000000000 000	00000	00000000000000	0000	

Random matrices and L₂-approximation using function values

Mario Ullrich JKU Linz & MCFAM Moscow

Point Distribution Webinar Online, May 2021

Introduction •••••	An example	Least squares	The proof	Other info	End 00
Motivatio	n				

We want to recover/approximate

a function $f: D \to \mathbb{R}$

(or some property of it) up to

a certain error $\varepsilon > 0$,

where f is only known through

some pieces of information.

Introduction •••••	An example	Least squares	The proof	Other info	End 00
Motivatio	n				

We want to recover/approximate

a function $f: D \to \mathbb{R}$

(or some property of it) up to

a certain error $\varepsilon > 0$,

where f is only known through

some pieces of information.

???

7

77

Introduction 000000000	An example	Least squares	The proof	Other info	End 00
During th	is talk				

we consider

- a measure space (D, \mathcal{A}, μ) ,
- $L_2 = L_2(D, A, \mu)$: the square-integrable functions w.r.t. μ , and
- a separable metric space $F \hookrightarrow L_2$ of functions on D.

For example:

- $D = [0,1]^d$ or $D = \mathbb{R}^d$ or $D = \mathbb{N}$, with arbitrary μ , and
- F is the unit ball of a separable normed space.

 $(F \hookrightarrow L_2 \text{ means here that } \operatorname{id}: F \to L_2, \operatorname{id}(f) = f$, is injective and compact.)

Introduction	An example	Least squares	The proof	Other info	End 00
Approxim	ation				

We want to "compute" an L_2 -approximation of $f \in F$ based on a finite (preferably small) number of information, because we ...

- don't know f and we can only take some measurements, or
- know f, but want to compress it because of computing issues.

What information is allowed, and how important is this choice?

(The statement " $f \in F$ " can be seen as the a priori knowledge about f.)

Introduction	An example	Least squares	The proof	Other info	End 00
Informatio	n				

Information of a function $f \in F$ is given by L(f) for some linear functional $L: F \to \mathbb{R}$.

In general, we do not have access to arbitrary $L \in F'$ (=dual of F).

Instead, we have a class of admissible information $\Lambda \subset F'$, e.g.,

- certain expectations of f,
- coefficients w.r.t. a given basis,
- function values: f(x) for $x \in D$.

Introduction	An example	Least squares	The proof	Other info	End
0000000000					
Algorithe	as ly arror				

Algorithms & error

For information (maps) $L_1, \ldots, L_n \in \Lambda$, we study **linear algorithms**:

$$A_n(f) = \sum_{i=1}^n L_i(f) \cdot \varphi_i$$

for some $\varphi_i \in L_2$. So, A_n is specified by L_i, φ_i .

We want to bound the **worst-case error** over *F*:

$$e(A_n,F) = \sup_{f\in F} \left\| f - A_n(f) \right\|_{L_2}.$$

(Several other settings are possible here. Linearity has advantages.)

Introduction	An example	Least squares	The proof	Other info	End

Minimal worst-case errors

We are interested in the (linear) sampling numbers

$$g_n(F) := \inf_{\substack{x_1,\ldots,x_n\in D\\\varphi_1,\ldots,\varphi_n\in L_2}} \sup_{f\in F} \left\| f - \sum_{i=1}^n f(x_i) \varphi_i \right\|_{L_2},$$

i.e., the minimal error that can be achieved with n function values.

As a benchmark, we use the **approximation numbers** (linear width)

$$a_n(F) := \inf_{\substack{L_1, \dots, L_n \in F' \\ \varphi_1, \dots, \varphi_n \in L_2}} \sup_{f \in F} \left\| f - \sum_{i=1}^n L_i(f) \varphi_i \right\|_{L_2},$$

i.e., the minimal error that can be achieved with arbitrary info.

Introduction	An example	Least squares	The proof	Other info	End 00
How good	l are funct	tion values?			

The a_n 's are well understood, but the g_n 's are harder to analyze.

We clearly have

$$a_n(F) \leq g_n(F)$$

if point evaluation $f \mapsto f(x)$ is a continuous linear functional on F.

How large is the difference between g_n and a_n ?

Introduction	An example	Least squares	The proof	Other info	End 00
Earlier res	sults				

Several specific, but only some general bounds were known before.

