distances may be chosen independently. We may therefore identify Δ_k(E) with a subset of ℝ^(k+1)/₂, equipped with (^{k+1}/₂)-dimensional Lebesgue measure.

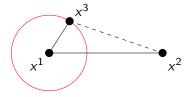
Example: The case k = d = 2



• Let $x = (x^1, x^2, x^3)$ be a 3-point configuration in \mathbb{R}^2 .

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Example: The case k = d = 2



• Let $x = (x^1, x^2, x^3)$ be a 3-point configuration in \mathbb{R}^2 .

• If we fix $|x^1 - x^2| = a$ and $|x^1 - x^3| = b$, the last distance $|x^2 - x^3|$ could take any value between |a - b| and a + b.

Theorem (Greenleaf-Iosevich-Liu-Palsson, 2015)

Let $k \leq d$, and let $E \subset \mathbb{R}^d$ be a compact set. If

$$\dim E > d - \frac{d-1}{k+1},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

then $\Delta_k(E)$ has positive $\binom{k+1}{2}$ -dimensional Lebesgue measure.

Theorem (Greenleaf-Iosevich-Liu-Palsson, 2015)

Let $k \leq d$, and let $E \subset \mathbb{R}^d$ be a compact set. If

$$\dim E > d - \frac{d-1}{k+1},$$

then $\Delta_k(E)$ has positive $\binom{k+1}{2}$ -dimensional Lebesgue measure.

In the case k = 1 this coincides with Falconer's $\frac{d+1}{2}$ threshold.

• When k > d, the system of equations

$$|x^i - x^j| = t_{i,j}|$$

becomes overdetermined; by fixing some of the values $t_{i,j}$ we determine the others.

• When k > d, the system of equations

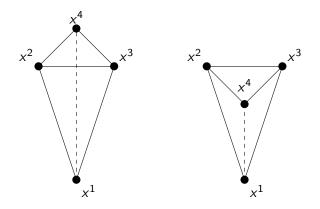
$$|x^i - x^j| = t_{i,j}|$$

becomes overdetermined; by fixing some of the values $t_{i,j}$ we determine the others.

In this case we may still identify ∆_k(E) with ^(k+1)₂-tuples of pairwise distances, but the resulting subset of ℝ^(k+1)₂ has measure zero.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example: The case k = 3, d = 2



With 4 points, if we fix 5 of the pairwise distances there are only 2 choices for the last distance.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Overdetermined congruence problem

Say that a configuration x is non-degenerate if x¹,..., x^{d+1} are affinely independent.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Overdetermined congruence problem

- Say that a configuration x is non-degenerate if x¹,..., x^{d+1} are affinely independent.
- Two non-degenerate configurations x, y are congruent if and only if there exists θ ∈ O(ℝ^d), z ∈ ℝ^d such that y = θx + z.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Overdetermined congruence problem

- Say that a configuration x is non-degenerate if x¹,...,x^{d+1} are affinely independent.
- Two non-degenerate configurations x, y are congruent if and only if there exists θ ∈ O(ℝ^d), z ∈ ℝ^d such that y = θx + z.
- The non-degenerate congruence classes can be identified with a space of dimension *m*, where

$$m=d(k+1)-\binom{d+1}{2}$$

Theorem (Chatzikonstantinou-Iosevich-Mkrtchyan-Pakianathan, 2017)

Let $d \ge 2$ and $k \ge 1$, and let $m = d(k+1) - \binom{d+1}{2}$. Let $E \subset \mathbb{R}^d$ be compact. If dim $E > d - \frac{1}{k+1}$, then $\Delta_k(E)$ has positive *m*-dimensional measure.

Theorem (Chatzikonstantinou-Iosevich-Mkrtchyan-Pakianathan, 2017)

Let $d \ge 2$ and $k \ge 1$, and let $m = d(k+1) - \binom{d+1}{2}$. Let $E \subset \mathbb{R}^d$ be compact. If dim $E > d - \frac{1}{k+1}$, then $\Delta_k(E)$ has positive *m*-dimensional measure.

