Discretization of integrals on compact metric measure spaces

Yeli Niu

University of Alberta

Mathematical and Statistical Sciences
March 10, 2021

This paper is a joint work with Professor Martin D. Buhmann and Professor Feng Dai

Table of Contents

(1) Motivation
(2) Main results

- Regular partitions on compact metric space
- Discretization on compact metric spaces
- Discretization on finite-dimensional compact domains
(3) Example: Discretization on the unit sphere \mathbb{S}^{d}
(4) Reference

Motivation

$$
\begin{aligned}
4 \text { a } 4 \text { 回 }
\end{aligned}
$$

Motivation

- Discretization is an important step in making a continuous problem computationally feasible.

Motivation

- Discretization is an important step in making a continuous problem computationally feasible.
- A prominent example is seeking effective ways of approximating an integral

$$
\int_{X} \Phi(\rho(x, y)) g(y) \mathrm{d} \mu(y)
$$

via the weighted summation

$$
\Lambda_{N}\left(\Phi(\rho(x, \cdot), \xi)=\sum_{j=1}^{N} \lambda_{j} \Phi\left(\rho\left(x, y_{j}\right)\right)\right.
$$

Motivation

- Discretization is an important step in making a continuous problem computationally feasible.
- A prominent example is seeking effective ways of approximating an integral

$$
\int_{X} \Phi(\rho(x, y)) g(y) \mathrm{d} \mu(y)
$$

via the weighted summation

$$
\Lambda_{N}\left(\Phi(\rho(x, \cdot), \xi)=\sum_{j=1}^{N} \lambda_{j} \Phi\left(\rho\left(x, y_{j}\right)\right)\right.
$$

where (X, ρ) is a compact metric space, they can be considered as a discretization of probability measures on X.

Motivation

- This formula $\Lambda_{N}(\Phi(\rho(x, \cdot)), \boldsymbol{\xi})$ is called a cubature formula (C.F.) with nodes $\xi=\left(y_{1}, \ldots, y_{N}\right) \in X^{N}$ and weights $\Lambda:=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in \mathbb{R}^{N}$, it is called positive if $\lambda_{1}, \cdots, \lambda_{N} \geq 0$

Motivation

- This formula $\Lambda_{N}(\Phi(\rho(x, \cdot)), \boldsymbol{\xi})$ is called a cubature formula (C.F.) with nodes $\xi=\left(y_{1}, \ldots, y_{N}\right) \in X^{N}$ and weights $\Lambda:=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in \mathbb{R}^{N}$, it is called positive if $\lambda_{1}, \cdots, \lambda_{N} \geq 0$
- The error of such approximation is measured by the following quantity:
$\Lambda_{N}(\mathbb{W}, \boldsymbol{\xi}):=\sup _{\Phi(\rho(x, \cdot)) \in \mathbb{W}} \mid \int_{X} \Phi(\rho(x, y)) g(y) \mathrm{d} \mu(y)-\Lambda_{N}(\Phi(\rho(x, \cdot), \boldsymbol{\xi}) \mid$
One can further optimize the C.F.s and study the quantity $\inf _{\wedge_{N}} \Lambda_{N}(\mathbb{W}, \boldsymbol{\xi})$

Motivations

(1) Using the Bernstein inequality in probability, one can show that if $f \in C\left(\mathbb{S}^{d}\right)$, and ξ_{1}, \cdots, ξ_{N} are independent random points selected uniformly on the sphere \mathbb{S}^{d}, then there exists an absolute constant $c_{1}>0$ such that the inequality

$$
\left|\int_{\mathbb{S}^{d}} f d \mu_{d}-\frac{1}{N} \sum_{j=1}^{N} f\left(\xi^{j}\right)\right| \leq t N^{-\frac{1}{2}}, \quad t>1
$$

holds with probability $\geq 1-2 e^{-c_{1} t^{2}}$.

