Volumes spanned by k-point configurations in \mathbb{R}^{d}

Alex McDonald
(joint work with Belmiro Galo)

Point Distribution Webinar
July 2021

The Falconer distance problem

- For $E \subset \mathbb{R}^{d}$, define the distance set of E to be

$$
\Delta(E):=\{|x-y|: x, y \in E\}
$$

The Falconer distance problem

- For $E \subset \mathbb{R}^{d}$, define the distance set of E to be

$$
\Delta(E):=\{|x-y|: x, y \in E\} .
$$

- The Falconer distance problem asks, for compact $E \subset \mathbb{R}^{d}$, how large the Hausdorff dimension of E must be to ensure that $\Delta(E)$ has positive (1-dimensional) Lebesgue measure.

The Falconer distance problem

- For $E \subset \mathbb{R}^{d}$, define the distance set of E to be

$$
\Delta(E):=\{|x-y|: x, y \in E\} .
$$

- The Falconer distance problem asks, for compact $E \subset \mathbb{R}^{d}$, how large the Hausdorff dimension of E must be to ensure that $\Delta(E)$ has positive (1-dimensional) Lebesgue measure.
- Falconer (1986) proved that the threshold $\operatorname{dim} E>\frac{d+1}{2}$ was sufficient, and that no threshold below $\frac{d}{2}$ is sufficient. The conjectured best threshold is $\frac{d}{2}$.

Results on the Falconer problem

- In 1999 Wolff proved the threshold $4 / 3$ in dimension 2 , and in 2005 Erdogan proved $\frac{d}{2}+\frac{1}{3}$ for $d \geq 3$.

Results on the Falconer problem

- In 1999 Wolff proved the threshold $4 / 3$ in dimension 2 , and in 2005 Erdogan proved $\frac{d}{2}+\frac{1}{3}$ for $d \geq 3$.
- The best current results are

$$
\begin{cases}5 / 4, & d=2(\text { Guth, losevich, Ou, Wang) } \\ 9 / 5, & d=3(\text { Du, Guth, losevich, Ou, Wang, Zhang) } \\ \frac{d}{2}+\frac{1}{4}, & d \geq 4, d \text { even (Du, losevich, Ou, Wang, Zhang) } \\ \frac{d}{2}+\frac{1}{4}+\frac{1}{4(d-1)}, & d \geq 4, d \text { odd (Du, Zhang) }\end{cases}
$$

Strategy for Falconer problem

- If E is compact, for any $s<\operatorname{dim} E$ there is a probability measure μ supported on E such that

$$
\mu\left(B_{r}(x)\right) \lesssim r^{s}
$$

and

$$
I_{s}(\mu):=\iint|x-y|^{-s} d \mu(x) d \mu(y)<\infty
$$

Strategy for Falconer problem

- If E is compact, for any $s<\operatorname{dim} E$ there is a probability measure μ supported on E such that

$$
\mu\left(B_{r}(x)\right) \lesssim r^{s}
$$

and

$$
I_{s}(\mu):=\iint|x-y|^{-s} d \mu(x) d \mu(y)<\infty
$$

■ The measure μ is called a Frostman probability measure with exponent s.

Strategy for Falconer problem

■ Define a measure ν by

$$
\int f(t) d \nu(t)=\int f(|x-y|) d \mu(x) d \mu(y)
$$

Strategy for Falconer problem

- Define a measure ν by

$$
\int f(t) d \nu(t)=\int f(|x-y|) d \mu(x) d \mu(y)
$$

■ ν is a probability measure supported on $\Delta(E)$, so to prove $\Delta(E)$ has positive Lebesgue measure it suffices to show ν is absolutely continuous.

Strategy for Falconer problem

■ Let φ^{ε} be an approximation to the identity, and let $\nu^{\varepsilon}=\varphi^{\varepsilon} * \nu$.

Strategy for Falconer problem

■ Let φ^{ε} be an approximation to the identity, and let $\nu^{\varepsilon}=\varphi^{\varepsilon} * \nu$.

■ For $A \subset \mathbb{R}$, we have

$$
\int_{A} \nu^{\varepsilon}(t) d t \lesssim|A|^{1 / 2}\left\|\nu^{\varepsilon}\right\|_{L^{2}}
$$

Strategy for Falconer problem

■ Let φ^{ε} be an approximation to the identity, and let $\nu^{\varepsilon}=\varphi^{\varepsilon} * \nu$.

- For $A \subset \mathbb{R}$, we have

$$
\int_{A} \nu^{\varepsilon}(t) d t \lesssim|A|^{1 / 2}\left\|\nu^{\varepsilon}\right\|_{L^{2}}
$$

■ The left hand side has limit $\nu(A)$, so it suffices to prove a bound on $\left\|\nu^{\varepsilon}\right\|_{L^{2}}$ which is independent of ε.

Strategy for configuration problems

■ This strategy generalizes easily.

Strategy for configuration problems

■ This strategy generalizes easily.

■ Given $\Phi:\left(\mathbb{R}^{d}\right)^{N} \rightarrow \mathbb{R}^{M}$, define ν by

$$
\int f(t) d \nu(t)=\int f\left(\Phi\left(x^{1}, \ldots, x^{N}\right)\right) d \mu\left(x^{1}\right) \cdots d \mu\left(x^{N}\right)
$$

Strategy for configuration problems

- This strategy generalizes easily.

■ Given $\Phi:\left(\mathbb{R}^{d}\right)^{N} \rightarrow \mathbb{R}^{M}$, define ν by

$$
\int f(t) d \nu(t)=\int f\left(\Phi\left(x^{1}, \ldots, x^{N}\right)\right) d \mu\left(x^{1}\right) \cdots d \mu\left(x^{N}\right)
$$

- If $\left\|\nu^{\varepsilon}\right\|_{L^{2}}$ is bounded independent of ε, then $\left\{\Phi\left(x^{1}, \ldots, x^{N}\right): x^{i} \in E\right\}$ has positive measure.

