Random matrices and

L_{2}-approximation using function values

Mario Ullrich
JKU Linz \& MCFAM Moscow

Point Distribution Webinar
Online, May 2021

Motivation

We want to recover/approximate

$$
\text { a function } f: D \rightarrow \mathbb{R}
$$

(or some property of it) up to
a certain error $\varepsilon>0$,
where f is only known through
some pieces of information.

Motivation

We want to recover/approximate

$$
\text { a function } f: D \rightarrow \mathbb{R}
$$

(or some property of it) up to

$$
\text { a certain error } \varepsilon>0 \text {, }
$$

where f is only known through

During this talk ...

we consider

- a measure space (D, \mathcal{A}, μ),
- $L_{2}=L_{2}(D, \mathcal{A}, \mu)$: the square-integrable functions w.r.t. μ, and
- a separable metric space $F \hookrightarrow L_{2}$ of functions on D.

For example:

- $D=[0,1]^{d}$ or $D=\mathbb{R}^{d}$ or $D=\mathbb{N}$, with arbitrary μ, and
- F is the unit ball of a separable normed space.
($F \hookrightarrow L_{2}$ means here that id: $F \rightarrow L_{2}, \operatorname{id}(f)=f$, is injective and compact.)

Approximation

We want to "compute" an L_{2}-approximation of $f \in F$ based on a finite (preferably small) number of information, because we ...

- don't know f and we can only take some measurements, or
- know f, but want to compress it because of computing issues.

What information is allowed, and how important is this choice?

(The statement " $f \in F^{\prime}$ " can be seen as the a priori knowledge about f.)

Information

Information of a function $f \in F$ is given by $L(f)$ for some linear functional $L: F \rightarrow \mathbb{R}$.

In general, we do not have access to arbitrary $L \in F^{\prime}(=$ dual of $F)$.

Instead, we have a class of admissible information $\Lambda \subset F^{\prime}$, e.g.,

- certain expectations of f,
- coefficients w.r.t. a given basis,
- function values: $f(x)$ for $x \in D$.

Algorithms \& error

For information (maps) $L_{1}, \ldots, L_{n} \in \Lambda$, we study linear algorithms:

$$
A_{n}(f)=\sum_{i=1}^{n} L_{i}(f) \cdot \varphi_{i}
$$

for some $\varphi_{i} \in L_{2}$. So, A_{n} is specified by L_{i}, φ_{i}.

We want to bound the worst-case error over F :

$$
e\left(A_{n}, F\right)=\sup _{f \in F}\left\|f-A_{n}(f)\right\|_{L_{2}}
$$

(Several other settings are possible here. Linearity has advantages.)

Minimal worst-case errors

We are interested in the (linear) sampling numbers

$$
g_{n}(F):=\inf _{\substack{x_{1}, \ldots, x_{n} \in D \\ \varphi_{1}, \ldots, n_{n} \in L_{2}}} \sup _{f \in F}\left\|f-\sum_{i=1}^{n} f\left(x_{i}\right) \varphi_{i}\right\|_{L_{2}},
$$

i.e., the minimal error that can be achieved with n function values.

As a benchmark, we use the approximation numbers (linear width)

$$
a_{n}(F):=\inf _{\substack{L_{1}, \ldots, L_{n} \in F^{\prime} \\ \varphi_{1}, \ldots, \varphi_{n} \in L_{2}}} \sup _{f \in F}\left\|f-\sum_{i=1}^{n} L_{i}(f) \varphi_{i}\right\|_{L_{2}}
$$

i.e., the minimal error that can be achieved with arbitrary info.

How good are function values?

The a_{n} 's are well understood, but the g_{n} 's are harder to analyze.

We clearly have

$$
a_{n}(F) \leq g_{n}(F)
$$

if point evaluation $f \mapsto f(x)$ is a continuous linear functional on F.

How large is the difference between g_{n} and a_{n} ?

Earlier results

Several specific, but only some general bounds were known before.

A negative result

[Hinrichs/Novak/Vybíral 2008]
For any $\left(a_{n}\right) \notin \ell_{2}$, there exist F with $a_{n}(F)=a_{n}$ for all n, but

$$
g_{n}(F) \geq \frac{1}{\log \log (n)}
$$

for infinitely many n.

