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@ Discretization is an important step in making a continuous problem
computationally feasible.
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@ Discretization is an important step in making a continuous problem
computationally feasible.

@ A prominent example is seeking effective ways of approximating an

integral
/X ®(p(x,y))g(y)duly)
via the weighted summation
N
An(D(p(x,),6) = > N®(p(x, %)),
j=1
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@ Discretization is an important step in making a continuous problem
computationally feasible.

@ A prominent example is seeking effective ways of approximating an

integral
/X ®(p(x,y))g(y)duly)
via the weighted summation
N
An(D(p(x,),6) = > N®(p(x, %)),
j=1

where (X, p) is a compact metric space, they can be considered as a
discretization of probability measures on X.
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e This formula An(®(p(x,-)),€) is called a cubature formula (C.F.)
with nodes &€ = (y1,...,yn) € X"V and weights
A= (A1,...,Ay) € RV it is called positive if Ay, -+, Ay >0
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e This formula An(®(p(x,-)),€) is called a cubature formula (C.F.)
with nodes &€ = (y1,...,yn) € X"V and weights
A= (A1,...,Ay) € RV it is called positive if Ay, -+, Ay >0

@ The error of such approximation is measured by the following
quantity:

AN(W7£) = sup
P(p(x,))eW

/X ®(p(x, y))g(y) duly) — An(®(p(x; ), €)

One can further optimize the C.F.s and study the quantity
inf/\,\/ AN(va)
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MOTIVATIONS

@ Using the Bernstein inequality in probability, one can show that if
f e C(SY), and &, -+, &y are independent random points selected
uniformly on the sphere S?, then there exists an absolute constant
c1 > 0 such that the inequality

N
1 . )
fd ——E:ff‘<tN_’, t>1

holds with probability > 1 — 2e=t*,
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MOTIVATIONS

@ Using the Bernstein inequality in probability, one can show that if
f e C(SY), and &, -+, &y are independent random points selected
uniformly on the sphere S?, then there exists an absolute constant
c1 > 0 such that the inequality

N
1 . )
fd ——E:ff‘<tN_’, t>1

holds with probability > 1 — 2e=t*,
@ The proof of main results in this paper mainly follows along the same
idea as that of [1].
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Introduction

Let (€2, p) be a compact metric space.
@ Open balls and closed balls in © will be denoted by

Be(x) :={y € Q: p(x,y) < (}, and Be[x] :={y € Q: p(x,y) < (},
respectively.
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Let (€2, p) be a compact metric space.

@ Open balls and closed balls in © will be denoted by
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@ A path connecting two points x,y € Q is a continuous map
v :[0,1] — Q with 4(0) = x and (1) = y.
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Introduction

Let (€2, p) be a compact metric space.
@ Open balls and closed balls in © will be denoted by

Be(x) :={y € Q:p(x,y) <(} and Be[x] :={y € Q: p(x,y) < ¢},
respectively.

@ A path connecting two points x,y € Q is a continuous map
v :[0,1] — Q with 4(0) = x and (1) = y.

@ A metric space (€2, p) is called path-connected if every two distinct
points in  can be connected with a path. As is well known, every
open connected subset of R? is path-connected.

@ Given aset AC Q and a point x € §, define

dist(x, A) == im;‘ p(x,y).
ye
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REGULAR PARTITIONS ON COMPACT METRIC
SPACE
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Regular partitions on compact metric space

@ A measure p on Q is called non-atomic if for any measurable set
A C Q with (A) > 0 there exists a measurable subset B of A such
that p(A) > u(B) > 0.
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Regular partitions on compact metric space

@ A measure p on Q is called non-atomic if for any measurable set
A C Q with (A) > 0 there exists a measurable subset B of A such
that p(A) > u(B) > 0.

@ For non-atomic Borel probability measure i on 2, we have the
property: If Ag C A1 C Q, 0 < (A1) and p(Ag) < t < u(A1), then
there exists a measurable subset E; C A; satisfies pu(E;) = t.
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Regular partitions on compact metric space

Theorem (2.1)

Let (2, p) be a compact path-connected metric space with diameter
diam(§2) := max, yecq p(x,y) = 7. Let pu be a non-atomic Borel probability
measure on Q, and N > 2 a positive integer. Assume that the inequality

1

inf u(Bsa(x)) > (1)

holds for some 6 > 0. Then there exists a partition {Ry, ..., Ry} of Q
such that

@ the R; are pairwise disjoint subsets of Q,

@ foreachl <j <N, u(R;) = % and diam(R;) < 45.
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Regular partitions on compact metric space

@ Theorem 2.1 with constants depending on certain geometric
parameters of the underlying space (2, p, 1) (e.g. dimension,
doubling constants) is probably known in a more general setting.
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Regular partitions on compact metric space

@ Theorem 2.1 with constants depending on certain geometric
parameters of the underlying space (2, p, 1) (e.g. dimension,
doubling constants) is probably known in a more general setting.

