Dynamics of particles on a curve with pairwise hyper-singular repulsion

Ruiwen Shu
University of Maryland, College Park

Joint work with Douglas Hardin (Vanderbilt), Edward Saff (Vanderbilt) and Eitan Tadmor (UMCP)

Point Distribution Webinar, March 24, 2021

The particle dynamics

- Given a smooth, closed, non-self-intersecting curve

$$
\mathbf{x}(z): \mathbb{R} \rightarrow \mathbb{R}^{d} \quad \mathbf{x}(z+1)=\mathbf{x}(z) \quad\left|\mathbf{x}^{\prime}(z)\right|=1
$$

- $\left\{\mathbf{x}\left(z_{i}\right)\right\}_{i=1}^{N} \quad z_{i}=z_{i}(t): \mathbf{N}$ moving particles on the curve
- The particle dynamics

$$
\dot{z}_{i}=-N^{-s} \sum_{j \neq i} \nabla W\left(\mathbf{x}\left(z_{i}\right)-\mathbf{x}\left(z_{j}\right)\right) \cdot \mathbf{x}^{\prime}\left(z_{i}\right)
$$

- Repulsion potential (Riesz type) $W(\mathbf{x})=W(|\mathbf{x}|)=\frac{|\mathbf{x}|^{-s}}{s}$

$s>1$ hyper-singular

The total energy

- The total energy

$$
E=E(\mathbf{Z}):=N^{-s-1} \sum_{1 \leqslant i<j \leqslant N} W\left(\mathbf{x}\left(z_{i}\right)-\mathbf{x}\left(z_{j}\right)\right)
$$

- Gradient flow structure

$$
\dot{\mathbf{Z}}=-N \nabla E(\mathbf{Z})
$$

$$
\mathbf{Z}=\left(z_{1}, z_{2}, \ldots, z_{N}\right)
$$

- Energy dissipation law

$$
\dot{E}=\nabla E(\mathbf{Z}) \cdot \dot{\mathbf{Z}}=-\frac{1}{N} \sum_{i}\left|\dot{z}_{i}\right|^{2}
$$

- Expected large time behavior: convergence to a local energy minimizer

The total energy

$$
E=E(\mathbf{Z}):=N^{-s-1} \sum_{1 \leqslant i<j \leqslant N} W\left(\mathbf{x}\left(z_{i}\right)-\mathbf{x}\left(z_{j}\right)\right) \quad W(\mathbf{x})=W(|\mathbf{x}|)=\frac{|\mathbf{x}|^{-s}}{s}
$$

has a formal continuum limit:
What should be expected for large N ?

$$
E[\rho]=\int_{\mathbb{T}} \int_{\mathbb{T}} W(\mathbf{x}(z)-\mathbf{x}(y)) \rho(y) \mathrm{d} y \rho(z) \mathrm{d} z
$$

Previous results: energy minimizers

- The "Poppy-seed Bagel Theorem" (Hardin-Saff 05', Borodachov 12'): For hyper-singular Riesz energy of an m-dimensional rectifiable set, the global energy minimizer is almost a uniform distribution, when N is large.

manifold dimension $\mathrm{m}=2$
hyper-singular $s>m$

Previous results: mean-field limit

$$
\dot{z}_{i}=-N^{-s} \sum_{j \neq i} \nabla W\left(\mathbf{x}\left(z_{i}\right)-\mathbf{x}\left(z_{j}\right)\right) \cdot \mathbf{x}^{\prime}\left(z_{i}\right)
$$

$$
W(\mathbf{x})=W(|\mathbf{x}|)=\frac{|\mathbf{x}|^{-s}}{s}
$$

- In the hyper-singular case, the interaction becomes essentially local when N is large
- As $N \rightarrow \infty$, one can describe the particles by a particle density function $\rho(t, z)$
- The mean-field limit (Oelschlager 90'): on the real line, $\rho(t, z)$ solves the porous medium equation

$$
\partial_{t} \rho=\zeta(s) \partial_{z z}\left(\rho^{s+1}\right)
$$

- When N is large, the strong local repulsion enforces the particles to be locally uniformly distributed, according to some macroscopic density $\rho(z)$
- For an interval I with length δ

$$
N^{-s-1} \sum_{z_{i} \in I} \sum_{j \neq i} \frac{\left|z_{i}-z_{j}\right|^{-s}}{s} \approx N^{-s-1}(\delta N \rho) . \sum_{j \in \mathbb{Z}, j \neq 0} \frac{|j /(N \rho)|^{-s}}{s}=2 \tilde{\zeta}(s) \rho^{s+1} \delta .
$$

