Configurations and Erdős-Style Distance Problems

Jonathan Passant
Point Distriburtion Webinar

July 21, 2021

Summary of Results

(1) Rigid Graph Distances (joint with losevich)

- We prove tight bounds for rotational congruence Erdős problem on Configurations.
- We prove distance congruent bound for rigid graphs.
- We provide a graphical Erdős conjecture.
- Follows from Pinned-Distance Conjecture.

Summary of Results

(1) Rigid Graph Distances (joint with losevich)

- We prove tight bounds for rotational congruence Erdős problem on Configurations.
- We prove distance congruent bound for rigid graphs.
- We provide a graphical Erdős conjecture.
- Follows from Pinned-Distance Conjecture.
(2) Hamiltonian Graph Distances
- Expand Graphical Erdős conjecture to all graphs with Hamiltonian Paths.
- Give a generalised incidence bound.
- Iterative incidence bound.

What are Distances?

Figure: The distance $|p-q|$

What are Distances?

Take two points p and q in the plane, their distance is denoted by

$$
|p-q|
$$

Figure: The distance $|p-q|$

What are Distances?

Take two points p and q in the plane, their distance is denoted by

$$
|p-q|
$$

Figure: The distance $|p-q|$

If P is a set of points in the plane, we denote its set of distinct distances as

$$
\Delta(P)=\{|p-q|: p, q \in P\} .
$$

Distinct Distances

Note that $\Delta(P)$ counts distinct distances.

Figure: Lattice Distances

Figure: 'Random' Set

Distinct Distances

Note that $\Delta(P)$ counts distinct distances.

Figure: Lattice Distances

Figure: 'Random' Set

Note

$$
|\Delta(P)| \leqslant\binom{|P|}{2} \sim|P|^{2}
$$

Erdős Distinct Distance Problem

Definition

Let $f(n)$ be the fewest distances a set of n points in the plane makes.

$$
f(n)=\min _{P \subseteq \mathbb{R}^{2} ;|P|=n}|\Delta(P)|
$$

Erdős Distinct Distance Problem

Definition

Let $f(n)$ be the fewest distances a set of n points in the plane makes.

$$
f(n)=\min _{P \subseteq \mathbb{R}^{2} ;|P|=n}|\Delta(P)|
$$

Erdős Distinct Distance Problem

Definition

Let $f(n)$ be the fewest distances a set of n points in the plane makes.

$$
f(n)=\min _{P \subseteq \mathbb{R}^{2} ;|P|=n}|\Delta(P)|
$$

Erdős Distinct Distance Problem

Erdős Distinct Distance Problem

Determine the asymptotic behaviour of $f(n)$. Conjecture:

$$
f(n) \sim \frac{n}{\sqrt{\log n}}
$$

Erdős Distinct Distance Problem

Erdős Distinct Distance Problem

Determine the asymptotic behaviour of $f(n)$. Conjecture:

$$
f(n) \sim \frac{n}{\sqrt{\log n}}
$$

Theorem (Erdős 1946)

$$
n^{1 / 2} \lesssim f(n) \lesssim \frac{n}{\sqrt{\log n}}
$$

Erdős Distinct Distance Problem

Erdős Distinct Distance Problem

Determine the asymptotic behaviour of $f(n)$. Conjecture:

$$
f(n) \sim \frac{n}{\sqrt{\log n}}
$$

Theorem (Erdős 1946)

$$
n^{1 / 2} \lesssim f(n) \lesssim \frac{n}{\sqrt{\log n}}
$$

Theorem (Guth-Katz 2010)

$$
\frac{n}{\log n} \lesssim f(n) \lesssim \frac{n}{\sqrt{\log n}}
$$

Variants of the Distance Problem: Pinned Distances

Pinned Erdős Conjecture

In all point sets P of size n, there is a point from which the minimum number of distances are realised.

If one defines

$$
f_{\text {pin }}(n)=\min _{P \subset \mathbb{R}^{2} ;|P|=n} \max _{x \in P}|\{|x-p|: p \in P\}|
$$

Variants of the Distance Problem: Pinned Distances

Pinned Erdős Conjecture

In all point sets P of size n, there is a point from which the minimum number of distances are realised.

If one defines

$$
f_{\text {pin }}(n)=\min _{P \subset \mathbb{R}^{2} ;|P|=n} \max _{x \in P}|\{|x-p|: p \in P\}|
$$

Variants of the Distance Problem: Pinned Distances

Pinned Erdős Conjecture

In all point sets P of size n, there is a point from which the minimum number of distances are realised.

If one defines

$$
f_{\text {pin }}(n)=\min _{P \subset \mathbb{R}^{2} ;|P|=n} \max _{x \in P}|\{|x-p|: p \in P\}|
$$

- Distances realised at one point.
- Conjecture the same as without pin.

Pinned Distances Results

Theorem (Erdős 1946)

$$
n^{1 / 2} \lesssim f_{p i n}(n) \lesssim \frac{n}{\sqrt{\log n}}
$$

Pinned Distances Results

Theorem (Erdős 1946)

$$
n^{1 / 2} \lesssim f_{p i n}(n) \lesssim \frac{n}{\sqrt{\log n}}
$$

Theorem (Katz-Tardos 2004)

$$
n^{0.872 \ldots} \lesssim f_{\text {pin }}(n) \lesssim \frac{n}{\sqrt{\log n}} .
$$

Triangle Questions

Jonas Pach asked the following question:
Let P be a set of n points. How many distinct classes of similar triangles are there with vertices in P ?

