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Motivation

We want to recover/approximate

a function f : D → R

?

(or some property of it) up to

a certain error ε > 0,

??

where f is only known through

some pieces of information.

???
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During this talk ...

we consider

a measure space (D,A, µ),

L2 = L2(D,A, µ): the square-integrable functions w.r.t. µ, and

a separable metric space F ↪→ L2 of functions on D.

For example:
D = [0, 1]d or D = Rd or D = N, with arbitrary µ, and
F is the unit ball of a separable normed space.

(F ↪→ L2 means here that id : F → L2, id(f ) = f , is injective and compact.)
Mario Ullrich Function values for L2-approximation
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Approximation

We want to “compute” an L2-approximation of f ∈ F based on a
finite (preferably small) number of information, because we ...

don’t know f and we can only take some measurements, or

know f , but want to compress it because of computing issues.

What information is allowed,
and how important is this choice?

(The statement “f ∈ F” can be seen as the a priori knowledge about f .)
Mario Ullrich Function values for L2-approximation
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Information

Information of a function f ∈ F is given by L(f ) for some linear
functional L : F → R.

In general, we do not have access to arbitrary L ∈ F ′ (=dual of F ).

Instead, we have a class of admissible information Λ ⊂ F ′, e.g.,

certain expectations of f ,

coefficients w.r.t. a given basis,

function values: f (x) for x ∈ D.

Mario Ullrich Function values for L2-approximation
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Algorithms & error

For information (maps) L1, . . . , Ln ∈ Λ, we study linear algorithms:

An(f ) =
n∑

i=1
Li (f ) · ϕi

for some ϕi ∈ L2. So, An is specified by Li , ϕi .

We want to bound the worst-case error over F :

e(An,F ) = sup
f ∈F

∥∥∥f − An(f )
∥∥∥

L2
.

(Several other settings are possible here. Linearity has advantages.)
Mario Ullrich Function values for L2-approximation
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Minimal worst-case errors

We are interested in the (linear) sampling numbers

gn(F ) := inf
x1,...,xn∈D
ϕ1,...,ϕn∈L2

sup
f ∈F

∥∥∥∥∥f −
n∑

i=1
f (xi )ϕi

∥∥∥∥∥
L2

,

i.e., the minimal error that can be achieved with n function values.

As a benchmark, we use the approximation numbers (linear width)

an(F ) := inf
L1,...,Ln∈F ′
ϕ1,...,ϕn∈L2

sup
f ∈F

∥∥∥∥∥f −
n∑

i=1
Li (f )ϕi

∥∥∥∥∥
L2

,

i.e., the minimal error that can be achieved with arbitrary info.
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How good are function values?

The an’s are well understood, but the gn’s are harder to analyze.

We clearly have
an(F ) ≤ gn(F )

if point evaluation f 7→ f (x) is a continuous linear functional on F .

How large is the difference between gn and an?

Mario Ullrich Function values for L2-approximation
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Earlier results

Several specific, but only some general bounds were known before.

A negative result [Hinrichs/Novak/Vyb́ıral 2008]
For any (an) 6∈ `2, there exist F with an(F ) = an for all n, but

gn(F ) ≥ 1
log log(n) .

for infinitely many n.

A positive result [Kuo/Wasilkowski/Woźniakowski 2009]

For unit balls of Hilbert spaces H with an(H) . n−α, α > 1/2, we
have

gn(H) . n−α
2α

2α+1 . n−α/2.
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A very positive result

We now have this general result on the power of function values.

Theorem [Krieg/U 2019; U 2020; Krieg/U 2021]
Let F ↪→ L2 be a separable metric space of functions on D, such
that point evaluation is continuous on F .
Then, for every 0 < p < 2, there is a constant cp > 0, depending
only on p, such that, for all n ≥ 2, we have

gN(F ) ≤
√

log n

1
n
∑
k≥n

ak(F )p

1/p

for N ≥ cp · n.

For unit balls of Hilbert spaces, p = 2 also works.[Nagel, Schäfer, T. Ullrich, 2020]
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In particular, ...

Corollary
If F is such that

an(F ) . n−α logβ(n)

for some α > 1/2 and β ∈ R, then we obtain

gn(F ) . n−α logβ+1/2(n).

Stated differently: If n ≈ ( 1
ε )q, q < 2, (arbitrary) infos are enough

for an approximation with error ε > 0, then(√
log(1/ε)
ε

)q
function values can do the same.
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My favorite example

A prominent example:
Sobolev spaces with (dominating) mixed smoothness.