- Therefore $\quad E(\mathbf{Z}) \approx \tilde{\zeta}(s) \int \rho^{s+1} \mathrm{~d} z$.

$$
\zeta(s):=\sum_{i=1}^{\infty} i^{-s}, \quad \tilde{\zeta}(s):=\frac{\zeta(s)}{s}
$$

- As the gradient flow of this energy, one gets the porous medium equation

Our result

$\zeta(s):=\sum_{i=1}^{\infty} i^{-s}, \quad \tilde{\zeta}(s):=\frac{\zeta(s)}{s}$

$$
\dot{z}_{i}=-N^{-s} \sum_{j \neq i} \nabla W\left(\mathbf{x}\left(z_{i}\right)-\mathbf{x}\left(z_{j}\right)\right) \cdot \mathbf{x}^{\prime}\left(z_{i}\right)
$$

- Theorem (Hardin-Saff-S.-Tadmor 20'): For any $\epsilon>0$, there exists N_{0} depending on ϵ, s and the curve, such that the following holds for $N>N_{0}$:

Energy almost converges to the minimal energy

$$
E(t) \leqslant \tilde{\zeta}(s)(1+\epsilon), \quad \forall t \geqslant \frac{C}{\epsilon}
$$

- Also, for $a \in \mathbb{R}$ and $0<L<1$

Particles almost converge to the uniform distribution

$$
\left|\frac{\#\left\{i:\left[z_{i}, z_{i+1}\right) \subset[a, a+L)\right\}}{N}-L\right| \leqslant[L(1-L) \tilde{\zeta}(s)]^{1 / 2}(2 \epsilon)^{1 / 2}
$$

Main difficulties

- The gradient flow could be trapped into local energy minimizers / saddles
- Mean-field limits cannot be applied because they are finite-time results: the error often grows exponentially in time
- When the curve is complicated, W restricted on the curve may lose convexity

Strategy of proof

- The interaction should be essentially local. Control the error from the "curvature effects".
- Find intuitions from the mean-field limit, and seek for analogues for particles
- The total momentum of an interval of mass
- Maximum principle

$$
\partial_{t} \rho=\zeta(s) \partial_{z z}\left(\rho^{s+1}\right) \quad \partial_{z z}\left(\rho^{s+1}\right)=\frac{s+1}{s} \partial_{z}\left(\rho \underline{\partial_{z}}\left(\rho^{s}\right)\right)
$$

transport velocity
total momentum $\left.=\int_{z_{M}}^{z_{S}}\left(-\frac{s+1}{s} \zeta(s) \partial_{z}\left(\rho^{s}\right)\right) \cdot \rho(t, z) \mathrm{d} z=\zeta(s) \underline{\left(\rho\left(t, z_{M}\right)^{s+1}\right.}-\underline{\rho\left(t, z_{S}\right)^{s+1}}\right)>0$
lead to energy dissipation

$$
\int_{z_{M}}^{z_{S}}\left(-\frac{s+1}{s} \zeta(s) \partial_{z}\left(\rho^{s}\right)\right) \cdot \rho(t, z) \mathrm{d} z=\zeta(s)\left(\rho\left(t, z_{M}\right)^{s+1}-\rho\left(t, z_{S}\right)^{s+1}\right)>0
$$

- Lower bound on energy dissipation rate:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int \rho^{s+1} \mathrm{~d} z=-\frac{s+1}{s} \zeta(s) \int\left|\partial_{z}\left(\rho^{s}\right)\right|^{2} \rho \mathrm{~d} z \leqslant-\frac{s+1}{s} \zeta(s) \cdot \frac{\left(\int\left(-\partial_{z}\left(\rho^{s}\right)\right) \rho \mathrm{d} z\right)^{2}}{\int \rho \mathrm{~d} z} .
$$