Triangle Questions

Jonas Pach asked the following question:
Let P be a set of n points. How many distinct classes of similar triangles are there with vertices in P ?

Triangle Questions

Jonas Pach asked the following question:
Let P be a set of n points. How many distinct classes of similar triangles are there with vertices in P ?

Triangle Questions

Jonas Pach asked the following question:
Let P be a set of n points. How many distinct classes of similar triangles are there with vertices in P ?

Theorem (Solymosi-Tardos 2007)

$$
\frac{n^{2}}{\log (n)} \lesssim t_{\operatorname{sim}}(n) \lesssim n^{2}
$$

Congruent Triangles

Counted as one class of similar triangles

Congruent Triangles

Counted as one class of similar triangles

Counted as two classes of congruent triangles

Congruent Triangles

Counted as one class of similar triangles

Counted as two classes of congruent triangles

- Congruence doesn't allow one to scale.

Congruent Triangles

Counted as one class of similar triangles

Counted as two classes of congruent triangles

- Congruence doesn't allow one to scale.

Theorem (Rudnev 2012)

$$
n^{2} \lesssim t_{\text {cong }}(n) \lesssim n^{2}
$$

Larger Configurations

Six-point Configuration
Four-point Configurations

Different Notions of Congruence

Different Notions of Congruence

Same distances,
no uniform θ

Different Notions of Congruence

Rotation θ

Same distances,
no uniform θ

Rotational Congruence: Relatively Simple

Let $M_{k}(P)$ be the number of congruence classes of non-singular k-tuples under the action of rigid motions.

$$
m_{k}(n)=\min _{P \subseteq \mathbb{R}^{2} ;|P|=n}\left|M_{k}(P)\right|
$$

If $k=3$ then $m_{3}(n)=t_{\text {cong }}(n)$, this is the congruent triangle problem.

Theorem (losevich-P. 2018)

If P is a set of n points in the plane, $k \geqslant 4$ then

$$
n^{k-1} \lesssim m_{k}(n) \lesssim n^{k-1}
$$

Proof: Counting Configuration Pairs

We let $v(t)$ be the number of k-tuples that realise the configuration $t \in M_{k}(P)$,

$$
v(t)=\mid\left\{\left(p_{1}, \ldots, p_{k}\right) \in P^{k}: \vec{p} \text { in cong. class } t\right\} \mid
$$

Then Cauchy-Schwarz tells us

$$
|P|^{2 k}=\left(\sum_{t \in M_{k}(P)} v(t)\right)^{2} \leqslant\left|M_{k}(P)\right| \sum_{t} v^{2}(t)
$$

Notice

$$
\sum_{t} v^{2}(t)=\mid\left\{(\vec{p}, \vec{q}) \in P^{2 k}: \vec{p} \text { in same cong. class as } \vec{q}\right\} \mid .
$$

Congruent Pairs as Rigid Motions

- By Definition:
\vec{p} in same cong. class as $\vec{q} \Longleftrightarrow \exists \theta$ such that $\vec{p}=\theta \vec{q}$.

Congruent Pairs as Rigid Motions

- By Definition:

$$
\vec{p} \text { in same cong. class as } \vec{q} \Longleftrightarrow \exists \theta \text { such that } \vec{p}=\theta \vec{q} .
$$

$\xrightarrow{\text { Rotation } \theta}$

- We can see that $|P \cap \theta P| \geqslant k$ for any such motion.

Congruent Pairs as Rigid Motions

- By Definition:

$$
\vec{p} \text { in same cong. class as } \vec{q} \Longleftrightarrow \exists \theta \text { such that } \vec{p}=\theta \vec{q} .
$$

$\xrightarrow{\text { Rotation } \theta}$

- We can see that $|P \cap \theta P| \geqslant k$ for any such motion.
- If $|P \cap \theta P|=r$ then θ contributes $\sim r^{k}$ pairs.

Congruent Pairs as Rigid Motions

- By Definition:

$$
\vec{p} \text { in same cong. class as } \vec{q} \Longleftrightarrow \exists \theta \text { such that } \vec{p}=\theta \vec{q} .
$$

- We can see that $|P \cap \theta P| \geqslant k$ for any such motion.
- If $|P \cap \theta P|=r$ then θ contributes $\sim r^{k}$ pairs.
- If $R_{=r}(P)=\{\theta:|P \cap \theta P|=r\}$ then

$$
\sum_{t} v^{2}(t) \sim \sum_{r=k}^{|P|} r^{k}\left|R_{=r}(P)\right| .
$$

Proof: Guth-Katz Lines

We use Guth-Katz lines, coming from rigid motions of the plane. Line $I_{p p^{\prime}}$ represents all the rotations moving $p \xrightarrow{\theta} p^{\prime}$.