Congruence of point configurations

- A $(k+1)$-point configuration in \mathbb{R}^{d} is simply an element of $\left(\mathbb{R}^{d}\right)^{k+1}$, i.e., a $k+1$ tuple $x=\left(x^{1}, \ldots, x^{k+1}\right)$ where each $x^{i}=\left(x_{1}^{i}, \ldots, x_{d}^{i}\right)$ is a vector in \mathbb{R}^{d}.

Congruence of point configurations

- A $(k+1)$-point configuration in \mathbb{R}^{d} is simply an element of $\left(\mathbb{R}^{d}\right)^{k+1}$, i.e., a $k+1$ tuple $x=\left(x^{1}, \ldots, x^{k+1}\right)$ where each $x^{i}=\left(x_{1}^{i}, \ldots, x_{d}^{i}\right)$ is a vector in \mathbb{R}^{d}.

■ We say $(k+1)$-point configurations x and y are congruent, and write $x \sim y$, if there exists $\theta \in O\left(\mathbb{R}^{d}\right), z \in \mathbb{R}^{d}$ such that for all $i=1, \ldots, k+1$ we have $y^{i}=\theta x^{i}+z$ (briefly, $y=\theta x+z)$.

Congruence of point configurations

■ A $(k+1)$-point configuration in \mathbb{R}^{d} is simply an element of $\left(\mathbb{R}^{d}\right)^{k+1}$, i.e., a $k+1$ tuple $x=\left(x^{1}, \ldots, x^{k+1}\right)$ where each $x^{i}=\left(x_{1}^{i}, \ldots, x_{d}^{i}\right)$ is a vector in \mathbb{R}^{d}.
\square We say $(k+1)$-point configurations x and y are congruent, and write $x \sim y$, if there exists $\theta \in O\left(\mathbb{R}^{d}\right), z \in \mathbb{R}^{d}$ such that for all $i=1, \ldots, k+1$ we have $y^{i}=\theta x^{i}+z$ (briefly, $y=\theta x+z)$.

■ Given $E \subset \mathbb{R}^{d}$, let $\Delta_{k}(E)$ denote the set of congruence classes determined by E.

Congruence of point configurations

■ A $(k+1)$-point configuration in \mathbb{R}^{d} is simply an element of $\left(\mathbb{R}^{d}\right)^{k+1}$, i.e., a $k+1$ tuple $x=\left(x^{1}, \ldots, x^{k+1}\right)$ where each $x^{i}=\left(x_{1}^{i}, \ldots, x_{d}^{i}\right)$ is a vector in \mathbb{R}^{d}.

■ We say $(k+1)$-point configurations x and y are congruent, and write $x \sim y$, if there exists $\theta \in O\left(\mathbb{R}^{d}\right), z \in \mathbb{R}^{d}$ such that for all $i=1, \ldots, k+1$ we have $y^{i}=\theta x^{i}+z$ (briefly, $y=\theta x+z)$.

■ Given $E \subset \mathbb{R}^{d}$, let $\Delta_{k}(E)$ denote the set of congruence classes determined by E.

■ We may identify $\Delta(E)$ with $\Delta_{1}(E)$.

Point configuration congruence problem

■ Question: Given a compact set $E \subset \mathbb{R}^{d}$, how large must $\operatorname{dim} E$ be to ensure $\Delta_{k}(E)$ has positive measure?

Point configuration congruence problem

- Question: Given a compact set $E \subset \mathbb{R}^{d}$, how large must $\operatorname{dim} E$ be to ensure $\Delta_{k}(E)$ has positive measure?

■ In order to pose this question, we must choose a measure on $\Delta_{k}(E)$.

Point configuration congruence problem

- Question: Given a compact set $E \subset \mathbb{R}^{d}$, how large must $\operatorname{dim} E$ be to ensure $\Delta_{k}(E)$ has positive measure?

■ In order to pose this question, we must choose a measure on $\Delta_{k}(E)$.

■ The choice of measure depends on whether $k \leq d$ or $k>d$.

Point configuration congruence problem

- Question: Given a compact set $E \subset \mathbb{R}^{d}$, how large must $\operatorname{dim} E$ be to ensure $\Delta_{k}(E)$ has positive measure?

■ In order to pose this question, we must choose a measure on $\Delta_{k}(E)$.

■ The choice of measure depends on whether $k \leq d$ or $k>d$.

- When $k \leq d$, each of the pairwise distances may be chosen independently. We may therefore identify $\Delta_{k}(E)$ with a subset of $\mathbb{R}^{\binom{k+1}{2}}$, equipped with $\binom{k+1}{2}$-dimensional Lebesgue measure.

Example: The case $k=d=2$

■ Let $x=\left(x^{1}, x^{2}, x^{3}\right)$ be a 3 -point configuration in \mathbb{R}^{2}.

Example: The case $k=d=2$

■ Let $x=\left(x^{1}, x^{2}, x^{3}\right)$ be a 3 -point configuration in \mathbb{R}^{2}.

- If we fix $\left|x^{1}-x^{2}\right|=a$ and $\left|x^{1}-x^{3}\right|=b$, the last distance $\left|x^{2}-x^{3}\right|$ could take any value between $|a-b|$ and $a+b$.

Configuration congruence results in the $k \leq d$ case

Theorem (Greenleaf-losevich-Liu-Palsson, 2015)
Let $k \leq d$, and let $E \subset \mathbb{R}^{d}$ be a compact set. If

$$
\operatorname{dim} E>d-\frac{d-1}{k+1}
$$

then $\Delta_{k}(E)$ has positive $\binom{k+1}{2}$-dimensional Lebesgue measure.

