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Problem Statement

[Blind deconvolution (Discretized version)]

Blind deconvolution is to recover two unknown signals w ∈ CL and
x ∈ CL from their convolution y = w ∗ x ∈ CL.

We only consider circular convolution:
y1

y2

y3

...
yL

 =


w1 wL wL−1 . . . w2

w2 w1 wL . . . w3

w3 w2 w1 . . . w4

...
...

...
. . .

...
wL wL−1 wL−2 . . . w1




x1

x2

x3

...
xL


Let y = Fy, w = Fw, and x = Fx, where F is the DFT matrix;

y = w � x , where � is the Hadamard product, i.e., yi = wixi .

Equivalent question: Given y , find w and x .
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Problem Statement

Problem: Given y ∈ CL, find w , x ∈ CL so that y = w � x .

An ill-posed problem. Infinite solutions exist;

Assumption: w and x are in known subspaces, i.e., w = Bh and
x = Cm, B ∈ CL×K and C ∈ CL×N ;

Reasonable in various applications;

Leads to mathematical rigor; (L/(K + N) reasonably large)

Problem under the assumption

Given y ∈ CL, B ∈ CL×K and C ∈ CL×N , find h ∈ CK and m ∈ CN so
that

y = Bh � Cm = diag(Bhm∗C∗).

Speaker: Wen Huang Rice University
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Related work

Ahmed et al. [ARR14]1

Convex problem:

min
X∈CK×N

‖X‖n, s. t. y = diag(BXC∗),

where ‖ · ‖n denotes the nuclear norm, and X = hm∗;

(Theoretical result): the unique minimizer
high probability

============= the true
solution;

The convex problem is expensive to solve;

1A. Ahmed, B. Recht, and J. Romberg, Blind deconvolution using convex
programming, IEEE Transactions on Information Theory, 60:1711-1732, 2014

Speaker: Wen Huang Rice University

Blind deconvolution

Find h,m, s. t. y = diag(Bhm∗C∗);
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Related work

Li et al. [LLSW16]2

Nonconvex problem3:

min
(h,m)∈CK×CN

‖y − diag(Bhm∗C∗)‖2
2;

(Theoretical result):

A good initialization

(Wirtinger flow method + a good initialization)
high probability

============⇒
the true solution;

Lower successful recovery probability than alternating minimization
algorithm empirically.

2X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex
optimization, preprint arXiv:1606.04933, 2016

3The penalty in the cost function is not added for simplicity
Speaker: Wen Huang Rice University

Blind deconvolution
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Manifold Approach

The problem is defined on the set of rank-one matrices (denoted by
CK×N

1 ), neither CK×N nor CK × CN ; Why not work on the manifold
directly?

Optimization on manifolds

A representation of CK×N
1 ;

Representation of directions;

A Riemannian metric;

Riemannian gradient;

A Riemannian steepest descent method;

Speaker: Wen Huang Rice University
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A Representation of CK×N
1 : CK

∗ × CN
∗ /C∗

Given X ∈ CK×N
1 , there exist (h,m) such that X = hm∗;

(h,m) is not unique;

The equivalent class: [(h,m)] = {(ha,ma−∗) | a 6= 0};

Quotient manifold: CK
∗ × CN

∗ /C∗ = {[(h,m)] | (h,m) ∈ CK
∗ × CN

∗ }

M = CK
∗ × CN

∗

(h,m)

E = CK × CN

M = CK
∗ × CN

∗ /C∗

[(h,m)]

CK
∗ × CN

∗ /C∗ ' CK×N
1

Speaker: Wen Huang Rice University
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A Representation of CK×N
1 : CK

∗ × CN
∗ /C∗

Cost function4

Riemannian approach:

f : CK
∗ × CN

∗ /C∗ → R : [(h,m)] 7→ ‖y − diag(Bhm∗C∗)‖2
2.

Approach in [LLSW16]:

f : CK × CN → R : (h,m) 7→ ‖y − diag(Bhm∗C∗)‖2
2.

M = CK
∗ × CN

∗

(h,m)

E = CK × CN

M = CK
∗ × CN

∗ /C∗

[(h,m)]

4The penalty in the cost function is not added for simplicity.
Speaker: Wen Huang Rice University
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Representation of directions on CK
∗ × CN

∗ /C∗

M

x

ξx

η↑x

TxME = CK × CN

M

[x ]

y

z

[y ]

[z ]

η[x ]

x denotes (h,m);

Green line: the tangent space of [x ];

Red line (horizontal space at x): orthogonal to the green line;

Horizontal space at x : a representation of the tangent space of M at [x ];

Speaker: Wen Huang Rice University
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A Riemannian metric

Riemannian metric:

Inner product on tangent spaces
Define angles and lengths

M

Riemannian metric g1

M

Riemannian metric g2

Figure: Changing metric may influence the difficulty of a problem.

