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Problem Statement

Problem Statement

[Blind deconvolution (Discretized version)]

Blind deconvolution is to recover two unknown signals w € Ct and
x € Ct from their convolution y = w % x € CL.

m We only consider circular convolution:

y1 W1 W, W1 w» X1
y2 w» wy wp W3 | | X2
y3| = |W3 w> W1 Wy | | X3
yL W w1 Wi ... W XL

m Let y = Fy, w = Fw, and x = Fx, where F is the DFT matrix;
By =w O x, where ® is the Hadamard product, i.e., y; = w;x;.
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Problem Statement

Problem Statement

[Blind deconvolution (Discretized version)]

Blind deconvolution is to recover two unknown signals w € Ct and
x € Ct from their convolution y = w % x € CL.

m We only consider circular convolution:

y1 W1 W, W1 w» X1
y2 w» wy wp W3 | | X2
y3| = |W3 w> W1 Wy | | X3
yL W w1 Wi ... W XL

m Let y = Fy, w = Fw, and x = Fx, where F is the DFT matrix;
By =w O x, where ® is the Hadamard product, i.e., y; = w;x;.
m Equivalent question: Given y, find w and x.
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Problem Statement

Problem: Given y € CL, find w,x € CL so that y = w ® x.

m An ill-posed problem. Infinite solutions exist;
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Problem: Given y € CL, find w,x € CL so that y = w ® x.

m An ill-posed problem. Infinite solutions exist;

m Assumption: w and x are in known subspaces, i.e., w = Bh and
x = Cm, B € Ct*K and C e CLxN,
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Problem Statement

Problem: Given y € CL, find w,x € CL so that y = w ® x.

m An ill-posed problem. Infinite solutions exist;

m Assumption: w and x are in known subspaces, i.e., w = Bh and
x = Cm, B € Ct*K and C e CLxN,

m Reasonable in various applications;

m Leads to mathematical rigor; (L/(K + N) reasonably large)
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Problem Statement

Problem Statement

Problem: Given y € CL, find w,x € CL so that y = w ® x.

m An ill-posed problem. Infinite solutions exist;

m Assumption: w and x are in known subspaces, i.e., w = Bh and
x = Cm, B € Ct*K and C e CLxN,

m Reasonable in various applications;

m Leads to mathematical rigor; (L/(K + N) reasonably large)

Problem under the assumption

Given y € Ct, B € CH*K and C € CH*V, find h € CK and m € CN so
that L
y = Bh® Cm = diag(Bhm* C™).
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Related Work

Related work

Find hym,s. t. y = diag(ma*C*);‘

m Ahmed et al. [ARR14]!

m Convex problem:

min _||X]|s, s. t. y = diag(BXC"),
XeCKxXN

where || - ||» denotes the nuclear norm, and X = hm*;

1A. Ahmed, B. Recht, and J. Romberg, Blind deconvolution using convex
programming, IEEE Transactions on Information Theory, 60:1711-1732, 2014
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Related work

Find hym,s. t. y = diag(ma*C*);‘

m Ahmed et al. [ARR14]!
m Convex problem:

min _||X]|s, s. t. y = diag(BXC"),
XeCKxXN

where || - ||» denotes the nuclear norm, and X = hm*;

high probability

m (Theoretical result): the unique minimizer the true

solution;

1A. Ahmed, B. Recht, and J. Romberg, Blind deconvolution using convex
programming, IEEE Transactions on Information Theory, 60:1711-1732, 2014
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Related Work

Related work

Find hym,s. t. y = diag(ma*C*);‘

m Ahmed et al. [ARR14]!

m Convex problem:

min _||X]|s, s. t. y = diag(BXC"),
XeCKxXN

where || - ||» denotes the nuclear norm, and X = hm*;

high probability

m (Theoretical result): the unique minimizer the true

solution;

m The convex problem is expensive to solve;

1A. Ahmed, B. Recht, and J. Romberg, Blind deconvolution using convex
programming, IEEE Transactions on Information Theory, 60:1711-1732, 2014
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Related Work

Related work

Find hym,s. t. y = diag(ma*C*);‘

m Lietal [LLSW16]?

m Nonconvex problem?:

min — diag(Bhm* C*)||3;
(h,m)ecKXcNHy iag( )II2

2X. Liet. al., Rapid, robust, and reliable blind deconvolution via nonconvex
optimization, preprint arXiv:1606.04933, 2016
3The penalty in the cost function is not added for simplicity
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Find hym,s. t. y = diag(ma*C*);‘

m Lietal [LLSW16]?