Guth-Katz Incidences

Intersections give pairs

$$
I_{p p^{\prime}} \cap I_{q q^{\prime}} \Leftrightarrow|p-q|=\left|p^{\prime}-q^{\prime}\right|
$$

Guth-Katz Bound

Theorem (Guth-Katz 2010)

Let L be a set of lines in \mathbb{R}^{3} so that no more than $|L|^{1 / 2}$ lie in any plane or regulus. Then if $\mathcal{P}_{r}(L)$ are the points in \mathbb{R}^{3} where at least r such lines meet we have

$$
\left|\mathcal{P}_{r}(L)\right| \lesssim \frac{|L|^{3 / 2}}{r^{2}}
$$

$$
L=\left\{I_{p q}: p, q \in P\right\}, \text { so }|L|=|P|^{2} .
$$

Thus,

$$
\left|\mathcal{P}_{r}(L)\right| \lesssim \frac{|P|^{3}}{r^{2}}
$$

Putting this together

We count pairs using rigid motions:

$$
|P|^{2 k}=\left(\sum_{t \in M_{k}(P)} v(t)\right)^{2} \leqslant\left|M_{k}(P)\right| \sum_{t} v^{2}(t) \sim\left|M_{k}(P)\right| \sum_{r=k}^{|P|} r^{k}\left|\mathcal{P}_{=r}(L)\right| .
$$

Using $\left|\mathcal{P}_{=r}(L)\right|=\left|\mathcal{P}_{r}(L)\right|-\left|\mathcal{P}_{r-1}(L)\right|$ and telescoping ($k>2$),

$$
\begin{aligned}
|P|^{2 k} & \lesssim\left|M_{k}(P)\right| \sum_{r=k}^{|P|} r^{k-1}\left|\mathcal{P}_{r}(L)\right| \lesssim\left|M_{k}(P)\right| \sum_{r=k}^{|P|} r^{k-3}|P|^{3} \\
& \lesssim\left|M_{k}(P)\right||P|^{k+1} .
\end{aligned}
$$

Proof Summary

(1) Cauchy-Schwarz Energy Bound

Proof Summary

(1) Cauchy-Schwarz Energy Bound
(2) Energy to rigid motions

Proof Summary

(1) Cauchy-Schwarz Energy Bound
(2) Energy to rigid motions

- Congruence Definition \rightarrow Uniform Rigid Motion

Proof Summary

(1) Cauchy-Schwarz Energy Bound
(2) Energy to rigid motions

- Congruence Definition \rightarrow Uniform Rigid Motion
(3) Rigid motions to Incidences

Proof Summary

(1) Cauchy-Schwarz Energy Bound
(2) Energy to rigid motions

- Congruence Definition \rightarrow Uniform Rigid Motion
(3) Rigid motions to Incidences
(9) Incidence Bound

Different Notions of Congruence

Different Notions of Congruence

Same distances,
no uniform θ

Different Notions of Congruence

Rotation θ

Same distances,
no uniform θ

Distance Congruence

We use a k-vertex connected graph G to specify which edges we require to match.

$$
\Delta_{G}(P)=\left\{\left(\left|p_{i}-p_{j}\right|\right)_{\{i, j\} \in E(G)}: p_{i}, p_{j} \in P\right\} .
$$

$\left(\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}\right)$ counted in $\Delta_{C_{4}}(P)$
$\left(\delta_{1}, \ldots, \delta_{6}\right)$ counted in $\Delta_{K_{4}}(P)$

Graphical Erdős Conjecture

Let

$$
f_{G}(n)=\min _{P \subseteq \mathbb{R}^{2} ;|P|=n}\left|\Delta_{G}(P)\right|
$$

Conjecture (losevich-P. 2018)

Suppose that G is a connected graph on $k=O(1)$ vertices, then for all $\varepsilon>0$ we have

$$
n^{k-1-\varepsilon} \lesssim f_{G}(n) \lesssim n^{k-1}
$$

- Upper bound obtained like similar triangles: on a line.
- ε necessary for e.g. 3-chains.

Rigidity Reduces to Rotational Congruence

Theorem (losevich-P. 2018)

Suppose that G is a connected graph on $4 \leqslant k=O(1)$ vertices, then if G is minimally infinitesimally rigid we have

$$
\frac{n^{k-1}}{\log (n)} \lesssim f_{G}(n)
$$

Figure: Rigid Graph
Figure: Non-rigid Graph

Proof

Theorem (Chatzikonstantinou-losevich-Mkrtchyan-Pakianathan 2017)

If G is minimally infinitesimally rigid, then there is a positive proportion of non-degenerate pairs (\vec{p}, \vec{q}) where the following are equivalent:

- $\left|p_{i}-p_{j}\right|=\left|q_{i}-q_{j}\right|$ for all $\{i, j\} \in E(G)$.
- There is a unique rigid motion θ such that $\vec{p}=\theta \vec{q}$.
- We then run the same argument we saw for rotational congruence on this positive portion of pairs.
- Until the final part of the analysis works in any dimension.