A negative result[Hinrichs/Novak/Vybíral 2008]For any $(a_n) \notin \ell_2$, there exist F with $a_n(F) = a_n$ for all n, but $g_n(F) \ge \frac{1}{\log \log(n)}$.for infinitely many n.

For unit balls of Hilbert spaces H with $a_n(H) \lesssim n^{-lpha}$, lpha > 1/2, we have

A positive result

$$g_n(H) \lesssim n^{-\alpha \frac{2\alpha}{2\alpha+1}} \lesssim n^{-\alpha/2}.$$

[Kuo/Wasilkowski/Woźniakowski 2009]

Introduction	An example	Least squares	The proof	Other info	End
00000000000					
Λ					

A very positive result

We now have this general result on the power of function values.

Theorem[Krieg/U 2019; U 2020; Krieg/U 2021]Let $F \hookrightarrow L_2$ be a separable metric space of functions on D, such
that point evaluation is continuous on F.Then, for every $0 , there is a constant <math>c_p > 0$, depending
only on p, such that, for all $n \ge 2$, we have

$$g_N(F) \leq \sqrt{\log n} \left(\frac{1}{n} \sum_{k \geq n} a_k(F)^p\right)^{1/p}$$

for $N \geq c_p \cdot n$.

For unit balls of Hilbert spaces, p=2 also works.^[Nagel, Schäfer, T. Ullrich, 2020]

Introduction ○○○○○○○○●	An example	Least squares	The proof	Other info	End 00
In particu	ılar				

Corollary

If F is such that

$$a_n(F) \, \lesssim \, n^{-lpha} \log^eta(n)$$

for some $\alpha > 1/2$ and $\beta \in \mathbb{R}$, then we obtain

$$g_n(F) \lesssim n^{-\alpha} \log^{\beta+1/2}(n).$$

Stated differently: If $n \approx (\frac{1}{\varepsilon})^q$, q < 2, (arbitrary) infos are enough

for an approximation with error $\varepsilon > 0$, then

 $\left(\frac{\sqrt{\log(1/\varepsilon)}}{\varepsilon}\right)^q$ function values can do the same.

Introduction	An example ●○○	Least squares	The proof	Other info	End 00
Mv favori	te example	3			

A prominent example: Sobolev spaces with (dominating) mixed smoothness.

Let $D = \mathbb{T}^d$ be the *d*-dim. torus, $\mu = \lambda$ the Lebesgue measure on \mathbb{T}^d , $1 \le p \le \infty$ and $s \in \mathbb{N}$. We define

$$\mathbf{W}_{p}^{s} = \left\{ f \in L_{p}(\mathbb{T}^{d}) : \|f\|_{\mathbf{W}_{p}^{s}} \leq 1 \right\},\$$

where

$$\|f\|_{\mathbf{W}_p^s} := \left(\sum_{\alpha \in \mathbb{N}_0^d \colon |\alpha|_{\infty} \le s} \|D^{\alpha}f\|_p^p\right)^{1/p}$$

So, $f \in \mathbf{W}_p^s$ implies $D^{\alpha}f \in L_p$ for all $\alpha \in \mathbb{N}_0^d$ with $\max_i |\alpha_i| \leq s$.

Introduction	An example ○●○	Least squares	The proof	Other info	End 00
My favori	ite example	e II			

It is known that these well-studied spaces satisfy

•
$$g_n(\mathbf{W}^s_p) \asymp a_n(\mathbf{W}^s_p)$$
 for $p < 2$ and all $s > 1/p$.

•
$$g_n(\mathbf{W}_p^s) \geq a_n(\mathbf{W}_p^s) \asymp n^{-s} \log^{s(d-1)}(n)$$
 for $p \geq 2$ and $s > 0$.

$$\bullet \hspace{0.2cm} g_n(\mathbf{W}_p^s) \hspace{0.1cm} \lesssim \hspace{0.1cm} n^{-s} \log^{(s+1/2)(d-1)}(n) \hspace{0.2cm} \text{for} \hspace{0.1cm} p \geq 2 \hspace{0.1cm} \text{and} \hspace{0.1cm} s > 1/2.$$

All the upper bounds are achieved by sparse grids. $^{[Sickel, T. Ullrich, 2007]}$

It was the prevalent conjecture that the upper bounds are sharp.

