Majorization, discrete energy on spheres and f-designs

Oleg R. Musin

University of Texas Rio Grande Valley
March 31, 2021

Majorization

Let $A=\left(a_{1}, \ldots, a_{n}\right)$ be an arbitrary sequence of real numbers. $A_{\uparrow}=\left(a_{(1)}, \ldots, a_{(n)}\right)$ denote a permutation of elements of A in increasing order: $a_{(1)} \leq a_{(2)} \leq \ldots \leq a_{(n)}$.
$A=\left(a_{1}, \ldots, a_{n}\right)$ and $B=\left(b_{1}, \ldots, b_{n}\right)$.
A majorizes $B, A \triangleright B$, if for all $k=1, \ldots, n$

$$
a_{(1)}+\ldots+a_{(k)} \geq b_{(1)}+\ldots+b_{(k)}
$$

Remark. In A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Application it is called a weak majorization.

Jensen's inequlity

$$
\begin{gathered}
A:=\left(a_{1}, \ldots, a_{m}\right), \quad a_{i} \in \mathbb{R} \\
\bar{A}=(\bar{a}, \ldots, \bar{a}), \text { where } \bar{a}:=\frac{a_{1}+\ldots+a_{m}}{m}
\end{gathered}
$$

We have $\bar{A} \triangleright A$.
If $s \geq \bar{a}$, then

$$
(s, \ldots, s) \triangleright(\bar{a}, \ldots, \bar{a}) \triangleright\left(a_{1}, \ldots, a_{m}\right)
$$

Jensen's inequality -I

Let f be a convex function. Then

$$
\frac{f\left(a_{1}\right)+\ldots+f\left(a_{m}\right)}{m} \geq f(\bar{a})
$$

Jensen's inequality - II

Let $s \geq\left(a_{1}+\ldots+a_{m}\right) / m$. Then for every convex and decreasing function f :

$$
\frac{f\left(a_{1}\right)+\ldots+f\left(a_{m}\right)}{m} \geq f(s)
$$

The majorization (or Karamata) inequality

Theorem. Let $f(x)$ be a convex and decreasing function. If $A \triangleright B$ then we have

$$
f\left(a_{1}\right)+\ldots+f\left(a_{n}\right) \leq f\left(b_{1}\right)+\ldots+f\left(b_{n}\right) .
$$

Moreover, $A \triangleright B$ if and only if for all convex decreasing functions g we have

$$
g\left(a_{1}\right)+\ldots+g\left(a_{n}\right) \leq g\left(b_{1}\right)+\ldots+g\left(b_{n}\right)
$$

Potential energy E_{f}

Let S be an arbitrary set. Let $\rho: S \times S \rightarrow D \subset \mathbb{R}$ be any symmetric function. Then for a given convex decreasing function $f: D \rightarrow \mathbb{R}$ and for every finite subset $X=\left\{x_{1}, \ldots x_{m}\right\}$ of S we define the potential energy $E_{f}(X)$ as

$$
E_{f}(X):=\sum_{1 \leq i<j \leq m} f\left(\rho\left(x_{i}, x_{j}\right)\right)
$$

Generalized Thomson's Problem

Generalized Thomson's Problem. For given S, ρ, f and m find all $X \subset S$ with $|X|=m$ such that $E_{f}(X)$ is the minimum of E_{f} over the set of all m-element subsets of S.

The majorization theorem for potentials

$$
R_{\rho}(X):=\left\{\rho\left(x_{1}, x_{2}\right) \ldots, \rho\left(x_{1}, x_{m}\right), \ldots, \rho\left(x_{m-1}, x_{m}\right)\right\} .
$$

Theorem

Let X and Y be two m-subsets of S. Suppose $R_{\rho}(X) \triangleright R_{\rho}(Y)$. Then for every convex decreasing function f we have $E_{f}(X) \leq E_{f}(Y)$.

M - sets

Definition

We say that $X \in S^{m}=S \times \ldots \times S$ is an M-set in S with respect to ρ if for any $Y \in S^{m}$ we have that either $R_{\rho}(X) \triangleright R_{\rho}(Y)$, or $R_{\rho}(X)$ and $R_{\rho}(Y)$ are incomparable. Let $M(S, \rho, m)$ denote the set of all M-sets in S of cardinality m.