- Then $\rho\left(t, z_{M}\right)$ cannot be large for all time
- Maximum principle: once $\rho\left(t, z_{M}\right)$ gets small, it cannot become large again

Part 1: "total repulsion cut"

- Consider points $x_{0}<\cdots<x_{N} \in \mathbb{R}$
- The total repulsion at the cut

$$
x_{k}, x_{k+1}
$$

$$
P_{k}=P_{k}\left(x_{0}, \ldots, x_{N}\right):=\sum_{i, j: 0 \leqslant i \leqslant k<j \leqslant N}\left(x_{j}-x_{i}\right)^{-s-1}
$$

- Lemma: For any $\epsilon>0$, if N is large, then for any $0=x_{0}<\cdots<x_{N}=1$ there exists an index i_{S} such that $\left(x_{i s}, x_{i s+1}\right) \bigcap\left(\epsilon_{1}, 1-\epsilon_{1}\right) \neq \emptyset$

$$
P_{i_{S}} \leqslant(1+\epsilon) \zeta(s) N^{s+1} \text { exactly the total repulsion }
$$

A min-max argument

$$
F_{m}\left(x_{i_{L}+1}, \ldots, x_{i_{R}-1}\right):=\min _{i_{L} \leqslant k \leqslant i_{R}-1} P_{k} \quad \mathcal{E}\left(x_{i_{L}+1}, \ldots, x_{i_{R}-1}\right):=\sum_{i, j: 0 \leqslant i<j \leqslant N}\left(x_{j}-x_{i}\right)^{-s}
$$

- The unique maximum of F_{m} is achieved at the same point as the unique minimum of \mathcal{E}, characterized by

$$
P_{i_{L}}=\cdots=P_{i_{R}-1}
$$

\mathcal{E} is convex
-> unique minimum at $\nabla \mathcal{E}=0$

Part 2: analogue of maximum principle

$$
\delta(t):=\min _{1 \leqslant i \leqslant N}\left(z_{i+1}(t)-z_{i}(t)\right), \quad \rho_{M}(t):=\frac{1}{N \delta(t)}
$$

- Closest pairwise distance: an analogue of the maximal density
- Lemma:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \delta \geqslant \underset{\text { very small quantity }}{-C N^{-s} N_{*} \delta^{-s+2}}, \quad N_{*}:=\left\{\begin{array}{l}
1, \quad s>2 ; \\
\log N, \quad s=2 ; \\
N^{-s+2}, \quad 1<s<2
\end{array}\right.
$$

- This almost says that the "maximal density" never increases
- Lemma: when N is large, if $\frac{\mathrm{d}}{\mathrm{d} t} \delta \leqslant 1$ then

$$
\sum_{i=i_{L}}^{i_{M}} \sum_{j=i_{M}+1}^{i_{R}}\left|z_{i}-z_{j}\right|^{-s-1} \geqslant \zeta(s) \delta^{-s-1}(1-\epsilon) \quad i_{M}:=\operatorname{argmin}_{i}\left(z_{i+1}-z_{i}\right)
$$

- If "maximal density" is not decreasing very fast, then Lemma says that the "total repulsion" at the maximal density point is as large as the continuum case.
- If "maximal density" is decreasing very fast, then it helps us: it cannot go back to large values.

Proof of the lemmas

- The best possible way of keeping δ not increasing is to pack particles near i_{M} as dense as possible
- In this case, one recovers the continuum case, and one can compute the "total repulsion" like a uniform distribution
- Otherwise, if there is a defect, then delta has to decrease very fast

Handling the "curvature effect"