A positive result

[Kuo/Wasilkowski/Woźniakowski 2009]
For unit balls of Hilbert spaces H with $a_{n}(H) \lesssim n^{-\alpha}, \alpha>1 / 2$, we have

$$
g_{n}(H) \lesssim n^{-\alpha \frac{2 \alpha}{2 \alpha+1}} \lesssim n^{-\alpha / 2}
$$

A very positive result

We now have this general result on the power of function values.
Theorem [Krieg/U 2019; U 2020; Krieg/U 2021]

Let $F \hookrightarrow L_{2}$ be a separable metric space of functions on D, such that point evaluation is continuous on F.
Then, for every $0<p<2$, there is a constant $c_{p}>0$, depending only on p, such that, for all $n \geq 2$, we have

$$
g_{N}(F) \leq \sqrt{\log n}\left(\frac{1}{n} \sum_{k \geq n} a_{k}(F)^{p}\right)^{1 / p}
$$

for $N \geq c_{p} \cdot n$.

For unit balls of Hilbert spaces, $p=2$ also works. ${ }^{\text {[Nagel, Schäfer, T. Ullrich, 2020] }}$

In particular, ...

Corollary

If F is such that

$$
a_{n}(F) \lesssim n^{-\alpha} \log ^{\beta}(n)
$$

for some $\alpha>1 / 2$ and $\beta \in \mathbb{R}$, then we obtain

$$
g_{n}(F) \lesssim n^{-\alpha} \log ^{\beta+1 / 2}(n)
$$

Stated differently: If $n \approx\left(\frac{1}{\varepsilon}\right)^{q}, q<2$, (arbitrary) infos are enough for an approximation with error $\varepsilon>0$, then $\left(\frac{\sqrt{\log (1 / \varepsilon)}}{\varepsilon}\right)^{q}$ function values can do the same.

My favorite example

A prominent example:
Sobolev spaces with (dominating) mixed smoothness.
Let $D=\mathbb{T}^{d}$ be the d-dim. torus, $\mu=\lambda$ the Lebesgue measure on $\mathbb{T}^{d}, 1 \leq p \leq \infty$ and $s \in \mathbb{N}$. We define

$$
\mathbf{W}_{p}^{s}=\left\{f \in L_{p}\left(\mathbb{T}^{d}\right):\|f\|_{\mathbf{W}_{p}^{s}} \leq 1\right\}
$$

where

$$
\|f\|_{\mathbf{W}_{p}^{s}}:=\left(\sum_{\alpha \in \mathbb{N}_{0}^{d}:|\alpha|_{\infty} \leq s}\left\|D^{\alpha} f\right\|_{p}^{p}\right)^{1 / p}
$$

So, $f \in \mathbf{W}_{p}^{s}$ implies $D^{\alpha} f \in L_{p}$ for all $\alpha \in \mathbb{N}_{0}^{d}$ with $\max _{i}\left|\alpha_{i}\right| \leq s$.

My favorite example II

It is known that these well-studied spaces satisfy

- $g_{n}\left(\mathbf{W}_{p}^{s}\right) \asymp a_{n}\left(\mathbf{W}_{p}^{s}\right) \quad$ for $p<2$ and all $s>1 / p$.
- $g_{n}\left(\mathbf{W}_{p}^{s}\right) \geq a_{n}\left(\mathbf{W}_{p}^{s}\right) \asymp n^{-s} \log ^{s(d-1)}(n) \quad$ for $p \geq 2$ and $s>0$.
- $g_{n}\left(\mathbf{W}_{p}^{s}\right) \lesssim n^{-s} \log ^{(s+1 / 2)(d-1)}(n) \quad$ for $p \geq 2$ and $s>1 / 2$.

All the upper bounds are achieved by sparse grids. ${ }^{\text {[Sickel, T. Ullrich, 2007] }}$

It was the prevalent conjecture that the upper bounds are sharp.

We now have

$$
g_{n}\left(\mathbf{W}_{p}^{s}\right) \lesssim n^{-s} \log ^{s(d-1)+1 / 2}(n) \quad \text { for } p \geq 2 \text { and all } s>1 / 2
$$

Existence of good points

That is, sparse grids are not optimal!

Unfortunately, our general result is only an existence result. In particular, we don't know good sampling points, yet.