Motivations

(1) Using the Bernstein inequality in probability, one can show that if $f \in C\left(\mathbb{S}^{d}\right)$, and ξ_{1}, \cdots, ξ_{N} are independent random points selected uniformly on the sphere \mathbb{S}^{d}, then there exists an absolute constant $c_{1}>0$ such that the inequality

$$
\left|\int_{\mathbb{S}^{d}} f d \mu_{d}-\frac{1}{N} \sum_{j=1}^{N} f\left(\xi^{j}\right)\right| \leq t N^{-\frac{1}{2}}, \quad t>1
$$

holds with probability $\geq 1-2 e^{-c_{1} t^{2}}$.
(1) The proof of main results in this paper mainly follows along the same idea as that of [1].

Main Results

Introduction

Let (Ω, ρ) be a compact metric space.
(1) Open balls and closed balls in Ω will be denoted by $B_{\zeta}(x):=\{y \in \Omega: \rho(x, y)<\zeta\}$, and $B_{\zeta}[x]:=\{y \in \Omega: \rho(x, y) \leqslant \zeta\}$, respectively.

Introduction

Let (Ω, ρ) be a compact metric space.
(a) Open balls and closed balls in Ω will be denoted by $B_{\zeta}(x):=\{y \in \Omega: \rho(x, y)<\zeta\}$, and $B_{\zeta}[x]:=\{y \in \Omega: \rho(x, y) \leqslant \zeta\}$, respectively.
(0) A path connecting two points $x, y \in \Omega$ is a continuous map $\gamma:[0,1] \rightarrow \Omega$ with $\gamma(0)=x$ and $\gamma(1)=y$.

Introduction

Let (Ω, ρ) be a compact metric space.
(a) Open balls and closed balls in Ω will be denoted by $B_{\zeta}(x):=\{y \in \Omega: \rho(x, y)<\zeta\}$, and $B_{\zeta}[x]:=\{y \in \Omega: \rho(x, y) \leqslant \zeta\}$, respectively.
(0) A path connecting two points $x, y \in \Omega$ is a continuous map $\gamma:[0,1] \rightarrow \Omega$ with $\gamma(0)=x$ and $\gamma(1)=y$.
(c) A metric space (Ω, ρ) is called path-connected if every two distinct points in Ω can be connected with a path. As is well known, every open connected subset of \mathbb{R}^{d} is path-connected.

Introduction

Let (Ω, ρ) be a compact metric space.
(a) Open balls and closed balls in Ω will be denoted by $B_{\zeta}(x):=\{y \in \Omega: \rho(x, y)<\zeta\}$, and $B_{\zeta}[x]:=\{y \in \Omega: \rho(x, y) \leqslant \zeta\}$, respectively.
(0) A path connecting two points $x, y \in \Omega$ is a continuous map $\gamma:[0,1] \rightarrow \Omega$ with $\gamma(0)=x$ and $\gamma(1)=y$.
(c) A metric space (Ω, ρ) is called path-connected if every two distinct points in Ω can be connected with a path. As is well known, every open connected subset of \mathbb{R}^{d} is path-connected.
(1) Given a set $A \subset \Omega$ and a point $x \in \Omega$, define

$$
\operatorname{dist}(x, A):=\inf _{y \in A} \rho(x, y)
$$

REGULAR PARTITIONS ON COMPACT METRIC SPACE

Regular partitions on compact metric space

(a) A measure μ on Ω is called non-atomic if for any measurable set $A \subset \Omega$ with $\mu(A)>0$ there exists a measurable subset B of A such that $\mu(A)>\mu(B)>0$.

Regular partitions on compact metric space

(a) A measure μ on Ω is called non-atomic if for any measurable set $A \subset \Omega$ with $\mu(A)>0$ there exists a measurable subset B of A such that $\mu(A)>\mu(B)>0$.
(D) For non-atomic Borel probability measure μ on Ω, we have the property: If $A_{0} \subset A_{1} \subset \Omega, 0<\mu\left(A_{1}\right)$ and $\mu\left(A_{0}\right) \leq t \leq \mu\left(A_{1}\right)$, then there exists a measurable subset $E_{t} \subset A_{1}$ satisfies $\mu\left(E_{t}\right)=t$.

