Sharp isoperimetric inequality, discrete PDEs and Semidiscrete optimal transport

Mircea Petrache, PUC

March 2, 2021

GeOmetric motivations

Σ_{t} surface, then $\left.\frac{d}{d t}\right|_{t=0} \operatorname{Area}\left(\Sigma_{t}\right)=0$: Minimal Surfaces $C M=0$.

Otto Frei, 1964
$\left.\frac{d}{d t}\right|_{\substack{t=0 \\\left|\Omega_{t}\right|=1}} \operatorname{Area}\left(\partial \Omega_{t}\right)=0:$ Constant mean curvature $C M=\lambda$.

Classical problem: $\min \{\operatorname{Area}(\partial \Omega):|\Omega|=1\}$. Solution: $\Omega=B$. How to translate these classical principles to the discrete world?

PHYSICAL MOTIVATIONS

Minimize $\sum_{i \neq j} V\left(\left|x_{i}-x_{j}\right|\right)$ with $V(r)=\frac{1}{r^{12}}-\frac{1}{r^{6}}$ or similar:

Survey by Blanc-Lewin 2015, $N=100$
Tóth 1956, Heitmann-Radin 1980: sticky disk rigidity.
Schmidt 2013, De Luca-Friesecke 2017: $N^{3 / 4}$-fluctuations around hexagon (sticky disc).
Theil 2006: minimizer resistent to perturbations of V (in the limit $N \rightarrow \infty$)
Bétermin-Petrache 2018 observation: \mathbb{Z}^{2} sometimes outperforms A_{2}. Bétermin-De Luca-Petrache 2018: crystallization to \mathbb{Z}^{2} for "sticky shell" model (robust under perturbation).

SIMPLIFIED MODELS

Tóth, Heitmann-Radin "Sticky discs"

Bétermin-De Luca-Petrache "Sticky shells"?

What's the crystal shape?

(Discrete isoperimetric problems)

CONTINUUM ISOPERIMETRIC INEQUALITIES

Find $H \subset \mathbb{R}^{d}$ such that for all $\Omega \subset \mathbb{R}^{d}: \quad \frac{\operatorname{Area}(\partial H)^{d}}{\operatorname{Vol}(H)^{d-1}} \leq \frac{\operatorname{Area}(\partial \Omega)^{d}}{\operatorname{Vol}(\Omega)^{d-1}}$

- Equivalently: H minimizes perimeter at fixed volume.
- Can be extended to general notions of " $\operatorname{Vol}(\Omega)$ " and " $\operatorname{Area}(\partial \Omega)$ ":

$$
\left.\begin{array}{l}
P_{g}(\Omega):=\int_{\partial \Omega} g(\nu(x)) d S(x) \\
V_{w}(\Omega):=\int_{\Omega} w(x) d V(x)
\end{array}\right\} \quad \text { con } H: \mathbb{R}^{d} \rightarrow \mathbb{R}\left\{\begin{array}{l}
w, g \geq 0 \\
H(\lambda x)=\lambda H(x) \\
H \text { convex }
\end{array}\right.
$$

- In this talk we only consider $w=1$ for simplicity.
- Optimizer $H=\left\{x \in \mathbb{R}^{d}: \forall \nu, x \cdot \nu<g(\nu)\right\}$ Wulff 1901.
- Del Nin - Petrache 2021: discrete-continuum limit for crystals and quasicrystals.

CONTINUUM CASE PROOFS - $1 / 4$

Strategy 1: PDE + convexity

(Cabré-Ros Oton-Serra 2013, Trudinger 1994)

$$
\begin{cases}\Delta u(x)=\frac{P_{g}(\Omega)}{|\Omega|} & x \in \Omega \\ \frac{\partial u}{\partial \nu}(x)=g(\nu(x)) & x \in \partial \Omega\end{cases}
$$

Solution exists, is regular and unique up to constant summand.

$$
\partial_{\Omega} u:=\{x \in \Omega: u(y) \geq u(x)+\nabla u(x) \cdot(y-x) \quad y \in \bar{\Omega}\} .
$$

(x such that tg. plane to graph of u at x supports $\operatorname{graph}\left(\left.u\right|_{\Omega}\right)$.)