However, if we weaken the bound a bit, then ...

- i.i.d. random points work with high probability, and
- we know an (to some extent) explicit algorithm.

Least squares for function values

It is a classical to study weighted least squares methods:

$$
A_{N}(f)=\underset{g \in V_{n}}{\operatorname{argmin}} \sum_{i=1}^{N} d_{i}\left|g\left(x_{i}\right)-f\left(x_{i}\right)\right|^{2}
$$

for some weigths $d_{i}>0, x_{i} \in D$ and $V_{n}=\operatorname{span}\left\{b_{1}, \ldots, b_{n}\right\} \subset L_{2}$.

The analysis often boils down to the study of quantities depending on

$$
\sum_{k=1}^{n}\left|b_{k}(x)\right|^{2} \quad \text { and } \quad\left(f-P_{n} f\right)(x)
$$

(There are hundreds of results on such methods, mostly for special F.)

Least squares: our approach

To compare $g_{n}(F)$ and $a_{n}(F)$, we consider

$$
A_{N}(f)=\underset{g \in V_{n}}{\operatorname{argmin}} \sum_{i=1}^{N} \frac{\left|g\left(x_{i}\right)-f\left(x_{i}\right)\right|^{2}}{\varrho\left(x_{i}\right)}
$$

with $V_{n}=\operatorname{span}\left\{b_{1}, \ldots, b_{n}\right\}$, where $\left\{b_{k}\right\}$ is a "good" basis of F, and

$$
\varrho(x):=\frac{1}{2}\left(\frac{1}{n} \sum_{k \leq n}\left|b_{k}(x)\right|^{2}+\sum_{k>n} w_{k}\left|b_{k}(x)\right|^{2}\right)
$$

for some sequence $\left(w_{k}\right)$, s.t. ρ is a μ-density, and choose

$$
x_{1}, \ldots, x_{N} \stackrel{\text { iid }}{\sim} \rho \cdot \mathrm{d} \mu .
$$

The general result

Theorem

Let $F_{0} \subset L_{2}(\mu)$ be a countable set and $x_{1}, \ldots, x_{N} \stackrel{\text { iid }}{\sim} \rho \cdot \mathrm{d} \mu$.
Then, for every $0<p<2$, there is a constant $c_{p}>0$, depending only on p, such that, for all $n \geq 2$, we have

$$
e\left(A_{N}, F_{0}\right) \leq\left(\frac{1}{n} \sum_{k \geq n} a_{k}\left(F_{0}\right)^{p}\right)^{1 / p}
$$

for $N \geq c_{p} n \log (n)$ with probability at least $1-\frac{1}{n^{2}}$.
(For unit balls of Hilbert spaces, $p=2$ also works. ${ }^{[\text {Krieg/U 2019] }}$)

My favorite example III

For the spaces \mathbf{W}_{p}^{s} the "good" ONB is given by $\left\{e^{2 \pi i k}: k \in \mathbb{Z}^{d}\right\}$, i.e. the Fourier basis. Since $\left\|b_{k}\right\|_{\infty} \lesssim 1$, we can use $\rho \equiv 1$.

Corollary

Let x_{1}, \ldots, x_{n} be independent and uniformly distributed in \mathbb{T}^{d}.
Then, for any $s>1 / 2$,

$$
e\left(A_{n}, \mathbf{W}_{2}^{s}\right) \lesssim a_{\frac{n}{\log n}}\left(\mathbf{W}_{2}^{s}\right) \asymp n^{-s} \log ^{s d}(n)
$$

with probability at least $1-\frac{8}{n^{2}}$.

Nagel/Schäfer/T. Ullrich 2020: $\quad g_{n}\left(\mathbf{W}_{2}^{s}\right) \lesssim n^{-s} \log ^{s(d-1)+1 / 2}(n)$.

Sparse grids vs. random point sets

$$
\text { w.h.p.: } \quad e\left(A_{n}, \mathbf{W}_{2}^{s}\right) \lesssim n^{-5} \log ^{s d}(n),
$$

which is better than sparse grids for $d>2 s+1$.

What are optimal points?