Regular partitions on compact metric space

Theorem (2.1)

Let (Ω, ρ) be a compact path-connected metric space with diameter $\operatorname{diam}(\Omega):=\max _{x, y \in \Omega} \rho(x, y)=\pi$. Let μ be a non-atomic Borel probability measure on Ω, and $N \geq 2$ a positive integer. Assume that the inequality

$$
\begin{equation*}
\inf _{x \in \Omega} \mu\left(B_{\delta / 2}(x)\right) \geqslant \frac{1}{N} \tag{1}
\end{equation*}
$$

holds for some $\delta>0$. Then there exists a partition $\left\{R_{1}, \ldots, R_{N}\right\}$ of Ω such that
(1) the R_{j} are pairwise disjoint subsets of Ω,
(1) for each $1 \leq j \leq N, \mu\left(R_{j}\right)=\frac{1}{N}$ and $\operatorname{diam}\left(R_{j}\right) \leq 4 \delta$.

Regular partitions on compact metric space

(1) Theorem 2.1 with constants depending on certain geometric parameters of the underlying space (Ω, ρ, μ) (e.g. dimension, doubling constants) is probably known in a more general setting.

Regular partitions on compact metric space

(1) Theorem 2.1 with constants depending on certain geometric parameters of the underlying space (Ω, ρ, μ) (e.g. dimension, doubling constants) is probably known in a more general setting.
(2) The crucial point here lies in the fact that the constant 4 in the estimates of $\operatorname{diam}\left(R_{j}\right)$ is absolute.

DISCRETIZATION ON COMPACT METRIC SPACES

Discretization on compact metric spaces

Let (X, ρ) be a compact metric space with metric ρ and diameter π. For $x \in X$ and $0 \leq a<b \leq \pi$, set

$$
E(x ; a, b):=\{y \in X: \quad a \leq \rho(x, y) \leq b\} .
$$

A partition of $[a, b]$ consists of finitely many pairwise disjoint subsets.

Discretization on compact metric spaces

Let (X, ρ) be a compact metric space with metric ρ and diameter π. For $x \in X$ and $0 \leq a<b \leq \pi$, set

$$
E(x ; a, b):=\{y \in X: \quad a \leq \rho(x, y) \leq b\} .
$$

A partition of $[a, b]$ consists of finitely many pairwise disjoint subsets.

Definition

Let $0=t_{0}<t_{1}<\cdots<t_{\ell}=\pi$ be a partition of the interval $[0, \pi]$, and let $r \in \mathbb{N}$. We say $\Phi \in C[0, \pi]$ belongs to the class $\mathcal{S}_{r} \equiv \mathcal{S}_{r}\left(t_{1}, \ldots, t_{\ell}\right)$ if there exists an r-dimensional linear subspace V_{r} of $C(X)$ such that for any $x \in X$ and each $1 \leq j \leq \ell$,

$$
\left.\Phi(\rho(x, \cdot))\right|_{E\left(x ; t_{j-1}, t_{j}\right)} \in\left\{\left.f\right|_{E\left(x ; t_{j-1}, t_{j}\right)}: \quad f \in V_{r}\right\} .
$$

Discretization on compact metric spaces

Let μ be a Borel probability measure on X satisfying the following condition for a parameter $\beta \geq 1$ and some constant $c_{1}>1$:

Condition (a)

For each positive integer N, there exists a partition $\left\{X_{1}, \ldots, X_{N}\right\}$ of X such that $\mu\left(X_{j}\right)=\frac{1}{N}$ and $\operatorname{diam}\left(X_{j}\right) \leq \delta_{N}:=c_{1} N^{-\frac{1}{\beta}}$ for $1 \leq j \leq N$.