Non-Rigid Graphs

The 2-Chain

Non-Rigid Graphs

The 2-Chain

Theorem (Rudnev 2019)
Suppose that G is a graph on $k=3$ vertices, then

$$
\frac{n^{2}}{\log ^{3} n} \lesssim f_{G}(n) \lesssim \frac{n^{2}}{\log n}
$$

New Non-Rigid Results

Theorem (P. 2020)

Suppose that G is a connected graph on $4 \leqslant k=O(1)$ vertices, then if G has a Hamiltonian path we have

$$
\frac{n^{k-1}}{\log ^{\frac{13}{2}(k-2)} n} \lesssim f_{G}(n) \lesssim n^{k-1}
$$

This is derived from the following result.

Theorem (P. 2020)

Suppose that $C(k)$ is a chain on $4 \leqslant k=O(1)$ vertices then

$$
\frac{n^{k-1}}{\log ^{\frac{13}{2}(k-2)} n} \lesssim f_{C(k)}(n) \lesssim \frac{n^{k-1}}{\log ^{(k-1) / 2} n}
$$

Rigid Graph without a Hamiltonian Path

We note that it is easy to construct a rigid graph that has no Hamiltonian path.

Rigid Graph without a Hamiltonian Path

We note that it is easy to construct a rigid graph that has no Hamiltonian path.

Figure: A rigid graph with no Hamiltonian path

New Non-Rigid Results

Theorem (P. 2020)
Suppose that $C(k)$ is a chain on $4 \leqslant k=O(1)$ vertices then

$$
\frac{n^{k-1}}{\log ^{\frac{13}{2}(k-2)} n} \lesssim f_{C(k)}(n) \lesssim \frac{n^{k-1}}{\log ^{(k-1) / 2} n}
$$

New Non-Rigid Results

Theorem (P. 2020)

Suppose that $C(k)$ is a chain on $4 \leqslant k=O(1)$ vertices then

$$
\frac{n^{k-1}}{\log ^{\frac{13}{2}(k-2)} n} \lesssim f_{C(k)}(n) \lesssim \frac{n^{k-1}}{\log ^{(k-1) / 2} n}
$$

- This resolves the graphical Erdős conjecture for a large class of graphs.

New Non-Rigid Results

Theorem (P. 2020)

Suppose that $C(k)$ is a chain on $4 \leqslant k=O(1)$ vertices then

$$
\frac{n^{k-1}}{\log ^{\frac{13}{2}(k-2)} n} \lesssim f_{C(k)}(n) \lesssim \frac{n^{k-1}}{\log ^{(k-1) / 2} n}
$$

- This resolves the graphical Erdős conjecture for a large class of graphs.
- Combining with the non-rigid result, star graphs seem the barrier to full resolution.

Barrier to Full Conjecture

- Suffices to prove for spanning trees.

Barrier to Full Conjecture

- Suffices to prove for spanning trees.
- Currently no bound for k-stars, $k \geqslant 3$.

7-star

Barrier to Full Conjecture

- Suffices to prove for spanning trees.
- Currently no bound for k-stars, $k \geqslant 3$.
- Estimates on the star give pinned Erdős bounds.

7-star

Barrier to Full Conjecture

- Suffices to prove for spanning trees.
- Currently no bound for k-stars, $k \geqslant 3$.
- Estimates on the star give pinned Erdős bounds.
- 8-star and above beat
 Katz-Tardos.

Theorem (P. 2020, Stars give Pinned)

Establishing $n^{k-1-\varepsilon} \lesssim f_{k-s t a r}(n)$ gives

$$
n^{\frac{k-1}{k}-\varepsilon} \lesssim f_{p i n}(n)
$$

Rudnev's Proof

The 2-Chain

Theorem (Rudnev 2019)
Suppose that G is a graph on $k=3$ vertices, then

$$
\frac{n^{2}}{\log ^{3} n} \lesssim f_{G}(n) \lesssim n^{2}
$$

Rudnev's Proof

Outline:
(1) Counting Pairs via Guth-Katz

- Cauchy-Schwarz Energy Bound.
- Convert to incidence problem.
- Incidence bound.

Rudnev's Proof

Outline:
(1) Counting Pairs via Guth-Katz

- Cauchy-Schwarz Energy Bound.
- Convert to incidence problem.
- Incidence bound.

(2) Incidence bound
(1) Double Partitioning
$L_{t, \kappa}=L_{t}\left(P_{\kappa}\right)$
(2) Low weight: Use result of De Zeeuw
(3) High weight: Put in high degree surface, use result of
 Sharir-Solomon.

Rudnev's Incident Bound

Theorem (Rudnev 2019)

Let L be a set of lines with no more than $|L|^{1 / 2}$ in any plane or regulus. If $L_{t, \kappa}$ are those lines of L that have $[t, 2 t)$ points with $[\kappa, 2 \kappa)$ lines of L through them, then

$$
\left|L_{t, \kappa}\right| \lesssim \frac{|L|^{2}}{t^{2} \kappa^{2}}
$$

Rudnev's Incident Bound

Theorem (Rudnev 2019)

Let L be a set of lines with no more than $|L|^{1 / 2}$ in any plane or regulus. If $L_{t, \kappa}$ are those lines of L that have $[t, 2 t)$ points with $[\kappa, 2 \kappa)$ lines of L through them, then

$$
\left|L_{t, \kappa}\right| \lesssim \frac{|L|^{2}}{t^{2} \kappa^{2}}
$$

- Accounts for mass of intersections over a line.

