# Uniform Distribution on the Sphere and the Isotropic Discrepancy of Lattice Point Sets <br> based on joint work with F. Pillichshammer 

Mathias Sonnleitner

2020-07-31

## Overview

- Low-discrepancy sets on the sphere
- Mapping lattice point sets to the sphere
- Isotropic discrepancy and the spectral test


## Discrepancy on the sphere

Let $\mathbb{S}^{2}$ be the unit sphere of $\mathbb{R}^{3}$. A (spherical) cap is a set

$$
C=C(x, t)=\left\{z \in \mathbb{S}^{2}: x \cdot z \geq t\right\}, \quad x \in \mathbb{S}^{2}, t \in(-1,1)
$$

If $P \subset \mathbb{S}^{2}$ is a finite set of points, the discrepancy with respect to a cap $C$ is denoted by

$$
D(P, C):=\left|\frac{\#(P \cap C)}{\# P}-\sigma(C)\right|
$$

Here, $\sigma$ is the normalized surface area measure. The spherical cap discrepancy of $P$ is

$$
D(P):=\sup _{C \text { is a cap }} D(P, C)
$$

## Discrepancy on the sphere

The minimal spherical cap discrepancy is

$$
D(N):=\inf _{\# P=N} D(P), \quad N \in \mathbb{N}
$$

## Theorem (Beck, 1984)

There are constants $0<c_{1}<c_{2}<\infty$ such that

$$
c_{1} N^{-3 / 4} \leq D(N) \leq c_{2} N^{-3 / 4} \sqrt{\log N}, \quad N \in \mathbb{N} .
$$

## Open Question

What is the asymptotic behaviour of $(D(N))_{N \in \mathbb{N}}$ as $N \rightarrow \infty$ ?

## The quest for low-discrepancy point sets

A sequence $P_{N} \subset \mathbb{S}^{2}, N \in \mathbb{N}$, of $N$-point sets is said to be of low-discrepancy if, for some $C>0$,

$$
D\left(P_{N}\right) \leq C N^{-3 / 4} \sqrt{\log N}, \quad N \in \mathbb{N}
$$

## Goal

Construct a low-discrepancy sequence.
An incomplete list of results towards this goal:

- Lubotzky, Phillips, and Sarnak (1986):

$$
D\left(P_{N}\right) \lesssim N^{-1 / 3}(\log N)^{2 / 3}
$$

- Aistleitner, Brauchart, and Dick (2012): $D\left(P_{N}\right) \lesssim N^{-1 / 2}$
- Etayo (2019): $D\left(P_{N}\right) \asymp N^{-1 / 2}$.


## Mapping good planar points onto the sphere

Aistleitner, Brauchart, and Dick considered the Lambert cylindrical equal-area projection $\Phi:[0,1)^{2} \rightarrow \mathbb{S}^{2}$ to map low-discrepancy sequences on $[0,1)^{2}$, the Fibonacci lattice point sets and certain digital nets, onto the sphere.


For any finite $P \subset[0,1)^{2}$ :

$$
D(\Phi(P)) \leq 11 J(P)
$$

where $J(P)$ is the isotropic discrepancy of $P$.

## The isotropic discrepancy

If $P \subset[0,1)^{2}$ is finite and $K \subset[0,1)^{2}$ convex,

$$
D(P, K):=\left|\frac{\#(P \cap K)}{\# P}-\operatorname{vol}_{2}(K)\right| .
$$

The isotropic discrepancy of $P$ is

$$
J(P)=\sup _{K \subset[0,1)^{2} \text { is convex }} D(P, K)
$$

## Theorem (Schmidt, 1975 and Beck, 1988)

There are constants $0<c_{1}<c_{2}<\infty$ such that

$$
c_{1} N^{-2 / 3} \leq \inf _{\# P=N} J(P) \leq c_{2} N^{-2 / 3} \log ^{4} N, \quad N \in \mathbb{N} .
$$

## The mapped Fibonacci lattice point set

Aistleitner, Brauchart, and Dick: Fibonacci lattice point set and certain digital nets satisfy $J\left(P_{N}\right) \lesssim N^{-1 / 2}$ and therefore $D\left(\Phi\left(P_{N}\right)\right) \lesssim N^{-1 / 2}$.