Discretization on compact metric spaces

Let μ be a Borel probability measure on X satisfying the following condition for a parameter $\beta \geq 1$ and some constant $c_{1}>1$:

Condition (a)

For each positive integer N, there exists a partition $\left\{X_{1}, \ldots, X_{N}\right\}$ of X such that $\mu\left(X_{j}\right)=\frac{1}{N}$ and $\operatorname{diam}\left(X_{j}\right) \leq \delta_{N}:=c_{1} N^{-\frac{1}{\beta}}$ for $1 \leq j \leq N$.

According to Theorem 2.1, this condition holds automatically with $c_{1}=20 \pi$ if: the metric space X is path-connected, and μ is a non-atomic Borel probability measure on X satisfying that for any $0<t \leq 1$,

$$
\begin{equation*}
\inf _{x \in X} \mu\left(B_{t}(x)\right) \geq\left(\frac{8}{c_{1}}\right)^{\beta} t^{\beta} \tag{2}
\end{equation*}
$$

Discretization on compact metric spaces

Let $\Phi \in C[0, \pi]$ satisfy

$$
\begin{equation*}
\left|\Phi(s)-\Phi\left(s^{\prime}\right)\right| \leq\left|s-s^{\prime}\right|, \quad \forall s, s^{\prime} \in[0, \pi] \tag{3}
\end{equation*}
$$

and belong to a class $\mathcal{S}_{r}\left(t_{1}, \ldots, t_{\ell}\right)$ for some compact metric space (X, ρ), where $r \in \mathbb{N}$ and $0=t_{0}<t_{1}<\cdots<t_{\ell}=\pi$.

Discretization on compact metric spaces

Let $\Phi \in C[0, \pi]$ satisfy

$$
\begin{equation*}
\left|\Phi(s)-\Phi\left(s^{\prime}\right)\right| \leq\left|s-s^{\prime}\right|, \quad \forall s, s^{\prime} \in[0, \pi] \tag{3}
\end{equation*}
$$

and belong to a class $\mathcal{S}_{r}\left(t_{1}, \ldots, t_{\ell}\right)$ for some compact metric space (X, ρ), where $r \in \mathbb{N}$ and $0=t_{0}<t_{1}<\cdots<t_{\ell}=\pi$. Let μ be a Borel probability measure on X satisfying Condition (a) and the following condition:

Condition (b)

For each $x \in X$ and $\delta \in(0, \pi)$,

$$
\begin{equation*}
\mu\left(E\left(x ; t_{j}-\delta, t_{j}+\delta\right)\right) \leqslant c_{2} \delta, \quad 1 \leq j<\ell \tag{4}
\end{equation*}
$$

where $c_{2}>1$ is a constant independent of δ and x.

Discretization on compact metric spaces

Theorem (2.3)

Let $\Phi \in C[0, \pi]$ and a Borel probability measure μ on X satisfying the above conditions, then for each positive integer $N \geq 4$, there exist points $y_{1}, \ldots, y_{(r+2) N} \in X$ and nonnegative numbers $\lambda_{1}, \ldots, \lambda_{(r+2) N} \geqslant 0$ such that $\sum^{(r+2) N}$
$\sum_{j=1} \lambda_{j}=1$ and

$$
\max _{x \in X}\left|\int_{X} \Phi(\rho(x, y)) \mathrm{d} \mu(y)-\sum_{j=1}^{(r+2) N} \lambda_{j} \Phi\left(\rho\left(x, y_{j}\right)\right)\right| \leqslant c_{3} N^{-\frac{1}{2}-\frac{3}{2 \beta}} \sqrt{\log N}
$$

where $c_{3}:=8 c_{1}^{2} \sqrt{c_{2} \ell} \sqrt{\beta}$.

Discretization on compact metric spaces

Theorem (2.4)

Let (X, ρ) be a compact path-connected metric space. Let $\Phi \in C[0, \pi]$ satisfy (3) and belong to a class $\mathcal{S}_{r}\left(t_{1}, \ldots, t_{\ell}\right)$ for some $r \in \mathbb{N}$ and $0=t_{0}<t_{1}<\cdots<t_{\ell}=\pi$. Let μ be a non-atomic Borel probability measure on X satisfying (2). Assume in addition that the Condition (b) in Theorem 2.3 is satisfied.