We now have

$$g_n(\mathbf{W}_p^s)\,\lesssim\,n^{-s}\log^{s(d-1)+1/2}(n)$$
 for $p\geq 2$ and all $s>1/2.$

Introduction	An example ○○●	Least squares	The proof	Other info	End 00
Existence	of good p	oints			

That is, sparse grids are not optimal!

Unfortunately, our general result is only an **existence result**. In particular, we don't know good sampling points, yet.

However, if we weaken the bound a bit, then ...

- i.i.d. random points work with high probability, and
- we know an (to some extent) explicit algorithm.

Introduction	An example	Least squares	The proof	Other info	End
		• 00 00			

Least squares for function values

It is a classical to study weighted least squares methods:

$$A_N(f) = \operatorname{argmin}_{g \in V_n} \sum_{i=1}^N d_i |g(x_i) - f(x_i)|^2$$

for some weigths $d_i > 0$, $x_i \in D$ and $V_n = \operatorname{span}\{b_1, \ldots, b_n\} \subset L_2$.

The analysis often boils down to the study of quantities depending on $\sum_{k=1}^{n} |b_k(x)|^2 \quad \text{and} \quad (f - P_n f)(x).$

(There are hundreds of results on such methods, mostly for special F.)

Introduction	An example	Least squares	The proof	Other info	End
		0000			

Least squares: our approach

To compare $g_n(F)$ and $a_n(F)$, we consider

$$A_N(f) = \operatorname*{argmin}_{g \in V_n} \sum_{i=1}^N \frac{|g(x_i) - f(x_i)|^2}{\varrho(x_i)}$$

with $V_n = \operatorname{span}\{b_1, \dots, b_n\}$, where $\{b_k\}$ is a "good" basis of F, and

$$\varrho(x) := \frac{1}{2} \left(\frac{1}{n} \sum_{k \le n} |b_k(x)|^2 + \sum_{k > n} w_k |b_k(x)|^2 \right)$$

for some sequence (w_k) , s.t. ρ is a μ -density, and choose

$$x_1,\ldots,x_N \stackrel{\mathrm{iid}}{\sim} \rho \cdot \mathrm{d}\mu.$$

Introduction	An example	Least squares	The proof	Other info	End
		00000			

The general result

Theorem

[Krieg/U 2021]

Let $F_0 \subset L_2(\mu)$ be a countable set and $x_1, \ldots, x_N \stackrel{\text{iid}}{\sim} \rho \cdot d\mu$.

Then, for every $0 , there is a constant <math>c_p > 0$, depending only on p, such that, for all $n \ge 2$, we have

$$e(A_N,F_0) \leq \left(\frac{1}{n}\sum_{k\geq n}a_k(F_0)^p\right)^{1/p}$$

for $N \ge c_p n \log(n)$ with probability at least $1 - \frac{1}{n^2}$.

(For unit balls of Hilbert spaces, p = 2 also works.^[Krieg/U 2019])

Introduction	An example	Least squares	The proof	Other info	End
		00000			

My favorite example III

For the spaces \mathbf{W}_{ρ}^{s} the "good" ONB is given by $\{e^{2\pi i k \cdot} : k \in \mathbb{Z}^{d}\}$, i.e. the Fourier basis. Since $\|b_{k}\|_{\infty} \leq 1$, we can use $\rho \equiv 1$.

Corollary

[Krieg/U 2019, U 2020]

Let x_1, \ldots, x_n be independent and uniformly distributed in \mathbb{T}^d . Then, for any s > 1/2,

$$e(A_n, \mathbf{W}_2^s) \lesssim a_{rac{n}{\log n}}(\mathbf{W}_2^s) \asymp n^{-s} \log^{sd}(n)$$

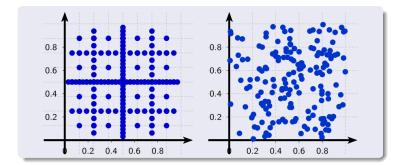
with probability at least $1 - \frac{8}{n^2}$.

Nagel/Schäfer/T. Ullrich 2020: $g_n(\mathbf{W}_2^s) \lesssim n^{-s} \log^{s(d-1)+1/2}(n)$.

