Configurations and Erdős-Style Distance Problems

Jonathan Passant

Point Distriburtion Webinar

July 21, 2021

Jonathan Passant (UoR)

Erdős-Style Configurations

Rigid Graph Distances (joint with losevich)

- We prove tight bounds for rotational congruence Erdős problem on Configurations.
- We prove distance congruent bound for rigid graphs.
- We provide a graphical Erdős conjecture.
- Follows from Pinned-Distance Conjecture.

Rigid Graph Distances (joint with losevich)

- We prove tight bounds for rotational congruence Erdős problem on Configurations.
- We prove distance congruent bound for rigid graphs.
- We provide a graphical Erdős conjecture.
- Follows from Pinned-Distance Conjecture.

e Hamiltonian Graph Distances

- Expand Graphical Erdős conjecture to all graphs with Hamiltonian Paths.
- Give a generalised incidence bound.
- Iterative incidence bound.

What are Distances?

Figure: The distance |p - q|

< □ > < 同 >

э

What are Distances?

Take two points p and q in the plane, their distance is denoted by

p-q

Figure: The distance |p - q|

What are Distances?

Take two points p and q in the plane, their distance is denoted by

|p-q|

Figure: The distance |p - q|

If P is a set of points in the plane, we denote its set of distinct distances as

$$\Delta(P) = \{ |p-q| : p, q \in P \}.$$

Distinct Distances

Note that $\Delta(P)$ counts distinct distances.

Figure: Lattice Distances

Figure: 'Random' Set

Distinct Distances

Note that $\Delta(P)$ counts distinct distances.

Figure: Lattice Distances

Figure: 'Random' Set

< 17 ▶

Note

$$|\Delta(P)| \leqslant \binom{|P|}{2} \sim |P|^2$$

Jonathan Passant (UoR)

Erdős-Style Configurations

July 21, 2021

4 / 46

Definition

Let f(n) be the fewest distances a set of n points in the plane makes.

$$f(n) = \min_{P \subseteq \mathbb{R}^2; |P|=n} |\Delta(P)|$$

Definition

Let f(n) be the fewest distances a set of n points in the plane makes.

$$f(n) = \min_{P \subseteq \mathbb{R}^2; |P|=n} |\Delta(P)|$$

Definition

Let f(n) be the fewest distances a set of n points in the plane makes.

$$f(n) = \min_{P \subseteq \mathbb{R}^2; |P|=n} |\Delta(P)|$$

э

Erdős Distinct Distance Problem

Determine the asymptotic behaviour of f(n). Conjecture:

$$f(n) \sim \frac{n}{\sqrt{\log n}}.$$

6/46

Erdős Distinct Distance Problem

Determine the asymptotic behaviour of f(n). Conjecture:

$$f(n) \sim \frac{n}{\sqrt{\log n}}.$$

$$n^{1/2} \lesssim f(n) \lesssim \frac{n}{\sqrt{\log n}}.$$

Erdős Distinct Distance Problem

Determine the asymptotic behaviour of f(n). Conjecture:

$$f(n) \sim \frac{n}{\sqrt{\log n}}.$$

$$n^{1/2} \lesssim f(n) \lesssim \frac{n}{\sqrt{\log n}}.$$

Theorem (Guth-Katz 2010)

$$\frac{n}{\log n} \lesssim f(n) \lesssim \frac{n}{\sqrt{\log n}}$$

Jonathan Passant (UoR)

< A > <

Variants of the Distance Problem: Pinned Distances

Pinned Erdős Conjecture

In all point sets P of size n, there is a point from which the minimum number of distances are realised.

If one defines

$$f_{pin}(n) = \min_{P \subset \mathbb{R}^2; |P|=n} \max_{x \in P} |\{|x-p| : p \in P\}|$$

Variants of the Distance Problem: Pinned Distances

Pinned Erdős Conjecture

In all point sets P of size n, there is a point from which the minimum number of distances are realised.

If one defines

$$f_{pin}(n) = \min_{P \subset \mathbb{R}^2; |P| = n} \max_{x \in P} |\{|x - p| : p \in P\}|$$

Variants of the Distance Problem: Pinned Distances

Pinned Erdős Conjecture

In all point sets P of size n, there is a point from which the minimum number of distances are realised.

If one defines

$$f_{\mathsf{pin}}(n) = \min_{P \subset \mathbb{R}^2; |P| = n} \max_{x \in P} |\{|x - p| : p \in P\}|$$

- Distances realised at one point.
- Conjecture the same as without pin.