Discretization on compact metric spaces

Theorem (2.4)

Let (X, ρ) be a compact path-connected metric space. Let $\Phi \in C[0, \pi]$ satisfy (3) and belong to a class $\mathcal{S}_{r}\left(t_{1}, \ldots, t_{\ell}\right)$ for some $r \in \mathbb{N}$ and $0=t_{0}<t_{1}<\cdots<t_{\ell}=\pi$. Let μ be a non-atomic Borel probability measure on X satisfying (2). Assume in addition that the Condition (b) in Theorem 2.3 is satisfied. Then for any $g \in L^{\infty}(X, \mathrm{~d} \mu)$ with $\|g\|_{L^{\infty}(\mathrm{d} \mu)} \leq 1$, and each positive integer $N \geq 20$, there exist points $y_{1}, \ldots, y_{2(r+2) N} \in X$ and real numbers $\lambda_{1}, \ldots, \lambda_{2(r+2) N}$ such that

$$
\begin{aligned}
& \max _{x \in X}\left|\int_{X} \Phi(\rho(x, y)) g(y) \mathrm{d} \mu(y)-\sum_{j=1}^{2(r+2) N} \lambda_{j} \Phi\left(\rho\left(x, y_{j}\right)\right)\right| \\
& \leqslant 45 c_{3} N^{-\frac{1}{2}-\frac{3}{2 \beta}} \sqrt{\log N} .
\end{aligned}
$$

Discretization on finite-dimensional COMPACT DOMAINS

Introduction

(1) Let $(X,\|\cdot\|)$ be a finite-dimensional real normed linear space. $(\|\cdot\|$ is not necessarily the Euclidean norm.)

Introduction

(1) Let $(X,\|\cdot\|)$ be a finite-dimensional real normed linear space. $(\|\cdot\|$ is not necessarily the Euclidean norm.)
(1) Let $\Omega \subset B_{1}[0]$ be a compact subset of X (not necessarily connected).

Introduction

(1) Let $(X,\|\cdot\|)$ be a finite-dimensional real normed linear space. $(\|\cdot\|$ is not necessarily the Euclidean norm.)
(1) Let $\Omega \subset B_{1}[0]$ be a compact subset of X (not necessarily connected).
(1) μ be a Borel probability measure supported on Ω.

Discretization on finite-dimensional compact domains

We assume that the probability measure μ satisfies the following two conditions:
(1) there exist a positive constant $c_{4}>1$ and a parameter $\beta \geq 1$ such that for any $x \in \Omega$ and $\delta \in(0,2]$

$$
\begin{equation*}
c_{4}^{-1} \delta^{\beta} \leq \mu\left(B_{\delta}(x)\right) \leq c_{4} \delta^{\beta} \tag{5}
\end{equation*}
$$

Discretization on finite-dimensional compact domains

We assume that the probability measure μ satisfies the following two conditions:
(1) there exist a positive constant $c_{4}>1$ and a parameter $\beta \geq 1$ such that for any $x \in \Omega$ and $\delta \in(0,2]$

$$
\begin{equation*}
c_{4}^{-1} \delta^{\beta} \leq \mu\left(B_{\delta}(x)\right) \leq c_{4} \delta^{\beta} \tag{5}
\end{equation*}
$$

(1) there exists a constant $c_{5}>0$ such that for any $x \in \Omega$ and $t, s \in(0,2]$,

$$
\begin{equation*}
\mu(\{y \in \Omega: t \leq\|y-x\| \leq t+s\}) \leq c_{5} s \tag{6}
\end{equation*}
$$

Discretization on finite-dimensional compact domains

Let $\Phi:[0, \infty) \rightarrow \mathbb{R}$ be a function such that

$$
\begin{equation*}
\left|\Phi(s)-\Phi\left(s^{\prime}\right)\right| \leq\left|s-s^{\prime}\right|, \forall s, s^{\prime} \in[0,2] . \tag{7}
\end{equation*}
$$