Rudnev's Incident Bound

Theorem (Rudnev 2019)

Let L be a set of lines with no more than $|L|^{1 / 2}$ in any plane or regulus. If $L_{t, \kappa}$ are those lines of L that have $[t, 2 t)$ points with $[\kappa, 2 \kappa)$ lines of L through them, then

$$
\left|L_{t, \kappa}\right| \lesssim \frac{|L|^{2}}{t^{2} \kappa^{2}}
$$

- Accounts for mass of intersections over a line.
- Gives an L^{2} bound on line weights.

Rudnev's Incident Bound

Theorem (Rudnev 2019)

Let L be a set of lines with no more than $|L|^{1 / 2}$ in any plane or regulus. If $L_{t, \kappa}$ are those lines of L that have $[t, 2 t)$ points with $[\kappa, 2 \kappa)$ lines of L through them, then

$$
\left|L_{t, \kappa}\right| \lesssim \frac{|L|^{2}}{t^{2} \kappa^{2}}
$$

- Accounts for mass of intersections over a line.
- Gives an L^{2} bound on line weights.
- k-star requires L^{k} bound.

Recall: Chain Result

Theorem (P. 2020)
Suppose that $C(k)$ is a chain on $k+1$ vertices then

$$
\frac{n^{k-1}}{\log ^{\frac{13}{2}(k-1)} n} \lesssim f_{C(k)}(n) \lesssim \frac{n^{k-1}}{\log ^{(k-1) / 2} n}
$$

Proof Outline:
(1) Cauchy-Schwarz Energy Bound

Recall: Chain Result

Theorem (P. 2020)

Suppose that $C(k)$ is a chain on $k+1$ vertices then

$$
\frac{n^{k-1}}{\log ^{\frac{13}{2}(k-1)} n} \lesssim f_{C(k)}(n) \lesssim \frac{n^{k-1}}{\log ^{(k-1) / 2} n}
$$

Proof Outline:
(1) Cauchy-Schwarz Energy Bound
(2) Incidence set up: Only Need Odd Chains

Recall: Chain Result

Theorem (P. 2020)

Suppose that $C(k)$ is a chain on $k+1$ vertices then

$$
\frac{n^{k-1}}{\log ^{\frac{13}{2}(k-1)} n} \lesssim f_{C(k)}(n) \lesssim \frac{n^{k-1}}{\log ^{(k-1) / 2} n}
$$

Proof Outline:
(1) Cauchy-Schwarz Energy Bound
(2) Incidence set up: Only Need Odd Chains
(3) Incidence Bound:

- Iterated Partitioning:

$$
\mathcal{L}_{t_{2}, \ldots, t_{(k+1) / 2}} \subseteq \mathcal{L}_{t_{3}, \ldots, t_{(k+1) / 2}} \subseteq \mathcal{L}_{t_{(k+1) / 2}} \subseteq L
$$

Recall: Chain Result

Theorem (P. 2020)

Suppose that $C(k)$ is a chain on $k+1$ vertices then

$$
\frac{n^{k-1}}{\log ^{\frac{13}{2}(k-1)} n} \lesssim f_{C(k)}(n) \lesssim \frac{n^{k-1}}{\log ^{(k-1) / 2} n}
$$

Proof Outline:
(1) Cauchy-Schwarz Energy Bound
(2) Incidence set up: Only Need Odd Chains
(3) Incidence Bound:

- Iterated Partitioning:

$$
\mathcal{L}_{t_{2}, \ldots, t_{(k+1) / 2}} \subseteq \mathcal{L}_{t_{3}, \ldots, t_{(k+1) / 2}} \subseteq \mathcal{L}_{t_{(k+1) / 2}} \subseteq L
$$

- Generalise Rudnev: Allows one to use global structure

Recall: Chain Result

Theorem (P. 2020)

Suppose that $C(k)$ is a chain on $k+1$ vertices then

$$
\frac{n^{k-1}}{\log ^{\frac{13}{2}(k-1)} n} \lesssim f_{C(k)}(n) \lesssim \frac{n^{k-1}}{\log ^{(k-1) / 2} n}
$$

Proof Outline:
(1) Cauchy-Schwarz Energy Bound
(2) Incidence set up: Only Need Odd Chains
(3) Incidence Bound:

- Iterated Partitioning:

$$
\mathcal{L}_{t_{2}, \ldots, t_{(k+1) / 2}} \subseteq \mathcal{L}_{t_{3}, \ldots, t_{(k+1) / 2}} \subseteq \mathcal{L}_{t_{(k+1) / 2}} \subseteq L
$$

- Generalise Rudnev: Allows one to use global structure
- Iterative Incidence Bound

Incidence set up for the 3-Chain

Energy set up requires we count pairs of 3-chains.

