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Majorization

Let A = (a1, . . . , an) be an arbitrary sequence of real numbers.
A↑ = (a(1), . . . , a(n)) denote a permutation of elements of A in
increasing order: a(1) ≤ a(2) ≤ . . . ≤ a(n).

A = (a1, . . . , an) and B = (b1, . . . , bn).

A majorizes B , A B B , if for all k = 1, . . . , n

a(1) + . . .+ a(k) ≥ b(1) + . . .+ b(k).

Remark. In A. W. Marshall and I. Olkin, Inequalities: Theory of
Majorization and Its Application it is called a weak majorization.



Jensen’s inequlity

A := (a1, . . . , am), ai ∈ R

Ā = (ā, . . . , ā), where ā :=
a1 + . . .+ am

m

We have Ā B A.

If s ≥ ā, then

(s, . . . , s) B (ā, . . . , ā) B (a1, . . . , am)



Jensen’s inequality -I

Let f be a convex function. Then

f (a1) + . . .+ f (am)

m
≥ f (ā).



Jensen’s inequality – II

Let s ≥ (a1 + . . .+ am)/m. Then for every convex and
decreasing function f :

f (a1) + . . .+ f (am)

m
≥ f (s).



The majorization (or Karamata) inequality

Theorem. Let f (x) be a convex and decreasing function. If
A B B then we have

f (a1) + . . .+ f (an) ≤ f (b1) + . . .+ f (bn).

Moreover, A B B if and only if for all convex decreasing functions
g we have

g(a1) + . . .+ g(an) ≤ g(b1) + . . .+ g(bn).



Potential energy Ef

Let S be an arbitrary set. Let ρ : S × S → D ⊂ R be any
symmetric function. Then for a given convex decreasing function
f : D → R and for every finite subset X = {x1, . . . xm} of S we
define the potential energy Ef (X ) as

Ef (X ) :=
∑

1≤i<j≤m
f (ρ(xi , xj)).



Generalized Thomson’s Problem

Generalized Thomson’s Problem. For given S , ρ, f and m find
all X ⊂ S with |X | = m such that Ef (X ) is the minimum of Ef

over the set of all m-element subsets of S.



The majorization theorem for potentials

Rρ(X ) := {ρ(x1, x2) . . . , ρ(x1, xm), . . . , ρ(xm−1, xm)}.

Theorem

Let X and Y be two m–subsets of S . Suppose Rρ(X ) B Rρ(Y ).
Then for every convex decreasing function f we have
Ef (X ) ≤ Ef (Y ).



M – sets

Definition

We say that X ∈ Sm = S × . . .× S is an M-set in S with respect
to ρ if for any Y ∈ Sm we have that either Rρ(X ) B Rρ(Y ), or
Rρ(X ) and Rρ(Y ) are incomparable. Let M(S , ρ,m) denote the set
of all M–sets in S of cardinality m.

Theorem

Let ρ : S × S → D ⊂ R be a symmetric function and h : D → R be
a convex increasing function. Then M(S , ρ,m) ⊆ M(S , h(ρ),m).



S = Sn−1 ⊂ Rn

x , y ∈ Sn−1, r(x , y) = ||x − y ||, ϕ(x , y) = 2 arcsin(||x − y ||/2).

Definition

For any s ∈ R denote

rs(x , y) :=


r s(x , y), s > 0
log r(x , y), s = 0
−r s(x , y), s < 0

Corollary

(i) M(Sn−1, rs ,m) ⊂ M(Sn−1, rt ,m) for all s ≤ t;
(ii) M(Sn−1, rs ,m) ⊂ M(Sn−1, ϕ,m) for all s ≤ 1.



M and Mf – sets

Definition

Let f : D → R be a convex decreasing function. Let
Vf = infY∈Sm Ef (Y ). Let Mf (S , ρ,m) denote the set of all
X ∈ Sm such that Ef (X ) = Vf .