Configuration congruence results in the $k \leq d$ case

Theorem (Greenleaf-losevich-Liu-Palsson, 2015)
Let $k \leq d$, and let $E \subset \mathbb{R}^{d}$ be a compact set. If

$$
\operatorname{dim} E>d-\frac{d-1}{k+1}
$$

then $\Delta_{k}(E)$ has positive $\binom{k+1}{2}$-dimensional Lebesgue measure.

- In the case $k=1$ this coincides with Falconer's $\frac{d+1}{2}$ threshold.

Overdetermined configurations

■ When $k>d$, the system of equations

$$
\left|x^{i}-x^{j}\right|=t_{i, j}
$$

becomes overdetermined; by fixing some of the values $t_{i, j}$ we determine the others.

Overdetermined configurations

■ When $k>d$, the system of equations

$$
\left|x^{i}-x^{j}\right|=t_{i, j}
$$

becomes overdetermined; by fixing some of the values $t_{i, j}$ we determine the others.

- In this case we may still identify $\Delta_{k}(E)$ with $\binom{k+1}{2}$-tuples of pairwise distances, but the resulting subset of $\mathbb{R}^{\binom{k+1}{2}}$ has measure zero.

Example: The case $k=3, d=2$

- With 4 points, if we fix 5 of the pairwise distances there are only 2 choices for the last distance.

Overdetermined congruence problem

- Say that a configuration x is non-degenerate if x^{1}, \ldots, x^{d+1} are affinely independent.

Overdetermined congruence problem

- Say that a configuration x is non-degenerate if x^{1}, \ldots, x^{d+1} are affinely independent.
- Two non-degenerate configurations x, y are congruent if and only if there exists $\theta \in O\left(\mathbb{R}^{d}\right), z \in \mathbb{R}^{d}$ such that $y=\theta x+z$.

Overdetermined congruence problem

- Say that a configuration x is non-degenerate if x^{1}, \ldots, x^{d+1} are affinely independent.
- Two non-degenerate configurations x, y are congruent if and only if there exists $\theta \in O\left(\mathbb{R}^{d}\right), z \in \mathbb{R}^{d}$ such that $y=\theta x+z$.
- The non-degenerate congruence classes can be identified with a space of dimension m, where

$$
m=d(k+1)-\binom{d+1}{2}
$$

Overdetermined congruence result

> Theorem (Chatzikonstantinou-losevich-Mkrtchyan-Pakianathan, 2017)

> Let $d \geq 2$ and $k \geq 1$, and let $m=d(k+1)-\binom{d+1}{2}$. Let $E \subset \mathbb{R}^{d}$ be compact. If $\operatorname{dim} E>d-\frac{1}{k+1}$, then $\Delta_{k}(E)$ has positive m-dimensional measure.

Overdetermined congruence result

> Theorem (Chatzikonstantinou-losevich-Mkrtchyan-Pakianathan, 2017)

> Let $d \geq 2$ and $k \geq 1$, and let $m=d(k+1)-\binom{d+1}{2}$. Let $E \subset \mathbb{R}^{d}$ be compact. If $\operatorname{dim} E>d-\frac{1}{k+1}$, then $\Delta_{k}(E)$ has positive m-dimensional measure.

- This approach generalizes to other overdetermined configuration problems if the relevant geometric features can be characterized in terms of a group action.

Volumes

Theorem (Greenleaf-losevich-Taylor, 2020)
Given $E \subset \mathbb{R}^{d}$, define

$$
\mathcal{V}(E)=\left\{\operatorname{det}\left(x^{1}, \ldots, x^{d}\right): x^{i} \in E\right\}
$$

If $E \subset \mathbb{R}^{d}$ is compact and $\operatorname{dim} E>d-1+\frac{1}{d}$, then $\mathcal{V}(E)$ has non-empty interior.

Volumes

Theorem (Greenleaf-losevich-Taylor, 2020)
Given $E \subset \mathbb{R}^{d}$, define

$$
\mathcal{V}(E)=\left\{\operatorname{det}\left(x^{1}, \ldots, x^{d}\right): x^{i} \in E\right\}
$$

If $E \subset \mathbb{R}^{d}$ is compact and $\operatorname{dim} E>d-1+\frac{1}{d}$, then $\mathcal{V}(E)$ has non-empty interior.

- If $\operatorname{dim} E \leq d-1$ then E may be contained in a hyperplane and determine no non-trivial volumes.

Volumes

Theorem (Greenleaf-losevich-Taylor, 2020)
Given $E \subset \mathbb{R}^{d}$, define

$$
\mathcal{V}(E)=\left\{\operatorname{det}\left(x^{1}, \ldots, x^{d}\right): x^{i} \in E\right\}
$$

If $E \subset \mathbb{R}^{d}$ is compact and $\operatorname{dim} E>d-1+\frac{1}{d}$, then $\mathcal{V}(E)$ has non-empty interior.

- If $\operatorname{dim} E \leq d-1$ then E may be contained in a hyperplane and determine no non-trivial volumes.
- It follows the threshold $d-1+\frac{1}{d}$ cannot be improved by more than $\frac{1}{d}$.

Volume types of point configurations

- Let x be a k-point configuration in \mathbb{R}^{d}, i.e.,

$$
x=\left(x^{1}, \ldots, x^{k}\right)
$$

for vectors

$$
x^{i}=\left(x_{1}^{i}, \ldots, x_{d}^{i}\right) \in \mathbb{R}^{d}
$$

Volume types of point configurations

- Let x be a k-point configuration in \mathbb{R}^{d}, i.e.,

$$
x=\left(x^{1}, \ldots, x^{k}\right)
$$

for vectors

$$
x^{i}=\left(x_{1}^{i}, \ldots, x_{d}^{i}\right) \in \mathbb{R}^{d}
$$

- The volume type of x is the vector

$$
\left\{\operatorname{det}\left(x^{i_{1}}, \ldots, x^{i_{d}}\right)\right\}_{1 \leq i_{1}<\cdots<i_{d} \leq k} \in \mathbb{R}\binom{k}{d} .
$$

A 5-point configuration in \mathbb{R}^{3}

Volume types of configurations

■ Given $k \geq d$ and $E \subset \mathbb{R}^{d}$, let $\mathcal{V}_{k, d}(E)$ denote the set of volume types determined by configurations of points in E. Let $\mathcal{V}_{k, d}=\mathcal{V}_{k, d}\left(\mathbb{R}^{d}\right)$.