 This approach generalizes to other overdetermined configuration problems if the relevant geometric features can be characterized in terms of a group action.

Theorem (Greenleaf-Iosevich-Taylor, 2020)

Given $E \subset \mathbb{R}^d$, define

$$\mathcal{V}(E) = \{\det(x^1,...,x^d) : x^i \in E\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

If $E \subset \mathbb{R}^d$ is compact and dim $E > d - 1 + \frac{1}{d}$, then $\mathcal{V}(E)$ has non-empty interior.

Theorem (Greenleaf-Iosevich-Taylor, 2020)

Given $E \subset \mathbb{R}^d$, define

$$\mathcal{V}(E) = \{\det(x^1, ..., x^d) : x^i \in E\}$$

If $E \subset \mathbb{R}^d$ is compact and dim $E > d - 1 + \frac{1}{d}$, then $\mathcal{V}(E)$ has non-empty interior.

■ If dim E ≤ d − 1 then E may be contained in a hyperplane and determine no non-trivial volumes.

Theorem (Greenleaf-Iosevich-Taylor, 2020)

Given $E \subset \mathbb{R}^d$, define

$$\mathcal{V}(E) = \{\det(x^1,...,x^d): x^i \in E\}$$

If $E \subset \mathbb{R}^d$ is compact and dim $E > d - 1 + \frac{1}{d}$, then $\mathcal{V}(E)$ has non-empty interior.

- If dim E ≤ d − 1 then E may be contained in a hyperplane and determine no non-trivial volumes.
- It follows the threshold $d 1 + \frac{1}{d}$ cannot be improved by more than $\frac{1}{d}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Volume types of point configurations

• Let x be a k-point configuration in \mathbb{R}^d , i.e.,

$$x = (x^1, ..., x^k)$$

for vectors

$$x^i = (x_1^i, ..., x_d^i) \in \mathbb{R}^d.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Volume types of point configurations

• Let x be a k-point configuration in \mathbb{R}^d , i.e.,

$$x = (x^1, \dots, x^k)$$

for vectors

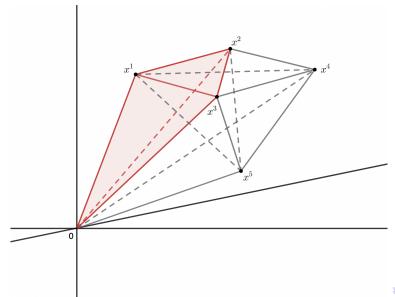
$$x^i = (x_1^i, ..., x_d^i) \in \mathbb{R}^d.$$

• The **volume type** of *x* is the vector

$$\{\det(x^{i_1},...,x^{i_d})\}_{1\leq i_1<\cdots< i_d\leq k}\in \mathbb{R}^{\binom{k}{d}}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A 5-point configuration in \mathbb{R}^3



🗄 ୬ବ୍ଜ

Given k ≥ d and E ⊂ ℝ^d, let V_{k,d}(E) denote the set of volume types determined by configurations of points in E. Let V_{k,d} = V_{k,d}(ℝ^d).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Given k ≥ d and E ⊂ ℝ^d, let V_{k,d}(E) denote the set of volume types determined by configurations of points in E. Let V_{k,d} = V_{k,d}(ℝ^d).
- Let Φ_{k,d} : (ℝ^d)^k → V_{k,d} be the map taking configurations to their volume types.

- Given k ≥ d and E ⊂ ℝ^d, let V_{k,d}(E) denote the set of volume types determined by configurations of points in E. Let V_{k,d} = V_{k,d}(ℝ^d).
- Let Φ_{k,d} : (ℝ^d)^k → V_{k,d} be the map taking configurations to their volume types.

• If $g \in SL_d(\mathbb{R})$, it is clear that $\Phi_{k,d}(gx) = \Phi_{k,d}(x)$.

