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Summary of Results

1 Rigid Graph Distances (joint with Iosevich)

We prove tight bounds for rotational congruence Erdős problem on
Configurations.
We prove distance congruent bound for rigid graphs.
We provide a graphical Erdős conjecture.
Follows from Pinned-Distance Conjecture.

2 Hamiltonian Graph Distances

Expand Graphical Erdős conjecture to all graphs with Hamiltonian
Paths.
Give a generalised incidence bound.
Iterative incidence bound.
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What are Distances?

�
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p

q

Figure: The distance |p � q|

Take two points p and q in the
plane, their distance is denoted by

|p � q|

If P is a set of points in the plane, we denote its set of distinct distances as

∆pPq � t|p � q| : p, q P Pu.
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Distinct Distances

Note that ∆pPq counts distinct distances.
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Figure: Lattice Distances
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Figure: ’Random’ Set

Note

|∆pPq| ¤
�|P|

2



� |P|2
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Erdős Distinct Distance Problem

Definition

Let f pnq be the fewest distances a set of n points in the plane makes.

f pnq � min
P�R2;|P|�n

|∆pPq|
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?
n

?
n

P � ?
n �?n lattice gives

|∆pPq| � n?
log n

.

So asymptotically

f pnq À n?
log n

.
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Erdős Distinct Distance Problem

Definition

Let f pnq be the fewest distances a set of n points in the plane makes.

f pnq � min
P�R2;|P|�n

|∆pPq|

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � ��

?
n

?
n

P � ?
n �?n lattice gives

|∆pPq| � n?
log n

.

So asymptotically

f pnq À n?
log n

.
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Erdős Distinct Distance Problem

Erdős Distinct Distance Problem

Determine the asymptotic behaviour of f pnq. Conjecture:

f pnq � n?
log n

.

Theorem (Erdős 1946)

n1{2 À f pnq À n?
log n

.

Theorem (Guth-Katz 2010)

n

log n
À f pnq À n?

log n
.
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Variants of the Distance Problem: Pinned Distances

Pinned Erdős Conjecture

In all point sets P of size n, there is a point from which the minimum
number of distances are realised.

If one defines

fpinpnq � min
P�R2;|P|�n

max
xPP

|t|x � p| : p P Pu|

�

�

�

�

�

�

�

�

�

�

�

Distances realised at one point.

Conjecture the same as without
pin.
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Pinned Distances Results

Theorem (Erdős 1946)

n1{2 À fpinpnq À n?
log n

.

Theorem (Katz–Tardos 2004)

n0.872... À fpinpnq À n?
log n

.
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Triangle Questions

Jonas Pach asked the following question:

Let P be a set of n points. How many distinct classes of similar triangles
are there with vertices in P?
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�

Theorem (Solymosi–Tardos 2007)

n2

logpnq À tsimpnq À n2.
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Congruent Triangles
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�
� �

�

Counted as one class of similar
triangles

�

�

�

�

�

�
� �

�

Counted as two classes of congruent
triangles

Congruence doesn’t allow one to scale.

Theorem (Rudnev 2012)

n2 À tcongpnq À n2.
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Larger Configurations
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Four-point Configurations
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�

�

Six-point Configuration
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Different Notions of Congruence

�
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�

�

�

�

Rotation θÝÝÝÝÝÝÑ

Same distances,

no uniform θ

�

�
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�

�

�

�
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Rotational Congruence: Relatively Simple

Let MkpPq be the number of congruence classes of non-singular k-tuples
under the action of rigid motions.

mkpnq � min
P�R2;|P|�n

|MkpPq|

If k � 3 then m3pnq � tcongpnq, this is the congruent triangle problem.

Theorem (Iosevich–P. 2018)

If P is a set of n points in the plane, k ¥ 4 then

nk�1 À mkpnq À nk�1.
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Proof: Counting Configuration Pairs

We let vptq be the number of k-tuples that realise the configuration
t P MkpPq,

vptq � |tpp1, . . . , pkq P Pk : ÝÑp in cong. class tu|.

Then Cauchy-Schwarz tells us

|P|2k �
�
� ¸

tPMk pPq

vptq
�

2

¤ |MkpPq|
¸
t

v2ptq.

Notice

¸
t

v2ptq � |tpÝÑp ,ÝÑq q P P2k : ÝÑp in same cong. class as ÝÑq u|.
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Congruent Pairs as Rigid Motions

By Definition:

ÝÑp in same cong. class as ÝÑq ðñ Dθ such that ÝÑp � θÝÑq .