@ The crucial point here lies in the fact that the constant 4 in the
estimates of diam(R;) is absolute.
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DISCRETIZATION ON COMPACT METRIC
SPACES
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Discretization on compact metric spaces

Let (X, p) be a compact metric space with metric p and diameter . For
xeXand0<a< b<m, set

E(x;a,b):={yeX: a<p(x,y) < b}.

A partition of [a, b] consists of finitely many pairwise disjoint subsets.
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Discretization on compact metric spaces

Let (X, p) be a compact metric space with metric p and diameter . For
xeXand0<a< b<m, set

E(x;a,b):={ye X: a<p(x,y) < b}.
A partition of [a, b] consists of finitely many pairwise disjoint subsets.

Definition
Let 0=ty < t; < --- < ty = be a partition of the interval [0, ], and let
r € N. We say ® € C[0, | belongs to the class S, = S,(t1, ..., t;) if there
exists an r-dimensional linear subspace V, of C(X) such that for any

x € X and eachl <j </,

o(p(x, .))’E(X;tj_htj)e {f| fe v,}.

E(xiti—1,t)
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Discretization on compact metric spaces

Let 1 be a Borel probability measure on X satisfying the following
condition for a parameter § > 1 and some constant ¢; > 1:

Condition (a)

For each positive integer N, there exists a partition {Xi,..., Xy} of X
1

such that u(X;) = 4 and diam(Xj) < 6y := cqN 5 for 1 < j < N.
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Discretization on compact metric spaces

Let 1 be a Borel probability measure on X satisfying the following
condition for a parameter § > 1 and some constant ¢; > 1:

Condition (a)

For each positive integer N, there exists a partition {Xi,..., Xy} of X
1
such that u(X;) = 4 and diam(Xj) < 6y := cqN 5 for 1 < j < N.

According to Theorem 2.1, this condition holds automatically with
c1 = 207 if: the metric space X is path-connected, and p is a non-atomic
Borel probability measure on X satisfying that for any 0 < t <1,

. 8\8
inf n(B(x) > () ¢ (2)
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Discretization on compact metric spaces

Let € C[0, 7] satisfy
[®(s) —&(s")| < [s—5|,  Vs,s"€[0,7], (3)

and belong to a class S,(t1,. .., ty) for some compact metric space (X, p),
wherere Nand 0=ty <ty < --- < tp = .
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Discretization on compact metric spaces

Let € C[0, 7] satisfy
[®(s) —&(s")| < [s—5|,  Vs,s"€[0,7], (3)

and belong to a class S,(t1,. .., ty) for some compact metric space (X, p),
where re Nand 0 =1ty < t; < --- < ty = 7. Let i be a Borel probability
measure on X satisfying Condition (a) and the following condition:

Condition (b)

For each x € X and § € (0, ),
u(E(x;tj—é,thrcS)) <o, 1<j<d, (4)

where ¢ > 1 is a constant independent of ¢ and x.

28/49



Discretization on compact metric spaces

Theorem (2.3)

Let € C[0, 7| and a Borel probability measure p on X satisfying the
above conditions, then for each positive integer N > 4, there exist points
Yoo Yo € X and nonnegative numbers A1, ..., A > 0 such that

(r+2)N =
(r+2)N
> A=1land
j=1
(r+2)N L s
max| [ (o) duly) = 3 (ol )| < ol og W,
j=1

where c3 := 8c\/col\/B.
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Discretization on compact metric spaces

Theorem (2.4)

Let (X, p) be a compact path-connected metric space. Let ® € C[0, 7]
satisfy (3) and belong to a class S,(t1, ..., t;) for some r € N and
O=th<ty1 <---<tg=m. Let u be a non-atomic Borel probability

measure on X satisfying (2). Assume in addition that the Condition (b) in
Theorem 2.3 is satisfied.
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Discretization on compact metric spaces

Theorem (2.4)

Let (X, p) be a compact path-connected metric space. Let ® € C[0, 7]
satisfy (3) and belong to a class S,(t1, ..., t;) for some r € N and
O=th<ty1 <---<tg=m. Let u be a non-atomic Borel probability
measure on X satisfying (2). Assume in addition that the Condition (b) in
Theorem 2.3 is satisfied. Then for any g € L*°(X,du) with

llgll Lo (auy < 1, and each positive integer N > 20, there exist points

Yiseo o Yopiom € X and real numbers \1, .. ., )\2(,+2)N such that
2(r+2)N
max /X¢(p(x,y)) )du(y) — Z Aj®(p(x, 5))

3
< 45c3N 72725\ /log N.
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DISCRETIZATION ON FINITE-DIMENSIONAL
COMPACT DOMAINS
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Introduction

@ Let (X, -]|) be a finite-dimensional real normed linear space. ( || - ||
is not necessarily the Euclidean norm.)
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Introduction

@ Let (X, -]|) be a finite-dimensional real normed linear space. ( || - ||
is not necessarily the Euclidean norm.)