m Nonconvex problem?:

min — diag(Bhm* C*)||3;
(h,m)ecKXcNHy iag( )II2

m (Theoretical result):
B A good initialization

high probabilit:
m (Wirtinger flow method + a good initialization) —UET PTODanTy,

the true solution;

2X. Liet. al., Rapid, robust, and reliable blind deconvolution via nonconvex
optimization, preprint arXiv:1606.04933, 2016
3The penalty in the cost function is not added for simplicity
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Related Work

Related work

Find hym,s. t. y = diag(ma*C*);‘

m Lietal [LLSW16]?

m Nonconvex problem?:

min — diag(Bhm* C*)||3;
(h,m)ecKXcNHy iag( )II2

m (Theoretical result):

B A good initialization

high probabilit:
m (Wirtinger flow method + a good initialization) —UET PTODanTy,

the true solution;

m Lower successful recovery probability than alternating minimization
algorithm empirically.

2X. Liet. al., Rapid, robust, and reliable blind deconvolution via nonconvex
optimization, preprint arXiv:1606.04933, 2016
3The penalty in the cost function is not added for simplicity
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Manifold Approach

Manifold Approach

Find hym,s. t. y = diag(ma*C*);‘

m The problem is defined on the set of rank-one matrices (denoted by
(CfXN), neither CK*N nor CK x CN; Why not work on the manifold
directly?
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Manifold Approach

Manifold Approach

Find hym,s. t. y = diag(ma*C*);‘

m The problem is defined on the set of rank-one matrices (denoted by
(CfXN), neither CK*N nor CK x CN; Why not work on the manifold
directly?

m Optimization on manifolds
m A representation of CK*V;
m Representation of directions;
m A Riemannian metric;
m Riemannian gradient;

m A Riemannian steepest descent method;
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Manifold Approach

A Representation of C¥*N: CK x CV/C,

m Given X € (CfXN, there exist (h, m) such that X = hm*;

m (h, m) is not unique;

m The equivalent class: [(h, m)] = {(ha, ma™*) | a # 0};

m Quotient manifold: CK x CV/C, = {[(h,m)] | (h,m) € CK x CN}
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Manifold Approach

A Representation of C¥*N: CK x CV/C,

m Given X € (CfXN, there exist (h, m) such that X = hm*;

m (h, m) is not unique;

m The equivalent class: [(h, m)] = {(ha, ma™*) | a # 0};

m Quotient manifold: CK x CV/C, = {[(h,m)] | (h,m) € CK x CN}

E=CcKkxcV

M=CKxcV/c,

ckxcl/c, ~cf
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Manifold Approach

A Representation of C¥*N: CK x CV/C,

Cost function*

m Riemannian approach:

f:CKkxCN/C, = R:[(h,m)]— |ly — diag(Bhm* C*)|]3.
m Approach in [LLSW16]:

f:CK xCN — R:(h,m) s |y — diag(Bhm*C*)||3.

—_ K N
£=C"xC M=CKxCV/C,

’ [(h;m)]

4The penalty in the cost function is not added for simplicity.
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Manifold Approach

Representation of directions on CX x CV/C,

g=ckxc' T.M

x denotes (h, m);
m Green line: the tangent space of [x];
m Red line (horizontal space at x): orthogonal to the green line;

m Horizontal space at x: a representation of the tangent space of M at [x];
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Manifold Approach

A Riemannian metric

Riemannian metric:
m Inner product on tangent spaces
m Define angles and lengths

Riemannian metric gy Riemannian metric g»

Figure: Changing metric may influence the difficulty of a problem.
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Manifold Approach

A Riemannian metric

mings,mj |ly — diag(Bhm* C*)||3

Idea for choosing a Riemannian metric

The block diagonal terms in the Euclidean Hessian are used to choose
the Riemannian metric.
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Manifold Approach

A Riemannian metric

mings,mj |ly — diag(Bhm* C*)||3

Idea for choosing a Riemannian metric

The block diagonal terms in the Euclidean Hessian are used to choose
the Riemannian metric.

m Let (u, v), = Re(trace(u*v)):

(11n, Hessn f[€n])2 = 2(diag(Bnam™C"), diag(BEnm™ C™))2 & 2(nym”, £pm” )2
(Mm, Hessm f[€m])2 = 2(diag(Bhn;,C*), diag(Bh&n, C™))2 ~ 2(hnn,, hér)a,

where & can be derived from some assumptions (given later);
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Manifold Approach

A Riemannian metric

mings,m; |ly — diag(Bhm* C*)||3

Idea for choosing a Riemannian metric

The block diagonal terms in the Euclidean Hessian are used to choose
the Riemannian metric.