- Lemma: For y, z being close enough,

$$
\begin{aligned}
& \frac{\mid \nabla W(\mathbf{x}(y)-\mathbf{x}(z)) \cdot \mathbf{x}^{\prime}(y)}{\text { forcing from } z \text { to } \mathrm{y}}-\frac{W^{\prime}(y-z)}{\text { as the real line }}\left(1+\frac{\left.\kappa(y)|y-z|^{2}\right)\left|\leqslant C_{R}\right| y-\left.z\right|^{-s+2}}{\text { with curvature effect } \quad \kappa(z):=\frac{s-2}{24}\left|\mathbf{x}^{\prime \prime}(z)\right|^{2}}\right. \\
& \mid\left(\nabla W(\mathbf{x}(y)-\mathbf{x}(z)) \cdot \mathbf{x}^{\prime}(y)-W^{\prime}(y-z)\left(1+\kappa(y)|y-z|^{2}\right)\right) \\
& \quad-\left(\nabla W(\mathbf{x}(\tilde{y})-\mathbf{x}(z)) \cdot \mathbf{x}^{\prime}(\tilde{y})-W^{\prime}(\tilde{y}-z)\left(1+\kappa(y)|\tilde{y}-z|^{2}\right)\right) \mid \\
& \leqslant C_{R} \min \{d(y, z), d(\tilde{y}, z)\}^{-s+1} \cdot|y-\tilde{y}|
\end{aligned}
$$

- Proof by Taylor expansions...

Proof of main result

- When the "maximal density" is not decreasing too fast, we have

$$
\sum_{i_{M}+1 \leq i \leq i_{S}} \dot{z}_{i} \geq c\left(\rho_{M}-1-\epsilon\right)_{\geq 0} \cdot N
$$

- This provides energy dissipation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} E(t) \leqslant-c^{2}\left(\left(\rho_{M}-1-\epsilon\right)_{\geqslant 0}\right)^{2}
$$

- Use Lemma: $E(\mathbf{Z}) \leqslant \tilde{\zeta}(s)(1+\epsilon) \rho_{M}^{s}$ to close the estimate
- Construct Lyapunov functional for exceptional cases (maximal density decrease fast)

Energy convergence implies uniform distribution

- Theorem: $E(\mathbf{Z}) \leqslant \tilde{\zeta}(s)(1+\epsilon)$ implies

$$
\left|\frac{\#\left\{i:\left[z_{i}, z_{i+1}\right) \subset[a, a+L)\right\}}{N}-L\right| \leqslant[L(1-L) \tilde{\zeta}(s)]^{1 / 2}(2 \epsilon)^{1 / 2}
$$

- Introduce $E^{k}(\mathbf{Z}):=\frac{1}{s N^{s+1}} \sum_{i=1}^{N}\left|\mathbf{x}\left(z_{i+k}\right)-\mathbf{x}\left(z_{i}\right)\right|^{-s}$

$$
\begin{aligned}
& E=E(\mathbf{Z}):=\frac{1}{s N^{s+1}} \sum_{1 \leqslant i<j \leqslant N}^{N}\left|\mathbf{x}\left(z_{j}\right)-\mathbf{x}\left(z_{i}\right)\right|^{-s}=\frac{1}{2} \sum_{k=1}^{N-1} E^{k}(\mathbf{Z}) \\
& \tilde{E}^{k}(\mathbf{Z}):=\frac{1}{s N^{s+1}} \sum_{i=1}^{N}\left(z_{i+k}-z_{i}\right)^{-s} \quad \tilde{E}(\mathbf{Z}) \leqslant E(\mathbf{Z})
\end{aligned}
$$

- Lemma: $s^{-1} k^{-s} \leqslant \tilde{E}^{k}(\mathbf{Z}) \quad \tilde{E}^{1}(\mathbf{Z})+s^{-1}(\zeta(s ; N)-1) \leqslant \tilde{E}(\mathbf{Z})$
- Therefore $s \tilde{E}^{1}(\mathbf{Z}) \leqslant 1+\zeta(s ; N) \epsilon$.
- Write $\quad \tilde{E}^{1}(\mathbf{Z})=\frac{1}{N^{s+1}} \sum_{i} W\left(d_{i}\right), \quad W(x):=\frac{x^{-s}}{s} . \quad d_{i}=z_{i+1}-z_{i}$
- Taylor expansion of W at $1 / \mathrm{N}$:

$$
s \tilde{E}^{1}(\mathbf{Z})=1+\frac{1}{2} \cdot \frac{s}{N^{s+1}} \sum_{i} W^{\prime \prime}\left(\xi_{i}\right)\left(d_{i}-\frac{1}{N}\right)^{2}
$$

- Use convexity of W to obtain smallness of $d_{i}-\frac{1}{N}$

Future work

- Exponential convergence rate?
- Uniform-in-time mean field limit?
- Convergence to local equilibrium (local uniform distribution) in very short time?
- Extension to multi-dimensions?