Discretization on finite-dimensional compact domains

Let $\Phi:[0, \infty) \rightarrow \mathbb{R}$ be a function such that

$$
\begin{equation*}
\left|\Phi(s)-\Phi\left(s^{\prime}\right)\right| \leq\left|s-s^{\prime}\right|, \forall s, s^{\prime} \in[0,2] . \tag{7}
\end{equation*}
$$

Assume that there exist a partition $0=t_{0}<t_{1}<\cdots<t_{\ell}=2$ of [0,2] and a translation-invariant linear subspace X_{r} of $C(\Omega)$ with $\operatorname{dim} X_{r}=r$ such that with $E_{j}:=\left\{x \in X: t_{j-1} \leq\|x\| \leq t_{j}\right\}, j=1,2, \ldots, \ell$,

$$
\left.\Phi(\|\cdot\|)\right|_{E_{j}} \in\left\{\left.f\right|_{E_{j}}: \quad f \in X_{r}\right\}
$$

Let $g \in L^{1}(\Omega, \mu)$ be such that $\|g\|_{L^{1}(\mathrm{~d} \mu)}=1$.

Discretization on finite-dimensional compact domains

Under these two conditions, we prove

Theorem

For each positive integer $n \geq 2$, there exist points $y_{1}, \ldots, y_{n} \in \Omega$ and real numbers $\lambda_{1}, \ldots, \lambda_{n}$, such that

$$
\begin{align*}
& \sup _{x \in \Omega}\left|\int_{\Omega} \Phi(\|x-y\|) g(y) \mathrm{d} \mu(y)-\sum_{k=1}^{n} \lambda_{k} \Phi\left(\left\|x-y_{k}\right\|\right)\right| \\
& \quad \leq C(X) \begin{cases}n^{-\frac{1}{2}-\frac{3}{2 \beta}}(\log n)^{\frac{1}{2}}, & \text { if } 1 \leq \beta<3, \\
n^{-1}(\log n)^{\frac{3}{2}}, & \text { if } \beta=3, \\
n^{-\frac{\beta+1}{2(\beta-1)}(\log n)^{\frac{1}{2}},} & \text { if } \beta>3,\end{cases} \tag{8}
\end{align*}
$$

where the constant $C(X)$ depends only on $\operatorname{dim} X, c_{4}, c_{5}, r, \ell$ and β.

Example: Discretization on the unit SPHERE \mathbb{S}^{d}

Example: Discretization on the unit sphere \mathbb{S}^{d}

When $X=\mathbb{S}^{d} \subset \mathbb{R}^{d+1}$ be the unit sphere of \mathbb{R}^{d+1} equipped with the normalized surface Lebesgue measure μ_{d} and the geodesic distance $\rho(x, y)=\arccos (x \cdot y), x, y \in \mathbb{S}^{d}$. We have:

Example: Discretization on the unit sphere \mathbb{S}^{d}

When $X=\mathbb{S}^{d} \subset \mathbb{R}^{d+1}$ be the unit sphere of \mathbb{R}^{d+1} equipped with the normalized surface Lebesgue measure μ_{d} and the geodesic distance $\rho(x, y)=\arccos (x \cdot y), x, y \in \mathbb{S}^{d}$. We have:

Lemma (3.1)

For any positive integer N,

$$
\begin{equation*}
\inf _{x \in \mathbb{S}^{d}} \mu_{d}\left(B_{\delta_{N}}(x)\right) \geq \frac{1}{N} \text { with } \delta_{N}:=5 \pi N^{-\frac{1}{d}} \tag{9}
\end{equation*}
$$

Example: Discretization on the unit sphere \mathbb{S}^{d}

When $X=\mathbb{S}^{d} \subset \mathbb{R}^{d+1}$ be the unit sphere of \mathbb{R}^{d+1} equipped with the normalized surface Lebesgue measure μ_{d} and the geodesic distance $\rho(x, y)=\arccos (x \cdot y), x, y \in \mathbb{S}^{d}$. We have:

Lemma (3.1)