Introduction	An example	Least squares ○○○○●	The proof	Other info	End 00
Sparse gri	ds vs. ran	dom point s	sets		

w.h.p.: $e(A_n, \mathbf{W}_2^s) \lesssim n^{-s} \log^{sd}(n),$

which is better than sparse grids for d > 2s + 1.



What are optimal points?

Introduction	An example	Least squares	The proof ●000000000000000	Other info	End 00
The proof					

The first important insight is that A_N can be written as

$$A_N(f) = \sum_{k=1}^n (G^+ N(f))_k b_k,$$

where $N: F_0 \to \mathbb{R}^n$ with $N(f) = \left(\varrho(x_i)^{-1/2} f(x_i)\right)_{i \le N}$ is the **weighted information mapping** and $G^+ \in \mathbb{R}^{n \times N}$ is the Moore-Penrose inverse of the matrix

$$G = \left(\frac{b_j(x_i)}{\sqrt{\varrho(x_i)}}\right)_{i \le N, j \le n} \in \mathbb{R}^{N \times n}.$$

Introduction	An example	Least squares	The proof ○●○○○○○○○○○○○○	Other info	End 00
The proo	f II				

Since A_N is exact on V_n , we obtain

$$\begin{aligned} \|f - A_N f\|_{L_2} &\leq \|f - P_n f\|_{L_2} + \|P_n f - A_n f\|_{L_2} \\ &\leq a_n + \|G^+ N(f - P_n f)\|_{\ell_2^n} \\ &\leq a_n + \|G^+ \colon \ell_2^N \to \ell_2^n\| \cdot \|N(f - P_n f)\|_{\ell_2^N} \end{aligned}$$

and hence

$$e(A_N, F_0) \leq a_n + s_{\min}(G)^{-1} \sup_{f \in F_0} \|N(f - P_n f)\|_{\ell_2^N},$$

where s_{\min} denotes the smallest singular value.

Introduction	An example	Least squares	The proof ○○●○○○○○○○○○○○	Other info	End 00
The proof	f III				

$$e(A_N, F_0) \leq a_n + s_{\min}(G)^{-1} \sup_{f \in F_0} \|N(f - P_n f)\|_{\ell_2^N},$$

We will show that

Fact 1:
$$s_{\min}(G: \ell_2^n \to \ell_2^N)^2 \gtrsim N$$

Fact 2: $\sup_{f \in F_0} \|N(f - P_n f)\|_{\ell_2^N}^2 \lesssim n \log n \left(\frac{1}{n} \sum_{k \geq n} a_k^p\right)^{2/p}$

for $N \approx c_p n \log(n)$ simultaneously with high probability.

Introduction	An example	Least squares	The proof	Other info	End
			000000000000000000000000000000000000000		
<u> </u>					
	C	-			

The proof: main tool

Proposition

[Oliveira 2010, Mendelson/Pajor 2006]

Let X be a random vector in \mathbb{C}^k with $||X||_2 \leq R$ with probability 1, and let X_1, X_2, \ldots be independent copies of X. Additionally, let $E := \mathbb{E}(XX^*)$ satisfy $||E|| \leq 1$, where ||E|| denotes the spectral norm of E. Then, for all $t \geq \frac{1}{2}$,

$$\mathbb{P}\left(\left\|\sum_{i=1}^{N} X_{i} X_{i}^{*} - N \cdot E\right\| \geq N \cdot t\right) \leq 4N^{2} \exp\left(-\frac{N}{32R^{2}}t\right).$$

Note that the bound is dimension-free.