m Let (u, v), = Re(trace(u*v)):

(11n, Hessn f[€n])2 = 2(diag(Bnam™C"), diag(BEnm™ C™))2 & 2(nym”, £pm” )2
(Mm, Hessm f[€m])2 = 2(diag(Bhn;,C*), diag(Bh&n, C™))2 ~ 2(hnn,, hér)a,

where & can be derived from some assumptions (given later);

m The Riemannian metric:

g (N> €pq) = (s Enm™ m)a + (1, £ i h)2;

Rice University
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Manifold Approach

Riemannian gradient

m Riemannian gradient
m A tangent vector: gradf([x]) € T M;

m Satisfies: Df([x])[nq] = g(grad f([x]), nx), Vg € Tpg M;
m Represented by a vector in a horizontal space;

m Riemannian gradient:

(grad f([(h, m)]))mym) = Proj(Vhf(h, m)(m*m)~Y, V f(h, m)(h*h)fl) ;
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Manifold Approach

A Riemannian steepest descent method (RSD)

An implementation of a Riemannian steepest descent method®
@ Given (ho, mg), step size & > 0, and set k =0
h
dic = |l bcll2llmicll2, hic = vV dipainy s mic <= Vet

Vi f(hi;mi) YV om, £ (hi,my)
(hiy1, mig1) = (hi, my) — ( T

If not converge, goto Step 2.

5The penalty in the cost function is not added for simplicity

Rice University
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Manifold Approach

A Riemannian steepest descent method (RSD)

An implementation of a Riemannian steepest descent method®
@ Given (ho, mg), step size & > 0, and set k =0
h
dic = |l bcll2llmicll2, hic = vV dipainy s mic <= Vet

Vi f(hi;mi) YV om, £ (hi,my)
(hiy1, mig1) = (hi, my) — ( T

If not converge, goto Step 2.

Wirtinger flow Method in [LLSW16]
@ Given (ho, mg), step size & > 0, and set k =0
(hks1, Mir1) = (b, mi) — (Vi F(hiy i)y ¥V m, £ (B, mi));
If not converge, goto Step 2.

5The penalty in the cost function is not added for simplicity

Rice University
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Manifold Approach

A Riemannian steepest descent method (RSD)

An implementation of a Riemannian steepest descent method®
@ Given (ho, mg), step size & > 0, and set k =0
h
dic = || bcll2llmicll2, hic = vV dipainy s mic <= Vet

Vi f(hi;mi) YV om, £ (hi,my)
(hiy1, mig1) = (hi, my) — ( P

If not converge, goto Step 2.

Wirtinger flow Method in [LLSW16]
@ Given (ho, mg), step size & > 0, and set k =0
(hks1, Mir1) = (b, mi) — (Vi F(hiy i)y ¥V m, £ (B, mi));
If not converge, goto Step 2.

5The penalty in the cost function is not added for simplicity
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Manifold Approach

Highlight differences

m The norms of h and m
m Normalization in RSD: || h||2 = ||m||2;
m Penalty in Wirtinger flow method:

15113 [aallE
Go ( 2d + Go >d

where Go(t) = max(t — 1,0)%
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Manifold Approach

Highlight differences

m The norms of h and m
m Normalization in RSD: || h||2 = ||m||2;
m Penalty in Wirtinger flow method:

15113 [aallE
Go ( 2d + Go >d

where Go(t) = max(t — 1,0)%
m Riemannian Gradient versus Euclidean Gradient:

(erad F([(h, m)])),, . =Proj (V,,f(h, m)(m*m) =L, Vo (h, m)(h*h)*l)

It [All2 = [[m

(grad £([(h, )]y, =(Vaf (h,m)(m* m) ™2, Vo f (h, m)(hh) )

1
= (Vaf(hm), Vi f(h,m)
IIhIIszIIz( )

|2, then
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Manifold Approach

Penalty/Coherence

m Coherence is defined as

L|Bh2,  Lmax (|bjh[, |b3hP2,...,|bih2)

2
u = _— 1
’ 113 113
m Assume B is orthonormal and | b;||3 < ¢%, i=1,...,L for some
constant ¢.

m large if his parallel to one of bj;
m small if his sparse;

m Coherence at the true solution [(hy, my)]

m influences the probability for recovery
m Small coherence is preferred
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Penalty

Manifold Approach

Promote low coherence:

ZG(

L|byh[lm]3
8d?u?

where Go(t) = max(t — 1,0)%;