Volume types of configurations

■ Given $k \geq d$ and $E \subset \mathbb{R}^{d}$, let $\mathcal{V}_{k, d}(E)$ denote the set of volume types determined by configurations of points in E. Let $\mathcal{V}_{k, d}=\mathcal{V}_{k, d}\left(\mathbb{R}^{d}\right)$.

■ Let $\Phi_{k, d}:\left(\mathbb{R}^{d}\right)^{k} \rightarrow \mathcal{V}_{k, d}$ be the map taking configurations to their volume types.

Volume types of configurations

■ Given $k \geq d$ and $E \subset \mathbb{R}^{d}$, let $\mathcal{V}_{k, d}(E)$ denote the set of volume types determined by configurations of points in E. Let $\mathcal{V}_{k, d}=\mathcal{V}_{k, d}\left(\mathbb{R}^{d}\right)$.

■ Let $\Phi_{k, d}:\left(\mathbb{R}^{d}\right)^{k} \rightarrow \mathcal{V}_{k, d}$ be the map taking configurations to their volume types.

■ If $g \in S L_{d}(\mathbb{R})$, it is clear that $\Phi_{k, d}(g x)=\Phi_{k, d}(x)$.

Volume types and the action of $S L_{d}(\mathbb{R})$

- Suppose $\Phi_{k, d}(x)=\Phi_{k, d}(y)$, and x^{1}, \ldots, x^{d} are linearly independent.

Volume types and the action of $S L_{d}(\mathbb{R})$

- Suppose $\Phi_{k, d}(x)=\Phi_{k, d}(y)$, and x^{1}, \ldots, x^{d} are linearly independent.
- Define

$$
g=\left(y^{1}, \ldots, y^{d}\right)\left(x^{1}, \ldots, x^{d}\right)^{-1}
$$

Volume types and the action of $\mathrm{SL}_{d}(\mathbb{R})$

- Suppose $\Phi_{k, d}(x)=\Phi_{k, d}(y)$, and x^{1}, \ldots, x^{d} are linearly independent.
- Define

$$
g=\left(y^{1}, \ldots, y^{d}\right)\left(x^{1}, \ldots, x^{d}\right)^{-1}
$$

■ Then $g \in \mathrm{SL}_{d}(\mathbb{R})$, and $g x^{i}=y^{i}$ for $i=1,2, \ldots, d$.

Volume types and group actions

- For $i>d$, write

$$
x^{i}=\sum_{j=1}^{d} a_{i, j} x^{j}, \quad y^{i}=\sum_{j=1}^{d} b_{i, j} y^{j}
$$

Volume types and group actions

- For $i>d$, write

$$
x^{i}=\sum_{j=1}^{d} a_{i, j} x^{j}, \quad y^{i}=\sum_{j=1}^{d} b_{i, j} y^{j}
$$

■ Easy to prove $a_{i, j}=b_{i, j}$, so $g x^{i}=y^{i}$ for all i.

Volume types and group actions

- For $i>d$, write

$$
x^{i}=\sum_{j=1}^{d} a_{i, j} x^{j}, \quad y^{i}=\sum_{j=1}^{d} b_{i, j} y^{j}
$$

■ Easy to prove $a_{i, j}=b_{i, j}$, so $g x^{i}=y^{i}$ for all i.

- For every non-degenerate x, there exists \widetilde{x} of the form

$$
\tilde{x}=\left(e^{1}, \ldots, e^{d-1}, t e^{d}, z^{d+1}, \ldots, z^{k}\right)
$$

with $\Phi_{k, d}(\widetilde{x})=\Phi_{k, d}(x)$.

Theorem

■ We can therefore identify $\mathcal{V}_{k, d}$ with \mathbb{R}^{m}, where $m=d(k-d)+1$ (ignoring degenerate configurations).

Theorem

■ We can therefore identify $\mathcal{V}_{k, d}$ with \mathbb{R}^{m}, where $m=d(k-d)+1$ (ignoring degenerate configurations).

- With this identification, our result is as follows.

Theorem (Galo-M., 2021)

Let $k \geq d \geq 2$, let $m=d(k-d)+1$, and let $E \subset \mathbb{R}^{d}$ be compact. If $\operatorname{dim} E>d-\frac{d-1}{2 k-d}$, then $\mathcal{L}_{m}\left(\mathcal{V}_{k, d}(E)\right)>0$.

Theorem

- We can therefore identify $\mathcal{V}_{k, d}$ with \mathbb{R}^{m}, where $m=d(k-d)+1$ (ignoring degenerate configurations).

■ With this identification, our result is as follows.

Theorem (Galo-M., 2021)

Let $k \geq d \geq 2$, let $m=d(k-d)+1$, and let $E \subset \mathbb{R}^{d}$ be compact. If $\operatorname{dim} E>d-\frac{d-1}{2 k-d}$, then $\mathcal{L}_{m}\left(\mathcal{V}_{k, d}(E)\right)>0$.

- If $k=d$, then our threshold is $d-1+\frac{1}{d}$, which is the threshold in the Greenleaf-losevich-Taylor result.