Theorem

Let S be a compact topological space and ρ : S × S → D ⊂ R be a
symmetric continuous function. Let f : D → R be a strictly convex
decreasing function. Then Mf (S , ρ,m) is non-empty and
Mf (S , ρ,m) ⊆ M(S , ρ,m).



Riesz potential

Let X = {p1, . . . , pm} be a subset of Sn−1 that consists of distinct
points. Then the Riesz t-energy of X is given by

Et(X ) :=
∑
i<j

1
||pi − pj ||t

, t > 0, E0(X ) :=
∑
i<j

log
(

1
||pi − pj ||

)
.

Note that for t = 0 minimizing Et is equivalent to maximizing∏
i 6=j

||pi − pj ||), which is Smale’s 7th problem. For t = 1 we obtain

the Thomson problem, and for t →∞ the minimum Riesz energy
problem transforms into the Tammes problem.



Minimums of the Riesz potential

Corollary

Let t ≥ 0. If X ⊂ Sn−1 gives the minimum of Et in the set of all
m-subsets of Sn−1, then X ∈ M(Sn−1, rs ,m) for all s > −t.



M(S1, ϕ,m)

Theorem

M(S1, ϕ,m) consists of regular polygons with m vertices.

This theorem implies that M(S1, r1,m) consists of regular polygons.

However, the set M(S1, r2,m),m ≥ 4, is much larger. In fact,
M(S1, r2, 4) consists of quadrilaterals with sides (in angular
measure) (2π − 3α, α, α, α), where π/2 ≤ α ≤ 2π/3.



Optimality of regular simplices

Theorem

Let s ≤ 2. Then M(Sn−1, rs , n + 1) consists of regular simplices.

Open problem. It is easy to see that
M(Sn−1, ϕ, n + 1) 6= M(Sn−1, r2, n + 1) for n ≥ 3.

I think that M(S2, ϕ, 4) consists of vertices of tetrahedrons ∆a,θ

with a ∈ [0, 1/
√
3] and 0 < θ ≤ π/2.

Here ∆a,θ is a two–parametric family of tetrahedrons ABCD in S2

such that its opposite edges AC and BD are of the same lengths
and the angle between them is θ. Let X be the midpoint of AC
and Y be the midpoint of BD. Then X , Y and O (the center of
S2) are collinear. a = |OX | = |OY |.



Optimal constrained (n + k)–sets

Theorem

Let 2 ≤ k ≤ n and s ≤ 2. Then
M(Bn, rs ,

√
2, n + k) = M(Sn−1, rs ,

√
2, n + k) and this set consists

of k orthogonal to each other regular di–simplexes Si such that all
di ≥ 1 and d1 + ...+ dk = n.

This theorem follows from the above and Wlodek Kuperberg
theorems.



Spherical three–point M–sets

(1− t)z + 2z−1(1− t2)z =

(
3
2

)z+1

, z =
s

2
. (1)

For all s this equation has a solution t = −1/2. If

4 > s ≥ s0 := log4/3 (9/4) ≈ 2.8188,

then (1) has one more solution ts ∈ (−1,−1/2).

ts0 = −1, t4 = −1/2,



Spherical three–point M–sets

Theorem

There are three cases for M := M(S1, rs , 3)

1 If s ≤ log4/3 (9/4), then M contains only regular triangles.
2 If log4/3 (9/4) < s < 4, then M consists of regular triangles

and triangles with central angles (α, α, 2π − 2α), where
α ∈ (arccos(ts), π].

3 If s ≥ 4, then M consists of regular triangles and triangles with
central angles (α, α, 2π − 2α), α ∈ [2π/3, π].



Spherical four–point M–sets

M(S1, ϕ, 4) contains only squares.
Then M(S1, rs , 4) with s ≤ 1 also contains only squares.

It is an interesting problem to find M(S1, rs , 4) for all s.

It can be proven that M(S1, r2, 4) consists of quadrilaterals
inscribed into the unit circle with central angles (α, α, α, 2π − 3α),
where π/2 ≤ α ≤ 2π/3.