Theorem (Erdős 1946)

$$n^{1/2} \lesssim f_{pin}(n) \lesssim rac{n}{\sqrt{\log n}}$$

э

Theorem (Erdős 1946)

$$n^{1/2} \lesssim f_{pin}(n) \lesssim rac{n}{\sqrt{\log n}}.$$

Theorem (Katz–Tardos 2004)

$$n^{0.872...} \lesssim f_{pin}(n) \lesssim \frac{n}{\sqrt{\log n}}$$

Jonathan	Passant	(UoR)
----------	---------	-------

э

8/46

Jonas Pach asked the following question:

Let P be a set of n points. How many distinct classes of similar triangles are there with vertices in P?

Jonas Pach asked the following question:

Let P be a set of n points. How many distinct classes of similar triangles are there with vertices in P?

Jonas Pach asked the following question:

Let P be a set of n points. How many distinct classes of similar triangles are there with vertices in P?

Jonas Pach asked the following question:

Let P be a set of n points. How many distinct classes of similar triangles are there with vertices in P?

Theorem (Solymosi–Tardos 2007)

$$\frac{n^2}{\log(n)} \lesssim t_{sim}(n) \lesssim n^2.$$

Counted as one class of similar triangles

- (日)

æ

Counted as one class of similar triangles

Counted as two classes of congruent triangles

10/46

Counted as one class of similar triangles

Counted as two classes of congruent triangles

• Congruence doesn't allow one to scale.

Counted as one class of similar triangles

Counted as two classes of congruent triangles

• Congruence doesn't allow one to scale.

Theorem (Rudnev 2012) $n^2 \lesssim t_{cong}(n) \lesssim n^2.$

Larger Configurations

Six-point Configuration

Four-point Configurations

Different Notions of Congruence

< 行

э

12/46

Different Notions of Congruence

Different Notions of Congruence

Rotational Congruence: Relatively Simple

Let $M_k(P)$ be the number of congruence classes of non-singular k-tuples under the action of rigid motions.

$$m_k(n) = \min_{P \subseteq \mathbb{R}^2; |P|=n} |M_k(P)|$$

If k = 3 then $m_3(n) = t_{cong}(n)$, this is the congruent triangle problem.

Theorem (losevich–P. 2018)

If P is a set of n points in the plane, $k \ge 4$ then

$$n^{k-1} \lesssim m_k(n) \lesssim n^{k-1}.$$

13/46

Proof: Counting Configuration Pairs

We let v(t) be the number of k-tuples that realise the configuration $t \in M_k(P)$,

$$v(t) = |\{(p_1, \ldots, p_k) \in P^k : \overrightarrow{p} \text{ in cong. class } t\}|.$$

Then Cauchy-Schwarz tells us

$$|P|^{2k} = \left(\sum_{t\in M_k(P)} v(t)\right)^2 \leq |M_k(P)| \sum_t v^2(t).$$

Notice

$$\sum_{t} v^{2}(t) = |\{(\overrightarrow{p}, \overrightarrow{q}) \in P^{2k} : \overrightarrow{p} \text{ in same cong. class as } \overrightarrow{q}\}|.$$

Congruent Pairs as Rigid Motions

• By Definition:

 \overrightarrow{p} in same cong. class as $\overrightarrow{q} \iff \exists \theta$ such that $\overrightarrow{p} = \theta \overrightarrow{q}$.

- < - 🖓 ▶ - <

э

Congruent Pairs as Rigid Motions

• By Definition:

 \overrightarrow{p} in same cong. class as $\overrightarrow{q} \iff \exists \theta$ such that $\overrightarrow{p} = \theta \overrightarrow{q}$.

• We can see that $|P \cap \theta P| \ge k$ for any such motion.

Congruent Pairs as Rigid Motions

• By Definition:

 \overrightarrow{p} in same cong. class as $\overrightarrow{q} \iff \exists \theta$ such that $\overrightarrow{p} = \theta \overrightarrow{q}$.

We can see that |P ∩ θP| ≥ k for any such motion.
If |P ∩ θP| = r then θ contributes ~ r^k pairs.

15 / 46

Congruent Pairs as Rigid Motions

• By Definition:

 \overrightarrow{p} in same cong. class as $\overrightarrow{q} \iff \exists \theta$ such that $\overrightarrow{p} = \theta \overrightarrow{q}$.

- We can see that $|P \cap \theta P| \ge k$ for any such motion.
- If $|P \cap \theta P| = r$ then θ contributes $\sim r^k$ pairs.
- If $R_{=r}(P) = \{\theta : |P \cap \theta P| = r\}$ then

$$\sum_{t} v^{2}(t) \sim \sum_{r=k}^{|P|} r^{k} |R_{=r}(P)|.$$

Proof: Guth-Katz Lines

We use Guth-Katz lines, coming from rigid motions of the plane. Line $I_{pp'}$ represents all the rotations moving $p \xrightarrow{\theta} p'$.