The proof

The first important insight is that A_{N} can be written as

$$
A_{N}(f)=\sum_{k=1}^{n}\left(G^{+} N(f)\right)_{k} b_{k}
$$

where $N: F_{0} \rightarrow \mathbb{R}^{n}$ with $N(f)=\left(\varrho\left(x_{i}\right)^{-1 / 2} f\left(x_{i}\right)\right)_{i \leq N}$ is the weighted information mapping and
$G^{+} \in \mathbb{R}^{n \times N}$ is the Moore-Penrose inverse of the matrix

$$
G=\left(\frac{b_{j}\left(x_{i}\right)}{\sqrt{\varrho\left(x_{i}\right)}}\right)_{i \leq N, j \leq n} \in \mathbb{R}^{N \times n}
$$

The proof II

Since A_{N} is exact on V_{n}, we obtain

$$
\begin{aligned}
\left\|f-A_{N} f\right\|_{L_{2}} & \leq\left\|f-P_{n} f\right\|_{L_{2}}+\left\|P_{n} f-A_{n} f\right\|_{L_{2}} \\
& \leq a_{n}+\left\|G^{+} N\left(f-P_{n} f\right)\right\|_{\ell_{2}^{n}} \\
& \leq a_{n}+\left\|G^{+}: \ell_{2}^{N} \rightarrow \ell_{2}^{n}\right\| \cdot\left\|N\left(f-P_{n} f\right)\right\|_{\ell_{2}^{N}}
\end{aligned}
$$

and hence

$$
e\left(A_{N}, F_{0}\right) \leq a_{n}+s_{\min }(G)^{-1} \sup _{f \in F_{0}}\left\|N\left(f-P_{n} f\right)\right\|_{\ell_{2}^{N}},
$$

where $s_{\text {min }}$ denotes the smallest singular value.

The proof III

$$
e\left(A_{N}, F_{0}\right) \leq a_{n}+s_{\min }(G)^{-1} \sup _{f \in F_{0}}\left\|N\left(f-P_{n} f\right)\right\|_{\ell_{2}^{N}}
$$

We will show that

Fact 1: $\quad s_{\min }\left(G: \ell_{2}^{n} \rightarrow \ell_{2}^{N}\right)^{2} \gtrsim N$
Fact 2: $\quad \sup _{f \in F_{0}}\left\|N\left(f-P_{n} f\right)\right\|_{\ell_{2}^{N}}^{2} \lesssim n \log n\left(\frac{1}{n} \sum_{k \geq n} a_{k}^{p}\right)^{2 / p}$
for $N \approx c_{p} n \log (n)$ simultaneously with high probability.

The proof: main tool

Proposition

[Oliveira 2010, Mendelson/Pajor 2006]
Let X be a random vector in \mathbb{C}^{k} with $\|X\|_{2} \leq R$ with probability 1 , and let X_{1}, X_{2}, \ldots be independent copies of X. Additionally, let $E:=\mathbb{E}\left(X X^{*}\right)$ satisfy $\|E\| \leq 1$, where $\|E\|$ denotes the spectral norm of E. Then, for all $t \geq \frac{1}{2}$,

$$
\mathbb{P}\left(\left\|\sum_{i=1}^{N} X_{i} X_{i}^{*}-N \cdot E\right\| \geq N \cdot t\right) \leq 4 N^{2} \exp \left(-\frac{N}{32 R^{2}} t\right) .
$$

Note that the bound is dimension-free.

The proof of Fact 1

Let $X_{i}:=\varrho\left(x_{i}\right)^{-1 / 2}\left(b_{1}\left(x_{i}\right), \ldots, b_{n}\left(x_{i}\right)\right)^{\top}$ with $x_{i} \sim \rho$. Then, we have

$$
\sum_{i=1}^{N} X_{i} X_{i}^{*}=G^{*} G=\left(\sum_{i=1}^{N} \frac{\overline{b_{j}\left(x_{i}\right)} b_{k}\left(x_{i}\right)}{\varrho\left(x_{i}\right)}\right)_{j, k \leq n} \in \mathbb{R}^{n \times n}
$$

and $E=\mathbb{E}\left(X X^{*}\right)=\operatorname{diag}(1, \ldots, 1)$, i.e., $\|E\|=1$. Moreover,

$$
\left\|X_{i}\right\|_{2}^{2}=\varrho\left(x_{i}\right)^{-1} \sum_{k \leq n}\left|b_{k}\left(x_{i}\right)\right|^{2} \leq 2 n=: R^{2}
$$