Let D = Td be the d-dim. torus, µ = λ the Lebesgue measure
on Td , 1 ≤ p ≤ ∞ and s ∈ N. We define

Ws
p =

{
f ∈ Lp

(
Td) : ‖f ‖Ws

p ≤ 1
}
,

where

‖f ‖Ws
p :=

 ∑
α∈Nd

0 : |α|∞≤s
‖Dαf ‖pp


1/p

.

So, f ∈Ws
p implies Dαf ∈ Lp for all α ∈ Nd

0 with maxi |αi | ≤ s.
Mario Ullrich Function values for L2-approximation



Introduction An example Least squares The proof Other info End

My favorite example II

It is known that these well-studied spaces satisfy

gn(Ws
p) � an(Ws

p) for p < 2 and all s > 1/p.

gn(Ws
p) ≥ an(Ws

p) � n−s logs(d−1)(n) for p ≥ 2 and s > 0.

gn(Ws
p) . n−s log(s+1/2)(d−1)(n) for p ≥ 2 and s > 1/2.

All the upper bounds are achieved by sparse grids.[Sickel, T. Ullrich, 2007]

It was the prevalent conjecture that the upper bounds are sharp.

We now have

gn(Ws
p) . n−s logs(d−1)+1/2(n) for p ≥ 2 and all s > 1/2.
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Existence of good points

That is, sparse grids are not optimal!

Unfortunately, our general result is only an existence result.

In particular, we don’t know good sampling points, yet.

However, if we weaken the bound a bit, then ...

i.i.d. random points work with high probability, and

we know an (to some extent) explicit algorithm.

Mario Ullrich Function values for L2-approximation
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Least squares for function values

It is a classical to study weighted least squares methods:

AN(f ) = argmin
g∈Vn

N∑
i=1

di |g(xi )− f (xi )|2

for some weigths di > 0, xi ∈ D and Vn = span{b1, . . . , bn} ⊂ L2.

The analysis often boils down to the study of quantities depending
on n∑

k=1
|bk(x)|2 and (f − Pnf )(x).

(There are hundreds of results on such methods, mostly for special F .)
Mario Ullrich Function values for L2-approximation
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Least squares: our approach

To compare gn(F ) and an(F ), we consider

AN(f ) = argmin
g∈Vn

N∑
i=1

|g(xi )− f (xi )|2
%(xi )

with Vn = span{b1, . . . , bn}, where {bk} is a “good” basis of F ,
and

%(x) := 1
2

1
n
∑
k≤n
|bk(x)|2 +

∑
k>n

wk |bk(x)|2


for some sequence (wk), s.t. ρ is a µ-density, and choose

x1, . . . , xN
iid∼ ρ · dµ.

Mario Ullrich Function values for L2-approximation
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The general result

Theorem [Krieg/U 2021]

Let F0 ⊂ L2(µ) be a countable set and x1, . . . , xN
iid∼ ρ · dµ.

Then, for every 0 < p < 2, there is a constant cp > 0, depending
only on p, such that, for all n ≥ 2, we have

e(AN ,F0) ≤

1
n
∑
k≥n

ak(F0)p

1/p

for N ≥ cp n log(n) with probability at least 1− 1
n2 .

(For unit balls of Hilbert spaces, p = 2 also works.[Krieg/U 2019])
Mario Ullrich Function values for L2-approximation
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My favorite example III

For the spaces Ws
p the “good” ONB is given by {e2πik· : k ∈ Zd},

i.e. the Fourier basis. Since ‖bk‖∞ . 1, we can use ρ ≡ 1.

Corollary [Krieg/U 2019, U 2020]
Let x1, . . . , xn be independent and uniformly distributed in Td .
Then, for any s > 1/2,

e(An,Ws
2) . a n

log n
(Ws

2) � n−s logsd (n)

with probability at least 1− 8
n2 .

Nagel/Schäfer/T. Ullrich 2020: gn(Ws
2) . n−s logs(d−1)+1/2(n).
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Sparse grids vs. random point sets

w .h.p. : e(An,Ws
2) . n−s logsd (n),

which is better than sparse grids for d > 2s + 1.

What are optimal points?
Mario Ullrich Function values for L2-approximation
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The proof

The first important insight is that AN can be written as

AN(f ) =
n∑

k=1

(
G+N(f )

)
kbk ,

where N : F0 → Rn with N(f ) =
(
%(xi )−1/2f (xi )

)
i≤N

is the
weighted information mapping and
G+ ∈ Rn×N is the Moore-Penrose inverse of the matrix

G =
(

bj(xi )√
%(xi )

)
i≤N,j≤n

∈ RN×n.

