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Motivation

Discretization is an important step in making a continuous problem
computationally feasible.

A prominent example is seeking effective ways of approximating an
integral ∫

X
Φ(ρ(x , y))g(y) dµ(y)

via the weighted summation

ΛN(Φ(ρ(x , ·), ξξξ) =
N∑
j=1

λjΦ(ρ(x , yj)),

where (X , ρ) is a compact metric space, they can be considered as a
discretization of probability measures on X .
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Motivation

This formula ΛN(Φ(ρ(x , ·)), ξξξ) is called a cubature formula (C.F.)
with nodes ξξξ = (y1, . . . , yN) ∈ XN and weights
Λ := (λ1, . . . , λN) ∈ RN , it is called positive if λ1, · · · , λN ≥ 0

The error of such approximation is measured by the following
quantity:

ΛN(W, ξξξ) := sup
Φ(ρ(x ,·))∈W

∣∣∣∣∫
X

Φ(ρ(x , y))g(y) dµ(y)− ΛN(Φ(ρ(x , ·), ξξξ)

∣∣∣∣
One can further optimize the C.F.s and study the quantity
infΛN

ΛN(W, ξξξ)
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Motivations

(i) Using the Bernstein inequality in probability, one can show that if
f ∈ C (Sd), and ξ1, · · · , ξN are independent random points selected
uniformly on the sphere Sd , then there exists an absolute constant
c1 > 0 such that the inequality

∣∣∣∫
Sd

f dµd −
1

N

N∑
j=1

f (ξj)
∣∣∣ ≤ tN−

1
2 , t > 1

holds with probability ≥ 1− 2e−c1t2
.

(ii) The proof of main results in this paper mainly follows along the same
idea as that of [1].
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Introduction

Let (Ω, ρ) be a compact metric space.

(a) Open balls and closed balls in Ω will be denoted by
Bζ(x) := {y ∈ Ω : ρ(x , y) < ζ}, and Bζ [x ] := {y ∈ Ω : ρ(x , y) 6 ζ},
respectively.

(b) A path connecting two points x , y ∈ Ω is a continuous map
γ : [0, 1]→ Ω with γ(0) = x and γ(1) = y .

(c) A metric space (Ω, ρ) is called path-connected if every two distinct
points in Ω can be connected with a path. As is well known, every
open connected subset of Rd is path-connected.

(d) Given a set A ⊂ Ω and a point x ∈ Ω, define

dist(x ,A) := inf
y∈A

ρ(x , y).
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Regular partitions on compact metric
space
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Regular partitions on compact metric space

(a) A measure µ on Ω is called non-atomic if for any measurable set
A ⊂ Ω with µ(A) > 0 there exists a measurable subset B of A such
that µ(A) > µ(B) > 0.

(b) For non-atomic Borel probability measure µ on Ω, we have the
property: If A0 ⊂ A1 ⊂ Ω, 0 < µ(A1) and µ(A0) ≤ t ≤ µ(A1), then
there exists a measurable subset Et ⊂ A1 satisfies µ(Et) = t.
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Regular partitions on compact metric space

Theorem (2.1)

Let (Ω, ρ) be a compact path-connected metric space with diameter
diam(Ω) := maxx ,y∈Ω ρ(x , y) = π. Let µ be a non-atomic Borel probability
measure on Ω, and N ≥ 2 a positive integer. Assume that the inequality

inf
x∈Ω

µ
(
Bδ/2(x)

)
>

1

N
(1)

holds for some δ > 0. Then there exists a partition {R1, . . . ,RN} of Ω
such that

(i) the Rj are pairwise disjoint subsets of Ω,

(ii) for each 1 ≤ j ≤ N, µ(Rj) = 1
N and diam(Rj) ≤ 4δ.
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Regular partitions on compact metric space

1 Theorem 2.1 with constants depending on certain geometric
parameters of the underlying space (Ω, ρ, µ) (e.g. dimension,
doubling constants) is probably known in a more general setting.

2 The crucial point here lies in the fact that the constant 4 in the
estimates of diam(Rj) is absolute.
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Discretization on compact metric
spaces
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Discretization on compact metric spaces

Let (X , ρ) be a compact metric space with metric ρ and diameter π. For
x ∈ X and 0 ≤ a < b ≤ π, set

E (x ; a, b) := {y ∈ X : a ≤ ρ(x , y) ≤ b}.

A partition of [a, b] consists of finitely many pairwise disjoint subsets.