Setup

- If E is compact, for any $s<\operatorname{dim} E$ there is a probability measure μ supported on E such that

$$
\mu\left(B_{r}(x)\right) \lesssim r^{s}
$$

and

$$
I_{s}(\mu):=\iint|x-y|^{-s} d \mu(x) d \mu(y)<\infty
$$

Setup

- If E is compact, for any $s<\operatorname{dim} E$ there is a probability measure μ supported on E such that

$$
\mu\left(B_{r}(x)\right) \lesssim r^{s}
$$

and

$$
I_{s}(\mu):=\iint|x-y|^{-s} d \mu(x) d \mu(y)<\infty
$$

■ Define a measure $\nu_{k, d}$ on $\mathcal{V}_{k, d}$ by

$$
\int f(t) d \nu_{k, d}(t)=\int f\left(\Phi_{k, d}(x)\right) d \mu^{k}(x)
$$

Setup

- If E is compact, for any $s<\operatorname{dim} E$ there is a probability measure μ supported on E such that

$$
\mu\left(B_{r}(x)\right) \lesssim r^{s}
$$

and

$$
I_{s}(\mu):=\iint|x-y|^{-s} d \mu(x) d \mu(y)<\infty
$$

■ Define a measure $\nu_{k, d}$ on $\mathcal{V}_{k, d}$ by

$$
\int f(t) d \nu_{k, d}(t)=\int f\left(\Phi_{k, d}(x)\right) d \mu^{k}(x)
$$

■ Let $\nu_{k, t}^{\varepsilon}$ be the convolution of $\nu_{k, t}$ with an approximate identity. Our goal is to prove L^{2} bounds on $\nu_{k, t}^{\varepsilon}$, independent of ε.

The $k=d$ case

- We have

$$
\nu_{d, d}^{\varepsilon}(t) \approx \varepsilon^{-1} \int_{\left|\operatorname{det}\left(x^{1}, \ldots, x^{d}\right)-t\right|<\varepsilon} d \mu^{d}(x)
$$

The $k=d$ case

- We have

$$
\nu_{d, d}^{\varepsilon}(t) \approx \varepsilon^{-1} \int_{\left|\operatorname{det}\left(x^{1}, \ldots, x^{d}\right)-t\right|<\varepsilon} d \mu^{d}(x)
$$

■ Let ψ be a Schwartz function supported in the range $\frac{1}{2} \leq|\xi| \leq 4$ and constantly equal to 1 in the range $1 \leq|\xi| \leq 2$, and let $\widehat{\mu_{j}}(\xi)=\psi\left(2^{-j} \xi\right) \widehat{\mu}(\xi)$ be the corresponding Littlewood-Paley projection.

The $k=d$ case

- We have

$$
\nu_{d, d}^{\varepsilon}(t) \approx \varepsilon^{-1} \int_{\left|\operatorname{det}\left(x^{1}, \ldots, x^{d}\right)-t\right|<\varepsilon} d \mu^{d}(x)
$$

■ Let ψ be a Schwartz function supported in the range $\frac{1}{2} \leq|\xi| \leq 4$ and constantly equal to 1 in the range $1 \leq|\xi| \leq 2$, and let $\widehat{\mu_{j}}(\xi)=\psi\left(2^{-j} \xi\right) \widehat{\mu}(\xi)$ be the corresponding Littlewood-Paley projection.

- The above integral is

$$
\varepsilon^{-1} \sum_{j_{1}>\cdots>j_{d}>0} \int_{\left|\operatorname{det}\left(x^{1}, \ldots, x^{d}\right)-t\right|<\varepsilon} \mu_{j_{1}}\left(x^{1}\right) \cdots \mu_{j_{d}}\left(x^{d}\right) d x
$$

The $k=d$ case

- Define a generalized Radon transform by

$$
\mathcal{R}_{t} f\left(x^{1}, \cdots x^{d-1}\right)=\int_{\substack{\operatorname{det}\left(x^{1}, \ldots, x^{d}\right)=t \\\left|x^{1}\right|, \ldots,\left|x^{d}\right| \leq 1}} f\left(x^{d}\right) d \sigma_{t, x^{1}, \cdots, x^{d-1}}\left(x^{d}\right),
$$

where $\sigma_{t, x^{1}, \cdots, x^{d-1}}$ is the surface measure.

The $k=d$ case

- Define a generalized Radon transform by

$$
\mathcal{R}_{t} f\left(x^{1}, \cdots x^{d-1}\right)=\int_{\substack{\operatorname{det}\left(x^{1}, \ldots, x^{d}\right)=t \\\left|x^{1}\right|, \ldots,\left|x^{d}\right| \leq 1}} f\left(x^{d}\right) d \sigma_{t, x^{1}, \cdots, x^{d-1}}\left(x^{d}\right),
$$

where $\sigma_{t, x^{1}, \cdots, x^{d-1}}$ is the surface measure.

- We have

$$
\nu_{d, d}^{\varepsilon}(t) \approx \sum_{j}\left\langle\mathcal{R}_{t} \mu_{j}, \mu_{j} \otimes \cdots \otimes \mu_{j}\right\rangle
$$

The $k=d$ case

- Define a generalized Radon transform by

$$
\mathcal{R}_{t} f\left(x^{1}, \cdots x^{d-1}\right)=\int_{\substack{\operatorname{det}\left(x^{1}, \ldots, x^{d}\right)=t \\\left|x^{1}\right|, \ldots,\left|x^{d}\right| \leq 1}} f\left(x^{d}\right) d \sigma_{t, x^{1}, \cdots, x^{d-1}}\left(x^{d}\right),
$$

where $\sigma_{t, x^{1}, \ldots, x^{d-1}}$ is the surface measure.

- We have

$$
\nu_{d, d}^{\varepsilon}(t) \approx \sum_{j}\left\langle\mathcal{R}_{t} \mu_{j}, \mu_{j} \otimes \cdots \otimes \mu_{j}\right\rangle
$$

- The Greenleaf-losevich-Taylor result is obtained from this by studying the mapping properties of generalized Radon transforms.