Mario Ullrich Function values for L2-approximation
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The proof II

Since AN is exact on Vn, we obtain

‖f − AN f ‖L2
≤ ‖f − Pnf ‖L2

+ ‖Pnf − Anf ‖L2

≤ an +
∥∥G+N(f − Pnf )

∥∥
`n2

≤ an +
∥∥∥G+ : `N2 → `n2

∥∥∥ · ‖N(f − Pnf )‖`N2

and hence

e(AN ,F0) ≤ an + smin(G)−1 sup
f ∈F0

‖N(f − Pnf )‖`N2 ,

where smin denotes the smallest singular value.

Mario Ullrich Function values for L2-approximation
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The proof III

e(AN ,F0) ≤ an + smin(G)−1 sup
f ∈F0

‖N(f − Pnf )‖`N2 ,

We will show that

Fact 1: smin(G : `n2 → `N2 )2 & N

Fact 2: sup
f ∈F0

‖N(f − Pnf )‖2
`N2
. n log n

(1
n
∑
k≥n

ap
k

)2/p

for N ≈ cp n log(n) simultaneously with high probability.

Mario Ullrich Function values for L2-approximation
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The proof: main tool

Proposition [Oliveira 2010, Mendelson/Pajor 2006]

Let X be a random vector in Ck with ‖X‖2 ≤ R with probability 1,
and let X1,X2, . . . be independent copies of X . Additionally, let
E := E(XX ∗) satisfy ‖E‖ ≤ 1, where ‖E‖ denotes the spectral
norm of E . Then, for all t ≥ 1

2 ,

P
(∥∥∥∥ N∑

i=1
Xi X ∗i − N · E

∥∥∥∥ ≥ N · t
)
≤ 4N2 exp

(
− N

32R2 t
)
.

Note that the bound is dimension-free.
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The proof of Fact 1

Let Xi := %(xi )−1/2(b1(xi ), . . . , bn(xi ))> with xi ∼ ρ. Then, we have

N∑
i=1

Xi X ∗i = G∗G =
( N∑

i=1

bj(xi ) bk(xi )
%(xi )

)
j,k≤n

∈ Rn×n

and E = E(XX ∗) = diag(1, . . . , 1), i.e., ‖E‖ = 1. Moreover,

‖Xi‖2
2 = %(xi )−1 ∑

k≤n
|bk(xi )|2 ≤ 2n =: R2,

since
%(x) ≥ 1

2n
∑
k≤n
|bk(x)|2.
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The proof of Fact 1

With t = 1
2 and N = dC1n log ne, we obtain

P
(
‖G∗G − NE‖ ≥ N

2
)
≤ 4

n2

if the constant C1 > 0 is large enough. We obtain

smin(G)2 = smin(G∗G) ≥ smin(NE )− ‖G∗G − NE‖ ≥ N
2

with probability at least 1− 4
n2 .

Mario Ullrich Function values for L2-approximation
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The proof of Fact 2: Decomposition

With I` := {n2` + 1, . . . , n2`+1}, ` ≥ 0, and the random matrices

Γ` :=
(
%(xi )−1/2bk(xi )

)
i≤N,k∈I`

∈ RN×n2` ,

and f̂` := (〈f , bk〉L2 )k∈I` , we obtain that

‖N(f − Pnf )‖`N2
?©
=
∥∥∥∥∥
∞∑
`=0

Γ`f̂`

∥∥∥∥∥
`N2

≤
∞∑
`=0
‖Γ` : `2(I`)→ `m2 ‖ ‖f̂`‖`2(I`)

≤ 2
∞∑
`=0
‖Γ` : `2(I`)→ `m2 ‖ an2`−2(F0)

for all f ∈ F0. The last inequality is ensured by the “good” basis.

Mario Ullrich Function values for L2-approximation
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The proof of Fact 2: individual blocks

For fixed `, let Xi := %(xi )−1/2(bk(xi ))>k∈I` with xi ∼ ρ. We have

N∑
i=1

Xi X ∗i = Γ∗`Γ` =
( N∑

i=1

bj(xi ) bk(xi )
%(xi )

)
j,k∈I`

∈ Rn2`×n2`

and E = E(XX ∗) = diag(1, . . . , 1), i.e., ‖E‖ = 1. Moreover,

‖Xi‖2
2 = %(xi )−1 ∑

k∈I`

|bk(xi )|2 ≤
2

wn2`+1
=: R2,

since
%(x) ≥ 1

2
∑
k∈I`

wk |bk(x)|2 ≥ wn2`+1

2
∑
k∈I`

|bk(x)|2.
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The proof of Fact 2: union bound

With t ≈ log(n`)
wn2` log(n) and N = dC1n log ne, we obtain with

‖Γ`‖2 ≤ m + ‖Γ∗`Γ` −mE‖ that

P
(
‖Γ`‖2 ≥ C2 n log(n) B2

`

)
≤ 4

n2(`+ 1)2π2

for some B` �
√
` 2` that is independent of n,N.