@ Let Q C Bj[0] be a compact subset of X (not necessarily connected).
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Introduction

@ Let (X, -]|) be a finite-dimensional real normed linear space. ( || - ||
is not necessarily the Euclidean norm.)

@ Let Q C Bj[0] be a compact subset of X (not necessarily connected).

@ 1 be a Borel probability measure supported on €2.
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Discretization on finite-dimensional compact domains

We assume that the probability measure p satisfies the following two
conditions:

@ there exist a positive constant ¢; > 1 and a parameter 5 > 1 such
that for any x € Q and § € (0, 2]

¢ 1P < u(&;(x)) < 467 (5)
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Discretization on finite-dimensional compact domains

We assume that the probability measure p satisfies the following two
conditions:

@ there exist a positive constant ¢; > 1 and a parameter 5 > 1 such
that for any x € Q and § € (0, 2]

¢ 1P < ,u(Ba(X)> < aad?; (5)
@ there exists a constant ¢s > 0 such that for any x € Q and
t,s €(0,2],

plye: t<|y—xl <t+s}) <as. (6)
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Discretization on finite-dimensional compact domains

Let & : [0,00) — R be a function such that

|D(s) — &(s")| < |s —§'|, Vs,s' €]0,2]. (7)
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Discretization on finite-dimensional compact domains

Let & : [0,00) — R be a function such that
|®(s) — d(s')] < |s —§|, Vs,s" €]0,2]. (7)

Assume that there exist a partition 0 =ty < t; < --- < ty = 2 of [0,2] and
a translation-invariant linear subspace X; of C(2) with dim X, = r such
that with £ :={x e X: tj_1 <||x]| < ¢}, j=1,2,...,¢,

E-E {f E,

J J

feX,}.

o1 - 11)

Let g € L}(R, 1) be such that ||g]| 14y = 1.
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Discretization on finite-dimensional compact domains

Under these two conditions, we prove

Theorem
For each positive integer n > 2, there exist points yi, ..., Yy, € Q and real
numbers A1, ..., A,, such that
sup| [ @1~ yIDetr)au(y) - 3 Aol o)
xeQ|JQ k=1
n_%_%(log n)%, ifl<p <3,
< C(X){ nY(log )3, iff =3, (8)
_ B+l
n %5-1) (log n)%, ifg >3,

where the constant C(X) depends only on dim X, ca, cs, r, £ and 3.
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EXAMPLE: DISCRETIZATION ON THE UNIT
SPHERE S¢
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Example: Discretization on the unit sphere S¢

When X = S9 ¢ R9*t! be the unit sphere of Rt equipped with the

normalized surface Lebesgue measure pgy and the geodesic distance
p(x,y) = arccos(x - y), x,y € S?. We have:
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Example: Discretization on the unit sphere S¢

When X = S9 ¢ R9*t! be the unit sphere of Rt equipped with the

normalized surface Lebesgue measure pgy and the geodesic distance
p(x,y) = arccos(x - y), x,y € S?. We have:

For any positive integer N,

1
Xiggd pd(Bsy(x)) > N with §p = 57N~
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Example: Discretization on the unit sphere S¢

When X = S9 ¢ R9*t! be the unit sphere of Rt equipped with the

normalized surface Lebesgue measure pgy and the geodesic distance
p(x,y) = arccos(x - y), x,y € S?. We have:

For any positive integer N,

1
Xiggd pd(Bsy(x)) > N with §p = 57N~

For any 6 >0, x € S? and t € (0, 7),

,ud({yESd: t—5<p(x,y)<t+6}) gg\/ﬁa.
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Example: Discretization on the unit sphere S¢

As a consequence of Theorem 2.1 and Lemma 3.1, we have that

For each integer N > 1, there exists a partition {Ry, ..., Ry} of S¢ such
that

@ the R; are pairwise disjoint subsets of Sgk

@ foreachl <j<N, uq(Rj) = % and diam(R;) < 407N~3.
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Example: Discretization on the unit sphere S¢

Again, the main point here is that the upper bound for N3 max; diam(R;)
is independent of the dimension d. Theorem 3.3 with dimension

dependant upper bound for N3 max; diam(R;) can be found in [2].
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Example: Discretization on the unit sphere S¢

Theorem (3.4)

Let d : [-1,1] — R be a piecewise polynomial of degree at most r with
knots —1 = sy < 51 < -+ < sy = 1 such that |®(s) — ®(s)| < |s — §'| for
any s,s' € [-1,1]. Let m, = m? denote the dimension of the space of all
spherical polynomials of degree at most r on S9. Let g € L>(S9) be such
that ||g|lcc < 1. Then for each positive integer N > 20, there exist points
15 - Eo(m2)N € S9 and real numbers My, . .. s A2(m,+2)N Such that

2(m+2)N

(x - )d AP (x
max | | 0 »ely) draly >
<7-105V7-diN~2 2d\/logN
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