Volume types and the action of $SL_d(\mathbb{R})$

■ Suppose Φ_{k,d}(x) = Φ_{k,d}(y), and x¹,...,x^d are linearly independent.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Volume types and the action of $SL_d(\mathbb{R})$

Suppose Φ_{k,d}(x) = Φ_{k,d}(y), and x¹,...,x^d are linearly independent.

Define

$$g = (y^1, ..., y^d)(x^1, ..., x^d)^{-1}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Volume types and the action of $SL_d(\mathbb{R})$

■ Suppose Φ_{k,d}(x) = Φ_{k,d}(y), and x¹,...,x^d are linearly independent.

Define

$$g = (y^1, ..., y^d)(x^1, ..., x^d)^{-1}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Then $g \in SL_d(\mathbb{R})$, and $gx^i = y^i$ for i = 1, 2, ..., d.

Volume types and group actions

• For i > d, write

$$x^i = \sum_{j=1}^d a_{i,j} x^j, \qquad y^i = \sum_{j=1}^d b_{i,j} y^j.$$

(ロ)、(型)、(E)、(E)、(E)、(O)()

Volume types and group actions

For i > d, write

$$x^{i} = \sum_{j=1}^{d} a_{i,j} x^{j}, \qquad y^{i} = \sum_{j=1}^{d} b_{i,j} y^{j}.$$

• Easy to prove $a_{i,j} = b_{i,j}$, so $gx^i = y^i$ for all *i*.

Volume types and group actions

For i > d, write

$$x^{i} = \sum_{j=1}^{d} a_{i,j} x^{j}, \qquad y^{i} = \sum_{j=1}^{d} b_{i,j} y^{j}.$$

• Easy to prove
$$a_{i,j} = b_{i,j}$$
, so $gx^i = y^i$ for all i .

For every non-degenerate x, there exists \tilde{x} of the form

$$\widetilde{x} = (e^1, ..., e^{d-1}, te^d, z^{d+1}, ..., z^k)$$

with $\Phi_{k,d}(\widetilde{x}) = \Phi_{k,d}(x)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Theorem

• We can therefore identify $\mathcal{V}_{k,d}$ with \mathbb{R}^m , where m = d(k - d) + 1 (ignoring degenerate configurations).

Theorem

• We can therefore identify $\mathcal{V}_{k,d}$ with \mathbb{R}^m , where m = d(k - d) + 1 (ignoring degenerate configurations).

With this identification, our result is as follows.

Theorem (Galo-M., 2021)

Let $k \ge d \ge 2$, let m = d(k - d) + 1, and let $E \subset \mathbb{R}^d$ be compact. If dim $E > d - \frac{d-1}{2k-d}$, then $\mathcal{L}_m(\mathcal{V}_{k,d}(E)) > 0$.

Theorem

• We can therefore identify $\mathcal{V}_{k,d}$ with \mathbb{R}^m , where m = d(k - d) + 1 (ignoring degenerate configurations).

With this identification, our result is as follows.

Theorem (Galo-M., 2021)

Let $k \ge d \ge 2$, let m = d(k - d) + 1, and let $E \subset \mathbb{R}^d$ be compact. If dim $E > d - \frac{d-1}{2k-d}$, then $\mathcal{L}_m(\mathcal{V}_{k,d}(E)) > 0$.

• If k = d, then our threshold is $d - 1 + \frac{1}{d}$, which is the threshold in the Greenleaf-losevich-Taylor result.