## (Open) Question

Can we improve the bounds on $J\left(P_{N}\right)$ for the Fibonacci lattice point set and thus construct mapped point sets $\Phi\left(P_{N}\right)$ with cap discrepancy $D\left(\Phi\left(P_{N}\right)\right)$ better than $N^{-1 / 2}$ ?

## Our negative result

## (Open) Question

Can we improve the bounds on $J\left(P_{N}\right)$ for the Fibonacci lattice point set and thus construct mapped point sets $\Phi\left(P_{N}\right)$ with cap discrepancy $D\left(\Phi\left(P_{N}\right)\right)$ better than $N^{-1 / 2}$ ?

No, also not if you consider more general lattice point sets.

## Theorem (Pillichshammer, S., 2019)

Let $\mathcal{P}(L)$ be an $N$-element lattice point set in $[0,1)^{d}$. Then we have

$$
J(\mathcal{P}(L)) \geq c_{d} N^{-1 / d} \quad\left(\gtrsim N^{-2 /(d+1)}\right)
$$

where $c_{d}:=\frac{1}{2} \sqrt{\frac{\pi}{d}}\left(\Gamma\left(\frac{d}{2}+1\right)\right)^{-1 / d}$.

## Integration lattices and their lattice point sets

Let $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}$ be a basis of $\mathbb{R}^{d}$. An integration lattice is a lattice $L:=\left\{\sum_{i=1}^{d} k_{i} \boldsymbol{b}_{i}: k_{i} \in \mathbb{Z}\right.$ for $\left.i=1, \ldots, d\right\}$ containing $\mathbb{Z}^{d}$.
The finite point set $\mathcal{P}(L):=L \cap[0,1)^{d}$ is the associated lattice point set.


## Dual lattice and spectral test

The dual lattice of an integration lattice $L$ is given by

$$
L^{\perp}:=\left\{z \in \mathbb{Z}^{d}: z \cdot x \in \mathbb{Z} \text { for all } x \in L\right\}
$$

and the spectral test of $L$ is defined by

$$
\sigma(L):=\left(\min _{z \in L^{\perp} \backslash\{\mathbf{0}\}}\|z\|_{2}\right)^{-1}
$$




## Dual lattice and spectral test

The dual lattice of an integration lattice $L$ is given by

$$
L^{\perp}:=\left\{z \in \mathbb{Z}^{d}: z \cdot x \in \mathbb{Z} \text { for all } x \in L\right\}
$$

and the spectral test of $L$ is defined by

$$
\sigma(L):=\left(\min _{z \in L^{\perp} \backslash\{\mathbf{0}\}}\|z\|_{2}\right)^{-1}
$$



## Dual lattice and spectral test

The dual lattice of an integration lattice $L$ is given by

$$
L^{\perp}:=\left\{z \in \mathbb{Z}^{d}: z \cdot x \in \mathbb{Z} \text { for all } x \in L\right\}
$$

and the spectral test of $L$ is defined by

$$
\sigma(L):=\left(\min _{z \in L^{\perp} \backslash\{\mathbf{0}\}}\|z\|_{2}\right)^{-1}
$$



## A characterization based on the spectral test

## Theorem (Pillichshammer, S., 2019)

Let $\mathcal{P}(L)$ be a lattice point set in $[0,1)^{d}$. Then we have

$$
\frac{1}{\sqrt{d}} \sigma(L) \leq J(\mathcal{P}(L)) \leq d 2^{2 d+2} \sigma(L) .
$$

If $\sigma(L) \leq 1 / 2$, one can replace $1 / \sqrt{d}$ by a constant.