�

�

�

�

Rotation θÝÝÝÝÝÝÑ

�

�

�

�

We can see that |P X θP| ¥ k for any such motion.

If |P X θP| � r then θ contributes � rk pairs.

If R�r pPq � tθ : |P X θP| � ru then
¸
t

v2ptq �
|P |̧

r�k

rk |R�r pPq|.
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Proof: Guth–Katz Lines

We use Guth-Katz lines, coming from rigid motions of the plane. Line lpp1

represents all the rotations moving p
θÝÑ p1.

lpp1

�
p

�

p1
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Guth–Katz Incidences

lpp1 lqq1

�θ

�
p

�

p1

�

q1

�
q

Intersections give pairs

lpp1 X lqq1 ô |p � q| � |p1 � q1|
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Guth-Katz Bound

Theorem (Guth–Katz 2010)

Let L be a set of lines in R3 so that no more than |L|1{2 lie in any plane or
regulus. Then if Pr pLq are the points in R3 where at least r such lines
meet we have

|Pr pLq| À |L|3{2
r2

.

�

L � tlpq : p, q P Pu, so |L| � |P|2.
Thus,

|Pr pLq| À |P|3
r2

.
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Putting this together

We count pairs using rigid motions:

|P|2k �
�
� ¸

tPMk pPq

vptq
�

2

¤ |MkpPq|
¸
t

v2ptq � |MkpPq|
|P |̧

r�k

rk |P�r pLq|.

Using |P�r pLq| � |Pr pLq| � |Pr�1pLq| and telescoping (k ¡ 2),

|P|2k À |MkpPq|
|P |̧

r�k

rk�1|Pr pLq| À |MkpPq|
|P |̧

r�k

rk�3|P|3

À |MkpPq||P|k�1.
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Proof Summary

1 Cauchy–Schwarz Energy Bound

2 Energy to rigid motions

Congruence Definition Ñ Uniform Rigid Motion

3 Rigid motions to Incidences

4 Incidence Bound
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Different Notions of Congruence
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Rotation θÝÝÝÝÝÝÑ

Same distances,

no uniform θ
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Jonathan Passant (UoR) Erdős-Style Configurations July 21, 2021 21 / 46



Different Notions of Congruence

�

�

�

�

�

�

�

Rotation θÝÝÝÝÝÝÑ

Same distances,

no uniform θ

�

�

�

�

�

�

�
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Distance Congruence

We use a k-vertex connected graph G to specify which edges we require to
match.

∆G pPq � tp|pi � pj |qti ,juPEpGq : pi , pj P Pu.

�

�

�

�

pδ1, δ2, δ3, δ4q counted in ∆C4pPq

�

�

�

�

pδ1, . . . , δ6q counted in ∆K4pPq
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Graphical Erdős Conjecture

Let
fG pnq � min

P�R2;|P|�n
|∆G pPq|

Conjecture (Iosevich-P. 2018)

Suppose that G is a connected graph on k � Op1q vertices, then for all
ε ¡ 0 we have

nk�1�ε À fG pnq À nk�1

Upper bound obtained like similar triangles: on a line.

ε necessary for e.g. 3-chains.
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Rigidity Reduces to Rotational Congruence

Theorem (Iosevich-P. 2018)

Suppose that G is a connected graph on 4 ¤ k � Op1q vertices, then if G
is minimally infinitesimally rigid we have

nk�1

logpnq À fG pnq.

�

�

�

�

Figure: Rigid Graph

�

�

�

�

Figure: Non-rigid Graph
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Proof

Theorem (Chatzikonstantinou–Iosevich–Mkrtchyan–Pakianathan
2017)

If G is minimally infinitesimally rigid, then there is a positive proportion of
non-degenerate pairs pÝÑp ,ÝÑq q where the following are equivalent:

|pi � pj | � |qi � qj | for all ti , ju P E pG q.
There is a unique rigid motion θ such that ÝÑp � θÝÑq .

We then run the same argument we saw for rotational congruence on
this positive portion of pairs.

Until the final part of the analysis works in any dimension.
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Non-Rigid Graphs

�

�

�

The 2-Chain

Theorem (Rudnev 2019)

Suppose that G is a graph on k � 3 vertices, then

n2

log3 n
À fG pnq À n2

log n
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New Non-Rigid Results

Theorem (P. 2020)

Suppose that G is a connected graph on 4 ¤ k � Op1q vertices, then if G
has a Hamiltonian path we have

nk�1

log
13
2
pk�2q n

À fG pnq À nk�1.