Setup

If E is compact, for any s < dim E there is a probability measure μ supported on E such that

 $\mu(B_r(x)) \lesssim r^s$

and

$$I_{\mathfrak{s}}(\mu) := \int \int |x-y|^{-\mathfrak{s}} d\mu(x) d\mu(y) < \infty.$$

 If E is compact, for any s < dim E there is a probability measure μ supported on E such that

 $\mu(B_r(x)) \lesssim r^s$

and

$$I_s(\mu) := \int \int |x-y|^{-s} d\mu(x) d\mu(y) < \infty.$$

• Define a measure $\nu_{k,d}$ on $\mathcal{V}_{k,d}$ by

$$\int f(t) d\nu_{k,d}(t) = \int f(\Phi_{k,d}(x)) d\mu^k(x).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Setup

 If E is compact, for any s < dim E there is a probability measure μ supported on E such that

 $\mu(B_r(x)) \lesssim r^s$

and

$$I_{s}(\mu):=\int\int |x-y|^{-s} d\mu(x) d\mu(y) < \infty.$$

• Define a measure $\nu_{k,d}$ on $\mathcal{V}_{k,d}$ by

$$\int f(t) d\nu_{k,d}(t) = \int f(\Phi_{k,d}(x)) d\mu^k(x).$$

• Let $\nu_{k,t}^{\varepsilon}$ be the convolution of $\nu_{k,t}$ with an approximate identity. Our goal is to prove L^2 bounds on $\nu_{k,t}^{\varepsilon}$, independent of ε .

We have

$$u^arepsilon_{d,d}(t)pproxarepsilon^{-1}\int_{|\det(x^1,...,x^d)-t|$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

We have

$$u_{d,d}^{\varepsilon}(t) pprox \varepsilon^{-1} \int_{|\det(x^1,...,x^d)-t|<\varepsilon} d\mu^d(x)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Let ψ be a Schwartz function supported in the range $\frac{1}{2} \leq |\xi| \leq 4$ and constantly equal to 1 in the range $1 \leq |\xi| \leq 2$, and let $\hat{\mu}_j(\xi) = \psi(2^{-j}\xi)\hat{\mu}(\xi)$ be the corresponding Littlewood-Paley projection.

We have

$$u_{d,d}^{\varepsilon}(t) pprox \varepsilon^{-1} \int_{|\det(x^1,...,x^d)-t|<\varepsilon} d\mu^d(x)$$

• Let ψ be a Schwartz function supported in the range $\frac{1}{2} \leq |\xi| \leq 4$ and constantly equal to 1 in the range $1 \leq |\xi| \leq 2$, and let $\hat{\mu}_j(\xi) = \psi(2^{-j}\xi)\hat{\mu}(\xi)$ be the corresponding Littlewood-Paley projection.

The above integral is

$$\varepsilon^{-1} \sum_{j_1 > \dots > j_d > 0} \int_{|\det(x^1, \dots, x^d) - t| < \varepsilon} \mu_{j_1}(x^1) \cdots \mu_{j_d}(x^d) \, dx$$

Define a generalized Radon transform by

$$\mathcal{R}_t f(x^1, \cdots, x^{d-1}) = \int_{\substack{\det(x^1, \cdots, x^d) = t \\ |x^1|, \dots, |x^d| \le 1}} f(x^d) \, d\sigma_{t, x^1, \cdots, x^{d-1}}(x^d),$$

where $\sigma_{t, x^1, \cdots, x^{d-1}}$ is the surface measure.

Define a generalized Radon transform by

$$\mathcal{R}_t f(x^1, \cdots x^{d-1}) = \int_{\substack{\det(x^1, \cdots, x^d) = t \\ |x^1|, \dots, |x^d| \le 1}} f(x^d) \, d\sigma_{t, x^1, \cdots, x^{d-1}}(x^d),$$

where $\sigma_{t,x^1,\cdots,x^{d-1}}$ is the surface measure.

We have

$$u_{d,d}^{\varepsilon}(t) \approx \sum_{j} \langle \mathcal{R}_t \mu_j, \mu_j \otimes \cdots \otimes \mu_j \rangle$$

Define a generalized Radon transform by

$$\mathcal{R}_t f(x^1, \cdots x^{d-1}) = \int_{\substack{\det(x^1, \cdots, x^d) = t \\ |x^1|, \dots, |x^d| \le 1}} f(x^d) \, d\sigma_{t, x^1, \cdots, x^{d-1}}(x^d),$$

where $\sigma_{t,x^1,\cdots,x^{d-1}}$ is the surface measure.