Theorem

Let $\rho: S \times S \rightarrow D \subset \mathbb{R}$ be a symmetric function and $h: D \rightarrow \mathbb{R}$ be a convex increasing function. Then $M(S, \rho, m) \subseteq M(S, h(\rho), m)$.

$S=\mathbb{S}^{n-1} \subset \mathbb{R}^{n}$

$$
x, y \in \mathbb{S}^{n-1}, r(x, y)=\|x-y\|, \varphi(x, y)=2 \arcsin (\|x-y\| / 2)
$$

Definition

For any $s \in \mathbb{R}$ denote

$$
r_{s}(x, y):=\left\{\begin{array}{l}
r^{s}(x, y), s>0 \\
\log r(x, y), s=0 \\
-r^{s}(x, y), s<0
\end{array}\right.
$$

Corollary
(i) $M\left(\mathbb{S}^{n-1}, r_{s}, m\right) \subset M\left(\mathbb{S}^{n-1}, r_{t}, m\right)$ for all $s \leq t$; (ii) $M\left(\mathbb{S}^{n-1}, r_{s}, m\right) \subset M\left(\mathbb{S}^{n-1}, \varphi, m\right)$ for all $s \leq 1$.

M and $M_{f}-$ sets

Definition

Let $f: D \rightarrow \mathbb{R}$ be a convex decreasing function. Let $V_{f}=\inf _{Y \in S^{m}} E_{f}(Y)$. Let $M_{f}(S, \rho, m)$ denote the set of all $X \in S^{m}$ such that $E_{f}(X)=V_{f}$.

Theorem

Let S be a compact topological space and $\rho: S \times S \rightarrow D \subset \mathbb{R}$ be a symmetric continuous function. Let $f: D \rightarrow \mathbb{R}$ be a strictly convex decreasing function. Then $M_{f}(S, \rho, m)$ is non-empty and $M_{f}(S, \rho, m) \subseteq M(S, \rho, m)$.

Riesz potential

Let $X=\left\{p_{1}, \ldots, p_{m}\right\}$ be a subset of \mathbb{S}^{n-1} that consists of distinct points. Then the Riesz t-energy of X is given by

$$
E_{t}(X):=\sum_{i<j} \frac{1}{\left\|p_{i}-p_{j}\right\|^{t}}, t>0, \quad E_{0}(X):=\sum_{i<j} \log \left(\frac{1}{\left\|p_{i}-p_{j}\right\|}\right)
$$

Note that for $t=0$ minimizing E_{t} is equivalent to maximizing $\left.\prod\left\|p_{i}-p_{j}\right\|\right)$, which is Smale's $7^{\text {th }}$ problem. For $t=1$ we obtain $i \neq j$
the Thomson problem, and for $t \rightarrow \infty$ the minimum Riesz energy problem transforms into the Tammes problem.

Minimums of the Riesz potential

Corollary

Let $t \geq 0$. If $X \subset \mathbb{S}^{n-1}$ gives the minimum of E_{t} in the set of all m-subsets of \mathbb{S}^{n-1}, then $X \in M\left(\mathbb{S}^{n-1}, r_{s}, m\right)$ for all $s>-t$.

$M\left(\mathbb{S}^{1}, \varphi, m\right)$

Theorem

$M\left(\mathbb{S}^{1}, \varphi, m\right)$ consists of regular polygons with m vertices.

This theorem implies that $M\left(\mathbb{S}^{1}, r_{1}, m\right)$ consists of regular polygons.
However, the set $M\left(\mathbb{S}^{1}, r_{2}, m\right), m \geq 4$, is much larger. In fact, $M\left(\mathbb{S}^{1}, r_{2}, 4\right)$ consists of quadrilaterals with sides (in angular measure) $(2 \pi-3 \alpha, \alpha, \alpha, \alpha)$, where $\pi / 2 \leq \alpha \leq 2 \pi / 3$.

Optimality of regular simplices

Theorem

Let $s \leq 2$. Then $M\left(\mathbb{S}^{n-1}, r_{s}, n+1\right)$ consists of regular simplices.