Guth-Katz Incidences

Intersections give pairs

$$I_{pp'} \cap I_{qq'} \Leftrightarrow |p-q| = |p'-q'|$$

э

Theorem (Guth–Katz 2010)

Let L be a set of lines in \mathbb{R}^3 so that no more than $|L|^{1/2}$ lie in any plane or regulus. Then if $\mathcal{P}_r(L)$ are the points in \mathbb{R}^3 where at least r such lines meet we have

$$|\mathcal{P}_r(L)| \lesssim \frac{|L|^{3/2}}{r^2}.$$

$$L=\{I_{pq}:p,q\in P\}$$
, so $|L|=|P|^2.$ Thus,

$$|\mathcal{P}_r(L)| \lesssim \frac{|P|^3}{r^2}.$$

Putting this together

We count pairs using rigid motions:

$$|P|^{2k} = \left(\sum_{t \in M_k(P)} v(t)\right)^2 \leq |M_k(P)| \sum_t v^2(t) \sim |M_k(P)| \sum_{r=k}^{|P|} r^k |\mathcal{P}_{=r}(L)|.$$

Using $|\mathcal{P}_{=r}(L)| = |\mathcal{P}_{r}(L)| - |\mathcal{P}_{r-1}(L)|$ and telescoping (k > 2),

$$|P|^{2k} \lesssim |M_k(P)| \sum_{r=k}^{|P|} r^{k-1} |\mathcal{P}_r(L)| \lesssim |M_k(P)| \sum_{r=k}^{|P|} r^{k-3} |P|^3$$

 $\lesssim |M_k(P)| |P|^{k+1}.$

Image: A matrix and a matrix

3

Cauchy–Schwarz Energy Bound

Image: A matched block

æ

- Cauchy–Schwarz Energy Bound
- ② Energy to rigid motions

Image: A matrix

æ

- Cauchy–Schwarz Energy Bound
- 2 Energy to rigid motions
 - Congruence Definition → Uniform Rigid Motion

э

- Cauchy–Schwarz Energy Bound
- e Energy to rigid motions
 - Congruence Definition \rightarrow Uniform Rigid Motion
- 8 Rigid motions to Incidences

- Cauchy–Schwarz Energy Bound
- e Energy to rigid motions
 - Congruence Definition \rightarrow Uniform Rigid Motion
- 8 Rigid motions to Incidences
- Incidence Bound

Different Notions of Congruence

- (日)

æ

Different Notions of Congruence

Different Notions of Congruence

We use a k-vertex connected graph G to specify which edges we require to match.

$$\Delta_G(P) = \{ (|p_i - p_j|)_{\{i,j\} \in E(G)} : p_i, p_j \in P \}.$$

 $(\delta_1, \delta_2, \delta_3, \delta_4)$ counted in $\Delta_{C_4}(P)$

 $(\delta_1,\ldots,\delta_6)$ counted in $\Delta_{\mathcal{K}_4}(\mathcal{P})$

Graphical Erdős Conjecture

Let

$$f_G(n) = \min_{P \subseteq \mathbb{R}^2; |P|=n} |\Delta_G(P)|$$

Conjecture (losevich-P. 2018)

Suppose that G is a connected graph on k = O(1) vertices, then for all $\varepsilon > 0$ we have

$$n^{k-1-\varepsilon} \leq f_G(n) \leq n^{k-1}$$

• Upper bound obtained like similar triangles: on a line.

• ε necessary for e.g. 3-chains.

Rigidity Reduces to Rotational Congruence

Theorem (losevich-P. 2018)

Suppose that G is a connected graph on $4 \le k = O(1)$ vertices, then if G is minimally infinitesimally rigid we have

$$\frac{n^{k-1}}{\log(n)} \lesssim f_G(n).$$

Theorem (Chatzikonstantinou–losevich–Mkrtchyan–Pakianathan 2017)

If G is minimally infinitesimally rigid, then there is a positive proportion of non-degenerate pairs (\vec{p}, \vec{q}) where the following are equivalent:

- $|p_i p_j| = |q_i q_j|$ for all $\{i, j\} \in E(G)$.
- There is a unique rigid motion θ such that $\overrightarrow{p} = \theta \overrightarrow{q}$.

- We then run the same argument we saw for rotational congruence on this positive portion of pairs.
- Until the final part of the analysis works in any dimension.