Speaker: Wen Huang Rice University

Blind deconvolution
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A Riemannian metric

Idea for choosing a Riemannian metric

The block diagonal terms in the Euclidean Hessian are used to choose
the Riemannian metric.

Let 〈u, v〉2 = Re(trace(u∗v)):

〈ηh,Hessh f [ξh]〉2 = 2〈diag(Bηhm
∗C∗), diag(Bξhm

∗C∗)〉2 ≈ 2〈ηhm∗, ξhm∗〉2
〈ηm,Hessm f [ξm]〉2 = 2〈diag(Bhη∗mC

∗),diag(Bhξ∗mC
∗)〉2 ≈ 2〈hη∗m, hξ∗m〉2,

where ≈ can be derived from some assumptions (given later);

The Riemannian metric:

g
(
η[x], ξ[x]

)
= 〈ηh, ξhm∗m〉2 + 〈η∗m, ξ∗mh∗h〉2;

Speaker: Wen Huang Rice University

Blind deconvolution

min[(h,m)] ‖y − diag(Bhm∗C∗)‖2
2
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Riemannian gradient

Riemannian gradient

A tangent vector: grad f([x ]) ∈ T[x]M;

Satisfies: Df ([x ])[η[x]] = g(grad f ([x ]), η[x]), ∀η[x] ∈ T[x]M;

Represented by a vector in a horizontal space;

Riemannian gradient:

(grad f ([(h,m)]))↑(h,m)
= Proj

(
∇hf (h,m)(m∗m)−1,∇mf (h,m)(h∗h)−1

)
;

Speaker: Wen Huang Rice University

Blind deconvolution
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A Riemannian steepest descent method (RSD)

An implementation of a Riemannian steepest descent method5

0 Given (h0,m0), step size α > 0, and set k = 0

1 dk = ‖hk‖2‖mk‖2, hk ←
√
dk

hk
‖hk‖2

; mk ←
√
dk

mk

‖mk‖2
;

2 (hk+1,mk+1) = (hk ,mk)− α
(
∇hk

f (hk ,mk )

dk
,
∇mk

f (hk ,mk )

dk

)
;

3 If not converge, goto Step 2.

Wirtinger flow Method in [LLSW16]

0 Given (h0,m0), step size α > 0, and set k = 0

1 (hk+1,mk+1) = (hk ,mk)− α (∇hk f (hk ,mk),∇mk
f (hk ,mk));

2 If not converge, goto Step 2.

5The penalty in the cost function is not added for simplicity
Speaker: Wen Huang Rice University
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Highlight differences

The norms of h and m
Normalization in RSD: ‖h‖2 = ‖m‖2;
Penalty in Wirtinger flow method:

G0

(
‖h‖2

2

2d

)
+ G0

(
‖m‖2

2

2d

)
where G0(t) = max(t − 1, 0)2;

Riemannian Gradient versus Euclidean Gradient:

(grad f ([(h,m)]))↑(h,m)
=Proj

(
∇hf (h,m)(m∗m)−1,∇mf (h,m)(h∗h)−1

)
If ‖h‖2 = ‖m‖2, then

(grad f ([(h,m)]))↑(h,m)
=
(
∇hf (h,m)(m∗m)−1,∇mf (h,m)(h∗h)−1

)
=

1

‖h‖2‖m‖2

(
∇hf (h,m),∇mf (h,m)

)

Speaker: Wen Huang Rice University
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Penalty/Coherence

Coherence is defined as

µ2
h =

L‖Bh‖2
∞

‖h‖2
2

=
Lmax

(
|b∗1h|2, |b∗2h|2, . . . , |b∗Lh|2

)
‖h‖2

2

;

Assume B is orthonormal and ‖bi‖2
2 ≤ φK

L
, i = 1, . . . , L for some

constant φ.
large if h is parallel to one of bi ;
small if h is sparse;

Coherence at the true solution [(h],m])]

influences the probability for recovery
Small coherence is preferred

Speaker: Wen Huang Rice University
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Penalty

Promote low coherence:

ρ

L∑
i=1

G0

(
L|b∗i h|2‖m‖2

2

8d2µ2

)
,

where G0(t) = max(t − 1, 0)2;

Ω: ellipsoid;

Unique minimizer in Ω;

Initial iterate in Ω;

Importance of the penalty;

‖y − diag(Bhm ∗ C∗)‖2
2 ‖y − diag(Bhm ∗ C∗)‖2

2 + penalty

Speaker: Wen Huang Rice University
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Penalty

Riemannian approach:

ρ

L∑
i=1

G0

(
L|b∗i h|2‖m‖2

2

8d2µ2

)
[LLSW16]:

ρ

[
G0

(
‖h‖2

2

2d

)
+ G0

(
‖m‖2

2

2d

)
+

L∑
i=1

G0

(
L|b∗i h|2

8dµ2

)]

G0(t) = max(t − 1, 0)2, [b1b2 . . . bL]∗ = B;

Riemannian approach avoids the two terms.
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Initialization

Initialization method [LLSW16]