Open problem. It is easy to see that
$M\left(\mathbb{S}^{n-1}, \varphi, n+1\right) \neq M\left(\mathbb{S}^{n-1}, r_{2}, n+1\right)$ for $n \geq 3$.
I think that $M\left(\mathbb{S}^{2}, \varphi, 4\right)$ consists of vertices of tetrahedrons $\Delta_{a, \theta}$ with $a \in[0,1 / \sqrt{3}]$ and $0<\theta \leq \pi / 2$.

Here $\Delta_{a, \theta}$ is a two-parametric family of tetrahedrons $A B C D$ in \mathbb{S}^{2} such that its opposite edges $A C$ and $B D$ are of the same lengths and the angle between them is θ. Let X be the midpoint of $A C$ and Y be the midpoint of $B D$. Then X, Y and O (the center of \mathbb{S}^{2}) are collinear. $a=|O X|=|O Y|$.

Optimal constrained $(n+k)$-sets

Theorem

Let $2 \leq k \leq n$ and $s \leq 2$. Then
$M\left(\mathbb{B}^{n}, r_{s}, \sqrt{2}, n+k\right)=M\left(\mathbb{S}^{n-1}, r_{s}, \sqrt{2}, n+k\right)$ and this set consists of k orthogonal to each other regular d_{i}-simplexes S_{i} such that all $d_{i} \geq 1$ and $d_{1}+\ldots+d_{k}=n$.

This theorem follows from the above and Wlodek Kuperberg theorems.

Spherical three-point M-sets

$$
\begin{equation*}
(1-t)^{z}+2^{z-1}\left(1-t^{2}\right)^{z}=\left(\frac{3}{2}\right)^{z+1}, z=\frac{s}{2} \tag{1}
\end{equation*}
$$

For all s this equation has a solution $t=-1 / 2$. If

$$
4>s \geq s_{0}:=\log _{4 / 3}(9 / 4) \approx 2.8188
$$

then (1) has one more solution $t_{s} \in(-1,-1 / 2)$.

$$
t_{s_{0}}=-1, \quad t_{4}=-1 / 2
$$

Spherical three-point M-sets

Theorem

There are three cases for $M:=M\left(\mathbb{S}^{1}, r_{s}, 3\right)$
1 If $s \leq \log _{4 / 3}(9 / 4)$, then M contains only regular triangles.
2 If $\log _{4 / 3}(9 / 4)<s<4$, then M consists of regular triangles and triangles with central angles ($\alpha, \alpha, 2 \pi-2 \alpha$), where $\alpha \in\left(\arccos \left(t_{s}\right), \pi\right]$.
3 If $s \geq 4$, then M consists of regular triangles and triangles with central angles $(\alpha, \alpha, 2 \pi-2 \alpha), \alpha \in[2 \pi / 3, \pi]$.

Spherical four-point M-sets

$M\left(\mathbb{S}^{1}, \varphi, 4\right)$ contains only squares.
Then $M\left(\mathbb{S}^{1}, r_{s}, 4\right)$ with $s \leq 1$ also contains only squares.
It is an interesting problem to find $M\left(\mathbb{S}^{1}, r_{s}, 4\right)$ for all s.
It can be proven that $M\left(\mathbb{S}^{1}, r_{2}, 4\right)$ consists of quadrilaterals inscribed into the unit circle with central angles ($\alpha, \alpha, \alpha, 2 \pi-3 \alpha$), where $\pi / 2 \leq \alpha \leq 2 \pi / 3$.
$M\left(\mathbb{S}^{2}, r_{s}, 4\right)$ with $s \leq 2$ contains only regular tetrahedrons.
The case $s>2$ is open?

Spherical five-point M-sets

$M\left(\mathbb{S}^{1}, \varphi, 5\right)$ and $M\left(\mathbb{S}^{1}, r_{s}, 5\right)$ with $s \leq 1$ contain only regular pentagons.
$M\left(\mathbb{S}^{2}, r_{s}, \sqrt{2}, 5\right), s \leq 2$, contains only triangular bi-pyramid (TBP). The same result holds for $M\left(\mathbb{S}^{2}, \varphi, \sqrt{2}, 5\right)$.
The last known case is $M\left(\mathbb{S}^{3}, r_{s}, 5\right)$ with $s \leq 2$ that contains only regular 4-simplexes.