Non-Rigid Graphs

The 2-Chain

Jonathan Passant ((UoR))
--------------------	-------	---

• • • • • • • •

æ

Non-Rigid Graphs

The 2-Chain

Theorem (Rudnev 2019)

Suppose that G is a graph on k = 3 vertices, then

$$\frac{n^2}{\log^3 n} \lesssim f_G(n) \lesssim \frac{n^2}{\log n}$$

Jonathan Passant (UoR)

< ∃⇒

< □ > < /□ >

э

Suppose that G is a connected graph on $4 \le k = O(1)$ vertices, then if G has a Hamiltonian path we have

$$\frac{n^{k-1}}{\log^{\frac{13}{2}(k-2)}n} \lesssim f_G(n) \lesssim n^{k-1}.$$

This is derived from the following result.

Theorem (P. 2020)

Suppose that C(k) is a chain on $4 \le k = O(1)$ vertices then

$$\frac{n^{k-1}}{\log^{\frac{13}{2}(k-2)}n} \lesssim f_{C(k)}(n) \lesssim \frac{n^{k-1}}{\log^{(k-1)/2}n}.$$

Image: A matrix and a matrix

Rigid Graph without a Hamiltonian Path

We note that it is easy to construct a rigid graph that has no Hamiltonian path.

Rigid Graph without a Hamiltonian Path

We note that it is easy to construct a rigid graph that has no Hamiltonian path.

Figure: A rigid graph with no Hamiltonian path

Suppose that C(k) is a chain on $4 \le k = O(1)$ vertices then

$$\frac{n^{k-1}}{\log^{\frac{13}{2}(k-2)}n} \lesssim f_{C(k)}(n) \lesssim \frac{n^{k-1}}{\log^{(k-1)/2}n}.$$

< A > <

æ

Suppose that C(k) is a chain on $4 \le k = O(1)$ vertices then

$$\frac{n^{k-1}}{\log^{\frac{13}{2}(k-2)}n} \lesssim f_{\mathcal{C}(k)}(n) \lesssim \frac{n^{k-1}}{\log^{(k-1)/2}n}.$$

 This resolves the graphical Erdős conjecture for a large class of graphs.

э

Suppose that C(k) is a chain on $4 \le k = O(1)$ vertices then

$$\frac{n^{k-1}}{\log^{\frac{13}{2}(k-2)}n} \lesssim f_{\mathcal{C}(k)}(n) \lesssim \frac{n^{k-1}}{\log^{(k-1)/2}n}.$$

- This resolves the graphical Erdős conjecture for a large class of graphs.
- Combining with the non-rigid result, star graphs seem the barrier to full resolution.

• Suffices to prove for spanning trees.

< □ > < 同 >

æ

- Suffices to prove for spanning trees.
- Currently no bound for *k*-stars, $k \ge 3$.

7-star

э

- Suffices to prove for spanning trees.
- Currently no bound for *k*-stars, $k \ge 3$.
- Estimates on the star give pinned Erdős bounds.

7-star

- Suffices to prove for spanning trees.
- Currently no bound for *k*-stars, $k \ge 3$.
- Estimates on the star give pinned Erdős bounds.
- 8-star and above beat Katz–Tardos.

7-star

Theorem (P. 2020, Stars give Pinned)

Establishing $n^{k-1-\varepsilon} \leq f_{k-star}(n)$ gives

$$n^{\frac{k-1}{k}-\varepsilon} \lesssim f_{pin}(n).$$

Rudnev's Proof

The 2-Chain

Theorem (Rudnev 2019)

Suppose that G is a graph on k = 3 vertices, then

$$\frac{n^2}{\log^3 n} \lesssim f_G(n) \lesssim n^2$$

Jonathan Passant (UoR)

→ ∃ →

Image: A matrix

э

Outline:

- Counting Pairs via Guth–Katz
 - Cauchy–Schwarz Energy Bound.
 - Convert to incidence problem.
 - Incidence bound.

э

Outline:

- Counting Pairs via Guth–Katz
 - Cauchy–Schwarz Energy Bound.
 - Convert to incidence problem.
 - Incidence bound.
- Incidence bound
 - Double Partitioning $L_{t,\kappa} = L_t(P_{\kappa})$
 - 2 Low weight: Use result of De Zeeuw
 - High weight: Put in high degree surface, use result of Sharir–Solomon.