We obtain by a union bound that

P
(
∃` ∈ N0 : ‖Γ`‖2 ≥ C2 n log(n) B2

`

)
≤ 1

n2 .
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The proof of Fact 2: some calculation

Hence,

‖N(f − Pnf )‖`N2 . n log(n)
∞∑
`=0

B` an2`(F0)

for all f ∈ F0 with probability at least 1− 1
n2 .

Monotonicity of (an) gives

∑
k≥n

ap
k ≥ n(2` − 1) ap

n2`

for ` ≥ 1 and thus an2` . 2−`/p
(

1
n
∑

k≥n ap
k

)1/p
.

We can choose suitable wk , B` if p ∈ (0, 2), which finishes the proof.
Mario Ullrich Function values for L2-approximation
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The proof of Fact 2: point-wise convergence

It remains to verify ‖N(f − Pnf )‖`N2
?©
=
∥∥∥∥∥
∞∑
`=0

Γ`f̂`

∥∥∥∥∥
`N2

:

We implicitly use

(f − Pnf )(xi ) =
∑
k>n

f̂ (k) bk(xi ).

Rademacher-Menchov theorem

Let F0 be countable with
(√

log(k)
k · ak(F0)

)
∈ `2. Then, there is a

measurable subset D0 of D with µ(D \ D0) = 0 such that

f (x) =
∑
k∈N
〈f , bk〉L2 bk(x) for all x ∈ D0 and f ∈ F0.

Mario Ullrich Function values for L2-approximation
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The proof: From countable to separable

F ↪→ L2 is a separable metric space with cont. point evaluation.

F contains a countable dense subset F0∥∥∥f −AN(f )
∥∥∥

L2
≤
∥∥∥f −g

∥∥∥
L2

+
∥∥∥g−AN(g)

∥∥∥
L2

+
∥∥∥AN(f −g)

∥∥∥
L2

Uδ(f ) := {g ∈ F : dF (f , g) < δ} and δ > 0 small enough

g ∈ F0 ∩Uδ(f ) : ‖f − g‖L2 < ε and |f (xi )− g(xi )| < ε !!!©∥∥∥f − AN(f )
∥∥∥

L2
≤ sup

g∈F0

∥∥∥g − AN(g)
∥∥∥

L2
+ Cε

Hence,

e(AN ,F ) = e(AN ,F0) for every linear AN .

Mario Ullrich Function values for L2-approximation



Introduction An example Least squares The proof Other info End

The last step: Downsampling

To finish the proof, we take n “good” out of n log n random points.

Weaver’s theorem [Weaver ’04, MSS ’15, NOU ’16, NSU ’20]
There exist constants c1, c2, c3 > 0 such that, for all
u1, . . . , uN ∈ Cn such that ‖ui‖2

2 ≤ 2n for all i = 1, . . . ,N and

1
2‖w‖

2
2 ≤

1
N

N∑
i=1
|〈w , ui〉|2 ≤

3
2‖w‖

2
2, w ∈ Cn,

there is a J ⊂ {1, . . . ,m} with #J ≤ c1n and

c2 ‖w‖2
2 ≤

1
n
∑
i∈J
|〈w , ui〉|2 ≤ c3‖w‖2

2, w ∈ Cn.

(This is based on the famous solution of the Kadison-Singer problem.)
Mario Ullrich Function values for L2-approximation
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Finally...

Theorem [Krieg/U 2021]
Let F ↪→ L2 be a separable metric space of functions on D, such
that point evaluation is continuous on F .
Then, for every 0 < p < 2, there is a constant cp > 0, depending
only on p, such that, for all n ≥ 2, we have

gN(F ) ≤
√

log n

1
n
∑
k≥n

ak(F )p

1/p

for N ≥ cp · n.

Mario Ullrich Function values for L2-approximation
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Special information

In the above, there’s nothing special about function values, and we
can do the same for other classes on information:

Given a class Λ ⊂ F ′ of admissible information, let

an(F ,Λ) := inf
L1,...,Ln∈Λ
ϕ1,...,ϕn∈L2

sup
f ∈F

∥∥∥∥∥f −
n∑

i=1
Li (f )ϕi

∥∥∥∥∥
L2

,

be the n-th minimal worst-case error of linear algorithms based on
optimal info from Λ.