It is a very interesting open problem to find $M\left(\mathbb{S}^{2}, r_{s}, 5\right)$.
For any t the global minimizer of the Riesz energy R_{t} of 5 points lies in $M\left(\mathbb{S}^{2}, r_{s}, 5\right)$ for any s.

It is proved that the TBP is the minimizer of R_{t} for $t=0$ [Dragnev et al] and for $t=1,2$ [Schwartz]. Note that the TBP is not the global minimizer for R_{t} when $t>15.04081$

Definition of f-design

$P=\left\{p_{1}, \ldots, p_{m}\right\} \subset \mathbb{S}^{n-1}$. Define the k-th moment of $P:$

$$
M_{k}(P):=\sum_{i=1}^{m} \sum_{j=1}^{m} G_{k}^{(n)}\left(t_{i, j}\right), \quad t_{i, j}:=p_{i} \cdot p_{j}=\cos \left(\varphi\left(p_{i}, p_{j}\right)\right)
$$

where $G_{k}^{(n)}(t)$ are Gegenabauer polynomials.
The positive definite property of $G_{k}^{(n)}$ yields $M_{k}(P) \geq 0, k=1,2, \ldots$

Definition

$P=\left\{p_{1}, \ldots, p_{m}\right\} \subset \mathbb{S}^{n-1} . D(P):=\left\{p_{i} \cdot p_{j}, i \neq j\right\}$.
$f(t)=\sum_{k} f_{k} G_{k}^{(n)}(t) . P$ is an f-design if
1 For all $k>0$ with $f_{k} \neq 0$ we have $M_{k}(P)=0$;
$2 D(P) \subset Z_{f}$, where $Z_{f}:=\{t \in[-1,1) \mid f(t)=0\}$.

Delsarte's bound and f-designs

Lemma

Let $f(t)=\sum_{k} f_{k} G_{k}^{(n)}(t) \in C([-1,1])$. If there is an f-design in \mathbb{S}^{n-1} of cardinality m, then $f(1)=m f_{0}$.

Theorem

Let $f(t)=\sum_{k} f_{k} G_{k}^{(n)}(t) \in C([-1,1])$ with all $f_{k} \geq 0$. Let $P \subset \mathbb{S}^{n-1}$ with $|P|=m$ is such that $D(P) \subset Z_{f}$. Then P is an f-design if and only if $f(1)=m f_{0}$.

Spherical f-designs and M-sets

Theorem

Let $f(t)=\sum_{k} f_{k} G_{k}^{(n)}(t)$ be a function on $[-1,1]$ with all $f_{k} \geq 0$. Then any f-design in \mathbb{S}^{n-1} is an M-set with $\rho(x, y)=-f(x \cdot y)$.

Open problem. Consider f with all $f_{k} \geq 0$ and $f(1)=m f_{0}$. By the theorem, if $D(P) \subset Z_{f}$ then P is an f-design and
$P \in M\left(\mathbb{S}^{n-1},-f, m\right)$.
It is easy to prove that if $Y \in M\left(\mathbb{S}^{n-1},-f, m\right)$, then $D(Y) \subset Z_{f}$.
The question: is Y isomorphic to P ?

Spherical τ - and f-designs

P is a τ-design if and only if $M_{k}(P)=0$ for all $k=1,2, \ldots, \tau$

Theorem

If $P \subset \mathbb{S}^{n-1}$ is a τ-design and $|D(P)| \leq \tau$, then P is an f-design of degree τ with

$$
f(t)=g(t) \prod_{x \in D(P)}(t-x), \quad \operatorname{deg} g \leq \tau-|D(P)|
$$

Spherical two-distance sets and f-designs

Theorem

Let $f(t)=(t-a)(t-b)$ and $a+b \neq 0$. Then P in \mathbb{S}^{n-1} is an f-design if and only if P is a two-distance 2-design.

If $b=-a$ then f-designs are equiangular lines sets.
There is a correspondence between f-designs of degree 2 and strongly regular graphs.
Let Λ_{n} be the set of points $e_{i}+e_{j}, 1 \leq i<j \leq n+1$ in \mathbb{R}^{n+1}. In fact, Λ_{n} is a maximal f-design of degree 2 . Are there other maximal f-designs with $a+b>0$ of degree $d \geq 2$?

Every graph G can be embedded as a spherical two-distance set. What graphs can be embedded as f-designs?

THANK YOU