Let L be a set of lines with no more than $|L|^{1/2}$ in any plane or regulus. If $L_{t,\kappa}$ are those lines of L that have [t,2t) points with $[\kappa,2\kappa)$ lines of L through them, then

$$|L_{t,\kappa}| \lesssim rac{|L|^2}{t^2\kappa^2}.$$

Let L be a set of lines with no more than $|L|^{1/2}$ in any plane or regulus. If $L_{t,\kappa}$ are those lines of L that have [t, 2t) points with $[\kappa, 2\kappa)$ lines of L through them, then

$$|L_{t,\kappa}| \lesssim \frac{|L|^2}{t^2 \kappa^2}$$

Let L be a set of lines with no more than $|L|^{1/2}$ in any plane or regulus. If $L_{t,\kappa}$ are those lines of L that have [t, 2t) points with $[\kappa, 2\kappa)$ lines of L through them, then

$$|L_{t,\kappa}| \lesssim \frac{|L|^2}{t^2 \kappa^2}$$

- Accounts for mass of intersections over a line.
- Gives an L² bound on line weights.

Let L be a set of lines with no more than $|L|^{1/2}$ in any plane or regulus. If $L_{t,\kappa}$ are those lines of L that have [t,2t) points with $[\kappa,2\kappa)$ lines of L through them, then

$$|L_{t,\kappa}| \lesssim \frac{|L|^2}{t^2\kappa^2}.$$

- Accounts for mass of intersections over a line.
- Gives an L² bound on line weights.
- k-star requires L^k bound.

Theorem (P. 2020)

Suppose that C(k) is a chain on k + 1 vertices then

$$\frac{n^{k-1}}{\log^{\frac{13}{2}(k-1)}n} \lesssim f_{C(k)}(n) \lesssim \frac{n^{k-1}}{\log^{(k-1)/2}n}$$

Proof Outline:

Cauchy–Schwarz Energy Bound

э

글 에 에 글 어 !!

< A > <

Theorem (P. 2020)

Suppose that C(k) is a chain on k + 1 vertices then

$$\frac{n^{k-1}}{\log^{\frac{13}{2}(k-1)}n} \lesssim f_{C(k)}(n) \lesssim \frac{n^{k-1}}{\log^{(k-1)/2}n}$$

Proof Outline:

- Cauchy–Schwarz Energy Bound
- 2 Incidence set up: Only Need Odd Chains

э

< ∃⇒

Theorem (P. 2020)

Suppose that C(k) is a chain on k + 1 vertices then

$$\frac{n^{k-1}}{\log^{\frac{13}{2}(k-1)}n} \lesssim f_{C(k)}(n) \lesssim \frac{n^{k-1}}{\log^{(k-1)/2}n}$$

Proof Outline:

- Cauchy–Schwarz Energy Bound
- Incidence set up: Only Need Odd Chains
- Incidence Bound:
 - Iterated Partitioning:

$$\mathcal{L}_{t_2,\ldots,t_{(k+1)/2}} \subseteq \mathcal{L}_{t_3,\ldots,t_{(k+1)/2}} \subseteq \mathcal{L}_{t_{(k+1)/2}} \subseteq \mathcal{L}_{t_{(k+1)/2}}$$

Theorem (P. 2020)

Suppose that C(k) is a chain on k + 1 vertices then

$$\frac{n^{k-1}}{\log^{\frac{13}{2}(k-1)}n} \lesssim f_{C(k)}(n) \lesssim \frac{n^{k-1}}{\log^{(k-1)/2}n}$$

Proof Outline:

- Cauchy–Schwarz Energy Bound
- Incidence set up: Only Need Odd Chains
- Incidence Bound:
 - Iterated Partitioning:

$$\mathcal{L}_{t_2,\ldots,t_{(k+1)/2}} \subseteq \mathcal{L}_{t_3,\ldots,t_{(k+1)/2}} \subseteq \mathcal{L}_{t_{(k+1)/2}} \subseteq L.$$

• Generalise Rudnev: Allows one to use global structure

Theorem (P. 2020)

Suppose that C(k) is a chain on k + 1 vertices then

$$\frac{n^{k-1}}{\log^{\frac{13}{2}(k-1)}n} \lesssim f_{C(k)}(n) \lesssim \frac{n^{k-1}}{\log^{(k-1)/2}n}$$

Proof Outline:

- Cauchy–Schwarz Energy Bound
- Incidence set up: Only Need Odd Chains
- Incidence Bound:
 - Iterated Partitioning:

$$\mathcal{L}_{t_2,\ldots,t_{(k+1)/2}} \subseteq \mathcal{L}_{t_3,\ldots,t_{(k+1)/2}} \subseteq \mathcal{L}_{t_{(k+1)/2}} \subseteq L.$$

- Generalise Rudnev: Allows one to use global structure
- Iterative Incidence Bound

Incidence set up for the 3-Chain

Energy set up requires we count pairs of 3-chains.

