
Uniform Distribution on the Sphere and the
Isotropic Discrepancy of Lattice Point Sets

based on joint work with F. Pillichshammer

Mathias Sonnleitner

2020-07-31

1 / 24



Overview

I Low-discrepancy sets on the sphere

I Mapping lattice point sets to the sphere

I Isotropic discrepancy and the spectral test
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Discrepancy on the sphere

Let S2 be the unit sphere of R3. A (spherical) cap is a set

C = C(x, t) = {z ∈ S2 : x · z ≥ t}, x ∈ S2, t ∈ (−1, 1).

If P ⊂ S2 is a finite set of points, the discrepancy with respect to a
cap C is denoted by

D(P,C) :=

∣∣∣∣#(P ∩ C)

#P
− σ(C)

∣∣∣∣ .
Here, σ is the normalized surface area measure. The spherical cap
discrepancy of P is

D(P ) := sup
C is a cap

D(P,C).
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Discrepancy on the sphere

The minimal spherical cap discrepancy is

D(N) := inf
#P=N

D(P ), N ∈ N.

Theorem (Beck, 1984)

There are constants 0 < c1 < c2 <∞ such that

c1N
−3/4 ≤ D(N) ≤ c2N−3/4

√
logN, N ∈ N.

Open Question

What is the asymptotic behaviour of (D(N))N∈N as N →∞?
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The quest for low-discrepancy point sets

A sequence PN ⊂ S2, N ∈ N, of N -point sets is said to be of
low-discrepancy if, for some C > 0,

D(PN ) ≤ C N−3/4
√

logN, N ∈ N.

Goal

Construct a low-discrepancy sequence.

An incomplete list of results towards this goal:

I Lubotzky, Phillips, and Sarnak (1986):
D(PN ) . N−1/3(logN)2/3

I Aistleitner, Brauchart, and Dick (2012): D(PN ) . N−1/2

I Etayo (2019): D(PN ) � N−1/2.
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Mapping good planar points onto the sphere

Aistleitner, Brauchart, and Dick considered the Lambert cylindrical
equal-area projection Φ : [0, 1)2 → S2 to map low-discrepancy
sequences on [0, 1)2, the Fibonacci lattice point sets and certain
digital nets, onto the sphere.

For any finite P ⊂ [0, 1)2:

D(Φ(P )) ≤ 11J(P ),

where J(P ) is the isotropic
discrepancy of P .
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The isotropic discrepancy

If P ⊂ [0, 1)2 is finite and K ⊂ [0, 1)2 convex,

D(P,K) :=

∣∣∣∣#(P ∩K)

#P
− vol2(K)

∣∣∣∣ .
The isotropic discrepancy of P is

J(P ) = sup
K⊂[0,1)2 is convex

D(P,K).

Theorem (Schmidt, 1975 and Beck, 1988)

There are constants 0 < c1 < c2 <∞ such that

c1N
−2/3 ≤ inf

#P=N
J(P ) ≤ c2N−2/3 log4N, N ∈ N.

7 / 24



The mapped Fibonacci lattice point set

Aistleitner, Brauchart, and Dick: Fibonacci lattice point set and
certain digital nets satisfy J(PN ) . N−1/2 and therefore
D(Φ(PN )) . N−1/2.
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Our negative result

(Open) Question

Can we improve the bounds on J(PN ) for the Fibonacci lattice
point set and thus construct mapped point sets Φ(PN ) with cap
discrepancy D(Φ(PN )) better than N−1/2?

No, also not if you consider more general lattice point sets.

Theorem (Pillichshammer, S., 2019)

Let P(L) be an N -element lattice point set in [0, 1)d. Then we
have

J(P(L)) ≥ cdN−1/d

(
& N−2/(d+1)

)
,

where cd := 1
2

√
π
d

(
Γ
(
d
2 + 1

))−1/d
.
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Integration lattices and their lattice point sets

Let b1, . . . , bd be a basis of Rd. An integration lattice is a lattice

L :=
{∑d

i=1 kibi : ki ∈ Z for i = 1, . . . , d
}

containing Zd.

The finite point set P(L) := L ∩ [0, 1)d is the associated lattice
point set.

0
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Dual lattice and spectral test
The dual lattice of an integration lattice L is given by

L⊥ := {z ∈ Zd : z · x ∈ Z for all x ∈ L},

and the spectral test of L is defined by

σ(L) :=
(

min
z∈L⊥\{0}

‖z‖2
)−1

.