For any positive integer N,

$$
\begin{equation*}
\inf _{x \in \mathbb{S}^{d}} \mu_{d}\left(B_{\delta_{N}}(x)\right) \geq \frac{1}{N} \text { with } \delta_{N}:=5 \pi N^{-\frac{1}{d}} \tag{9}
\end{equation*}
$$

Lemma

For any $\delta>0, x \in \mathbb{S}^{d}$ and $t \in(0, \pi)$,

$$
\begin{equation*}
\mu_{d}\left(\left\{y \in \mathbb{S}^{d}: t-\delta \leqslant \rho(x, y) \leqslant t+\delta\right\}\right) \leqslant \frac{3}{2} \sqrt{d} \delta \tag{10}
\end{equation*}
$$

Example: Discretization on the unit sphere \mathbb{S}^{d}

As a consequence of Theorem 2.1 and Lemma 3.1, we have that

Theorem

For each integer $N \geq 1$, there exists a partition $\left\{R_{1}, \ldots, R_{N}\right\}$ of \mathbb{S}^{d} such that
(1) the R_{j} are pairwise disjoint subsets of \mathbb{S}^{d};
(1) for each $1 \leq j \leq N, \mu_{d}\left(R_{j}\right)=\frac{1}{N}$ and $\operatorname{diam}\left(R_{j}\right) \leq 40 \pi N^{-\frac{1}{d}}$.

Example: Discretization on the unit sphere \mathbb{S}^{d}

Again, the main point here is that the upper bound for $N^{\frac{1}{d}} \max _{j} \operatorname{diam}\left(R_{j}\right)$ is independent of the dimension d. Theorem 3.3 with dimension dependant upper bound for $N^{\frac{1}{d}} \max _{j} \operatorname{diam}\left(R_{j}\right)$ can be found in [2].

Example: Discretization on the unit sphere \mathbb{S}^{d}

Theorem (3.4)

Let $\Phi:[-1,1] \rightarrow \mathbb{R}$ be a piecewise polynomial of degree at most r with knots $-1=s_{0}<s_{1}<\cdots<s_{\ell}=1$ such that $\left|\Phi(s)-\Phi\left(s^{\prime}\right)\right| \leq\left|s-s^{\prime}\right|$ for any $s, s^{\prime} \in[-1,1]$. Let $m_{r}=m_{r}^{d}$ denote the dimension of the space of all spherical polynomials of degree at most r on \mathbb{S}^{d}. Let $g \in L^{\infty}\left(\mathbb{S}^{d}\right)$ be such that $\|g\|_{\infty} \leq 1$. Then for each positive integer $N \geq 20$, there exist points $\xi_{1}, \ldots, \xi_{2\left(m_{r}+2\right) N} \in \mathbb{S}^{d}$ and real numbers $\lambda_{1}, \ldots, \lambda_{2\left(m_{r}+2\right) N}$ such that

$$
\begin{aligned}
\max _{x \in \mathbb{S}^{d}} & \left|\int_{\mathbb{S}^{d}} \Phi(x \cdot y) g(y) \mathrm{d} \mu_{d}(y)-\sum_{j=1}^{2\left(m_{r}+2\right) N} \lambda_{j} \Phi\left(x \cdot \xi_{j}\right)\right| \\
& \leq 7 \cdot 10^{6} \sqrt{\ell} \cdot d^{\frac{3}{4}} N^{-\frac{1}{2}-\frac{3}{2 d}} \sqrt{\log N} .
\end{aligned}
$$

[1] Bourgain, J. Lindenstrauss, J. Distribution of points on spheres and approximation by zonotopes. Israel J. Math. 64, 1988, 1, 25-31,
[2] Bondarenko, A. Radchenko, D. Viazovska, M. Well-separated spherical designs. Constr. Approx. 41, 2015, 1, 93-112
[3] Dai, F., Wang, H.: Optimal cubature formulas in weighted Besov spaces with A_{∞} weights on multivariate domains. Constr. Approx. 37, no. 2, 167-194 (2013)

Thank you!