Properties of generalized Radon Transforms

- $\mathcal{R}_{t} \mu_{j}$ has Fourier support concentrated at scale 2^{j}

Properties of generalized Radon Transforms

■ $\mathcal{R}_{t} \mu_{j}$ has Fourier support concentrated at scale 2^{j}

- \mathcal{R}_{t} is a bounded map $L^{2} \rightarrow L_{\frac{d-1}{2}}^{2}$, where L_{r}^{2} denotes the Sobolev space with norm

$$
\|f\|_{L_{r}^{2}}=\left\|\left(1+|\xi|^{2}\right)^{r / 2} \widehat{f}(\xi)\right\|_{L^{2}}
$$

Properties of generalized Radon Transforms

■ $\mathcal{R}_{t} \mu_{j}$ has Fourier support concentrated at scale 2^{j}

- \mathcal{R}_{t} is a bounded map $L^{2} \rightarrow L_{\frac{d-1}{2}}^{2}$, where L_{r}^{2} denotes the Sobolev space with norm

$$
\|f\|_{L_{r}^{2}}=\left\|\left(1+|\xi|^{2}\right)^{r / 2} \widehat{f}(\xi)\right\|_{L^{2}}
$$

- This, together with Plancherel, gives bounds on the L^{2} inner product

$$
\left\langle\mathcal{R}_{t} \mu_{j}, \mu_{j} \otimes \cdots \otimes \mu_{j}\right\rangle
$$

The $k=d$ case

We have

$$
\nu_{d, d}^{\varepsilon}(t) \approx \sum_{j}\left\langle\mathcal{R}_{t} \mu_{j}, \mu_{j} \otimes \cdots \otimes \mu_{j}\right\rangle
$$

The $k=d$ case

We have

$$
\begin{aligned}
\nu_{d, d}^{\varepsilon}(t) & \approx \sum_{j}\left\langle\mathcal{R}_{t} \mu_{j}, \mu_{j} \otimes \cdots \otimes \mu_{j}\right\rangle \\
& \approx \sum_{j}\left\|\mathcal{R}_{t} \mu_{j}\right\|_{L^{2}}\left\|\mu_{j}\right\|_{L^{2}}^{d-1}
\end{aligned}
$$

The $k=d$ case

We have

$$
\begin{aligned}
\nu_{d, d}^{\varepsilon}(t) & \approx \sum_{j}\left\langle\mathcal{R}_{t} \mu_{j}, \mu_{j} \otimes \cdots \otimes \mu_{j}\right\rangle \\
& \approx \sum_{j}\left\|\mathcal{R}_{t} \mu_{j}\right\|_{L^{2}}\left\|\mu_{j}\right\|_{L^{2}}^{d-1} \\
& \approx \sum_{j} 2^{-\frac{d-1}{2}}\left\|\mu_{j}\right\|_{L^{2}}^{d}
\end{aligned}
$$

The $k=d$ case

We have

$$
\begin{aligned}
\nu_{d, d}^{\varepsilon}(t) & \approx \sum_{j}\left\langle\mathcal{R}_{t} \mu_{j}, \mu_{j} \otimes \cdots \otimes \mu_{j}\right\rangle \\
& \approx \sum_{j}\left\|\mathcal{R}_{t} \mu_{j}\right\|_{L^{2}}\left\|\mu_{j}\right\|_{L^{2}}^{d-1} \\
& \approx \sum_{j} 2^{-\frac{d-1}{2}}\left\|\mu_{j}\right\|_{L^{2}}^{d} \\
& \approx \sum_{j} 2^{-\left(\frac{d-1}{2}\right) \cdot j} 2^{d\left(\frac{d-s}{2}\right) \cdot j}
\end{aligned}
$$

The $k=d$ case

We have

$$
\begin{aligned}
\nu_{d, d}^{\varepsilon}(t) & \approx \sum_{j}\left\langle\mathcal{R}_{t} \mu_{j}, \mu_{j} \otimes \cdots \otimes \mu_{j}\right\rangle \\
& \approx \sum_{j}\left\|\mathcal{R}_{t} \mu_{j}\right\|_{L^{2}}\left\|\mu_{j}\right\|_{L^{2}}^{d-1} \\
& \approx \sum_{j} 2^{-\frac{d-1}{2}}\left\|\mu_{j}\right\|_{L^{2}}^{d} \\
& \approx \sum_{j} 2^{-\left(\frac{d-1}{2}\right) \cdot j} 2^{d\left(\frac{d-s}{2}\right) \cdot j}
\end{aligned}
$$

The sum is finite when $s>d-1+\frac{1}{d}$.

Reducing to the $k=d$ case

- For general $k \geq d$, we have

$$
\nu_{k, d}^{\varepsilon}(t) \approx \varepsilon^{-m} \int_{\left|\Phi_{k, d}(x)-t\right|<\varepsilon} d \mu^{k}(x)
$$

Reducing to the $k=d$ case

■ For general $k \geq d$, we have

$$
\nu_{k, d}^{\varepsilon}(t) \approx \varepsilon^{-m} \int_{\left|\Phi_{k, d}(x)-t\right|<\varepsilon} d \mu^{k}(x)
$$

- Therefore,

$$
\left\|\nu_{k, d}^{\varepsilon}\right\|_{L^{2}}^{2} \approx \varepsilon^{-m} \iint_{\left|\Phi_{k, d}(x)-\Phi_{k, d}(y)\right|<2 \varepsilon} d \mu^{k}(x) d \mu^{k}(y) .
$$

Reducing to the $k=d$ case

■ For general $k \geq d$, we have

$$
\nu_{k, d}^{\varepsilon}(t) \approx \varepsilon^{-m} \int_{\left|\Phi_{k, d}(x)-t\right|<\varepsilon} d \mu^{k}(x)
$$