Introduction	An example	Least squares	The proof	Other info	End
			000000000000000000000000000000000000000		

The proof of Fact 1

Let
$$X_i := \varrho(x_i)^{-1/2} (b_1(x_i), \dots, b_n(x_i))^\top$$
 with $x_i \sim \rho$. Then, we have

$$\sum_{i=1}^{N} X_i X_i^* = G^* G = \left(\sum_{i=1}^{N} \frac{\overline{b_j(x_i)} b_k(x_i)}{\varrho(x_i)} \right)_{j,k \le n} \in \mathbb{R}^{n \times n}$$

and $E = \mathbb{E}(XX^*) = \operatorname{diag}(1, \dots, 1)$, i.e., $\|E\| = 1$. Moreover,

$$||X_i||_2^2 = \varrho(x_i)^{-1} \sum_{k \le n} |b_k(x_i)|^2 \le 2n =: R^2,$$

since

$$\varrho(x) \geq \frac{1}{2n} \sum_{k \leq n} |b_k(x)|^2.$$

Introduction	An example	Least squares	The proof ○○○○○●○○○○○○○○	Other info	End 00
The proo	f of Fact 1				

With
$$t = \frac{1}{2}$$
 and $N = \lceil C_1 n \log n \rceil$, we obtain

$$\mathbb{P}\Big(\|G^*G - NE\| \ge \frac{N}{2}\Big) \le \frac{4}{n^2}$$

if the constant $C_1 > 0$ is large enough. We obtain

$$s_{\min}(G)^2 = s_{\min}(G^*G) \ge s_{\min}(NE) - \|G^*G - NE\| \ge \frac{N}{2}$$

with probability at least $1 - \frac{4}{n^2}$.

Introduction	An example	Least squares	The proof ○○○○○●○○○○○○○	Other info	End 00
T 1					

The proof of Fact 2: Decomposition

With $I_\ell := \{n2^\ell+1,\ldots,n2^{\ell+1}\}$, $\ell \ge 0$, and the random matrices

$$\Gamma_{\ell} := \left(\varrho(x_i)^{-1/2} b_k(x_i) \right)_{i \leq N, k \in I_{\ell}} \in \mathbb{R}^{N \times n2^{\ell}},$$

and $\hat{f}_{\ell} := (\langle f, b_k \rangle_{L_2})_{k \in I_{\ell}}$, we obtain that

$$\begin{split} \|N(f-P_nf)\|_{\ell_2^N} &\stackrel{\textcircled{?}}{=} \left\| \sum_{\ell=0}^{\infty} \Gamma_{\ell} \hat{f}_{\ell} \right\|_{\ell_2^N} \leq \sum_{\ell=0}^{\infty} \|\Gamma_{\ell} \colon \ell_2(I_{\ell}) \to \ell_2^m\| \|\hat{f}_{\ell}\|_{\ell_2(I_{\ell})} \\ &\leq 2 \sum_{\ell=0}^{\infty} \|\Gamma_{\ell} \colon \ell_2(I_{\ell}) \to \ell_2^m\| a_{n2^{\ell-2}}(F_0) \end{split}$$

for all $f \in F_0$. The last inequality is ensured by the "good" basis.

Introduction	An example	Least squares	The proof ○○○○○○●○○○○○○	Other info	End 00
T 1					

The proof of Fact 2: individual blocks

For fixed ℓ , let $X_i := \varrho(x_i)^{-1/2} (b_k(x_i))_{k \in I_\ell}^\top$ with $x_i \sim \rho$. We have

$$\sum_{i=1}^{N} X_i X_i^* = \Gamma_{\ell}^* \Gamma_{\ell} = \left(\sum_{i=1}^{N} \frac{\overline{b_j(x_i)} \, b_k(x_i)}{\varrho(x_i)} \right)_{j,k \in I_{\ell}} \in \mathbb{R}^{n2^{\ell} \times n2^{\ell}}$$

and $E = \mathbb{E}(XX^*) = \operatorname{diag}(1, \dots, 1)$, i.e., $\|E\| = 1$. Moreover,

$$\|X_i\|_2^2 = \varrho(x_i)^{-1} \sum_{k \in I_\ell} |b_k(x_i)|^2 \le \frac{2}{w_{n2^{\ell+1}}} =: R^2,$$

since

$$\varrho(x) \geq \frac{1}{2} \sum_{k \in I_{\ell}} w_k |b_k(x)|^2 \geq \frac{w_{n2^{\ell+1}}}{2} \sum_{k \in I_{\ell}} |b_k(x)|^2.$$

The proof of Fact 2: union bound

With
$$t \approx \frac{\log(n\ell)}{w_{n2^{\ell}}\log(n)}$$
 and $N = \lceil C_1 n \log n \rceil$, we obtain with $\|\Gamma_{\ell}\|^2 \leq m + \|\Gamma_{\ell}^*\Gamma_{\ell} - mE\|$ that

$$\mathbb{P}\left(\|\Gamma_{\ell}\|^{2} \geq C_{2} n \log(n) B_{\ell}^{2}\right) \leq rac{4}{n^{2}(\ell+1)^{2}\pi^{2}}$$

for some $B_\ell \gg \sqrt{\ell 2^\ell}$ that is independent of n, N.