since

$$
\varrho(x) \geq \frac{1}{2 n} \sum_{k \leq n}\left|b_{k}(x)\right|^{2}
$$

The proof of Fact 1

With $t=\frac{1}{2}$ and $N=\left\lceil C_{1} n \log n\right\rceil$, we obtain

$$
\mathbb{P}\left(\left\|G^{*} G-N E\right\| \geq \frac{N}{2}\right) \leq \frac{4}{n^{2}}
$$

if the constant $C_{1}>0$ is large enough. We obtain

$$
s_{\min }(G)^{2}=s_{\min }\left(G^{*} G\right) \geq s_{\min }(N E)-\left\|G^{*} G-N E\right\| \geq \frac{N}{2}
$$

with probability at least $1-\frac{4}{n^{2}}$.

The proof of Fact 2: Decomposition

With $I_{\ell}:=\left\{n 2^{\ell}+1, \ldots, n 2^{\ell+1}\right\}, \ell \geq 0$, and the random matrices

$$
\Gamma_{\ell}:=\left(\varrho\left(x_{i}\right)^{-1 / 2} b_{k}\left(x_{i}\right)\right)_{i \leq N, k \in I_{\ell}} \in \mathbb{R}^{N \times n 2^{\ell}},
$$

and $\hat{f}_{\ell}:=\left(\left\langle f, b_{k}\right\rangle_{L_{2}}\right)_{k \in I_{\ell}}$, we obtain that

$$
\begin{aligned}
&\left\|N\left(f-P_{n} f\right)\right\|_{\ell_{2}^{N}} \stackrel{? ?}{=}\left\|\sum_{\ell=0}^{\infty} \Gamma_{\ell} \hat{f}_{\ell}\right\|_{\ell_{2}^{N}} \leq \sum_{\ell=0}^{\infty}\left\|\Gamma_{\ell}: \ell_{2}\left(I_{\ell}\right) \rightarrow \ell_{2}^{m}\right\|\left\|\hat{f}_{\ell}\right\|_{\ell_{2}\left(I_{\ell}\right)} \\
& \leq 2 \sum_{\ell=0}^{\infty}\left\|\Gamma_{\ell}: \ell_{2}\left(I_{\ell}\right) \rightarrow \ell_{2}^{m}\right\| a_{n 2^{\ell-2}}\left(F_{0}\right)
\end{aligned}
$$

for all $f \in F_{0}$. The last inequality is ensured by the "good" basis.

The proof of Fact 2: individual blocks

For fixed ℓ, let $X_{i}:=\varrho\left(x_{i}\right)^{-1 / 2}\left(b_{k}\left(x_{i}\right)\right)_{k \in \ell_{\ell}}^{\top}$ with $x_{i} \sim \rho$. We have

$$
\sum_{i=1}^{N} X_{i} X_{i}^{*}=\Gamma_{\ell}^{*} \Gamma_{\ell}=\left(\sum_{i=1}^{N} \frac{\overline{b_{j}\left(x_{i}\right)} b_{k}\left(x_{i}\right)}{\varrho\left(x_{i}\right)}\right)_{j, k \in l_{\ell}} \in \mathbb{R}^{n 2^{\ell} \times n 2^{\ell}}
$$

and $E=\mathbb{E}\left(X X^{*}\right)=\operatorname{diag}(1, \ldots, 1)$, i.e., $\|E\|=1$. Moreover,

$$
\left\|X_{i}\right\|_{2}^{2}=\varrho\left(x_{i}\right)^{-1} \sum_{k \in l_{\ell}}\left|b_{k}\left(x_{i}\right)\right|^{2} \leq \frac{2}{w_{n 2^{\ell+1}}}=: R^{2}
$$

since

$$
\varrho(x) \geq \frac{1}{2} \sum_{k \in I_{\ell}} w_{k}\left|b_{k}(x)\right|^{2} \geq \frac{w_{n 2^{\ell+1}}}{2} \sum_{k \in I_{\ell}}\left|b_{k}(x)\right|^{2}
$$

The proof of Fact 2: union bound

With $t \approx \frac{\log (n \ell)}{w_{n 2} \log (n)}$ and $N=\left\lceil C_{1} n \log n\right\rceil$, we obtain with $\left\|\Gamma_{\ell}\right\|^{2} \leq m+\left\|\Gamma_{\ell}^{*} \Gamma_{\ell}-m E\right\|$ that

$$
\mathbb{P}\left(\left\|\Gamma_{\ell}\right\|^{2} \geq C_{2} n \log (n) B_{\ell}^{2}\right) \leq \frac{4}{n^{2}(\ell+1)^{2} \pi^{2}}
$$

for some $B_{\ell} \gg \sqrt{\ell 2^{\ell}}$ that is independent of n, N.