We have

$$u_{d,d}^{\varepsilon}(t) pprox \sum_{j} \langle \mathcal{R}_t \mu_j, \mu_j \otimes \cdots \otimes \mu_j \rangle$$

The Greenleaf-losevich-Taylor result is obtained from this by studying the mapping properties of generalized Radon transforms.

Properties of generalized Radon Transforms

• $\mathcal{R}_t \mu_j$ has Fourier support concentrated at scale 2^j

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Properties of generalized Radon Transforms

- $\mathcal{R}_t \mu_j$ has Fourier support concentrated at scale 2^j
- \mathcal{R}_t is a bounded map $L^2 \to L^2_{\frac{d-1}{2}}$, where L^2_r denotes the Sobolev space with norm

$$||f||_{L^2_r} = ||(1+|\xi|^2)^{r/2}\widehat{f}(\xi)||_{L^2}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Properties of generalized Radon Transforms

- $\mathcal{R}_t \mu_j$ has Fourier support concentrated at scale 2^j
- \mathcal{R}_t is a bounded map $L^2 \to L^2_{\frac{d-1}{2}}$, where L^2_r denotes the Sobolev space with norm

$$||f||_{L^2_r} = ||(1+|\xi|^2)^{r/2}\widehat{f}(\xi)||_{L^2}.$$

This, together with Plancherel, gives bounds on the L² inner product

$$\langle \mathcal{R}_t \mu_j, \mu_j \otimes \cdots \otimes \mu_j \rangle$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We have

$$u_{d,d}^{arepsilon}(t)pprox \sum_{j} \langle \mathcal{R}_t \mu_j, \mu_j \otimes \cdots \otimes \mu_j
angle$$

We have

$$u_{d,d}^{arepsilon}(t) pprox \sum_{j} \langle \mathcal{R}_{t} \mu_{j}, \mu_{j} \otimes \cdots \otimes \mu_{j}
angle$$
 $pprox \sum_{j} \|\mathcal{R}_{t} \mu_{j}\|_{L^{2}} \|\mu_{j}\|_{L^{2}}^{d-1}$

We have

$$u_{d,d}^{\varepsilon}(t) pprox \sum_{j} \langle \mathcal{R}_{t} \mu_{j}, \mu_{j} \otimes \cdots \otimes \mu_{j}
angle$$
 $pprox \sum_{j} \|\mathcal{R}_{t} \mu_{j}\|_{L^{2}} \|\mu_{j}\|_{L^{2}}^{d-1}$
 $pprox \sum_{j} 2^{-\frac{d-1}{2}} \|\mu_{j}\|_{L^{2}}^{d}$

(ロ)、(型)、(E)、(E)、(E)、(O)()

We have

$$\nu_{d,d}^{\varepsilon}(t) \approx \sum_{j} \langle \mathcal{R}_{t} \mu_{j}, \mu_{j} \otimes \cdots \otimes \mu_{j} \rangle$$
$$\approx \sum_{j} \| \mathcal{R}_{t} \mu_{j} \|_{L^{2}} \| \mu_{j} \|_{L^{2}}^{d-1}$$
$$\approx \sum_{j} 2^{-\frac{d-1}{2}} \| \mu_{j} \|_{L^{2}}^{d}$$
$$\approx \sum_{j} 2^{-(\frac{d-1}{2}) \cdot j} 2^{d(\frac{d-s}{2}) \cdot j}$$

(ロ)、(型)、(E)、(E)、(E)、(O)()

We have

$$\nu_{d,d}^{\varepsilon}(t) \approx \sum_{j} \langle \mathcal{R}_{t}\mu_{j}, \mu_{j} \otimes \cdots \otimes \mu_{j} \rangle$$
$$\approx \sum_{j} \|\mathcal{R}_{t}\mu_{j}\|_{L^{2}} \|\mu_{j}\|_{L^{2}}^{d-1}$$
$$\approx \sum_{j} 2^{-\frac{d-1}{2}} \|\mu_{j}\|_{L^{2}}^{d}$$
$$\approx \sum_{j} 2^{-(\frac{d-1}{2}) \cdot j} 2^{d(\frac{d-s}{2}) \cdot j}$$

(ロ)、(型)、(E)、(E)、 E) の(()

The sum is finite when $s > d - 1 + \frac{1}{d}$.