We obtain by a union bound that

$$\mathbb{P}\left(\exists \ell \in \mathbb{N}_0 \colon \|\Gamma_\ell\|^2 \geq C_2 \, n \, \log(n) \, B_\ell^2\right) \, \leq \, \frac{1}{n^2}.$$

Introduction	An example	Least squares	The proof ○○○○○○○○○○○○○○○	Other info	End 00
The proo	f of Fact 2	: some cald	culation		

Hence,

$$\|N(f - P_n f)\|_{\ell_2^N} \lesssim n \log(n) \sum_{\ell=0}^{\infty} B_\ell a_{n2^\ell}(F_0)$$

for all $f \in F_0$ with probability at least $1 - \frac{1}{n^2}$.

Monotonicity of (a_n) gives

$$\sum_{k\geq n}a_k^p\geq n(2^\ell-1)\,a_{n2^\ell}^p$$

for
$$\ell \geq 1$$
 and thus $a_{n2^\ell} \,\lesssim\, 2^{-\ell/p} igg(rac{1}{n} \sum_{k \geq n} a_k^p igg)^{1/p}.$

We can choose suitable w_k , B_ℓ if $p \in (0, 2)$, which finishes the proof.

Introduction	An example	Least squares	The proof	Other info	End
			000000000000000000000000000000000000000		

The proof of Fact 2: point-wise convergence

It remains to verify
$$\|N(f - P_n f)\|_{\ell_2^N} \stackrel{\textcircled{?}}{=} \left\|\sum_{\ell=0}^{\infty} \Gamma_{\ell} \hat{f}_{\ell}\right\|_{\ell_2^N}$$
:

We implicitly use

$$(f-P_nf)(x_i) = \sum_{k>n} \hat{f}(k) b_k(x_i).$$

Rademacher-Menchov theorem

Let F_0 be **countable** with $\left(\sqrt{\frac{\log(k)}{k}} \cdot a_k(F_0)\right) \in \ell_2$. Then, there is a measurable subset D_0 of D with $\mu(D \setminus D_0) = 0$ such that

$$f(x) = \sum_{k \in \mathbb{N}} \langle f, b_k \rangle_{L_2} b_k(x)$$
 for all $x \in D_0$ and $f \in F_0$.

Introduction	An example	Least squares	The proof ○○○○○○○○○○●○○	Other info	End 00
T 1	с г				

The proof: From countable to separable

 $F \hookrightarrow L_2$ is a separable metric space with cont. point evaluation.

• F contains a countable dense subset F_0

•
$$\|f - A_N(f)\|_{L_2} \leq \|f - g\|_{L_2} + \|g - A_N(g)\|_{L_2} + \|A_N(f - g)\|_{L_2}$$

• $U_{\delta}(f) := \{g \in F : d_F(f,g) < \delta\}$ and $\delta > 0$ small enough

•
$$g \in F_0 \cap U_{\delta}(f)$$
: $\|f - g\|_{L_2} < \varepsilon$ and $|f(x_i) - g(x_i)| < \varepsilon$ (!!)

•
$$\left\|f - A_N(f)\right\|_{L_2} \leq \sup_{g \in F_0} \left\|g - A_N(g)\right\|_{L_2} + C\varepsilon$$

Hence,

$$e(A_N, F) = e(A_N, F_0)$$
 for every linear A_N .

 Introduction
 An example
 Least squares
 The proof
 Other info
 End

 0000000000
 000
 00000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000</

The last step: Downsampling

To finish the proof, we take n "good" out of $n \log n$ random points.