We obtain by a union bound that

$$
\mathbb{P}\left(\exists \ell \in \mathbb{N}_{0}:\left\|\Gamma_{\ell}\right\|^{2} \geq C_{2} n \log (n) B_{\ell}^{2}\right) \leq \frac{1}{n^{2}}
$$

The proof of Fact 2: some calculation

Hence,

$$
\left\|N\left(f-P_{n} f\right)\right\|_{\ell_{2}^{N}} \lesssim n \log (n) \sum_{\ell=0}^{\infty} B_{\ell} a_{n 2^{\ell}}\left(F_{0}\right)
$$

for all $f \in F_{0}$ with probability at least $1-\frac{1}{n^{2}}$.

Monotonicity of $\left(a_{n}\right)$ gives

$$
\sum_{k \geq n} a_{k}^{p} \geq n\left(2^{\ell}-1\right) a_{n 2^{\ell}}^{p}
$$

for $\ell \geq 1$ and thus $a_{n 2^{\ell}} \lesssim 2^{-\ell / p}\left(\frac{1}{n} \sum_{k \geq n} a_{k}^{p}\right)^{1 / p}$.
We can choose suitable w_{k}, B_{ℓ} if $p \in(0,2)$, which finishes the proof.

The proof of Fact 2: point-wise convergence

It remains to verify $\left\|N\left(f-P_{n} f\right)\right\|_{\ell_{2}^{N}} \stackrel{?}{=}\left\|\sum_{\ell=0}^{\infty} \Gamma_{\ell} \hat{f}_{\ell}\right\|_{\ell_{2}^{N}}$:
We implicitly use

$$
\left(f-P_{n} f\right)\left(x_{i}\right)=\sum_{k>n} \hat{f}(k) b_{k}\left(x_{i}\right)
$$

Rademacher-Menchov theorem

Let F_{0} be countable with $\left(\sqrt{\frac{\log (k)}{k}} \cdot a_{k}\left(F_{0}\right)\right) \in \ell_{2}$. Then, there is a measurable subset D_{0} of D with $\mu\left(D \backslash D_{0}\right)=0$ such that

$$
f(x)=\sum_{k \in \mathbb{N}}\left\langle f, b_{k}\right\rangle_{L_{2}} b_{k}(x) \quad \text { for all } x \in D_{0} \text { and } f \in F_{0}
$$

The proof: From countable to separable

$F \hookrightarrow L_{2}$ is a separable metric space with cont. point evaluation.

- F contains a countable dense subset F_{0}
- $\left\|f-A_{N}(f)\right\|_{L_{2}} \leq\|f-g\|_{L_{2}}+\left\|g-A_{N}(g)\right\|_{L_{2}}+\left\|A_{N}(f-g)\right\|_{L_{2}}$
- $U_{\delta}(f):=\left\{g \in F: d_{F}(f, g)<\delta\right\}$ and $\delta>0$ small enough
- $g \in F_{0} \cap U_{\delta}(f): \quad\|f-g\|_{L_{2}}<\varepsilon$ and $\left|f\left(x_{i}\right)-g\left(x_{i}\right)\right|<\varepsilon$
- $\left\|f-A_{N}(f)\right\|_{L_{2}} \leq \sup _{g \in F_{0}}\left\|g-A_{N}(g)\right\|_{L_{2}}+C \varepsilon$

Hence,

$$
e\left(A_{N}, F\right)=e\left(A_{N}, F_{0}\right) \quad \text { for every linear } A_{N}
$$

The last step: Downsampling

To finish the proof, we take n "good" out of $n \log n$ random points.