Reducing to the k = d case

• For general $k \ge d$, we have

$$\nu_{k,d}^{\varepsilon}(t) \approx \varepsilon^{-m} \int_{|\Phi_{k,d}(x)-t| < \varepsilon} d\mu^k(x).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Reducing to the k = d case

• For general $k \ge d$, we have

$$u_{k,d}^{\varepsilon}(t) \approx \varepsilon^{-m} \int_{|\Phi_{k,d}(x)-t|<\varepsilon} d\mu^k(x).$$

Therefore,

$$\|\nu_{k,d}^{\varepsilon}\|_{L^2}^2 \approx \varepsilon^{-m} \int \int_{|\Phi_{k,d}(x)-\Phi_{k,d}(y)|<2\varepsilon} d\mu^k(x) \, d\mu^k(y).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• For general $k \ge d$, we have

$$u_{k,d}^{\varepsilon}(t) \approx \varepsilon^{-m} \int_{|\Phi_{k,d}(x)-t|<\varepsilon} d\mu^k(x).$$

Therefore,

$$\|\nu_{k,d}^{\varepsilon}\|_{L^2}^2 \approx \varepsilon^{-m} \int \int_{|\Phi_{k,d}(x)-\Phi_{k,d}(y)|<2\varepsilon} d\mu^k(x) \, d\mu^k(y).$$

$$pprox \sum_{j} \int \int \mu_j(gx^1) \cdots \mu_j(gx^k) d\mu^k(x) dg.$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Reducing to the k = d case

• Applying the bound $\|\mu_j\|_{L^{\infty}} \leq 2^{j(d-s)}$ to the last k-d terms, this is

$$\sum_{j} 2^{j_d(d-s)(k-d)} \int \int \mu_j(gx^1) \cdots \mu_j(gx^d) \, d\mu^d(x) dg$$

• Applying the bound $\|\mu_j\|_{L^{\infty}} \leq 2^{j(d-s)}$ to the last k-d terms, this is

$$\sum_{j} 2^{j_d(d-s)(k-d)} \int \int \mu_j(gx^1) \cdots \mu_j(gx^d) \, d\mu^d(x) dg$$

This integral is the one which arose in the k = d case, and we can use the mapping properties of the generalized Radon transform to bound.

• Applying the bound $\|\mu_j\|_{L^{\infty}} \leq 2^{j(d-s)}$ to the last k-d terms, this is

$$\sum_{j} 2^{j_d(d-s)(k-d)} \int \int \mu_j(gx^1) \cdots \mu_j(gx^d) \, d\mu^d(x) dg$$

This integral is the one which arose in the k = d case, and we can use the mapping properties of the generalized Radon transform to bound.

• The sum is finite when
$$s > d - \frac{d-1}{2k-d}$$
.

Theorem (Galo-M.,2021)

Let $k \ge d \ge 2$. For any

$$s < d - rac{d^2(d-1)}{d(k-1)+1},$$

there exists compact $E \subset \mathbb{R}^2$ such that dim E = s and $\mathcal{V}_{k,d}(E)$ has measure zero.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Galo-M.,2021)

Let $k \ge d \ge 2$. For any

$$\mathfrak{s} < d - rac{d^2(d-1)}{d(k-1)+1},$$

there exists compact $E \subset \mathbb{R}^2$ such that dim E = s and $\mathcal{V}_{k,d}(E)$ has measure zero.

Take a lattice in the unit cube with spacing 1/q and thicken each point by q^{-d/s}.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Galo-M.,2021)

Let $k \ge d \ge 2$. For any

$$s < d - rac{d^2(d-1)}{d(k-1)+1},$$

there exists compact $E \subset \mathbb{R}^2$ such that dim E = s and $\mathcal{V}_{k,d}(E)$ has measure zero.

