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The Story in 2 Slides

Here’s a classical problem: how do distribute sequences of points
in the most regular way in [0, 1]d?

Or how do we distribute sets of
points most regularly?

There are many different ways of measuring this regularity.
Certainly a very popular one is discrepancy. It is (1) geometrically
meaningful and (2) connected to practical applications via the
Koksma-Hlawka inequality∣∣∣∣∣

∫
[0,1]d

f (x)dx − 1

N

N∑
k=1

f (xk)

∣∣∣∣∣ ≤ DN(x) · Var(f ),

where DN is the discrepancy and Var denotes Hardy-Krause
variation. Hardy-Krause is tricky: it tends to grow exponentially in
the dimension.
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The point of this talk is to discuss a new type of notion. I propose
we look at something called the Wasserstein distance

W1 = W1

(
1

N

N∑
k=1

δxk , dx

)
as a measure of regularity.

It is (1) geometrically meaningful and (2) connected to practical
applications via what is known as the Kantorovich-Rubinstein
duality ∣∣∣∣∣
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Moreover, this inequality is sharp. ‖∇f ‖L∞ is, I would argue, a lot
more natural than Hardy-Krause.
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Suppose I want to sample a function f : [0, 1]100 → R. It is known
that there are point sets for which

DN ∼
(logN)d−1

N
.

This function is actually increasing until N ∼ ed . Moreover,
Hardy-Krause variation also tends to grow quite quickly.∣∣∣∣∣
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∣∣∣∣∣ ≤W1 · ‖∇f ‖L∞

has no such hidden costs. The price: W1 & N−1/d .
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The Overall Goal

I What is Optimal Transport?

More precisely, what is the
Wasserstein Distance W1?

I Computing the Wasserstein Distance for some classical
sequences (which is a very nice thing: it’s not some abstract
quantity, it can actually be computed)

I What does this mean for Numerical Integration?
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Gaspard Monge (1746 – 1818)

1781: ‘Sur la théorie des déblais et
des remblais’

Roughly: ‘On the Theory of Rubble
and Embankments’
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Optimal Transport
Suppose we are given two measure µ and ν having same total mass
and want to transport one to the other. (In all our applications, µ
will be the measure induced by the points and ν = dx .)
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Suppose it costs δ · ε to move a box of weight ε distance δ. What
is the cheapest way to move the boxes to the desired goal?
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Wasserstein Distance
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One unit of mass in 0 (blue), 1/3 unit of mass in a, 2/3 mass in b.

W1(µ, ν) =
a

3
+

2b
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This is the Earth Mover Distance, the physical cost. There also
exists an Lp−version of this, where p > 1, which leads to the
p−Wasserstein distance

Wp(µ, ν) =

(
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)1/p



Wasserstein Distance

0 a b 1

One unit of mass in 0 (blue), 1/3 unit of mass in a, 2/3 mass in b.

W1(µ, ν) =
a

3
+

2b

3

This is the Earth Mover Distance, the physical cost.

There also
exists an Lp−version of this, where p > 1, which leads to the
p−Wasserstein distance

Wp(µ, ν) =

(
1

3
ap +

2

3
bp
)1/p



Wasserstein Distance

0 a b 1

One unit of mass in 0 (blue), 1/3 unit of mass in a, 2/3 mass in b.

W1(µ, ν) =
a

3
+

2b

3

This is the Earth Mover Distance, the physical cost. There also
exists an Lp−version of this, where p > 1, which leads to the
p−Wasserstein distance

Wp(µ, ν) =

(
1

3
ap +

2

3
bp
)1/p



Wasserstein Distance

0 a b 1

One unit of mass in 0 (blue), 1/3 unit of mass in a, 2/3 mass in b.

W1(µ, ν) =
a

3
+

2b

3

This is the Earth Mover Distance, the physical cost. There also
exists an Lp−version of this, where p > 1, which leads to the
p−Wasserstein distance

Wp(µ, ν) =

(
1

3
ap +

2

3
bp
)1/p



Wasserstein Distance

0 1
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Hölder’s inequality implies that Wp ≥W1. For this talk: feel free
to replace everything by W1 (in fact, I assume that for most of the
talk the W1 and the W2 behave similarly).
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This tells us that we have to move most particles roughly distance
∼ p−1/2. This is in line with the heuristic that these are ‘random’.
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Something Very Nice

Theorem (R. Peyre, 2018)
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If

µ =
1

N

N∑
n=1

δxk ,

then

W2(µ, dx) .

∑
` 6=0

1

`2

∣∣∣∣∣ 1

N

N∑
k=1

e2πi`xl

∣∣∣∣∣
2
1/2

.

This is reminiscent of the Erdős-Turan inequality.



Summary

I Wasserstein Distance gives us yet another perspective on the
(ir-)regularity of distributions...