This is derived from the following result.

Theorem (P. 2020)

Suppose that C pkq is a chain on 4 ¤ k � Op1q vertices then

nk�1

log
13
2
pk�2q n

À fCpkqpnq À
nk�1

logpk�1q{2 n
.
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Rigid Graph without a Hamiltonian Path

We note that it is easy to construct a rigid graph that has no Hamiltonian
path.

�

�

�

�

�

�

Figure: A rigid graph with no Hamiltonian path
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New Non-Rigid Results

Theorem (P. 2020)

Suppose that C pkq is a chain on 4 ¤ k � Op1q vertices then

nk�1

log
13
2
pk�2q n

À fCpkqpnq À
nk�1

logpk�1q{2 n
.

This resolves the graphical Erdős conjecture for a large class of
graphs.

Combining with the non-rigid result, star graphs seem the barrier to
full resolution.
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Barrier to Full Conjecture

Suffices to prove for spanning
trees.

Currently no bound for k-stars,
k ¥ 3.

Estimates on the star give
pinned Erdős bounds.

8-star and above beat
Katz–Tardos.

�

�

�

�

�

�

�

�

7-star

Theorem (P. 2020, Stars give Pinned)

Establishing nk�1�ε À fk�starpnq gives

n
k�1
k

�ε À fpinpnq.

Jonathan Passant (UoR) Erdős-Style Configurations July 21, 2021 30 / 46



Barrier to Full Conjecture

Suffices to prove for spanning
trees.

Currently no bound for k-stars,
k ¥ 3.

Estimates on the star give
pinned Erdős bounds.
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Jonathan Passant (UoR) Erdős-Style Configurations July 21, 2021 30 / 46



Barrier to Full Conjecture

Suffices to prove for spanning
trees.

Currently no bound for k-stars,
k ¥ 3.

Estimates on the star give
pinned Erdős bounds.
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Rudnev’s Proof

�

�

�

The 2-Chain

Theorem (Rudnev 2019)

Suppose that G is a graph on k � 3 vertices, then

n2

log3 n
À fG pnq À n2
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Rudnev’s Proof

Outline:

1 Counting Pairs via Guth–Katz

Cauchy–Schwarz Energy
Bound.
Convert to incidence problem.
Incidence bound.

2 Incidence bound
1 Double Partitioning

Lt,κ � LtpPκq
2 Low weight: Use result of De

Zeeuw
3 High weight: Put in high

degree surface, use result of
Sharir–Solomon.

� �

� �

� �

�

�

�
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Jonathan Passant (UoR) Erdős-Style Configurations July 21, 2021 32 / 46



Rudnev’s Incident Bound

Theorem (Rudnev 2019)

Let L be a set of lines with no more than |L|1{2 in any plane or regulus. If
Lt,κ are those lines of L that have rt, 2tq points with rκ, 2κq lines of L
through them, then

|Lt,κ| À |L|2
t2κ2

.

� �

� �

� �

Accounts for mass of
intersections over a line.

Gives an L2 bound on line
weights.

k-star requires Lk bound.
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Recall: Chain Result

Theorem (P. 2020)

Suppose that C pkq is a chain on k � 1 vertices then

nk�1

log
13
2
pk�1q n

À fCpkqpnq À
nk�1

logpk�1q{2 n
.

Proof Outline:

1 Cauchy–Schwarz Energy Bound

2 Incidence set up: Only Need Odd Chains
3 Incidence Bound:

Iterated Partitioning:

Lt2,...,tpk�1q{2
� Lt3,...,tpk�1q{2

� Ltpk�1q{2
� L.

Generalise Rudnev: Allows one to use global structure
Iterative Incidence Bound
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Incidence set up for the 3-Chain

Energy set up requires we count pairs of 3-chains.

�

�

�

�

p1

p2

p3

p4

�

�

�

�

p11

p12

p13

p14

lp1p11

lp2p12 lp3p13

lp4p14

�
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Counting from the Central Point

�

θ

We look at points Pt1pLt2q:
� t1 lines through θ, Each line has � t2 lines crossing it.

|P|8 Æ |∆Cp3qpPq|
¸
t1,t2

|Pt1pLt2q|t21 t22
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Longer Chains Require More Variables

�

�

�

�

�

�

�

�

�

�

�

�

lp1p11

lp2p12 lp3p13

lp4p14

lp5p15

lp6p16Ù

�θ

Pairs of 5-Chains

5 Chain thus requires 3 variables t1, t2, t3.
Need,

|Pt1pLt2,t3q|t21 t22 t33 À |L|7{2.

k-Chain needs k�1
2 variables. Require

|Pt1pLt2,...,tpk�1q{2
q|t21 � � � t2pk�1q{2 Æ |L|pk�2q{2.
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Counting Even Chains

�

�

�

�

�

p1

p2

p3

p4

p5

lp1p11

lp2p12 lp3p13

lp4p14lp5p15

l

Ù

�θ

lp1p11

lp2p12 lp3p13

lp4p14lp5p15

4-chain splits into red 5-chain
and blue 3-chain pieces.