 Take a lattice in the unit cube with spacing 1/q and thicken each point by q^{-d/s}.

• This approximates a set of dimension s in \mathbb{R}^d .

Theorem (Galo-M.,2021)

Let $k \ge d \ge 2$. For any

$$s < d - rac{d^2(d-1)}{d(k-1)+1},$$

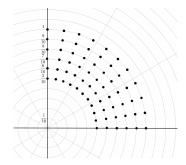
there exists compact $E \subset \mathbb{R}^2$ such that dim E = s and $\mathcal{V}_{k,d}(E)$ has measure zero.

 Take a lattice in the unit cube with spacing 1/q and thicken each point by q^{-d/s}.

▲□ → ▲ □ → ▲ □ → のへで

- This approximates a set of dimension s in \mathbb{R}^d .
- Map the square lattice to a spherical lattice.

1		_		_			
9		Ī	Ī	Ī	Ī	Ī	
10		•	•	•	•	•	
	•	•	•	+	•	٠	
					•	•	
5		T	T	T	Ţ		
10	•	•	•	•	•	٠	
		•	•	•	•	•	
		_	_	_	_		
		Ť	Ť	Ī	Ť	T	
	•	•	•	•	•	٠	
 1		•	•	•	•	•	
.0		_	_	_	_	_	
1	5	6	-7	8	9	1	
1 10	5 10	6 10	10	8 10	9 10		



◆□→ ◆□→ ◆臣→ ◆臣→ □臣

■ The spherical grid determines ≈ $q \cdot q^{d(k-1)} = q^{d(k-1)+1}$ volume types

- The spherical grid determines ≈ $q \cdot q^{d(k-1)} = q^{d(k-1)+1}$ volume types
- The thickened set has an volume type set of measure $\approx q^{d(k-1)+1} (q^{-d/s})^{d(k-d)+1}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The spherical grid determines ≈ $q \cdot q^{d(k-1)} = q^{d(k-1)+1}$ volume types
- The thickened set has an volume type set of measure $\approx q^{d(k-1)+1} (q^{-d/s})^{d(k-d)+1}$.

• If
$$s < d - rac{d^2(d-1)}{d(k-1)+1}$$
, this tends to zero as $q \to \infty$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Distance chains

• Let G be a graph on the vertices $\{1, ..., k\}$.

Distance chains

• Let G be a graph on the vertices $\{1, ..., k\}$.

A natural Falconer-type question about point configurations asks how large the Hausdorff dimension of a set must be to ensure it determines a positive measure worth of distances corresponding to edges.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Distance chains

• Let G be a graph on the vertices $\{1, ..., k\}$.

- A natural Falconer-type question about point configurations asks how large the Hausdorff dimension of a set must be to ensure it determines a positive measure worth of distances corresponding to edges.
- The following result applies when *G* is a chain.

Theorem (Bennett-Iosevich-Taylor, 2015)

Let $d, k \geq 2$, and let $E \subset \mathbb{R}^d$ be compact. If dim $E > \frac{d+1}{2}$, the set

$$\{(|x^1 - x^2|, ..., |x^{k-1} - x^k|) : x^i \in E\}$$

has non-empty interior.

Distance trees

This result was later generalized from chains to trees.

Theorem (losevich-Taylor, 2019)

Let $d, k \ge 2$ and let $E \subset \mathbb{R}^d$ be compact. Let T be a tree on the vertices $\{1, ..., k\}$ with edge set \mathcal{E} . If dim $E > \frac{d+1}{2}$, the set

$$\{(|x^i - x^j|)_{(i,j) \in \mathcal{E}} : x^i \in E\}$$

has non-empty interior.

This result was later generalized from chains to trees.

