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Overview

> Low-discrepancy sets on the sphere
> Mapping lattice point sets to the sphere

» Isotropic discrepancy and the spectral test
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Discrepancy on the sphere

Let S? be the unit sphere of R3. A (spherical) cap is a set
C=Cx,t)={2€S*:x-2>1t}, zecS*tec(-1,1).

If P C S? is a finite set of points, the discrepancy with respect to a
cap C is denoted by

#(PNC)

D(P,C) := P —o(C)].

Here, o is the normalized surface area measure. The spherical cap
discrepancy of P is

D(P):= sup D(P,C).
C'is a cap
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Discrepancy on the sphere

The minimal spherical cap discrepancy is

inf D(P), NeN.
#P=N

There are constants 0 < ¢; < ¢ < oo such that

ca N34 < D(N) < ¢a N=3*\/log N,

N eN.

What is the asymptotic behaviour of (D(N))neny as N — o0?

PAANS
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The quest for low-discrepancy point sets

A sequence Py C S?, N € N, of N-point sets is said to be of
low-discrepancy if, for some C' > 0,

D(Py) < CN7%*/logN, N eN.

Construct a low-discrepancy sequence. l

An incomplete list of results towards this goal:
» Lubotzky, Phillips, and Sarnak (1986):
D(Py) < N™Y3(log N)?/3
> Aistleitner, Brauchart, and Dick (2012): D(Py) < N~1/2
> Etayo (2019): D(Py) < N~1/2,
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Mapping good planar points onto the sphere

Aistleitner, Brauchart, and Dick considered the Lambert cylindrical
equal-area projection @ : [0,1)2 — S? to map low-discrepancy
sequences on [0, 1), the Fibonacci lattice point sets and certain
digital nets, onto the sphere.

For any finite P C [0,1)%:
D(@(P)) < 1L1(P),

where J(P) is the isotropic
discrepancy of P.
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The isotropic discrepancy

If P C[0,1)? is finite and K C [0,1)? convex,

PNK
D(P,K) := % ~ voly(K)|.
The isotropic discrepancy of P is
J(P) = sup D(P,K).

KC[0,1)2 is convex

There are constants 0 < c¢; < ¢y < 0o such that

g N723 < inf J(P)<c¢aN~%3log* N, NeN.
#P=N
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The mapped Fibonacci lattice point set

Aistleitner, Brauchart, and Dick: Fibonacci lattice point set and
certain digital nets satisfy J(Py) < N~'/2 and therefore
D(®(Py)) S N7V
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Can we improve the bounds on J(Py) for the Fibonacci lattice
discrepancy D(®(Py)) better than N~1/27?

point set and thus construct mapped point sets ®(Py) with cap
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Our negative result

Can we improve the bounds on J(Py) for the Fibonacci lattice
point set and thus construct mapped point sets ®(Py) with cap
discrepancy D(®(Py)) better than N~1/27?

No, also not if you consider more general lattice point sets.

Let P(L) be an N-element lattice point set in [0,1)%. Then we
have

J(P(L)) > CdN_l/d ( Z N—2/(d+1) )’

where cq = 1/% (T (4 +1)) V%
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Integration lattices and their lattice point sets

Let by, ..., by be a basis of R%. An integration lattice is a lattice
L:= {Zle kib; : ki € Zfori=1,... ,d} containing Z.

The finite point set P(L) := L N[0,1)% is the associated lattice
point set.
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Dual lattice and spectral test
The dual lattice of an integration lattice L is given by

Lt ={2€Z%: 2 - xcZforallzc L}

and the spectral test of L is defined by

(L) ::( min Hz||2)_1.

z€L\{0}
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A characterization based on the spectral test

Let P(L) be a lattice point set in [0,1)%. Then we have

% o(L) < J(P(L)) < d 22 25(L).

If o(L) < 1/2, one can replace 1/+/d by a constant.

Let P(L) be an N-element lattice point set in [0,1)%. Then we

have i
o(L) > 4 (r (g e 1>) N~Vd,
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The unconditional lower bound

At most |/d/o(L)| hyperplanes of a suitable cover intersect the
unit cube [0,1)%. By the pidgeonhole principle there exists a
convex  such that
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The improvement under o(L) < 1/2

Let 2 :=(3,...,3). We construct a convex “ with

D(P(L), ™) = volg(*)

N[

> inf volg_1 (H N 0, DY x o(L) > %7 o(L),

where H can be any hyperplane with distance(H, ) < 1/2.
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Tessellations by unit cells

Given a lattice L C R? with basis by, ..., by the fundamental
parallelotope is P := {37 A\;ib; : 0 < \; < 1}.

Independent of the basis, voly(P) = det(L) and for an integration
lattice such that #P = N we have det(L) = +.
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The lower bound of o(L)

For any N-element lattice point set P(L): o(L) > cqN /4.

Minkowski: If voly(B) > 2¢det(L1),
then B contains at least one
z € L+\{0}.

L integration lattice = det(L*) = det(L) ™' = N
implies that [|@||2 < Cy N/ and thus o(L) > C; ' N~/ O
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The upper bound
Let K C [0,1)4 be convex and P(L) C [0,1)¢ be an N-element
lattice point set.
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The upper bound
Let K C [0,1)4 be convex and P(L) C [0,1)¢ be an N-element
lattice point set. We have

M
D(P(L),K) = D(P(L), K),
i=1

where K is the intersection of C' with a translated fundamental
parallelotope z; + P, x; € L.

P
L

. -
A < )
x| Ki

‘o
€T ox

e

Sec
AN % = o

|
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The upper bound
Then

M
1
= 2) < . R
D(P(L),K) ;Zl D(P(L), K;) < Mintersect X N
where

Mintersect = #{'L KGN 0K 7’5 (Z)}

Do
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The upper bound

Recall that )

D(P(L)aK) < Mintersect X N
By a volumetric argument it holds that

volg(diam(P)-neighbourhood of 0K)

M; intersect > .

VOld(P): %

After some convex geometry,
volg(diam(P)-neighbourhood of dK) < 2¢3diam(P).

Therefore,
D(P(L), K) < 2%+3diam(P).
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The upper bound

Recall that
D(P(L), K) < 2¢"3diam(P).

Using the LLL-algorithm, we have for P belonging to B
diam(P) < d2? 1o (L),
where B = {by,...,bg} is a reduced basis of L. This is due to
d
diwn(P) < 3 Il < d o bl < a2 bl

where b} is the last vector in the Gram-Schmidt orthogonalization
of B and thus related to a covering by hyperplanes. []
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Bonus: Covering Radius =< Spectral Test

For any lattice point set P(L) C [0,1)? we have for some Cy > 0

1
—o(L) < sup min ||z —yl|ls < Cyo(L).
(1)< s min e ula < Curll)
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