Austin Anderson
A-compact,$\omega_{N}=\left\{x_{1}, \ldots, x_{N}\right\} \subset A$

$$
\begin{aligned}
& E_{S}\left(\omega_{N}\right)=\sum_{\substack{i, j=1, N_{j} \\
i \neq j}} \frac{1}{1 x_{i}-\left.x_{j}\right|^{s}} \longleftarrow \\
& \varepsilon_{S}(A, N)=\min _{\omega_{N} c A} E_{S}\left(\omega_{N}\right) \\
& S<\operatorname{dim}(A) \\
& \varepsilon_{S}(A, N) \sim N^{2} \longleftarrow \text { very general } \\
& S>\operatorname{dim}(A)=d \\
& \varepsilon_{S}(A, N) \asymp N^{1+S / d}
\end{aligned}
$$

$$
\frac{1}{|x|^{3}}
$$

If A is smooth enough then

$$
\lim _{N \rightarrow \infty} \frac{q_{s}(A, N)}{N^{1+5 / d}}=\frac{C_{s, 0 l}}{H_{d}(A)^{s / d}}
$$

$$
\begin{aligned}
& s=d \\
& \frac{\xi_{s}(A, N)}{N^{2} \log (N)}
\end{aligned}
$$

What happens if $d \notin \mathbb{N}$?
History: 1) Steven Lalley

$$
\begin{gathered}
\delta\left(\omega_{N}\right)=\min _{\substack{i, j=1, N \\
\tau \neq j}}\left|x_{\tau}-x_{j}\right| \\
\delta(A, N)=\max _{\omega_{N} \subset A} \delta\left(\omega_{N}\right) \\
\lim _{S \rightarrow \infty}\left(\lim _{N \rightarrow \infty}\left(\lim _{N \rightarrow \infty} \frac{\varepsilon_{S}(A, N)}{N^{1+3 / d}}\right)^{1 / S}=\frac{1}{\lim _{N / / N A}}=\frac{1}{\lim _{N \rightarrow N} \delta(A, N)} N^{1 / d}\right.
\end{gathered}
$$

(Borodachov, Salt)

For pretty general fractals,
$\lim \delta(A, N) \cdot N^{1 / d}$ sometimes exists, \longleftarrow
but sometimes exists only along \longleftarrow specific subsequences.
$\psi_{1}, \ldots, \psi_{n}$ - contractions in \mathbb{R}^{d}
r_{1}, \ldots, r_{n} - contraction ratios
$\psi_{j}\left([0,1]^{d}\right)^{\text {are }}$ dis joist.
There is a fractal (a.k.a. self-similar set A) defined by $\psi_{1}, \ldots, \psi_{n}$.
$1 / 3$ Cantor set: $\psi_{1}^{(x)} \frac{x}{3}, \quad \psi_{2}(x)=\frac{x}{3}+\frac{2}{3}$
If $\left\{t_{1} \cdot \log \left(r_{1}\right)+\ldots+t_{n} \log \left(r_{n}\right): t_{1}, \ldots, t_{n} \in \mathbb{Z}\right\}$
is dense in \mathbb{R}, then $\lim _{N \rightarrow \infty} \delta(A, N) \cdot N^{1 / d}$ exists
If $\left\{t_{1} \cdot \log \left(r_{1}\right)+\ldots+t_{n} \log \left(r_{n}\right)\right\}=h \cdot \mathbb{Z}$, then

$$
\lim _{N \rightarrow \infty} \delta(A, N) \cdot N^{1 / d} \quad D N E
$$

(Lully's proof suggests because the hols he uses say that this lin exists only along some subsequences) Borodachov-Saff: $r_{1}=r_{2}=r_{3}=\ldots=r_{n}$-limit DNE
Anderson - A.R. : r_{j}^{\prime} 's are "dependent" \Rightarrow limit DNE
2) Borodachov - Sa ff

$$
r_{1}=r_{2}=\ldots=r_{n} \Rightarrow \text { limit DNE }
$$

3) Borodachov

$$
\text { A-fractal set, assume } \lim _{N \rightarrow \infty} \frac{\varepsilon_{s}(A, N)}{N^{1+S / d}}
$$

Then the optimal wis will "converge" to the Hausdorff measure on A.