Counting from the Central Point

We look at points $\mathcal{P}_{t_{1}}\left(L_{t_{2}}\right)$:
$\sim t_{1}$ lines through θ, Each line has $\sim t_{2}$ lines crossing it.

$$
|P|^{8} \lesssim\left|\Delta_{C(3)}(P)\right| \sum_{t_{1}, t_{2}}\left|\mathcal{P}_{t_{1}}\left(L_{t_{2}}\right)\right| t_{1}^{2} t_{2}^{2}
$$

Longer Chains Require More Variables

Pairs of 5-Chains

Longer Chains Require More Variables

5 Chain thus requires 3 variables t_{1}, t_{2}, t_{3}. Need,

$$
\left|P_{t_{1}}\left(L_{t_{2}, t_{3}}\right)\right| t_{1}^{2} t_{2}^{2} t_{3}^{3} \lesssim|L|^{7 / 2}
$$

Pairs of 5-Chains

Longer Chains Require More Variables

5 Chain thus requires 3 variables t_{1}, t_{2}, t_{3}. Need,

$$
\left|P_{t_{1}}\left(L_{t_{2}, t_{3}}\right)\right| t_{1}^{2} t_{2}^{2} t_{3}^{3} \lesssim|L|^{7 / 2}
$$

k-Chain needs $\frac{k+1}{2}$ variables. Require

$$
\left|\mathcal{P}_{t_{1}}\left(L_{t_{2}, \ldots, t_{(k+1) / 2}}\right)\right| t_{1}^{2} \cdots t_{(k+1) / 2}^{2} \lesssim|L|^{(k+2) / 2}
$$

Pairs of 5-Chains

Counting Even Chains

- 4-chain splits into red 5-chain and blue 3 -chain pieces.
- Applying Cauchy-Schwarz and odd-chain result suffices.

Apply Guth-Katz: Points to Line-Line

We want to estimate $\left|\mathcal{P}_{t_{1}}\left(L_{t_{2}, \ldots, t_{(k+1) / 2}}\right)\right|$.

Theorem (Guth-Katz 2010)

Let \mathcal{L} be a set of lines in \mathbb{R}^{3}, let s be a parameter so that $|\mathcal{L}|^{1 / 2} \leqslant s$ and no plane contains s lines of \mathcal{L}. Let \mathcal{P}_{r} be the set of points where at least r of these lines meet. Then there is a constant r_{0} such that for $r \geqslant r_{0}$ we have

$$
\left|\mathcal{P}_{r}\right| \lesssim \frac{|\mathcal{L}|^{3 / 2}}{r^{2}}+\frac{s|\mathcal{L}|}{r^{3}}+\frac{|\mathcal{L}|}{r} .
$$

Notice: $\mathcal{L}_{t_{2}, \ldots, t_{(k+1) / 2}} \subseteq L$.

Apply Guth-Katz: Points to Line-Line

We want to estimate $\left|\mathcal{P}_{t_{1}}\left(L_{t_{2}, \ldots, t_{(k+1) / 2}}\right)\right|$.

Theorem (Guth-Katz 2010)

Let \mathcal{L} be a set of lines in \mathbb{R}^{3}, let s be a parameter so that $|\mathcal{L}|^{1 / 2} \leqslant s$ and no plane contains s lines of \mathcal{L}. Let \mathcal{P}_{r} be the set of points where at least r of these lines meet. Then there is a constant r_{0} such that for $r \geqslant r_{0}$ we have

$$
\left|\mathcal{P}_{r}\right| \lesssim \frac{|\mathcal{L}|^{3 / 2}}{r^{2}}+\frac{s|\mathcal{L}|}{r^{3}}+\frac{|\mathcal{L}|}{r} .
$$

Notice: $\mathcal{L}_{t_{2}, \ldots, t_{(k+1) / 2}} \subseteq L$.
$\left|\mathcal{P}_{t_{1} ; t_{2}, \ldots, t_{(k+1) / 2}}\right| \lesssim \frac{\left|\mathcal{L}_{t_{2}, \ldots, t_{(k+1) / 2}}\right|^{3 / 2}}{t_{1}^{2}}+\frac{\left|\mathcal{L}_{t_{2}, \ldots, t_{(k+1) / 2}}\right||L|^{1 / 2}}{t_{1}^{3}}+\frac{\left|\mathcal{L}_{t_{2}, \ldots, t_{(k+1) / 2}}\right|}{t_{1}}$.

Global Structure

- To use efficient incidence theorems in \mathbb{R}^{3} you need bounds on lines in planes and reguli.

Global Structure

- To use efficient incidence theorems in \mathbb{R}^{3} you need bounds on lines in planes and reguli.
- Don't want to track the structure of $\mathcal{L}_{t_{2}, \ldots, t_{(k+1) / 2}}$ over the iterations.

Global Structure

- To use efficient incidence theorems in \mathbb{R}^{3} you need bounds on lines in planes and reguli.
- Don't want to track the structure of $\mathcal{L}_{t_{2}, \ldots, t_{(k+1) / 2}}$ over the iterations.
- Given we have nested subsets

$$
\mathcal{L}_{t_{2}, \ldots, t_{(k+1) / 2}} \subseteq \mathcal{L}_{t_{3}, \ldots, t_{(k+1) / 2}} \subseteq \mathcal{L}_{t_{(k+1) / 2}} \subseteq L
$$

Global Structure

- To use efficient incidence theorems in \mathbb{R}^{3} you need bounds on lines in planes and reguli.
- Don't want to track the structure of $\mathcal{L}_{t_{2}, \ldots, t_{(k+1) / 2}}$ over the iterations.
- Given we have nested subsets

$$
\mathcal{L}_{t_{2}, \ldots, t_{(k+1) / 2}} \subseteq \mathcal{L}_{t_{3}, \ldots, t_{(k+1) / 2}} \subseteq \mathcal{L}_{t_{(k+1) / 2}} \subseteq L
$$

- We use the global structure of L applied to the nested subsets.