σ(L)

P(L) ⊂ [0, 1)d L⊥ ⊂ Zd

11 / 24



Dual lattice and spectral test
The dual lattice of an integration lattice L is given by

L⊥ := {z ∈ Zd : z · x ∈ Z for all x ∈ L},

and the spectral test of L is defined by

σ(L) :=
(

min
z∈L⊥\{0}

‖z‖2
)−1

.

σ(L)

P(L) ⊂ [0, 1)d L⊥ ⊂ Zd

11 / 24



Dual lattice and spectral test
The dual lattice of an integration lattice L is given by

L⊥ := {z ∈ Zd : z · x ∈ Z for all x ∈ L},

and the spectral test of L is defined by

σ(L) :=
(

min
z∈L⊥\{0}

‖z‖2
)−1

.

σ(L)

P(L) ⊂ [0, 1)d L⊥ ⊂ Zd

11 / 24



A characterization based on the spectral test

Theorem (Pillichshammer, S., 2019)

Let P(L) be a lattice point set in [0, 1)d. Then we have

1√
d
σ(L) ≤ J(P(L)) ≤ d 22d+2σ(L).

If σ(L) ≤ 1/2, one can replace 1/
√
d by a constant.

Proposition

Let P(L) be an N -element lattice point set in [0, 1)d. Then we
have

σ(L) ≥
√
π

2

(
Γ

(
d

2
+ 1

))−1/d
N−1/d.
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The unconditional lower bound

At most b
√
d/σ(L)c hyperplanes of a suitable cover intersect the

unit cube [0, 1)d. By the pidgeonhole principle there exists a
convex such that

D(P(L), ) =
#(P(L) ∩ )

#P(L)
≥ σ(L)/

√
d.

σ(L)
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The improvement under σ(L) ≤ 1/2

Let 1
2 := (12 , . . . ,

1
2). We construct a convex with

D(P(L), ) = vold( )

≥ inf
H

vold−1(H ∩ [0, 1)d)× σ(L) ≥ 1

17
σ(L),

where H can be any hyperplane with distance(H, 12) ≤ 1/2.

1
2

σ(L)
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Tessellations by unit cells

Given a lattice L ⊂ Rd with basis b1, . . . , bd the fundamental
parallelotope is P := {

∑d
i=1 λibi : 0 ≤ λi < 1}.

P

x+ P
x

Independent of the basis, vold(P ) = det(L) and for an integration
lattice such that #P = N we have det(L) = 1

N .

15 / 24



The lower bound of σ(L)

For any N -element lattice point set P(L): σ(L) ≥ cdN−1/d.

B

Minkowski: If vold(B) > 2d det(L⊥),
then B contains at least one
z ∈ L⊥\{0}.

L integration lattice⇒ det(L⊥) = det(L)−1 = N

implies that ‖ ‖2 ≤ CdN1/d and thus σ(L) ≥ C−1d N−1/d.
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The upper bound
Let K ⊂ [0, 1)d be convex and P(L) ⊂ [0, 1)d be an N -element
lattice point set.

We have

D(P(L),K) =

M∑
i=1

D(P(L),Ki),

where Ki is the intersection of C with a translated fundamental
parallelotope xi + P, xi ∈ L.

Ki

xi
P

K
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The upper bound
Then

D(P(L),K) =

M∑
i=1

D(P(L),Ki) ≤Mintersect ×
1

N
,

where
Mintersect := #{i : Ki ∩ ∂K 6= ∅}.
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The upper bound

Recall that

D(P(L),K) ≤Mintersect ×
1

N
.

By a volumetric argument it holds that

Mintersect ≤
vold(diam(P )-neighbourhood of ∂K)

vold(P )= 1
N

.

After some convex geometry,

vold(diam(P )-neighbourhood of ∂K) ≤ 2d+3diam(P ).

Therefore,
D(P(L),K) ≤ 2d+3diam(P ).
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The upper bound

Recall that
D(P(L),K) ≤ 2d+3diam(P ).

Using the LLL-algorithm, we have for P belonging to B

diam(P ) ≤ d2d−1σ(L),

where B = {b1, . . . ,bd} is a reduced basis of L. This is due to

diam(P ) ≤
d∑
i=1

‖bi‖2 ≤ d max
i=1,...,d

‖bi‖2 ≤ d2d−1‖b∗d‖2,

where b∗d is the last vector in the Gram-Schmidt orthogonalization
of B and thus related to a covering by hyperplanes.

20 / 24



Bonus: Covering Radius � Spectral Test

Proposition

For any lattice point set P(L) ⊂ [0, 1)d we have for some Cd > 0

1

2
σ(L) ≤ sup

y∈[0,1)d
min

x∈P(L)
‖x− y‖2 ≤ Cdσ(L).
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