M(S2, rs , 4) with s ≤ 2 contains only regular tetrahedrons.

The case s > 2 is open?



Spherical five–point M–sets

M(S1, ϕ, 5) and M(S1, rs , 5) with s ≤ 1 contain only regular
pentagons.

M(S2, rs ,
√
2, 5), s ≤ 2, contains only triangular bi-pyramid (TBP).

The same result holds for M(S2, ϕ,
√
2, 5).

The last known case is M(S3, rs , 5) with s ≤ 2 that contains only
regular 4–simplexes.

It is a very interesting open problem to find M(S2, rs , 5).

For any t the global minimizer of the Riesz energy Rt of 5 points
lies in M(S2, rs , 5) for any s.

It is proved that the TBP is the minimizer of Rt for t = 0 [Dragnev
et al] and for t = 1, 2 [Schwartz]. Note that the TBP is not the
global minimizer for Rt when t > 15.04081



Definition of f -design

P = {p1, . . . , pm} ⊂ Sn−1. Define the k–th moment of P :

Mk(P) :=
m∑
i=1

m∑
j=1

G
(n)
k (ti ,j), ti ,j := pi · pj = cos(ϕ(pi , pj)),

where G
(n)
k (t) are Gegenabauer polynomials.

The positive definite property of G (n)
k yields Mk(P) ≥ 0, k = 1, 2, ...

Definition

P = {p1, . . . , pm} ⊂ Sn−1. D(P) := {pi · pj , i 6= j}.
f (t) =

∑
k fk G

(n)
k (t). P is an f –design if

1 For all k > 0 with fk 6= 0 we have Mk(P) = 0;
2 D(P) ⊂ Zf , where Zf := {t ∈ [−1, 1)|f (t) = 0}.



Delsarte’s bound and f –designs

Lemma

Let f (t) =
∑

k fk G
(n)
k (t) ∈ C ([−1, 1]). If there is an f –design in

Sn−1 of cardinality m, then f (1) = mf0.

Theorem

Let f (t) =
∑

k fk G
(n)
k (t) ∈ C ([−1, 1]) with all fk ≥ 0. Let

P ⊂ Sn−1 with |P| = m is such that D(P) ⊂ Zf . Then P is an
f –design if and only if f (1) = mf0.



Spherical f -designs and M–sets

Theorem

Let f (t) =
∑

k fk G
(n)
k (t) be a function on [−1, 1] with all fk ≥ 0.

Then any f –design in Sn−1 is an M–set with ρ(x , y) = −f (x · y).

Open problem. Consider f with all fk ≥ 0 and f (1) = mf0. By
the theorem, if D(P) ⊂ Zf then P is an f –design and
P ∈ M(Sn−1,−f ,m).
It is easy to prove that if Y ∈ M(Sn−1,−f ,m), then D(Y ) ⊂ Zf .

The question: is Y isomorphic to P?



Spherical τ– and f –designs

P is a τ -design if and only if Mk(P) = 0 for all k = 1, 2, . . . , τ

Theorem

If P ⊂ Sn−1 is a τ–design and |D(P)| ≤ τ , then P is an f –design
of degree τ with

f (t) = g(t)
∏

x∈D(P)

(t − x), deg g ≤ τ − |D(P)|.



Spherical two–distance sets and f –designs

Theorem

Let f (t) = (t − a)(t − b) and a + b 6= 0. Then P in Sn−1 is an
f –design if and only if P is a two–distance 2–design.

If b = −a then f –designs are equiangular lines sets.
There is a correspondence between f -designs of degree 2 and
strongly regular graphs.

Let Λn be the set of points ei + ej , 1 ≤ i < j ≤ n + 1 in Rn+1.
In fact, Λn is a maximal f –design of degree 2. Are there other
maximal f –designs with a + b > 0 of degree d ≥ 2?

Every graph G can be embedded as a spherical two–distance set.
What graphs can be embedded as f –designs?
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