Theorem (Iosevich-Taylor, 2019)

Let $d, k \ge 2$ and let $E \subset \mathbb{R}^d$ be compact. Let T be a tree on the vertices $\{1, ..., k\}$ with edge set \mathcal{E} . If dim $E > \frac{d+1}{2}$, the set

$$\{(|x^i - x^j|)_{(i,j) \in \mathcal{E}} : x^i \in E\}$$

has non-empty interior.

For both chains and trees, the threshold does not depend on k.

Volume chains

Our second result is an analogue for hypergraph chains of volumes.

Theorem (Galo-M., 2021)

Let $k, d \ge 2$ and let $E \subset \mathbb{R}^d$ be compact. If dim $E > d - 1 + \frac{1}{d}$, then

$$\{\{\det(x^j, x^{j+1}, \cdots, x^{j+d-1})\}_{1 \le j \le k+1-d} : x^1, ..., x^k \in E\}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Has non-empty interior.

Volume chains

Our second result is an analogue for hypergraph chains of volumes.

Theorem (Galo-M., 2021)

Let $k, d \ge 2$ and let $E \subset \mathbb{R}^d$ be compact. If dim $E > d - 1 + \frac{1}{d}$, then

$$\{\{\det(x^j, x^{j+1}, \cdots, x^{j+d-1})\}_{1 \le j \le k+1-d} : x^1, ..., x^k \in E\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Has non-empty interior.

• In the k = d case, this is the same as our first result.

Volume chains

Our second result is an analogue for hypergraph chains of volumes.

Theorem (Galo-M., 2021)

Let $k, d \ge 2$ and let $E \subset \mathbb{R}^d$ be compact. If dim $E > d - 1 + \frac{1}{d}$, then

$$\{\{\det(x^j, x^{j+1}, \cdots, x^{j+d-1})\}_{1 \le j \le k+1-d} : x^1, ..., x^k \in E\}.$$

Has non-empty interior.

- In the k = d case, this is the same as our first result.
- The threshold does not depend on *k*, as it does in our first result.

• Suppose k = d + 1. The quantity we want to bound is

$$\varepsilon^{-2} \int_{\substack{|\det(x^1,\ldots,x^d)-t|<\varepsilon\\|\det(x^2,\ldots,x^{d+1})-t'|<\varepsilon}} d\mu^{d+1}(x)$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

• Suppose k = d + 1. The quantity we want to bound is

$$\varepsilon^{-2} \int_{\substack{|\det(x^1,\ldots,x^d)-t|<\varepsilon\\|\det(x^2,\ldots,x^{d+1})-t'|<\varepsilon}} d\mu^{d+1}(x)$$

$$\approx \varepsilon^{-2} \sum_{j} \int_{\substack{|\det(x^1,\dots,x^d)-t|<\varepsilon\\|\det(x^2,\dots,x^{d+1})-t'|<\varepsilon}} \mu_j(x^{d+1}) d\mu^d(x) dx^{d+1}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

• Suppose k = d + 1. The quantity we want to bound is

$$\varepsilon^{-2} \int_{\substack{|\det(x^1,\ldots,x^d)-t|<\varepsilon\\|\det(x^2,\ldots,x^{d+1})-t'|<\varepsilon}} d\mu^{d+1}(x)$$

$$\approx \varepsilon^{-2} \sum_{j} \int_{\substack{|\det(x^1,\ldots,x^d)-t|<\varepsilon\\|\det(x^2,\ldots,x^{d+1})-t'|<\varepsilon}} \mu_j(x^{d+1}) d\mu^d(x) dx^{d+1}$$

$$\approx \varepsilon^{-1} \sum_{j} \int_{|\det(x^1,...,x^d)-t|<\varepsilon} \mathcal{R}_{t'} \mu_j(x^2,...,x^d) d\mu^d(x).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

■ This reduces matters from the *k* = *d* + 1 case to the *k* = *d* case.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- This reduces matters from the k = d + 1 case to the k = d case.
- One can handle arbitrary $k \ge d$ by iterating this process.

(ロ)、(型)、(E)、(E)、 E) の(()

Thanks for listening!