CONTINUUM CASE PROOFS $-2 / 4$

Claim: $H \subset \nabla u\left(\partial_{\Omega} u\right)$.

- $p \in H$ means: $p \cdot \nu<g(\nu)$ for all $\nu \in \mathbb{S}^{d-1}$.
- Let $x \in \bar{\Omega} \min$ of $u(y)-p \cdot y$.
- If $p \in \partial \Omega$ then $\frac{\partial(u(y)-p \cdot y)}{\partial \nu} \leq 0 \Leftrightarrow \frac{\partial u}{\partial \nu}(x) \leq p \cdot \nu<g(\nu)$, contradiction.
- So x is interior. It follows:
- $p=\nabla u(x)$ (u smooth),
- $u(y) \geq u(x)+p \cdot(y-x)($ for all $y \in \bar{\Omega})$.

Therefore $p \in \nabla u\left(\partial_{\Omega} u\right)$, proving the claim.
We get $\quad|H| \leq\left|\nabla u\left(\partial_{\Omega} u\right)\right|=\int_{\nabla u\left(\partial_{\Omega} u\right)} d p \leq \int_{\partial_{\Omega} u} \operatorname{det}\left[D^{2} u(x)\right] d x$

CONTINUUM CASE PROOFS $-3 / 4$

Linear algebra: $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{d}$ eigenvalues of $D^{2} u(x)$, then

$$
\operatorname{det}\left[D^{2} u(x)\right]=\prod_{j=1}^{d} \lambda_{j} \leq\left(\frac{1}{d} \sum_{j=1}^{d} \lambda_{j}\right)^{d}=\left(\frac{\operatorname{tr}\left[D^{2} u(x)\right]}{d}\right)^{d}=\left(\frac{\Delta u(x)}{d}\right)^{d} .
$$

We get:

$$
\begin{gathered}
|H| \leq\left|\partial_{\Omega} u\right|\left(\frac{\Delta u(x)}{d}\right)^{d}=\left|\partial_{\Omega} u\right|\left(\frac{P_{g}(\Omega)}{d \cdot|\Omega|}\right)^{d} \leq|\Omega|\left(\frac{P_{g}(\Omega)}{d \cdot|\Omega|}\right)^{d} . \\
\frac{|H|}{d^{d}} \leq \frac{P_{g}(\Omega)^{d}}{|\Omega|^{d-1}} .
\end{gathered}
$$

Finally, due to the duality $W \leftrightarrow H$:

$$
P_{g}(H)=\int_{\partial H} g(\nu(x)) d S \stackrel{*}{=} \int_{\partial H} x \cdot \nu(x) d S=\int_{H} \operatorname{div}(x) d x=d|H| .
$$

CONTINUUM CASE PROOFS $-4 / 4$

Strategy 2: Mass transportation proof (sketch)

(Cordero Erausquin - Nazaret - Villani 2004, Figalli-Maggi-Pratelli 2010, Gromov 1983)

- Let $T: \Omega \rightarrow H$ transport density $\frac{|H|}{|\Omega|} 1_{\Omega}(x)$ to $1_{H}(x)$.
- $g^{*}(y):=\min \{\lambda>0: \lambda y \in H\}$ dual norm to g.
- Then $g^{*}(T(x)) \leq 1$ for a.e. $x \in \Omega$.

$$
\begin{aligned}
d|\Omega|\left(\frac{|H|}{|\Omega|}\right)^{\frac{1}{d}} & =d \int_{\Omega}(\operatorname{det} \nabla T)^{\frac{1}{d}} d x \\
& \leq \int_{\Omega} \operatorname{div} T d x=\int_{\partial^{*} \Omega} T \cdot \nu_{\Omega} d S \\
& \leq \int_{\partial^{*} \Omega} g^{*}(T(x)) g\left(\nu_{\Omega}(x)\right) d S \leq P_{g}(\Omega)
\end{aligned}
$$

DISCRETE SHARP ISOPERIMETRIC INEQUALITY

Setup:

- $V \subset \mathbb{R}^{d}$ possible positions of points (atoms).
- $G=(V, E)$ undirected graph of possible edges (bonds).
$\rightarrow g: E \rightarrow[0,+\infty)$ weight (energy) of edges.
Looking for edge-isoperimetric inequalities of the form
$\forall \Omega \subset V$ finite $, \quad(\sharp \Omega)^{d-1} \leq C\left(\sharp_{g} \partial \Omega\right)^{d}:=C\left(\sum_{(x, y) \in \vec{\partial} \Omega} g(x, y)\right)^{d}$.
- Sharp inequality: Equality actually achieved for some $\Omega \subset V$.
- Interesting case: Equality achieved for ∞-many values of $\sharp \Omega$.

SAMPLE RESULTS

- Hamamuki 2014: \mathbb{Z}^{d} product graph with nearest-neighbor edges, constant g (cubes optimize).
- Gomez-Petrache 2020: The triangular lattice (with $g=1$) does not have a sharp inequality as above, but rather

$$
\frac{(\sharp \overrightarrow{\partial \Omega}-6)^{2}}{4 \sharp \Omega-\sharp \overrightarrow{\partial \Omega}+2} \geq 12,
$$

optimized only by "perfect hexagons" (follows via result for honeycomb graph).

- Gomez-Petrache 2020: In honeycomb graph hexagons optimize.
- Gomez-Petrache 2020: In the 1-skeleton of the Voronoi diagram of the BCC, rhombic dodecahedron configurations optimize.
- Gomez-Petrache 2020: Sharp inequalities occur for special geometries of V, such as reciprocals of Coxeter triangulations.

The Discrete result

- Auxiliary symmetric $A: V \times V \rightarrow \mathbb{R}$ with $E=\{A=0\}$, defines Laplacian $\Delta_{A} u(x):=\sum_{y \in V} A^{2}(y, x)(u(x)-u(y))$.
- Solve discrete PDI (discrete PDE not solvable in general)

$$
\left\{\begin{array}{l}
\Delta_{A} u(x) \leq \frac{1}{\sharp \Omega} \sum_{(x, y) \in \overrightarrow{\partial \Omega}} g(x, y) \quad \text { for } x \in \Omega \\
u(y)-u(x)=\frac{g(x, y)}{A(x, y)} \quad \text { for }(x, y) \in \overrightarrow{\partial \Omega} .
\end{array}\right.
$$

- Some notations:

$$
\begin{aligned}
\partial u(x) & :=\left\{p \in \mathbb{R}^{d}:(\forall z \in \bar{\Omega}), u(x) \leq u(z)+p \cdot(x-z)\right\}, \\
\partial^{\text {prox }} u(x) & :=\left\{p \in \mathbb{R}^{d}:(\forall z: z \sim x), u(x) \leq u(z)+p \cdot(x-z)\right\}, \\
H_{g} & :=\left\{p \in \mathbb{R}^{d}:(\forall(x, y) \in \overrightarrow{\partial \Omega}), p \cdot(y-x) \leq \frac{g(x, y)}{A(x, y)}\right\} .
\end{aligned}
$$

The discrete result (Gomez-Petrache 2020)

We find an analogue to strategy 1 :

$$
\begin{aligned}
\left|H_{g}\right| & \stackrel{(a)}{\leq}\left|\bigcup_{x \in \Omega} \partial u(x)\right| \stackrel{(b)}{=} \sum_{x \in \Omega}|\partial u(x)| \\
& \stackrel{(c)}{\leq} \sum_{x \in \Omega}\left|\partial^{\operatorname{prox}} u(x)\right| \\
& \stackrel{(d)}{\leq} \sum_{x \in \Omega} c_{x}\left(\Delta_{A} u(x)\right)^{d} \\
& \stackrel{(e)}{\leq} \quad\left(\max _{x \in \Omega} c_{x}\right) \sharp \Omega\left(\frac{1}{\sharp \Omega} \sum_{(x, y) \in \overrightarrow{\partial \Omega}} g(x, y)\right)^{d}=\max _{x \in \Omega} c_{x} \frac{(\sharp g \overrightarrow{\partial \Omega})^{d}}{(\sharp \Omega)^{d-1}} .
\end{aligned}
$$

Generalization of arithmetic-geometric inequality:

$$
\left|\partial^{\text {prox }} u(x)\right| \leq c_{x}\left|\Delta_{A} u(x)\right|^{d} .
$$

MAIN RESULT - 1 / 2

Necessary conditions for equality:

- $c_{x}, x \in \Omega$ are all equal.
- $\left.G\right|_{\bar{\Omega}}$ dual graph of a face-to-face decomposition of $\partial u(\Omega)$ into convex polyhedra of equal volume
- The PDI becomes a PDE (equality achieved).