Global Structure

- To use efficient incidence theorems in \mathbb{R}^{3} you need bounds on lines in planes and reguli.
- Don't want to track the structure of $\mathcal{L}_{t_{2}, \ldots, t_{(k+1) / 2}}$ over the iterations.
- Given we have nested subsets

$$
\mathcal{L}_{t_{2}, \ldots, t_{(k+1) / 2}} \subseteq \mathcal{L}_{t_{3}, \ldots, t_{(k+1) / 2}} \subseteq \mathcal{L}_{t_{(k+1) / 2}} \subseteq L
$$

- We use the global structure of L applied to the nested subsets.
- So we have at most $s=|L|^{1 / 2}$ lines of $\mathcal{L}_{t_{2}, \ldots, t_{(k+1) / 2}}$ in any plane or regulus.

Generalised Rudnev: Global Structure

Theorem

Suppose that \mathcal{L} is a set of lines so that we have no more than $s \geqslant|\mathcal{L}|^{1 / 2}$ in any plane or regulus and no more that $s \geqslant|\mathcal{L}|^{1 / 2}$ lines concurrent. Then if $\mathcal{L}_{\kappa, t}$ are the lines of \mathcal{L} that contain t points with κ lines of \mathcal{L} through them then we have

$$
\left|\mathcal{L}_{\kappa, t}\right| \lesssim \frac{|\mathcal{L}| s^{2}}{\kappa^{2} t^{2}}+\frac{|\mathcal{L}| s \log (s)}{\kappa t}
$$

Generalised Rudnev: Global Structure

Theorem

Suppose that \mathcal{L} is a set of lines so that we have no more than $s \geqslant|\mathcal{L}|^{1 / 2}$ in any plane or regulus and no more that $s \geqslant|\mathcal{L}|^{1 / 2}$ lines concurrent. Then if $\mathcal{L}_{\kappa, t}$ are the lines of \mathcal{L} that contain t points with κ lines of \mathcal{L} through them then we have

$$
\left|\mathcal{L}_{\kappa, t}\right| \lesssim \frac{|\mathcal{L}| s^{2}}{\kappa^{2} t^{2}}+\frac{|\mathcal{L}| s \log (s)}{\kappa t}
$$

- The second term comes from having worse control in linear components.

Generalised Rudnev: Global Structure

Theorem

Suppose that \mathcal{L} is a set of lines so that we have no more than $s \geqslant|\mathcal{L}|^{1 / 2}$ in any plane or regulus and no more that $s \geqslant|\mathcal{L}|^{1 / 2}$ lines concurrent. Then if $\mathcal{L}_{\kappa, t}$ are the lines of \mathcal{L} that contain t points with κ lines of \mathcal{L} through them then we have

$$
\left|\mathcal{L}_{\kappa, t}\right| \lesssim \frac{|\mathcal{L}| s^{2}}{\kappa^{2} t^{2}}+\frac{|\mathcal{L}| s \log (s)}{\kappa t}
$$

- The second term comes from having worse control in linear components.
- Proof is essentially Rudnev's with more bookkeeping. Over linear components an additional argument is required.

Generalised Rudnev: Global Structure

Theorem

Suppose that \mathcal{L} is a set of lines so that we have no more than $s \geqslant|\mathcal{L}|^{1 / 2}$ in any plane or regulus and no more that $s \geqslant|\mathcal{L}|^{1 / 2}$ lines concurrent. Then if $\mathcal{L}_{\kappa, t}$ are the lines of \mathcal{L} that contain t points with κ lines of \mathcal{L} through them then we have

$$
\left|\mathcal{L}_{\kappa, t}\right| \lesssim \frac{|\mathcal{L}| s^{2}}{\kappa^{2} t^{2}}+\frac{|\mathcal{L}| s \log (s)}{\kappa t}
$$

- The second term comes from having worse control in linear components.
- Proof is essentially Rudnev's with more bookkeeping. Over linear components an additional argument is required.
- Summing $k t \geqslant r$ provides the following Corollary.