I ... and it is cheap to compute! It’s classical exponential sum
estimates
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Cole Graham (arXiv:1910.14181) has similar results on the torus,
Bence Borda (arXiv:2005.04925) on compact Lie groups.
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The Coffee Shop Problem

Theorem (Louis Brown and S, 2019)

Let d ≥ 2 and let α ∈ Rd be badly approximable. Then the
Kronecker sequence xk = kα mod 1 satisfies

W2

(
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N

N∑
k=1

δxk , dx

)
.cα,d N−1/d

In d ≥ 3, this seems to be fairly easy to do. Open Problem. But
d = 2 appears subtle, are there other constructions?
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Something Quite Nice

How does one get good estimates on
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Peyre’s estimate works but Dirac measures are no longer in Ḣ−1.

This has an interesting analogue in Analytic Number Theory:
Zinterhof’s Diaphony. For {x1, . . . , xN} ⊂ [0, 1], Zinterhof’s
diaphony FN is given by

FN =

∑
` 6=0

1

`2

∣∣∣∣∣ 1

N

N∑
k=1

e2πi`xl

∣∣∣∣∣
2
1/2

.
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Again Exponential Sums!
How does one get good estimates on
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Open Problems

I think it could be interesting to revisit classical objects!
What about

I the Halton sequence?

I the Hammersley set?

I Sobol?

I (t,m, s)−nets?

Surely many of these objects satisfy

W2

(
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N

N∑
n=1

δxk , dx

)
. N−1/d?

Some of them can probably be attacked via Exponential Sums?
Others (nets?) via explicit constructions?
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Open Problems

I think it could be interesting to revisit classical objects!

We recall that∣∣∣∣∣
∫
[0,1]d
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f (xk)
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)
· ‖∇f ‖L∞ .

What if the function is twice-differentiable? Or in other
smoothness classes?



Open Problems

This is another classical problem: it is known that

DN .
(logN)d−1

N

and the implicit constants are your enemy.

Theorem (Heinrich, Novak, Wasilkowski, Wozniakowski, 2001)

There exist {x1, . . . , xN} ⊂ [0, 1]d such that

DN ≤ c

√
d

N
.

Aistleitner: c = 10 works (since then other improvements).
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Open Problems

Likewise, we have
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(
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N
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δxk , dx

)
≤
√
d

N1/d
as N →∞

But probably not for N = 1000?

Question
Given N and d , how small can you make

Wp

(
1

N

N∑
n=1

δxk , dx

)
?

When N is large, some kind of lattice structure (sphere packing?)
is presumably optimal (see also Hinrichs, Novak, Ullrich,
Wozniakowski, 2016).But N = 1000 in d = 30? (230 � 1000)
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A Final Application

The following is very classical. Let f : [0, 1]d → R. Then there
are points {x1, . . . , xN} ⊂ [0, 1]d such that∣∣∣∣∣

∫
Td

f (x)dx − 1

N

N∑
k=1

f (xk)

∣∣∣∣∣ ≤ cd
‖∇f ‖L∞
N1/d

.

If you don’t know anything about the function, this is clearly best
possible. Take

f (x) = min
1≤i≤n

‖x − xi‖.

The average distance from a point in [0, 1]d to a point is ∼ N−1/d .
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Theorem (Louis Brown and S, 2019)

Let d ≥ 2 and let α ∈ Rd be a badly approximable vector. Then,
for some universal cα > 0 and all differentiable f : Td → R∣∣∣∣∣
∫
Td

f (x)dx − 1

N

N∑
k=1

f (kα)

∣∣∣∣∣ ≤ cα‖∇f ‖(d−1)/dL∞(Td )
‖∇f ‖1/d

L2(Td )
N−1/d .

I Uniformly for a sequence and

I better Lp−spaces.

... this is strange. The grid should actually be the best....
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Slight Improvement over a Classical Result

Theorem (Louis Brown and S, 2019)

We have, for some explicit constant cd depending only on the
dimension, for all differentiable f : [0, 1]d → R sampled on the
regular grid (xk)Nk=1∣∣∣∣∣
∫
[0,1]d

f (x)dx − 1

N

N∑
k=1

f (xk)

∣∣∣∣∣ ≤ cd‖∇f ‖
(d−1)/d
L∞(Td )

‖∇f ‖1/d
L1(Td )

N−1/d .

This is sharp again (probably?): take 0 < ε� 1 and

f (x) = min

{
ε, min

1≤i≤N
‖x − xi‖

}
.
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On Friday

One big issue with classical discrepancy is that it is adapted to the
torus Td (since we use axis-parallel rectangles). There are natural
variations on the sphere (take spherical caps) but it’s not clear
what to do on a general manifold.

In contrast, the Wasserstein distance does not care very much
about the underlying background. This makes it a stable notion.
But there are lots of problems on, say, S2 as well, and we’ll discuss
some of them on Friday.
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Thank you!