Weaver's theorem
 [Weaver '04, MSS '15, NOU '16, NSU '20]

There exist constants $c_{1}, c_{2}, c_{3}>0$ such that, for all $u_{1}, \ldots, u_{N} \in \mathbb{C}^{n}$ such that $\left\|u_{i}\right\|_{2}^{2} \leq 2 n$ for all $i=1, \ldots, N$ and

$$
\frac{1}{2}\|w\|_{2}^{2} \leq \frac{1}{N} \sum_{i=1}^{N}\left|\left\langle w, u_{i}\right\rangle\right|^{2} \leq \frac{3}{2}\|w\|_{2}^{2}, \quad w \in \mathbb{C}^{n}
$$

there is a $J \subset\{1, \ldots, m\}$ with $\# J \leq c_{1} n$ and

$$
c_{2}\|w\|_{2}^{2} \leq \frac{1}{n} \sum_{i \in J}\left|\left\langle w, u_{i}\right\rangle\right|^{2} \leq c_{3}\|w\|_{2}^{2}, \quad w \in \mathbb{C}^{n}
$$

(This is based on the famous solution of the Kadison-Singer problem.)

Finally...

Theorem
[Krieg/U 2021]
Let $F \hookrightarrow L_{2}$ be a separable metric space of functions on D, such that point evaluation is continuous on F.
Then, for every $0<p<2$, there is a constant $c_{p}>0$, depending only on p, such that, for all $n \geq 2$, we have

$$
g_{N}(F) \leq \sqrt{\log n}\left(\frac{1}{n} \sum_{k \geq n} a_{k}(F)^{p}\right)^{1 / p}
$$

for $N \geq c_{p} \cdot n$.

Special information

In the above, there's nothing special about function values, and we can do the same for other classes on information:

Given a class $\Lambda \subset F^{\prime}$ of admissible information, let

$$
a_{n}(F, \Lambda):=\inf _{\substack{L_{1}, \ldots, L_{n} \in \Lambda^{\prime} \\ \varphi_{1}, \ldots, \varphi_{n} \in L_{2}}} \sup _{f \in F}\left\|f-\sum_{i=1}^{n} L_{i}(f) \varphi_{i}\right\|_{L_{2}},
$$

be the n-th minimal worst-case error of linear algorithms based on optimal info from Λ.

Special info: The result

Theorem

Let $\Lambda \subset F^{\prime}$ be such that there exist a measure ν on Λ with

$$
\int_{\Lambda} L(f) \cdot \overline{L(g)} \mathrm{d} \nu(L)=\langle f, g\rangle_{L_{2}}
$$

for all $f, g \in F$.
Then,

$$
a_{N}(F, \Lambda) \leq \sqrt{\log n}\left(\frac{1}{n} \sum_{k \geq n} a_{k}(F)^{p}\right)^{1 / p}
$$

for $0<p<2$ and $N \geq c_{p} \cdot n$.

One obtains better bounds for more special info...

Special info: Example

Consider an arbitrary orthonormal basis

$$
\mathcal{H}=\left\{h_{1}, h_{2}, \ldots\right\} \text { of } L_{2} .
$$

By choosing ν to be the counting measure, we see

$$
\int_{\Lambda} c(f) \cdot \overline{c(g)} \mathrm{d} \nu(c)=\sum_{i=1}^{\infty}\left\langle f, h_{i}\right\rangle \cdot \overline{\left\langle g, h_{i}\right\rangle}=\langle f, g\rangle_{L_{2}} .
$$

$\rightsquigarrow I n$ this formulation, F does not appear at all.
\rightsquigarrow Your favorite L_{2}-basis gives almost optimal info if $\left(a_{n}\right) \in \ell_{2}$.

Special info: The algorithm

For a given class of admissible info $\Lambda \subset F^{\prime}$, and given $c_{1}, \ldots, c_{N} \in \Lambda$, let

$$
A_{N}(f)=\underset{g \in V_{n}}{\operatorname{argmin}} \sum_{i=1}^{N} \frac{\left|c_{i}(g)-c_{i}(f)\right|^{2}}{\varrho\left(c_{i}\right)}
$$

with

$$
\varrho: \Lambda \rightarrow \mathbb{R}, \quad \varrho(c)=\frac{1}{2}\left(\frac{1}{n} \sum_{k \leq n}\left|c\left(b_{k}\right)\right|^{2}+\sum_{k>n} w_{k}\left|c\left(b_{k}\right)\right|^{2}\right) .
$$

Final remarks

Open problems:

(1) Is the $\sqrt{\log (n)}$-factor needed?
(2) Find an explicit construction of such point sets!