## Proposition

Let $\mathcal{P}(L)$ be an $N$-element lattice point set in $[0,1)^{d}$. Then we have

$$
\sigma(L) \geq \frac{\sqrt{\pi}}{2}\left(\Gamma\left(\frac{d}{2}+1\right)\right)^{-1 / d} N^{-1 / d} .
$$

## The unconditional lower bound

At most $\lfloor\sqrt{d} / \sigma(L)\rfloor$ hyperplanes of a suitable cover intersect the unit cube $[0,1)^{d}$. By the pidgeonhole principle there exists a convex such that

$$
D(\mathcal{P}(L),>)=\frac{\#(\mathcal{P}(L) \cap)}{\# \mathcal{P}(L)} \geq \sigma(L) / \sqrt{d}
$$



The improvement under $\sigma(L) \leq 1 / 2$
Let $\frac{1}{2}:=\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$. We construct a convex with

$$
\begin{aligned}
D(\mathcal{P}(L), \quad) & =\operatorname{vol}_{d}(>) \\
& \geq \inf _{H} \operatorname{vol}_{d-1}\left(H \cap[0,1)^{d}\right) \times \sigma(L) \geq \frac{1}{17} \sigma(L),
\end{aligned}
$$

where $H$ can be any hyperplane with distance $\left(H, \frac{\mathbf{1}}{\mathbf{2}}\right) \leq 1 / 2$.


## Tessellations by unit cells

Given a lattice $L \subset \mathbb{R}^{d}$ with basis $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}$ the fundamental parallelotope is $P:=\left\{\sum_{i=1}^{d} \lambda_{i} \boldsymbol{b}_{i}: 0 \leq \lambda_{i}<1\right\}$.


Independent of the basis, $\operatorname{vol}_{d}(P)=\operatorname{det}(L)$ and for an integration lattice such that $\# \mathcal{P}=N$ we have $\operatorname{det}(L)=\frac{1}{N}$.

## The lower bound of $\sigma(L)$

For any $N$-element lattice point set $\mathcal{P}(L): \sigma(L) \geq c_{d} N^{-1 / d}$.


Minkowski: If $\operatorname{vol}_{d}(B)>2^{d} \operatorname{det}\left(L^{\perp}\right)$, then $B$ contains at least one $z \in L^{\perp} \backslash\{\mathbf{0}\}$.
$L$ integration lattice $\Rightarrow \operatorname{det}\left(L^{\perp}\right)=\operatorname{det}(L)^{-1}=N$ implies that $\|\mathbf{O}\|_{2} \leq C_{d} N^{1 / d}$ and thus $\sigma(L) \geq C_{d}^{-1} N^{-1 / d}$. $\square$

## The upper bound

Let $K \subset[0,1)^{d}$ be convex and $\mathcal{P}(L) \subset[0,1)^{d}$ be an $N$-element lattice point set.


## The upper bound

Let $K \subset[0,1)^{d}$ be convex and $\mathcal{P}(L) \subset[0,1)^{d}$ be an $N$-element lattice point set. We have

$$
D(\mathcal{P}(L), K)=\sum_{i=1}^{M} D\left(\mathcal{P}(L), K_{i}\right)
$$

where $K_{i}$ is the intersection of $C$ with a translated fundamental parallelotope $x_{i}+P, x_{i} \in L$.


## The upper bound

Then

$$
D(\mathcal{P}(L), K)=\sum_{i=1}^{M} D\left(\mathcal{P}(L), K_{i}\right) \leq M_{\text {intersect }} \times \frac{1}{N},
$$

where

$$
M_{\text {intersect }}:=\#\left\{i: K_{i} \cap \partial K \neq \emptyset\right\} .
$$



## The upper bound

Recall that

$$
D(\mathcal{P}(L), K) \leq M_{\text {intersect }} \times \frac{1}{N}
$$

By a volumetric argument it holds that

$$
M_{\text {intersect }} \leq \frac{\operatorname{vol}_{d}(\operatorname{diam}(P) \text {-neighbourhood of } \partial K)}{\operatorname{vol}_{d}(P)=\frac{1}{N}}
$$

After some convex geometry,

$$
\operatorname{vol}_{d}(\operatorname{diam}(P) \text {-neighbourhood of } \partial K) \leq 2^{d+3} \operatorname{diam}(P)
$$

Therefore,

$$
D(\mathcal{P}(L), K) \leq 2^{d+3} \operatorname{diam}(P)
$$

## The upper bound

Recall that

$$
D(\mathcal{P}(L), K) \leq 2^{d+3} \operatorname{diam}(P)
$$

Using the LLL-algorithm, we have for $P$ belonging to $B$

$$
\operatorname{diam}(P) \leq d 2^{d-1} \sigma(L)
$$

where $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}\right\}$ is a reduced basis of $L$. This is due to

$$
\operatorname{diam}(P) \leq \sum_{i=1}^{d}\left\|\mathbf{b}_{i}\right\|_{2} \leq d \max _{i=1, \ldots, d}\left\|\mathbf{b}_{\mathbf{i}}\right\|_{2} \leq d 2^{d-1}\left\|\mathbf{b}_{d}^{*}\right\|_{2}
$$

where $\mathbf{b}_{d}^{*}$ is the last vector in the Gram-Schmidt orthogonalization of $B$ and thus related to a covering by hyperplanes.