Weaver's theorem[Weaver '04, MSS '15, NOU '16, NSU '20]There exist constants $c_1, c_2, c_3 > 0$ such that, for all $u_1, \ldots, u_N \in \mathbb{C}^n$ such that $||u_i||_2^2 \le 2n$ for all $i = 1, \ldots, N$ and

$$\frac{1}{2}\|w\|_{2}^{2} \leq \frac{1}{N}\sum_{i=1}^{N}|\langle w, u_{i}\rangle|^{2} \leq \frac{3}{2}\|w\|_{2}^{2}, \qquad w \in \mathbb{C}^{n},$$

there is a $J \subset \{1,\ldots,m\}$ with $\#J \leq c_1n$ and

$$c_2 \|w\|_2^2 \leq \frac{1}{n} \sum_{i \in J} |\langle w, u_i \rangle|^2 \leq c_3 \|w\|_2^2, \qquad w \in \mathbb{C}^n.$$

(This is based on the famous solution of the Kadison-Singer problem.)

Introduction	An example	Least squares	The proof ○○○○○○○○○○○○○	Other info	End 00
Finally					

Theorem

Let $F \hookrightarrow L_2$ be a separable metric space of functions on D, such that point evaluation is continuous on F.

Then, for every $0 , there is a constant <math>c_p > 0$, depending only on p, such that, for all $n \ge 2$, we have

$$g_N(F) \leq \sqrt{\log n} \left(\frac{1}{n} \sum_{k \geq n} a_k(F)^p\right)^{1/p}$$

for $N \geq c_p \cdot n$.

[Krieg/U 2021]

Introduction	An example	Least squares	The proof	Other info ●○○○	End 00
Special in	formation				

In the above, there's nothing special about function values, and we can do the same for **other classes on information**:

Given a class $\Lambda \subset F'$ of admissible information, let

$$a_n(F,\Lambda) := \inf_{\substack{L_1,\ldots,L_n \in \Lambda\\\varphi_1,\ldots,\varphi_n \in L_2}} \sup_{f \in F} \left\| f - \sum_{i=1}^n L_i(f) \varphi_i \right\|_{L_2},$$

be the *n*-th minimal worst-case error of linear algorithms based on optimal info from Λ .

Introduction	An example	Least squares	The proof	Other info	End
				0000	
<u> </u>	с <u>т</u> і				

Special info: The result

Theorem

Let $\Lambda \subset F'$ be such that there exist a measure ν on Λ with

$$\int_{\Lambda} L(f) \cdot \overline{L(g)} \, \mathrm{d}\nu(L) = \langle f, g \rangle_{L_2}$$

for all $f, g \in F$.

Then,

$$a_N(F,\Lambda) \leq \sqrt{\log n} \left(\frac{1}{n} \sum_{k \geq n} a_k(F)^p\right)^{1/p}$$

for $0 and <math>N \ge c_p \cdot n$.

One obtains better bounds for more special info...

[work in progress]

Introduction	An example	Least squares	The proof	Other info ○○●○	End 00
Special in	lfo: Exami	ole			

Consider an arbitrary orthonormal basis

$$\mathcal{H} = \{h_1, h_2, \dots\} \text{ of } L_2.$$

By choosing ν to be the counting measure, we see

$$\int_{\Lambda} c(f) \cdot \overline{c(g)} \, \mathrm{d}\nu(c) = \sum_{i=1}^{\infty} \langle f, h_i \rangle \cdot \overline{\langle g, h_i \rangle} = \langle f, g \rangle_{L_2}.$$

 \rightsquigarrow In this formulation, F does not appear at all.

 \rightsquigarrow Your favorite L_2 -basis gives almost optimal info if $(a_n) \in \ell_2$.

Introduction	An example	Least squares	The proof	Other info ○○○●	End 00
Special ir	fo: The a	lgorithm			

For a given class of admissible info $\Lambda \subset F'$, and given $c_1, \ldots, c_N \in \Lambda$, let

$$egin{aligned} \mathcal{A}_{\mathcal{N}}(f) = rgmin_{g \in \mathcal{V}_n} \sum_{i=1}^{\mathcal{N}} rac{|c_i(g) - c_i(f)|^2}{arrho(c_i)} \end{aligned}$$

with

$$arrho: \Lambda o \mathbb{R}, \quad arrho(c) = rac{1}{2} \left(rac{1}{n} \sum_{k \leq n} |c(b_k)|^2 + \sum_{k > n} w_k |c(b_k)|^2
ight).$$

Introduction	An example	Least squares	The proof	Other info	End ●○
Final rem	arks				

Open problems:

- Is the $\sqrt{\log(n)}$ -factor needed?
- Ind an explicit construction of such point sets!
- What are necessary/sufficient conditions?