- What are necessary/sufficient conditions?

Note: Lattices don't work. Nets?
\rightsquigarrow We still don't know enough about some of the easiest (general) approximation problems in high dimensions...

Thank you!

How special is optimal information?

One may deduce the following heuristic:
(1) For $\left(a_{n}\right) \notin \ell_{2}$: Optimal information is rare.
(2) For $\left(a_{n}\right) \in \ell_{2}$: (Almost) optimal information is nothing special.

The "good" basis

It is not hard to show that similar holds true for general classes F :

Lemma

There is an orthonormal system $\left\{b_{k}: k \in \mathbb{N}\right\}$ in L_{2} such that the orthogonal projection P_{n} onto the span $V_{n}=\operatorname{span}\left\{b_{1}, \ldots, b_{n}\right\}$ satisfies

$$
\sup _{f \in F}\left\|f-P_{n} f\right\|_{L_{2}} \leq 2 a_{n / 4}(F), \quad n \in \mathbb{N}
$$

- This system is not known in general.
- The ' $n / 4$ ' might be problematic for rapidly decaying a_{n}.

Why mixed smoothness?

Spaces with mixed smoothness are of interest (for numerics) because they ...

- are tensor products of univariate spaces.
- correspond to several concepts of "uniform distribution theory".
- reflect the independence of parameters in high-dimensional models, like medical data, physical measurements etc.
- are proven to be important for the electronic Schrödinger equation. [Yserentant, 2005]

Non-linear algorithms

One might want to consider arbitrary algorithms:

$$
A_{n}(f)=\psi\left(L_{1}(f), \ldots, L_{n}(f)\right) \in L_{2}
$$

with some $L_{1}, \ldots, L_{n} \in F^{\prime}$ and a (non-linear) mapping $\psi: \mathbb{R}^{n} \rightarrow L_{2}$.
Gelfand width:

$$
c_{n}(F, \Lambda):=\inf _{\substack{\psi: \mathbb{R}^{n} \rightarrow L_{2} \\ L_{1}, \ldots, L_{n} \in \Lambda}} \sup _{f \in F}\left\|f-\psi\left(L_{1}(f), \ldots, L_{n}(f)\right)\right\|_{L_{2}} .
$$

$$
c_{n}(F):=c_{n}\left(F, F^{\prime}\right)
$$

Non-linear algorithms II

Let F be a unit ball of a Banach space.
Several results are known to compare these quantities:

$$
\text { Linear vs. non-linear: } \quad \sup _{F}\left\{\frac{a_{n}(F)}{c_{n}(F)}\right\} \asymp \sqrt{n}
$$

Linear vs. non-linear sampling: $\quad \sup _{F}\left\{\frac{g_{n}(F)}{c_{n}\left(F,\left\{\delta_{x}\right\}\right)}\right\} \asymp \sqrt{n}$

Lower bound for sampling:

$$
g_{n}\left(W_{1}^{s}([0,1])\right) \gtrsim c_{n}\left(W_{1}^{s}([0,1]),\left\{\delta_{x}\right\}\right) \asymp 1 \text { for } s<1
$$

See books of Novak/Wozniakowski 08-12 (Chapter 29), Pinkus etc.

Non-linear algorithms III

Since our result implies

$$
g_{N}(F) \leq \sqrt{\log n}\left(\frac{1}{n} \sum_{k \geq n}\left(\sqrt{k} c_{k}(F)\right)^{p}\right)^{1 / p}
$$

for $N \geq c_{p} \cdot n$, we also know what happens here in the "worst case":

For F a unit ball of a Banach space, we have for $s>1$

$$
n^{-s+1 / 2} \lesssim \sup \left\{g_{n}(F): F \text { with } c_{n}(F) \leq n^{-s}\right\} \lesssim \sqrt{\log n} \cdot n^{-s+1 / 2}
$$

and for $s \leq 1$

$$
\sup \left\{g_{n}(F): F \text { with } c_{n}(F) \leq n^{-s}\right\} \asymp 1
$$