Counting from the Central Point

We look at points $\mathcal{P}_{t_1}(L_{t_2})$:

 $\sim t_1$ lines through heta, Each line has $\sim t_2$ lines crossing it.

$$|P|^8 \lesssim |\Delta_{C(3)}(P)| \sum_{t_1,t_2} |\mathcal{P}_{t_1}(L_{t_2})| t_1^2 t_2^2$$

Longer Chains Require More Variables

Pairs of 5-Chains

э

5 Chain thus requires 3 variables t_1, t_2, t_3 . Need,

$$|P_{t_1}(L_{t_2,t_3})|t_1^2t_2^2t_3^3 \lesssim |L|^{7/2}.$$

Pairs of 5-Chains

5 Chain thus requires 3 variables t_1, t_2, t_3 . Need,

$$|P_{t_1}(L_{t_2,t_3})|t_1^2t_2^2t_3^3 \lesssim |L|^{7/2}.$$

k-Chain needs $\frac{k+1}{2}$ variables. Require $|\mathcal{P}_{t_1}(L_{t_2,\dots,t_{(k+1)/2}})|t_1^2\cdots t_{(k+1)/2}^2 \lesssim |\mathcal{L}|^{(k+2)/2}.$

Pairs of 5-Chains

Counting Even Chains

- 4-chain splits into red 5-chain and blue 3-chain pieces.
- Applying Cauchy–Schwarz and odd-chain result suffices.

Apply Guth-Katz: Points to Line-Line

We want to estimate $|\mathcal{P}_{t_1}(L_{t_2,\ldots,t_{(k+1)/2}})|$.

Theorem (Guth-Katz 2010)

Let \mathcal{L} be a set of lines in \mathbb{R}^3 , let s be a parameter so that $|\mathcal{L}|^{1/2} \leq s$ and no plane contains s lines of \mathcal{L} . Let \mathcal{P}_r be the set of points where at least r of these lines meet. Then there is a constant r_0 such that for $r \geq r_0$ we have

$$|\mathcal{P}_r| \lesssim rac{|\mathcal{L}|^{3/2}}{r^2} + rac{s|\mathcal{L}|}{r^3} + rac{|\mathcal{L}|}{r}.$$

Notice: $\mathcal{L}_{t_2,...,t_{(k+1)/2}} \subseteq L$.

Apply Guth-Katz: Points to Line-Line

We want to estimate $|\mathcal{P}_{t_1}(L_{t_2,\ldots,t_{(k+1)/2}})|$.

Theorem (Guth-Katz 2010)

Let \mathcal{L} be a set of lines in \mathbb{R}^3 , let s be a parameter so that $|\mathcal{L}|^{1/2} \leq s$ and no plane contains s lines of \mathcal{L} . Let \mathcal{P}_r be the set of points where at least r of these lines meet. Then there is a constant r_0 such that for $r \geq r_0$ we have

$$|\mathcal{P}_r| \lesssim rac{|\mathcal{L}|^{3/2}}{r^2} + rac{s|\mathcal{L}|}{r^3} + rac{|\mathcal{L}|}{r}$$

Notice: $\mathcal{L}_{t_2,...,t_{(k+1)/2}} \subseteq L$.

$$|\mathcal{P}_{t_1;t_2,\ldots,t_{(k+1)/2}}| \lesssim \frac{|\mathcal{L}_{t_2,\ldots,t_{(k+1)/2}}|^{3/2}}{t_1^2} + \frac{|\mathcal{L}_{t_2,\ldots,t_{(k+1)/2}}||\mathcal{L}|^{1/2}}{t_1^3} + \frac{|\mathcal{L}_{t_2,\ldots,t_{(k+1)/2}}|}{t_1}.$$

• To use efficient incidence theorems in \mathbb{R}^3 you need bounds on lines in planes and reguli.

Global Structure

- $\bullet\,$ To use efficient incidence theorems in \mathbb{R}^3 you need bounds on lines in planes and reguli.
- Don't want to track the structure of $\mathcal{L}_{t_2,...,t_{(k+1)/2}}$ over the iterations.

- $\bullet\,$ To use efficient incidence theorems in \mathbb{R}^3 you need bounds on lines in planes and reguli.
- Don't want to track the structure of $\mathcal{L}_{t_2,...,t_{(k+1)/2}}$ over the iterations.
- Given we have nested subsets

$$\mathcal{L}_{t_2,\ldots,t_{(k+1)/2}} \subseteq \mathcal{L}_{t_3,\ldots,t_{(k+1)/2}} \subseteq \mathcal{L}_{t_{(k+1)/2}} \subseteq \mathcal{L}.$$

- $\bullet\,$ To use efficient incidence theorems in \mathbb{R}^3 you need bounds on lines in planes and reguli.
- Don't want to track the structure of $\mathcal{L}_{t_2,...,t_{(k+1)/2}}$ over the iterations.
- Given we have nested subsets

$$\mathcal{L}_{t_2,\ldots,t_{(k+1)/2}} \subseteq \mathcal{L}_{t_3,\ldots,t_{(k+1)/2}} \subseteq \mathcal{L}_{t_{(k+1)/2}} \subseteq \mathcal{L}.$$

• We use the global structure of *L* applied to the nested subsets.