Rich Lines

Corollary

If \mathcal{L} is a set of lines with no more than $s \geqslant|\mathcal{L}|^{1 / 2}$ in any plane or regulus then if \mathcal{L}_{r} are the lines with at least r lines of \mathcal{L} passing through them we have

$$
\left|\mathcal{L}_{r}\right| \lesssim \frac{|\mathcal{L}| s^{2} \log ^{2}|\mathcal{L}|}{r^{2}}+\frac{|\mathcal{L}| s \log ^{3}|\mathcal{L}|}{r}
$$

Recall:

$$
\mathcal{L}_{t_{2}, \ldots, t_{(k+1) / 2}} \subseteq \mathcal{L}_{t_{3}, \ldots, t_{(k+1) / 2}} \subseteq \mathcal{L}_{t_{(k+1) / 2}} \subseteq L
$$

Rich Lines

Corollary

If \mathcal{L} is a set of lines with no more than $s \geqslant|\mathcal{L}|^{1 / 2}$ in any plane or regulus then if \mathcal{L}_{r} are the lines with at least r lines of \mathcal{L} passing through them we have

$$
\left|\mathcal{L}_{r}\right| \lesssim \frac{|\mathcal{L}| s^{2} \log ^{2}|\mathcal{L}|}{r^{2}}+\frac{|\mathcal{L}| s \log ^{3}|\mathcal{L}|}{r}
$$

Recall:

$$
\mathcal{L}_{t_{2}, \ldots, t_{(k+1) / 2}} \subseteq \mathcal{L}_{t_{3}, \ldots, t_{(k+1) / 2}} \subseteq \mathcal{L}_{t_{(k+1) / 2}} \subseteq L
$$

- If $s=|L|^{1 / 2}$ then $r \leqslant|L|^{1 / 2}$ first term, $r \geqslant|L|^{1 / 2}$ second term.

Rich Lines

Corollary

If \mathcal{L} is a set of lines with no more than $s \geqslant|\mathcal{L}|^{1 / 2}$ in any plane or regulus then if \mathcal{L}_{r} are the lines with at least r lines of \mathcal{L} passing through them we have

$$
\left|\mathcal{L}_{r}\right| \lesssim \frac{|\mathcal{L}| s^{2} \log ^{2}|\mathcal{L}|}{r^{2}}+\frac{|\mathcal{L}| s \log ^{3}|\mathcal{L}|}{r}
$$

Recall:

$$
\mathcal{L}_{t_{2}, \ldots, t_{(k+1) / 2}} \subseteq \mathcal{L}_{t_{3}, \ldots, t_{(k+1) / 2}} \subseteq \mathcal{L}_{t_{(k+1) / 2}} \subseteq L
$$

- If $s=|L|^{1 / 2}$ then $r \leqslant|L|^{1 / 2}$ first term, $r \geqslant|L|^{1 / 2}$ second term.
- We partition the t_{i} :

$$
t_{i_{a}} \geqslant|L|^{1 / 2} \text { and } t_{i_{b}}<|L|^{1 / 2} .
$$

Iterative Lemma

Iterative Lemma

Let L be a line set in \mathbb{R}^{3} with at most $|L|^{1 / 2}$ lines in any regulus or plane and at most $|L|^{1 / 2}$ lines concurrent.
If there are α many $t_{i_{a}}$ and β many $t_{i_{b}}$ we have

$$
\left|\mathcal{L}_{t_{1}, \ldots, t_{(k+1) / 2}}\right| \lesssim \frac{|L||L|^{\alpha / 2}|L|^{\beta} \log ^{2 \beta+3 \alpha}|L|}{\prod_{a=1}^{\alpha} t_{i_{a}} \prod_{b=1}^{\beta} t_{i_{b}}^{2}}
$$

- As $P_{t_{1} ; t_{2}, \ldots, t_{(k+1) / 2}} \subseteq P_{t_{1}}(L)$, Guth-Katz gives

$$
\left|P_{t_{1} ; t_{2}, \ldots, t_{(k+1) / 2}}\right|\left(t_{1} \cdots t_{(k+1) / 2}\right)^{2} \lesssim|L|^{3 / 2}\left(t_{2} \cdots t_{(k+1) / 2}\right)^{2} .
$$

- Playing these two off yields the result.

Summary of Proof

(1) Cauchy-Schwarz energy argument \rightarrow counting pairs of chains.

Summary of Proof

(1) Cauchy-Schwarz energy argument \rightarrow counting pairs of chains.
(2) Incidence problem: Counting from central point.

Summary of Proof

(1) Cauchy-Schwarz energy argument \rightarrow counting pairs of chains.
(2) Incidence problem: Counting from central point.
(3) Even chains follow from odd.

Summary of Proof

(1) Cauchy-Schwarz energy argument \rightarrow counting pairs of chains.
(2) Incidence problem: Counting from central point.
(3) Even chains follow from odd.
(9) Incidence Result:

- Iterate line partitioning.
- Use global structure to allow use of efficient results.
- Generalised Rudnev

Summary of Proof

(1) Cauchy-Schwarz energy argument \rightarrow counting pairs of chains.
(2) Incidence problem: Counting from central point.
(3) Even chains follow from odd.
(1) Incidence Result:

- Iterate line partitioning.
- Use global structure to allow use of efficient results.
- Generalised Rudnev
(5) Carefully accounting of line weights and play off against Guth-Katz.

Graphical Erdős Conjecture Summary

Conjecture (losevich-P. 2018)

Suppose that G is a connected graph on $k=O(1)$ vertices, then for all $\varepsilon>0$ we have

$$
n^{k-1-\varepsilon} \lesssim f_{G}(n) \lesssim n^{k-1}
$$

- Resolved for graphs with Hamiltonian paths and rigid graphs.
- Unresolved for star graphs.
- Logarithmic improvements can be made when loops are present.

Thank you