- Therefore,

$$
\begin{aligned}
\left\|\nu_{k, d}^{\varepsilon}\right\|_{L^{2}}^{2} & \approx \varepsilon^{-m} \iint_{\left|\Phi_{k, d}(x)-\Phi_{k, d}(y)\right|<2 \varepsilon} d \mu^{k}(x) d \mu^{k}(y) \\
& \approx \sum_{j} \iint \mu_{j}\left(g x^{1}\right) \cdots \mu_{j}\left(g x^{k}\right) d \mu^{k}(x) d g .
\end{aligned}
$$

Reducing to the $k=d$ case

- Applying the bound $\left\|\mu_{j}\right\|_{L^{\infty}} \leq 2^{j(d-s)}$ to the last $k-d$ terms, this is

$$
\sum_{j} 2^{j_{d}(d-s)(k-d)} \iint \mu_{j}\left(g x^{1}\right) \cdots \mu_{j}\left(g x^{d}\right) d \mu^{d}(x) d g
$$

Reducing to the $k=d$ case

- Applying the bound $\left\|\mu_{j}\right\|_{L^{\infty}} \leq 2^{j(d-s)}$ to the last $k-d$ terms, this is

$$
\sum_{j} 2^{j_{d}(d-s)(k-d)} \iint \mu_{j}\left(g x^{1}\right) \cdots \mu_{j}\left(g x^{d}\right) d \mu^{d}(x) d g
$$

- This integral is the one which arose in the $k=d$ case, and we can use the mapping properties of the generalized Radon transform to bound.

Reducing to the $k=d$ case

- Applying the bound $\left\|\mu_{j}\right\|_{L^{\infty}} \leq 2^{j(d-s)}$ to the last $k-d$ terms, this is

$$
\sum_{j} 2^{j_{d}(d-s)(k-d)} \iint \mu_{j}\left(g x^{1}\right) \cdots \mu_{j}\left(g x^{d}\right) d \mu^{d}(x) d g
$$

- This integral is the one which arose in the $k=d$ case, and we can use the mapping properties of the generalized Radon transform to bound.
- The sum is finite when $s>d-\frac{d-1}{2 k-d}$.

Sharpness

Theorem (Galo-M., 2021)
Let $k \geq d \geq 2$. For any

$$
s<d-\frac{d^{2}(d-1)}{d(k-1)+1}
$$

there exists compact $E \subset \mathbb{R}^{2}$ such that $\operatorname{dim} E=s$ and $\mathcal{V}_{k, d}(E)$ has measure zero.

Sharpness

Theorem (Galo-M., 2021)
Let $k \geq d \geq 2$. For any

$$
s<d-\frac{d^{2}(d-1)}{d(k-1)+1}
$$

there exists compact $E \subset \mathbb{R}^{2}$ such that $\operatorname{dim} E=s$ and $\mathcal{V}_{k, d}(E)$ has measure zero.

- Take a lattice in the unit cube with spacing $1 / q$ and thicken each point by $q^{-d / s}$.

Sharpness

Theorem (Galo-M., 2021)
Let $k \geq d \geq 2$. For any

$$
s<d-\frac{d^{2}(d-1)}{d(k-1)+1}
$$

there exists compact $E \subset \mathbb{R}^{2}$ such that $\operatorname{dim} E=s$ and $\mathcal{V}_{k, d}(E)$ has measure zero.

- Take a lattice in the unit cube with spacing $1 / q$ and thicken each point by $q^{-d / s}$.
- This approximates a set of dimension s in \mathbb{R}^{d}.

Sharpness

Theorem (Galo-M., 2021)
Let $k \geq d \geq 2$. For any

$$
s<d-\frac{d^{2}(d-1)}{d(k-1)+1}
$$

there exists compact $E \subset \mathbb{R}^{2}$ such that $\operatorname{dim} E=s$ and $\mathcal{V}_{k, d}(E)$ has measure zero.

- Take a lattice in the unit cube with spacing $1 / q$ and thicken each point by $q^{-d / s}$.
- This approximates a set of dimension s in \mathbb{R}^{d}.
- Map the square lattice to a spherical lattice.

Sharpness

Sharpness

- The spherical grid determines $\approx q \cdot q^{d(k-1)}=q^{d(k-1)+1}$ volume types

Sharpness

- The spherical grid determines $\approx q \cdot q^{d(k-1)}=q^{d(k-1)+1}$ volume types

■ The thickened set has an volume type set of measure $\approx q^{d(k-1)+1}\left(q^{-d / s}\right)^{d(k-d)+1}$.

Sharpness

- The spherical grid determines $\approx q \cdot q^{d(k-1)}=q^{d(k-1)+1}$ volume types

■ The thickened set has an volume type set of measure $\approx q^{d(k-1)+1}\left(q^{-d / s}\right)^{d(k-d)+1}$.

■ If $s<d-\frac{d^{2}(d-1)}{d(k-1)+1}$, this tends to zero as $q \rightarrow \infty$.

Distance chains

■ Let G be a graph on the vertices $\{1, \ldots, k\}$.

Distance chains

■ Let G be a graph on the vertices $\{1, \ldots, k\}$.

- A natural Falconer-type question about point configurations asks how large the Hausdorff dimension of a set must be to ensure it determines a positive measure worth of distances corresponding to edges.

Distance chains

■ Let G be a graph on the vertices $\{1, \ldots, k\}$.

- A natural Falconer-type question about point configurations asks how large the Hausdorff dimension of a set must be to ensure it determines a positive measure worth of distances corresponding to edges.
- The following result applies when G is a chain.

Theorem (Bennett-losevich-Taylor, 2015)

Let $d, k \geq 2$, and let $E \subset \mathbb{R}^{d}$ be compact. If $\operatorname{dim} E>\frac{d+1}{2}$, the set

$$
\left\{\left(\left|x^{1}-x^{2}\right|, \ldots,\left|x^{k-1}-x^{k}\right|\right): x^{i} \in E\right\}
$$

has non-empty interior.