Definition

Let 0 = t0 < t1 < · · · < t` = π be a partition of the interval [0, π], and let
r ∈ N. We say Φ ∈ C [0, π] belongs to the class Sr ≡ Sr (t1, . . . , t`) if there
exists an r -dimensional linear subspace Vr of C (X ) such that for any
x ∈ X and each 1 ≤ j ≤ `,

Φ(ρ(x , ·))
∣∣∣
E(x ;tj−1,tj )

∈
{
f
∣∣∣
E(x ;tj−1,tj )

: f ∈ Vr

}
.
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Discretization on compact metric spaces

Let µ be a Borel probability measure on X satisfying the following
condition for a parameter β ≥ 1 and some constant c1 > 1:

Condition (a)

For each positive integer N, there exists a partition {X1, . . . ,XN} of X

such that µ(Xj) = 1
N and diam(Xj) ≤ δN := c1N

− 1
β for 1 ≤ j ≤ N.

According to Theorem 2.1, this condition holds automatically with
c1 = 20π if: the metric space X is path-connected, and µ is a non-atomic
Borel probability measure on X satisfying that for any 0 < t ≤ 1,

inf
x∈X

µ(Bt(x)) ≥
( 8

c1

)β
tβ. (2)
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Discretization on compact metric spaces

Let Φ ∈ C [0, π] satisfy

|Φ(s)− Φ(s ′)| ≤ |s − s ′|, ∀s, s ′ ∈ [0, π], (3)

and belong to a class Sr (t1, . . . , t`) for some compact metric space (X , ρ),
where r ∈ N and 0 = t0 < t1 < · · · < t` = π.

Let µ be a Borel probability
measure on X satisfying Condition (a) and the following condition:

Condition (b)

For each x ∈ X and δ ∈ (0, π),

µ
(
E (x ; tj − δ, tj + δ)

)
6 c2δ, 1 ≤ j < `, (4)

where c2 > 1 is a constant independent of δ and x .
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Discretization on compact metric spaces

Theorem (2.3)

Let Φ ∈ C [0, π] and a Borel probability measure µ on X satisfying the
above conditions, then for each positive integer N ≥ 4, there exist points
y1, . . . , y(r+2)N

∈ X and nonnegative numbers λ1, . . . , λ(r+2)N
> 0 such that

(r+2)N∑
j=1

λj = 1 and

max
x∈X

∣∣∣∣∣∣
∫
X

Φ(ρ(x , y)) dµ(y)−
(r+2)N∑
j=1

λjΦ(ρ(x , yj))

∣∣∣∣∣∣ 6 c3N
− 1

2
− 3

2β
√

logN,

where c3 := 8c2
1

√
c2`
√
β.
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Discretization on compact metric spaces

Theorem (2.4)

Let (X , ρ) be a compact path-connected metric space. Let Φ ∈ C [0, π]
satisfy (3) and belong to a class Sr (t1, . . . , t`) for some r ∈ N and
0 = t0 < t1 < · · · < t` = π. Let µ be a non-atomic Borel probability
measure on X satisfying (2). Assume in addition that the Condition (b) in
Theorem 2.3 is satisfied.

Then for any g ∈ L∞(X , dµ) with
‖g‖L∞(dµ) ≤ 1, and each positive integer N ≥ 20, there exist points
y1, . . . , y2(r+2)N

∈ X and real numbers λ1, . . . , λ2(r+2)N
such that

max
x∈X

∣∣∣∣∣∣
∫
X

Φ(ρ(x , y))g(y) dµ(y)−
2(r+2)N∑

j=1

λjΦ(ρ(x , yj))

∣∣∣∣∣∣
6 45c3N

− 1
2
− 3

2β
√

logN.
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Discretization on finite-dimensional
compact domains
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Introduction

(i) Let (X , ‖ · ‖) be a finite-dimensional real normed linear space. ( ‖ · ‖
is not necessarily the Euclidean norm.)

(ii) Let Ω ⊂ B1[0] be a compact subset of X (not necessarily connected).

(iii) µ be a Borel probability measure supported on Ω.
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Discretization on finite-dimensional compact domains

We assume that the probability measure µ satisfies the following two
conditions:

(i) there exist a positive constant c4 > 1 and a parameter β ≥ 1 such
that for any x ∈ Ω and δ ∈ (0, 2]

c−1
4 δβ ≤ µ

(
Bδ(x)

)
≤ c4δ

β; (5)

(ii) there exists a constant c5 > 0 such that for any x ∈ Ω and
t, s ∈ (0, 2],

µ
(
{y ∈ Ω : t ≤ ‖y − x‖ ≤ t + s}

)
≤ c5s. (6)

36 / 49



Discretization on finite-dimensional compact domains

We assume that the probability measure µ satisfies the following two
conditions:

(i) there exist a positive constant c4 > 1 and a parameter β ≥ 1 such
that for any x ∈ Ω and δ ∈ (0, 2]

c−1
4 δβ ≤ µ

(
Bδ(x)

)
≤ c4δ

β; (5)

(ii) there exists a constant c5 > 0 such that for any x ∈ Ω and
t, s ∈ (0, 2],

µ
(
{y ∈ Ω : t ≤ ‖y − x‖ ≤ t + s}

)
≤ c5s. (6)

37 / 49



Discretization on finite-dimensional compact domains

Let Φ : [0,∞)→ R be a function such that

|Φ(s)− Φ(s ′)| ≤ |s − s ′|, ∀s, s ′ ∈ [0, 2]. (7)

Assume that there exist a partition 0 = t0 < t1 < · · · < t` = 2 of [0, 2] and
a translation-invariant linear subspace Xr of C (Ω) with dimXr = r such
that with Ej := {x ∈ X : tj−1 ≤ ‖x‖ ≤ tj}, j = 1, 2, . . . , `,

Φ(‖ · ‖)
∣∣∣
Ej

∈
{
f
∣∣∣
Ej

: f ∈ Xr

}
.