Applying Cauchy–Schwarz and
odd-chain result suffices.
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Apply Guth-Katz: Points to Line-Line

We want to estimate |Pt1pLt2,...,tpk�1q{2
q|.

Theorem (Guth-Katz 2010)

Let L be a set of lines in R3, let s be a parameter so that |L|1{2 ¤ s and
no plane contains s lines of L. Let Pr be the set of points where at least r
of these lines meet. Then there is a constant r0 such that for r ¥ r0 we
have

|Pr | À |L|3{2
r2

� s|L|
r3

� |L|
r
.

Notice: Lt2,...,tpk�1q{2
� L.

|Pt1;t2,...,tpk�1q{2
| À |Lt2,...,tpk�1q{2

|3{2
t21

� |Lt2,...,tpk�1q{2
||L|1{2

t31
� |Lt2,...,tpk�1q{2

|
t1

.
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Global Structure

To use efficient incidence theorems in R3 you need bounds on lines in
planes and reguli.

Don’t want to track the structure of Lt2,...,tpk�1q{2
over the iterations.

Given we have nested subsets

Lt2,...,tpk�1q{2
� Lt3,...,tpk�1q{2

� Ltpk�1q{2
� L.

We use the global structure of L applied to the nested subsets.

So we have at most s � |L|1{2 lines of Lt2,...,tpk�1q{2
in any plane or

regulus.
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Generalised Rudnev: Global Structure

Theorem

Suppose that L is a set of lines so that we have no more than s ¥ |L|1{2
in any plane or regulus and no more that s ¥ |L|1{2 lines concurrent. Then
if Lκ,t are the lines of L that contain t points with κ lines of L through
them then we have

|Lκ,t | À |L|s2
κ2t2

� |L|s logpsq
κt

.

The second term comes from having worse control in linear
components.

Proof is essentially Rudnev’s with more bookkeeping. Over linear
components an additional argument is required.

Summing kt ¥ r provides the following Corollary.
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Rich Lines

Corollary

If L is a set of lines with no more than s ¥ |L|1{2 in any plane or regulus
then if Lr are the lines with at least r lines of L passing through them we
have

|Lr | À |L|s2 log2 |L|
r2

� |L|s log3 |L|
r

.

Recall:
Lt2,...,tpk�1q{2

� Lt3,...,tpk�1q{2
� Ltpk�1q{2

� L.

If s � |L|1{2 then r ¤ |L|1{2 first term, r ¥ |L|1{2 second term.

We partition the ti :

tia ¥ |L|1{2 and tib   |L|1{2.
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Iterative Lemma

Iterative Lemma

Let L be a line set in R3 with at most |L|1{2 lines in any regulus or plane
and at most |L|1{2 lines concurrent.
If there are α many tia and β many tib we have

|Lt1,...,tpk�1q{2
| À |L||L|α{2|L|β log2β�3α |L|±α

a�1 tia
±β

b�1 t
2
ib

.

As Pt1;t2,...,tpk�1q{2
� Pt1pLq, Guth-Katz gives

|Pt1;t2,...,tpk�1q{2
|pt1 � � � tpk�1q{2q2 À |L|3{2pt2 � � � tpk�1q{2q2.

Playing these two off yields the result.
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Summary of Proof

1 Cauchy–Schwarz energy argument Ñ counting pairs of chains.

2 Incidence problem: Counting from central point.

3 Even chains follow from odd.

4 Incidence Result:

Iterate line partitioning.
Use global structure to allow use of efficient results.
Generalised Rudnev

5 Carefully accounting of line weights and play off against Guth–Katz.
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Graphical Erdős Conjecture Summary

Conjecture (Iosevich-P. 2018)

Suppose that G is a connected graph on k � Op1q vertices, then for all
ε ¡ 0 we have

nk�1�ε À fG pnq À nk�1

Resolved for graphs with Hamiltonian paths and rigid graphs.

Unresolved for star graphs.

Logarithmic improvements can be made when loops are present.
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Thank you
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