Distance trees

- This result was later generalized from chains to trees.

Theorem (losevich-Taylor, 2019)

Let $d, k \geq 2$ and let $E \subset \mathbb{R}^{d}$ be compact. Let T be a tree on the vertices $\{1, \ldots, k\}$ with edge set \mathcal{E}. If $\operatorname{dim} E>\frac{d+1}{2}$, the set

$$
\left\{\left(\left|x^{i}-x^{j}\right|\right)_{(i, j) \in \mathcal{E}}: x^{i} \in E\right\}
$$

has non-empty interior.

Distance trees

- This result was later generalized from chains to trees.

Theorem (losevich-Taylor, 2019)

Let $d, k \geq 2$ and let $E \subset \mathbb{R}^{d}$ be compact. Let T be a tree on the vertices $\{1, \ldots, k\}$ with edge set \mathcal{E}. If $\operatorname{dim} E>\frac{d+1}{2}$, the set

$$
\left\{\left(\left|x^{i}-x^{j}\right|\right)_{(i, j) \in \mathcal{E}}: x^{i} \in E\right\}
$$

has non-empty interior.

■ For both chains and trees, the threshold does not depend on k.

Volume chains

■ Our second result is an analogue for hypergraph chains of volumes.

Theorem (Galo-M., 2021)

Let $k, d \geq 2$ and let $E \subset \mathbb{R}^{d}$ be compact. If $\operatorname{dim} E>d-1+\frac{1}{d}$, then

$$
\left\{\left\{\operatorname{det}\left(x^{j}, x^{j+1}, \cdots, x^{j+d-1}\right)\right\}_{1 \leq j \leq k+1-d}: x^{1}, \ldots, x^{k} \in E\right\} .
$$

Has non-empty interior.

Volume chains

■ Our second result is an analogue for hypergraph chains of volumes.

Theorem (Galo-M., 2021)

Let $k, d \geq 2$ and let $E \subset \mathbb{R}^{d}$ be compact. If $\operatorname{dim} E>d-1+\frac{1}{d}$, then

$$
\left\{\left\{\operatorname{det}\left(x^{j}, x^{j+1}, \cdots, x^{j+d-1}\right)\right\}_{1 \leq j \leq k+1-d}: x^{1}, \ldots, x^{k} \in E\right\} .
$$

Has non-empty interior.

■ In the $k=d$ case, this is the same as our first result.

Volume chains

■ Our second result is an analogue for hypergraph chains of volumes.

Theorem (Galo-M., 2021)

Let $k, d \geq 2$ and let $E \subset \mathbb{R}^{d}$ be compact. If $\operatorname{dim} E>d-1+\frac{1}{d}$, then

$$
\left\{\left\{\operatorname{det}\left(x^{j}, x^{j+1}, \cdots, x^{j+d-1}\right)\right\}_{1 \leq j \leq k+1-d}: x^{1}, \ldots, x^{k} \in E\right\} .
$$

Has non-empty interior.

■ In the $k=d$ case, this is the same as our first result.

- The threshold does not depend on k, as it does in our first result.

The $k=d+1$ case

■ Suppose $k=d+1$. The quantity we want to bound is

$$
\varepsilon^{-2} \int_{\left|\operatorname{det}\left(x^{2}, \ldots, x^{d}\right)-t\right|<\varepsilon}^{\left|\operatorname{det}\left(x^{2}, \ldots, x^{d+1}\right)-t^{\prime}\right|<\varepsilon}<\mu^{d+1}(x)
$$

The $k=d+1$ case

■ Suppose $k=d+1$. The quantity we want to bound is

$$
\varepsilon^{-2} \int_{\substack{\left|\operatorname{det}\left(x^{1}, \ldots, x^{d}\right)-t\right|<\varepsilon \\\left|\operatorname{det}\left(x^{2}, \ldots, x^{d+1}\right)-t^{\prime}\right|<\varepsilon}} d \mu^{d+1}(x)
$$

$$
\approx \varepsilon^{-2} \sum_{j} \int_{\substack{\left|\operatorname{det}\left(x^{1}, \ldots, x^{d}\right)-t\right|<\varepsilon \\\left|\operatorname{det}\left(x^{2}, \ldots, x^{d+1}\right)-t^{\prime}\right|<\varepsilon}} \mu_{j}\left(x^{d+1}\right) d \mu^{d}(x) d x^{d+1}
$$

The $k=d+1$ case

■ Suppose $k=d+1$. The quantity we want to bound is

$$
\varepsilon^{-2} \int_{\substack{\left|\operatorname{det}\left(x^{1}, \ldots, x^{d}\right)-t\right|<\varepsilon \\\left|\operatorname{det}\left(x^{2}, \ldots, x^{d+1}\right)-t^{\prime}\right|<\varepsilon}} d \mu^{d+1}(x)
$$

$$
\approx \varepsilon^{-2} \sum_{j} \int_{\substack{\left|\operatorname{det}\left(x^{1}, \ldots, x^{d}\right)-t\right|<\varepsilon \\\left|\operatorname{det}\left(x^{2}, \ldots, x^{d+1}\right)-t^{\prime}\right|<\varepsilon}} \mu_{j}\left(x^{d+1}\right) d \mu^{d}(x) d x^{d+1}
$$

$$
\approx \varepsilon^{-1} \sum_{j} \int_{\left|\operatorname{det}\left(x^{1}, \ldots, x^{d}\right)-t\right|<\varepsilon} \mathcal{R}_{t^{\prime}} \mu_{j}\left(x^{2}, \ldots, x^{d}\right) d \mu^{d}(x) .
$$

The $k=d+1$ case

- This reduces matters from the $k=d+1$ case to the $k=d$ case.

The $k=d+1$ case

- This reduces matters from the $k=d+1$ case to the $k=d$ case.
- One can handle arbitrary $k \geq d$ by iterating this process.

The End

Thanks for listening!