Let g ∈ L1(Ω, µ) be such that ‖g‖L1(dµ) = 1.

38 / 49



Discretization on finite-dimensional compact domains

Let Φ : [0,∞)→ R be a function such that

|Φ(s)− Φ(s ′)| ≤ |s − s ′|, ∀s, s ′ ∈ [0, 2]. (7)

Assume that there exist a partition 0 = t0 < t1 < · · · < t` = 2 of [0, 2] and
a translation-invariant linear subspace Xr of C (Ω) with dimXr = r such
that with Ej := {x ∈ X : tj−1 ≤ ‖x‖ ≤ tj}, j = 1, 2, . . . , `,

Φ(‖ · ‖)
∣∣∣
Ej

∈
{
f
∣∣∣
Ej

: f ∈ Xr

}
.

Let g ∈ L1(Ω, µ) be such that ‖g‖L1(dµ) = 1.

39 / 49



Discretization on finite-dimensional compact domains

Under these two conditions, we prove

Theorem

For each positive integer n ≥ 2, there exist points y1, . . . , yn ∈ Ω and real
numbers λ1, . . . , λn, such that

sup
x∈Ω

∣∣∣∣∫
Ω

Φ(‖x − y‖)g(y) dµ(y)−
n∑

k=1

λkΦ(‖x − yk‖)
∣∣∣∣

≤ C (X )


n−

1
2
− 3

2β (log n)
1
2 , if 1 ≤ β < 3,

n−1(log n)
3
2 , if β = 3,

n
− β+1

2(β−1) (log n)
1
2 , if β > 3,

(8)

where the constant C (X ) depends only on dimX , c4, c5, r , ` and β.
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Example: Discretization on the unit
sphere Sd
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Example: Discretization on the unit sphere Sd

When X = Sd ⊂ Rd+1 be the unit sphere of Rd+1 equipped with the
normalized surface Lebesgue measure µd and the geodesic distance
ρ(x , y) = arccos(x · y), x , y ∈ Sd . We have:

Lemma (3.1)

For any positive integer N,

inf
x∈Sd

µd(BδN (x)) ≥ 1

N
with δN := 5πN−

1
d . (9)

Lemma

For any δ > 0, x ∈ Sd and t ∈ (0, π),

µd

({
y ∈ Sd : t − δ 6 ρ(x , y) 6 t + δ

})
6

3

2

√
dδ. (10)
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Example: Discretization on the unit sphere Sd

As a consequence of Theorem 2.1 and Lemma 3.1, we have that

Theorem

For each integer N ≥ 1, there exists a partition {R1, . . . ,RN} of Sd such
that

(i) the Rj are pairwise disjoint subsets of Sd ;

(ii) for each 1 ≤ j ≤ N, µd(Rj) = 1
N and diam(Rj) ≤ 40πN−

1
d .
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Example: Discretization on the unit sphere Sd

Again, the main point here is that the upper bound for N
1
d maxj diam(Rj)

is independent of the dimension d . Theorem 3.3 with dimension

dependant upper bound for N
1
d maxj diam(Rj) can be found in [2].
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Example: Discretization on the unit sphere Sd

Theorem (3.4)

Let Φ : [−1, 1]→ R be a piecewise polynomial of degree at most r with
knots −1 = s0 < s1 < · · · < s` = 1 such that |Φ(s)− Φ(s ′)| ≤ |s − s ′| for
any s, s ′ ∈ [−1, 1]. Let mr = md

r denote the dimension of the space of all
spherical polynomials of degree at most r on Sd . Let g ∈ L∞(Sd) be such
that ‖g‖∞ ≤ 1. Then for each positive integer N ≥ 20, there exist points
ξ1, . . . , ξ2(mr+2)N ∈ Sd and real numbers λ1, . . . , λ2(mr+2)N such that

max
x∈Sd

∣∣∣∣∣∣
∫
Sd

Φ(x · y)g(y) dµd(y)−
2(mr+2)N∑

j=1

λjΦ(x · ξj)

∣∣∣∣∣∣
≤ 7 · 106

√
` · d

3
4N−

1
2
− 3

2d

√
logN.
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