(d , h̃0, m̃0): SVD of B∗ diag(y)C ;

Project (h̃0, m̃0) to a neighborhood of the true solution;

Initial iterate [(h0,m0)];
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Numerical Results

Synthetic tests

Efficiency

Probability of successful recovery

Image deblurring
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Efficiency

Table: Comparisons of efficiency

L = 400,K = N = 50 L = 600,K = N = 50
Algorithms [LLSW16] [LWB13] R-SD [LLSW16] [LWB13] R-SD
nBh/nCm 351 718 208 162 294 122
nFFT 870 1436 518 401 588 303
RMSE 2.22−8 3.67−8 2.20−8 1.48−8 2.34−8 1.42−8

An average of 100 random runs

nBh/nCm: the numbers of Bh and Cm multiplication operations respectively

nFFT: the number of Fourier transform

RMSE: the relative error
‖hm∗−h]m

∗
] ‖F

‖h]‖2‖m]‖2

[LLSW16]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933, 2016
[LWB13]: K. Lee et. al., Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization

preprint arXiv:1312.0525, 2013
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Probability of successful recovery

Success if
‖hm∗−h]m∗] ‖F
‖h]‖2‖m]‖2

≤ 10−2
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[LWB13]
R-SD

Figure: Empirical phase transition curves for 1000 random runs.

[LLSW16]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933, 2016
[LWB13]: K. Lee et. al., Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization

preprint arXiv:1312.0525, 2013
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Image deblurring

Original image [WBX+07]: 1024-by-1024 pixels

Motion blurring kernel (Matlab: fspecial(’motion’, 50, 45))
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Image deblurring

What subspaces are the two unknown signals in?

Image is approximately sparse in the Haar
wavelet basis

Use the blurred image to learn the dominated
basis: C.

Support of the blurring kernel is learned from
the blurred image

Suppose the support of the blurring kernel is
known: B.

L = 1048576,K = 109,
N = 5000, 20000, 80000
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Image deblurring

Initial guess (N=5000) Initial guess (N=20000) Initial guess (N=80000)

Reconstructed image (N=5000) Reconstructed image (N=20000) Reconstructed image (N=80000)

Figure: Initial guess by running power method for 50 iterations and the
reconstructed image for N = 5000, 20000, and 80000.
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Image deblurring

Table: Computational costs for multiple values of N on the image deblurring

N nBh/nCm nFFT relres relerr t
5000 535 1330 4.8−3 5.7−2 170

20000 546 1358 2.1−3 5.3−2 173
80000 452 1124 8.0−4 5.0−2 144

relres: ‖y − diag(Bhm∗C∗)‖2/‖y‖2;

relerr :
∥∥∥yo − ‖y‖

‖yf ‖yf

∥∥∥ /‖yo‖
yf : the vector by reshaping the reconstructed image

yo : the vector by reshaping the original image
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Theoretical Results

Mathematical model:

C is a complex Gaussian distribution; and

B satisfies B∗B = IK and ‖bi‖2
2 ≤ φK

L , i = 1, . . . , L for some
constant φ.
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Theoretical Results

Initialization [LLSW16]6

If L ≥ Cγ(µ2 + σ2) max(K ,N) log2(L)/ε, then with high probability, it holds
that

[(h0,m0)] ∈ Ω 1
2
µ ∩ Ω 2

5
ε,

where Ωµ = {[(h,m)] |
√
L‖Bh‖∞‖m‖2 ≤ 4d∗µ},

Ωε = {[(h,m)] | ‖hm∗ − h]m
∗
] ‖F ≤ εd∗}, and (h],m]) is the true solution.

Large enough number of measurements =⇒ the initial point in a small
neighborhood of the true solution.

6X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex
optimization, preprint arXiv:1606.04933, 2016
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Theoretical Results

Convergence analysis

Suppose L ≥ Cγ(µ2 + σ2) max(K ,N) log2(L)/ε2 and the initialization
[(h0,m0)] ∈ Ω 1

2
µ ∩ Ω 2

5
ε. Then with high probability, it holds that

‖hkm∗k − h]m
∗
] ‖F ≤

2

3

(
1− α

3000

)k/2

εd∗,

where α is a small enough fixed step size.

i) Large enough number of measurements; ii) the initial point in a small
neighborhood of the true solution =⇒ the Riemannian method converges
linearly to the true solution.
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Theoretical Results

Riemannian Hessian

Suppose L ≥ Cγ max(K , µ2
hN) log2(L). Then with high probability, it holds that

9d2
∗

5
≤ λi ≤

22d2
∗

5

for all i , where λi are eigenvalues of the Riemannian Hessian Hess f at the true
solution.

The Riemannian Hessian f ◦ R is well-conditioned near the true solution.
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Conclusion

Blind deconvolution by optimizing over a quotient manifold

A Riemannian steepest descent method

Simple implementation

Recovery guarantee

Superior numerical performance
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Thank you

Thank you!
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