If ω_{N} 's are optimal for $\varepsilon_{s}(A, N)$ along some subsequence of N 's, and this subsequence attains the $\liminf _{N \rightarrow \infty} \frac{\varepsilon_{s}(A, N)}{N^{1+s / d}}$ then these wis "converge" to the Hausdorff measure.
4) Vlasiak -A.R $\quad r_{1}=r_{2}=\ldots=r_{n}=N$ $\lim _{\substack{N \rightarrow \infty \\ N \in \mathcal{N}}} \frac{\varepsilon(A, N)}{N^{1+S / A}} \quad \begin{gathered}\text { exists along some natural } \\ \text { sub sequences }\end{gathered}$

$$
N=l r^{-d} k, \quad k=1, \ldots, l \text { is fixed }
$$

We also explicitly shaw that, for example,
When $r_{1}=r_{2}=1 / 3$, then these limits are not equal for $l=1$ and $l=3$.
5) Anderson - A.R.

$$
\begin{aligned}
& r_{1}=r^{i_{1}}, \ldots, r_{n}=r^{i_{n}}, \operatorname{gcd}\left(i_{1}, \ldots, i_{n}\right)=1 \\
& \log \left(r_{j}\right)=\left\{i_{j} \cdot \log (r)\right. \\
& \left\{t_{1} \log \left(r_{1}\right)+\ldots+t_{n} \log \left(r_{n}\right)\right\}=\log (r) \cdot \mathbb{Z}
\end{aligned}
$$

For $\quad N_{k}=l \cdot r^{-d \cdot k}$,

$$
\lim _{k \rightarrow \infty} \frac{\varepsilon_{s}\left(A, N_{k}\right)}{N_{k}^{1+s / d}} \quad \text { exists }
$$

Main question: if $\left\{t_{1} \log \left(r_{1}\right) \ldots+t_{n} \log \left(r_{n}\right)\right\}$ is

$$
\text { alense } \stackrel{?}{\rightleftharpoons} \lim _{N \rightarrow \infty} \frac{\varepsilon_{s}(A, N)}{N^{1+S / 1}} \text { exists. }
$$

Main tool: renewal theorem
$Z(x)$, Mana discrete probability measure with larges at a_{1}, \ldots, a_{n}

$$
Z(x)-\int_{0}^{x} z(x-t) d \mu(t)=z(x)
$$

Case 1: a_{1}, \ldots, a_{4} are independent

Then $\lim _{x \rightarrow \infty} Z(x)$ exists if

Case 2: a_{1}, \ldots, a_{n} are dependent

$$
\begin{aligned}
& \frac{Z(n)-\sum_{k=1}^{n} \mu(k) Z(n-k)}{\frac{Z}{i} \neq z(n)} \underset{\lim Z(n) \text { exists } \& \sum_{n=1}^{\infty}|z(n)|<\infty \longleftarrow}{Z(k)=N_{k}^{-1-S / d} \cdot \varepsilon_{s}\left(A, N_{k}\right), \quad N_{k}=r^{-d \cdot k}}
\end{aligned}
$$

M has weights $r^{r^{d \cdot i_{k}}}$ at $k=1, \ldots, n$

$$
\begin{array}{r}
\varepsilon_{s}\left(A, 2^{k+1}\right) \leq \varepsilon_{s}\left(\omega_{N}^{\prime \prime} v^{\prime \prime} \omega_{N}^{\prime \prime}\right) \leq\left(2 r^{-s} \cdot \varepsilon_{s}\left(A, 2^{k}\right)\right. \\
\\
r^{-d-s} \cdot \varepsilon_{s}\left(A, 2^{k}\right)+\text { error }
\end{array}
$$