Mario Ullrich Function values for L2-approximation
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Special info: The result

Theorem [work in progress]
Let Λ ⊂ F ′ be such that there exist a measure ν on Λ with∫

Λ
L(f ) · L(g) dν(L) = 〈f , g〉L2

for all f , g ∈ F .
Then,

aN(F ,Λ) ≤
√

log n

1
n
∑
k≥n

ak(F )p

1/p

for 0 < p < 2 and N ≥ cp · n.

One obtains better bounds for more special info...
Mario Ullrich Function values for L2-approximation
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Special info: Example

Consider an arbitrary orthonormal basis

H = {h1, h2, . . . } of L2.

By choosing ν to be the counting measure, we see

∫
Λ

c(f ) · c(g) dν(c) =
∞∑

i=1
〈f , hi〉 · 〈g , hi〉 = 〈f , g〉L2 .

 In this formulation, F does not appear at all.

 Your favorite L2-basis gives almost optimal info if (an) ∈ `2.

Mario Ullrich Function values for L2-approximation
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Special info: The algorithm

For a given class of admissible info Λ ⊂ F ′, and given
c1, . . . , cN ∈ Λ, let

AN(f ) = argmin
g∈Vn

N∑
i=1

|ci (g)− ci (f )|2
%(ci )

with

% : Λ→ R, %(c) = 1
2

1
n
∑
k≤n
|c(bk)|2 +

∑
k>n

wk |c(bk)|2
 .

Mario Ullrich Function values for L2-approximation
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Final remarks

Open problems:

1 Is the
√

log(n)-factor needed?

2 Find an explicit construction of such point sets!

3 What are necessary/sufficient conditions?

Note: Lattices don’t work. Nets?

 We still don’t know enough about some of the easiest (general)
approximation problems in high dimensions...

Mario Ullrich Function values for L2-approximation
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Thank you!
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How special is optimal information?

One may deduce the following heuristic:

1 For (an) /∈ `2: Optimal information is rare.

2 For (an) ∈ `2: (Almost) optimal information is nothing special.

Mario Ullrich Function values for L2-approximation
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The “good” basis

It is not hard to show that similar holds true for general classes F :

Lemma
There is an orthonormal system {bk : k ∈ N} in L2 such that the
orthogonal projection Pn onto the span Vn = span{b1, . . . , bn}
satisfies

sup
f ∈F
‖f − Pnf ‖L2 ≤ 2 an/4(F ), n ∈ N.

This system is not known in general.

The ’n/4’ might be problematic for rapidly decaying an.

Mario Ullrich Function values for L2-approximation
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Why mixed smoothness?

Spaces with mixed smoothness are of interest (for numerics)
because they ...

are tensor products of univariate spaces.

correspond to several concepts of “uniform distribution theory”.

reflect the independence of parameters in high-dimensional
models, like medical data, physical measurements etc.

are proven to be important for the electronic Schrödinger
equation. [Yserentant, 2005]

Mario Ullrich Function values for L2-approximation



Introduction An example Least squares The proof Other info End

Non-linear algorithms

One might want to consider arbitrary algorithms:

An(f ) = ψ
(

L1(f ), . . . , Ln(f )
)
∈ L2

with some L1, . . . , Ln ∈ F ′ and a (non-linear) mapping ψ : Rn → L2.

Gelfand width:

cn(F ,Λ) := inf
ψ : Rn→L2
L1,...,Ln∈Λ

sup
f ∈F

∥∥f − ψ
(

L1(f ), . . . , Ln(f )
)∥∥

L2
.

cn(F ) := cn(F ,F ′)

Mario Ullrich Function values for L2-approximation
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Non-linear algorithms II

Let F be a unit ball of a Banach space.

Several results are known to compare these quantities:

Linear vs. non-linear: supF

{
an(F )
cn(F )

}
�
√

n

Linear vs. non-linear sampling: supF

{
gn(F )

cn(F ,{δx})

}
�
√

n

Lower bound for sampling:
gn(W s

1 ([0, 1])) & cn(W s
1 ([0, 1]), {δx}) � 1 for s < 1.

See books of Novak/Wozniakowski 08-12 (Chapter 29), Pinkus etc.
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Non-linear algorithms III

Since our result implies

gN(F ) ≤
√

log n

1
n
∑
k≥n

(√
k ck(F )

)p
1/p

for N ≥ cp · n, we also know what happens here in the “worst case”:

For F a unit ball of a Banach space, we have for s > 1

n−s+1/2 . sup
{

gn(F ) : F with cn(F ) ≤ n−s
}
.
√

log n · n−s+1/2

and for s ≤ 1

sup
{

gn(F ) : F with cn(F ) ≤ n−s
}
� 1
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