Note: Lattices don't work. Nets?

→ We still don't know enough about some of the easiest (general) approximation problems in high dimensions...

Introduction	An example	Least squares	The proof	Other info	End
					00

Thank you!

Introduction	An example	Least squares	The proof	Other info	End
					00

How special is optimal information?

One may deduce the following heuristic:

- For $(a_n) \notin \ell_2$: Optimal information is rare.
- **2** For $(a_n) \in \ell_2$: (Almost) optimal information is nothing special.

Introduction	An example	Least squares	The proof	Other info	End 00
The "goo	od" basis				

It is not hard to show that similar holds true for general classes F:

Lemma

 \mathbf{o}

There is an orthonormal system $\{b_k : k \in \mathbb{N}\}$ in L_2 such that the orthogonal projection P_n onto the span $V_n = \operatorname{span}\{b_1, \ldots, b_n\}$ satisfies

$$\sup_{f\in F} \|f-P_nf\|_{L_2} \leq 2a_{n/4}(F), \qquad n\in\mathbb{N}.$$

- This system is not known in general.
- The 'n/4' might be problematic for rapidly decaying a_n .

Introduction	An example	Least squares	The proof	Other info	End 00
Why mixe	ed smooth	ness?			

Spaces with mixed smoothness are of interest (for numerics) because they ...

- are tensor products of univariate spaces.
- correspond to several concepts of "uniform distribution theory".
- reflect the independence of parameters in high-dimensional models, like medical data, physical measurements etc.
- are proven to be important for the electronic Schrödinger equation. [Yserentant, 2005]

Non-linear	algorithms	5			
Introduction	An example	Least squares	The proof	Other info	End 00

One might want to consider arbitrary algorithms:

$$A_n(f) = \psi(L_1(f), \ldots, L_n(f)) \in L_2$$

with some $L_1, \ldots, L_n \in F'$ and a (non-linear) mapping $\psi \colon \mathbb{R}^n \to L_2$.

Gelfand width:

$$c_n(F,\Lambda) := \inf_{\substack{\psi : \mathbb{R}^n \to L_2 \ L_1, \dots, L_n \in \Lambda}} \sup_{f \in F} \|f - \psi (L_1(f), \dots, L_n(f))\|_{L_2}.$$

$$c_n(F) := c_n(F, F')$$

Introduction	An example	Least squares	The proof	Other info	End 00
Non-linear	algorithms	s II			

Let F be a unit ball of a Banach space.

Several results are known to compare these quantities:

Linear vs. non-linear: $\sup_{F} \left\{ \frac{a_n(F)}{c_n(F)} \right\} \asymp \sqrt{n}$

Linear vs. non-linear sampling:

$$\sup_{F}\left\{\frac{g_n(F)}{c_n(F,\{\delta_x\})}\right\} \asymp \sqrt{n}$$

Lower bound for sampling: $g_n(W_1^s([0,1])) \gtrsim c_n(W_1^s([0,1]), \{\delta_x\}) \asymp 1$ for s < 1.

See books of Novak/Wozniakowski 08-12 (Chapter 29), Pinkus etc.

Non-linear	algorithms	; []]			
Introduction	An example	Least squares	The proof 000000000000000	Other info	End 00

Since our result implies

$$g_N(F) \leq \sqrt{\log n} \left(\frac{1}{n} \sum_{k \geq n} \left(\sqrt{k} c_k(F) \right)^p \right)^{1/p}$$

for $N \ge c_p \cdot n$, we also know what happens here in the "worst case":

For F a unit ball of a Banach space, we have for s > 1

$$n^{-s+1/2} \lesssim \sup \left\{ g_n(F) \colon F \text{ with } c_n(F) \leq n^{-s} \right\} \lesssim \sqrt{\log n} \cdot n^{-s+1/2}$$

and for $s\leq 1$

$$\sup \Big\{ g_n(F) \colon F \text{ with } c_n(F) \leq n^{-s} \Big\} \asymp 1$$