## Bonus: Covering Radius $\asymp$ Spectral Test

## Proposition

For any lattice point set $\mathcal{P}(L) \subset[0,1)^{d}$ we have for some $C_{d}>0$

$$
\frac{1}{2} \sigma(L) \leq \sup _{y \in[0,1)^{d}} \min _{x \in \mathcal{P}(L)}\|x-y\|_{2} \leq C_{d} \sigma(L) .
$$



## Bonus: Covering Radius $\asymp$ Spectral Test

## Proposition

For any lattice point set $\mathcal{P}(L) \subset[0,1)^{d}$ we have for some $C_{d}>0$

$$
\frac{1}{2} \sigma(L) \leq \sup _{y \in[0,1)^{d}} \min _{x \in \mathcal{P}(L)}\|x-y\|_{2} \leq C_{d} \sigma(L) .
$$



## Bonus: Covering Radius $\asymp$ Spectral Test

## Proposition

For any lattice point set $\mathcal{P}(L) \subset[0,1)^{d}$ we have for some $C_{d}>0$

$$
\frac{1}{2} \sigma(L) \leq \sup _{y \in[0,1)^{d}} \min _{x \in \mathcal{P}(L)}\|x-y\|_{2} \leq C_{d} \sigma(L)
$$



## Bonus: Covering Radius $\asymp$ Spectral Test

## Proposition

For any lattice point set $\mathcal{P}(L) \subset[0,1)^{d}$ we have for some $C_{d}>0$

$$
\frac{1}{2} \sigma(L) \leq \sup _{y \in[0,1)^{d}} \min _{x \in \mathcal{P}(L)}\|x-y\|_{2} \leq C_{d} \sigma(L)
$$



## Bonus: Covering Radius $\asymp$ Spectral Test

## Proposition

For any lattice point set $\mathcal{P}(L) \subset[0,1)^{d}$ we have for some $C_{d}>0$

$$
\frac{1}{2} \sigma(L) \leq \sup _{y \in[0,1)^{d}} \min _{x \in \mathcal{P}(L)}\|x-y\|_{2} \leq C_{d} \sigma(L) .
$$



## References I

E
C. Aistleitner, J. S. Brauchart, and J. Dick.

Point sets on the sphere $\mathbb{S}^{2}$ with small spherical cap discrepancy.
Discrete Comput. Geom., 48(4):990-1024, 2012.
E K. Alishahi and M. Zamani.
The spherical ensemble and uniform distribution of points on the sphere.
Electron. J. Probab., 20(23), 2015.
周 J. Beck.
Some upper bounds in the theory of irregularities of distribution.
Acta Arith., 43(2):115-130, 1984.

## References II

闰 J．Beck．
Sums of distances between points on a sphere－an application of the theory of irregularities of distribution to discrete geometry．
Mathematika，31（1）：33－41， 1984.
或 J．Beck．
On the discrepancy of convex plane sets．
Monatsh．Math．，105（2）：91－106， 1988.
圊 U．Etayo．
Spherical cap discrepancy of the diamond ensemble．
arXiv－preprints， 2019.
目 A．Lubotzky，R．Phillips，and P．Sarnak． Hecke operators and distributing points on $S^{2}$ ．II．
Comm．Pure Appl．Math．，40（4）：401－420， 1987.

## References III

F. Pillichshammer and M. Sonnleitner.

A note on isotropic discrepancy and spectral test of lattice point sets.
J. Complexity, 58:101441, 7, 2020.

围 W. M. Schmidt.
Irregularities of distribution. IX.
Acta Arith., 27:385-396, 1975.