- To use efficient incidence theorems in \mathbb{R}^3 you need bounds on lines in planes and reguli.
- Don't want to track the structure of $\mathcal{L}_{t_2,...,t_{(k+1)/2}}$ over the iterations.
- Given we have nested subsets

$$\mathcal{L}_{t_2,\ldots,t_{(k+1)/2}} \subseteq \mathcal{L}_{t_3,\ldots,t_{(k+1)/2}} \subseteq \mathcal{L}_{t_{(k+1)/2}} \subseteq \mathcal{L}.$$

- We use the global structure of *L* applied to the nested subsets.
- So we have at most $s = |L|^{1/2}$ lines of $\mathcal{L}_{t_2,...,t_{(k+1)/2}}$ in any plane or regulus.

Suppose that \mathcal{L} is a set of lines so that we have no more than $s \ge |\mathcal{L}|^{1/2}$ in any plane or regulus and no more that $s \ge |\mathcal{L}|^{1/2}$ lines concurrent. Then if $\mathcal{L}_{\kappa,t}$ are the lines of \mathcal{L} that contain t points with κ lines of \mathcal{L} through them then we have

$$|\mathcal{L}_{\kappa,t}| \lesssim rac{|\mathcal{L}|s^2}{\kappa^2 t^2} + rac{|\mathcal{L}|s\log(s)|}{\kappa t}.$$

Suppose that \mathcal{L} is a set of lines so that we have no more than $s \ge |\mathcal{L}|^{1/2}$ in any plane or regulus and no more that $s \ge |\mathcal{L}|^{1/2}$ lines concurrent. Then if $\mathcal{L}_{\kappa,t}$ are the lines of \mathcal{L} that contain t points with κ lines of \mathcal{L} through them then we have

$$\mathcal{L}_{\kappa,t}| \lesssim rac{|\mathcal{L}|s^2}{\kappa^2 t^2} + rac{|\mathcal{L}|s\log(s)}{\kappa t}.$$

• The second term comes from having worse control in linear components.

Suppose that \mathcal{L} is a set of lines so that we have no more than $s \ge |\mathcal{L}|^{1/2}$ in any plane or regulus and no more that $s \ge |\mathcal{L}|^{1/2}$ lines concurrent. Then if $\mathcal{L}_{\kappa,t}$ are the lines of \mathcal{L} that contain t points with κ lines of \mathcal{L} through them then we have

$$\mathcal{L}_{\kappa,t}| \lesssim rac{|\mathcal{L}|s^2}{\kappa^2 t^2} + rac{|\mathcal{L}|s\log(s)}{\kappa t}.$$

- The second term comes from having worse control in linear components.
- Proof is essentially Rudnev's with more bookkeeping. Over linear components an additional argument is required.

Suppose that \mathcal{L} is a set of lines so that we have no more than $s \ge |\mathcal{L}|^{1/2}$ in any plane or regulus and no more that $s \ge |\mathcal{L}|^{1/2}$ lines concurrent. Then if $\mathcal{L}_{\kappa,t}$ are the lines of \mathcal{L} that contain t points with κ lines of \mathcal{L} through them then we have

$$\mathcal{L}_{\kappa,t}| \lesssim rac{|\mathcal{L}|s^2}{\kappa^2 t^2} + rac{|\mathcal{L}|s\log(s)}{\kappa t}.$$

- The second term comes from having worse control in linear components.
- Proof is essentially Rudnev's with more bookkeeping. Over linear components an additional argument is required.
- Summing $kt \ge r$ provides the following Corollary.