Sufficient conditions for equality. (assume $\Omega \subset V$ connected in G).

- The complex made of vertices and edges of $\left.G\right|_{\Omega} \cup \overrightarrow{\partial \Omega}$ is reciprocal to the collection of d - and $(d-1)$-cells of an equal-volume Voronoi tessellation of a convex polyhedron H.
- If $F_{x, y}$ denotes the ($d-1$)-dimensional facet of the Voronoi tessellation which is dual to edge (x, y) of G, then $\frac{A^{2}(x, y)|y-x|}{\mathcal{H}^{d-1}\left(F_{x, y}\right)}$ takes the same value for all edges $\{x, y\}$ of G.

MAIN RESULT - $2 / 2$

Relation to optimal transport

- Functions u achieving equality are precisely of the form $u=\lambda u_{\text {Alek }}+\ell$ where $\lambda>0, \ell$ is an affine function and $u_{\text {Alek }}$ is the Aleksandrov solution to a semidiscrete optimal transport problem between $\frac{|H|}{\sharp \Omega} \sum_{x \in \Omega} \delta_{x}$ and $1_{H}(x) d x$ with transport cost $|x-y|^{2}$.

The subdifferential optimization problem
Set $H_{v}(c):=\{p: v \cdot p \leq c\}$ and for fixed $\mathcal{V} \subset \mathbb{R}^{d}$ we define

$$
C_{\mathcal{V}}:=\max \left\{\left|\bigcap_{v \in \mathcal{V}} H_{v}\left(c_{v}\right)\right|: \vec{c}=\left(c_{v}\right)_{v \in \mathcal{V}} \in \mathbb{R}^{\mathcal{V}}, \sum_{v \in \mathcal{V}} c_{v}=1\right\} .
$$

- Optimizer exists iff Span $\mathcal{V}=\mathbb{R}^{d}, \sum_{v \in \mathcal{V}} v=0$.
- The face F_{v} with normal v of the optimizer has area $d C_{\mathcal{V}}|v|$.

THE $\partial^{\text {prox }} u(x)$-INEQUALITY

- We need $\left|\partial^{\text {prox }} u(x)\right| \leq c_{x}\left(\Delta_{A} u(x)\right)^{d}$ and discussion of equality case if $c_{x}, x \in \Omega$ all equal.
- Apply the above with $\mathcal{V}_{x}:=\left\{(y-x) A^{2}(x, y): y \sim x\right\}$, and then $c_{x}=C_{\nu_{x}}$.
- We have

$$
\frac{1}{\Delta_{A} u(x)} \partial^{\text {prox }} u(x)=\bigcap_{v \in \mathcal{V}_{x}} H_{v}\left(c_{v}\right) \quad \text { with } \quad c_{v}=\frac{A^{2}(y, x)(u(y)-u(x))}{\Delta_{A} u(x)} .
$$

- Equality case (assuming Ω connected): $\left|F_{x, y}\right| /\left(|y-x| A^{2}(x, y)\right)$ constant over all edges.

FURTHER CONNECTIONS / DIRECTIONS

- Aurenhammer 1987, Rybnikov 1999: translation between liftings, weighted Voronoi tessellations, reciprocal graphs.
- Mérigot 2013, Benamou-Froese 2017: link of the above to semidiscrete optimal transport.
- Trudinger 1994: further continuum isoperimetric inequalities (possible extension to operators of higher degree).
- Optimal discrete PDI in general graphs: first bounds in Gomez-Petrache 2020, general Cheeger type bounds to be explored.
- More complicated optimal inequalites in periodic graphs do exist (cf. triangular graph case above), classification missing.