Rich Lines

Corollary

If \mathcal{L} is a set of lines with no more than $s \ge |\mathcal{L}|^{1/2}$ in any plane or regulus then if \mathcal{L}_r are the lines with at least r lines of \mathcal{L} passing through them we have

$$|\mathcal{L}_r| \lesssim rac{|\mathcal{L}|s^2 \log^2 |\mathcal{L}|}{r^2} + rac{|\mathcal{L}|s \log^3 |\mathcal{L}|}{r}$$

Recall:

$$\mathcal{L}_{t_2,\ldots,t_{(k+1)/2}} \subseteq \mathcal{L}_{t_3,\ldots,t_{(k+1)/2}} \subseteq \mathcal{L}_{t_{(k+1)/2}} \subseteq L.$$

Corollary

If \mathcal{L} is a set of lines with no more than $s \ge |\mathcal{L}|^{1/2}$ in any plane or regulus then if \mathcal{L}_r are the lines with at least r lines of \mathcal{L} passing through them we have

$$|\mathcal{L}_r| \lesssim rac{|\mathcal{L}|s^2 \log^2 |\mathcal{L}|}{r^2} + rac{|\mathcal{L}|s \log^3 |\mathcal{L}|}{r}$$

Recall:

$$\mathcal{L}_{t_2,\ldots,t_{(k+1)/2}} \subseteq \mathcal{L}_{t_3,\ldots,t_{(k+1)/2}} \subseteq \mathcal{L}_{t_{(k+1)/2}} \subseteq L.$$

• If $s = |L|^{1/2}$ then $r \leq |L|^{1/2}$ first term, $r \geq |L|^{1/2}$ second term.

Corollary

If \mathcal{L} is a set of lines with no more than $s \ge |\mathcal{L}|^{1/2}$ in any plane or regulus then if \mathcal{L}_r are the lines with at least r lines of \mathcal{L} passing through them we have

$$|\mathcal{L}_r| \lesssim rac{|\mathcal{L}|s^2 \log^2 |\mathcal{L}|}{r^2} + rac{|\mathcal{L}|s \log^3 |\mathcal{L}|}{r}$$

Recall:

$$\mathcal{L}_{t_2,\ldots,t_{(k+1)/2}} \subseteq \mathcal{L}_{t_3,\ldots,t_{(k+1)/2}} \subseteq \mathcal{L}_{t_{(k+1)/2}} \subseteq L.$$

• If $s = |L|^{1/2}$ then $r \leq |L|^{1/2}$ first term, $r \geq |L|^{1/2}$ second term.

• We partition the *t_i*:

$$t_{i_a} \ge |L|^{1/2}$$
 and $t_{i_b} < |L|^{1/2}$.

Iterative Lemma

Let L be a line set in \mathbb{R}^3 with at most $|L|^{1/2}$ lines in any regulus or plane and at most $|L|^{1/2}$ lines concurrent. If there are α many t_{i_a} and β many t_{i_b} we have

$$\mathcal{L}_{t_1,...,t_{(k+1)/2}}| \lesssim rac{|L||L|^{lpha/2}|L|^{eta}\log^{2eta+3lpha}|L|}{\prod_{a=1}^{lpha}t_{i_a}\prod_{b=1}^{eta}t_{i_b}^2}.$$

• As $P_{t_1;t_2,...,t_{(k+1)/2}} \subseteq P_{t_1}(L)$, Guth-Katz gives

$$|P_{t_1;t_2,\ldots,t_{(k+1)/2}}|(t_1\cdots t_{(k+1)/2})^2 \lesssim |L|^{3/2}(t_2\cdots t_{(k+1)/2})^2.$$

• Playing these two off yields the result.

• Cauchy–Schwarz energy argument \rightarrow counting pairs of chains.

э

Image: A matched by the second sec

() Cauchy–Schwarz energy argument \rightarrow counting pairs of chains.

Incidence problem: Counting from central point.

() Cauchy–Schwarz energy argument \rightarrow counting pairs of chains.

- Incidence problem: Counting from central point.
- Seven chains follow from odd.

() Cauchy–Schwarz energy argument \rightarrow counting pairs of chains.

- Incidence problem: Counting from central point.
- Seven chains follow from odd.
- Incidence Result:
 - Iterate line partitioning.
 - Use global structure to allow use of efficient results.
 - Generalised Rudnev

() Cauchy–Schwarz energy argument \rightarrow counting pairs of chains.

- Incidence problem: Counting from central point.
- Seven chains follow from odd.
- Incidence Result:
 - Iterate line partitioning.
 - Use global structure to allow use of efficient results.
 - Generalised Rudnev

So Carefully accounting of line weights and play off against Guth-Katz.

Conjecture (losevich-P. 2018)

Suppose that G is a connected graph on k = O(1) vertices, then for all $\varepsilon > 0$ we have

$$n^{k-1-\varepsilon} \lesssim f_G(n) \lesssim n^{k-1}$$

- Resolved for graphs with Hamiltonian paths and rigid graphs.
- Unresolved for star graphs.
- Logarithmic improvements can be made when loops are present.

Thank you

・ロト ・四ト ・ヨト ・ヨト

2