Speaker: Wen Huang

lly — diag(Bhm x C%)|3 ly — diag(Bhm  Cx)||3 + penalty

)

)

(
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Manifold Approach

Penalty

Promote low coherence: lly — diag(Bhm * Cx)|2 lly — diag(Bhm + Cx)|3 + penalty

L|br h|?||m||3
ZG( IR,

where Go(t) = max(t — 1,0)%;

)

m : ellipsoid;

\ g
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Manifold Approach

Penalty

Promote low coherence: lly — diag(Bhm « C+)|3

L|br h|?||m||3
ZG( oz

where Go(t) = max(t — 1,0)%;

)

m : ellipsoid;

m Unique minimizer in £;

(

Speaker: Wen Huang
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Manifold Approach

Penalty

Promote low coherence: lly — diag(Bhm « C+)|3

L|br h|?||m||3
ZG( IR,

where Go(t) = max(t — 1,0)%;

)

m : ellipsoid;
m Unique minimizer in £;

m Initial iterate in Q;

(

Speaker: Wen Huang
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Manifold Approach

Penalty

Promote low coherence: lly — diag(Bhm « C+)|3
L| by h|*||m
Z 6, (LErnPlmiz
8d2 2

where Go(t) = max(t — 1,0)%;

)

m : ellipsoid;
m Unique minimizer in £;

m Initial iterate in Q;

(

m Importance of the penalty;

Speaker: Wen Huang
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Manifold Approach

Penalty

m Riemannian approach:

L
L[b hP?[|ml13
PZ Go ( 8212
i=1

= [LLSW16]:

[o () o (28 3 (455

] Go(t) = max(t -1, 0)2, [b1b2 . b[_]’k =
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Manifold Approach

Penalty

m Riemannian approach:

L
L[b hP?[|ml13
PZ Go ( 8212
i=1

= [LLSW16]:

[o () o (28 o3 (455

] Go(t) = max(t -1, 0)2, [b1b2 . b[_]’k =

Riemannian approach avoids the two terms.

Speaker: Wen Huang Rice University

Blind deconvolution



Manifold Approach

Initialization

Initialization method [LLSW16]
m (d, ho, in): SVD of B* diag(y)C;
m Project (hg, /) to a neighborhood of the true solution;

m Initial iterate [(ho, mo)];
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Numerical Results

Numerical Results

m Synthetic tests

m Efficiency

m Probability of successful recovery

m Image deblurring
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Numerical Results

Efficiency

Table: Comparisons of efficiency

[ =400,K = N =50 [=600,K = N =50

Algorithms | [LLSW16] [(WB13]  R-SD | [LLSWIi6] [(WBI3]  R-SD

nBh/nCm 351 718 208 162 294 122
nFFT 870 1436 518 401 588 303
RMSE 222 5 3675 220 5 | 1.48 g 234 5 142,

m An average of 100 random runs
m nBh/nCm: the numbers of Bh and Cm multiplication operations respectively

m nFFT: the number of Fourier transform

. [ hm™ —hymi || £
m RMSE: the relative error ———————
Thy T2 Tmy T2

[LLSW16]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933, 2016
[LWB13]: K. Lee et. al., Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization
preprint arXiv:1312.0525, 2013
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Numerical Results

Probability of successful recovery

oo lhm™ —hymy||F 2
m Success if ———m—1t— < 10
lhgll2llmyll2 =

Transition curve

1 3
0.8 —*—[LLSW16] | |
—7—[LWB13]
—4A—R-SD

nd
=)

Prob. of Succ. Rec.
o
=

o
N}

o
5

25
LI(K+N)

Figure: Empirical phase transition curves for 1000 random runs.

[LLSW16]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933, 2016
[LWB13]: K. Lee et. al., Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization
preprint arXiv:1312.0525, 2013
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Numerical Results

Image deblurring

Blurred image

<

m Original image [WBX"07]: 1024-by-1024 pixels
m Motion blurring kernel (Matlab: fspecial(’motion’, 50, 45))
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Numerical Results

Image deblurring

Blurred image
What subspaces are the two unknown signals in?

m Image is approximately sparse in the Haar
wavelet basis

m Support of the blurring kernel is learned from
the blurred image

)
-

3

Blurring kernel
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Numerical Results

Image deblurring

Blurred image

What subspaces are the two unknown signals in?

m Image is approximately sparse in the Haar
wavelet basis

Use the blurred image to learn the dominated
basis: C.

m Support of the blurring kernel is learned from
the blurred image

Suppose the support of the blurring kernel is ‘
known: B.
Blurring kernel

m [ = 1048576, K = 109,
N = 5000, 20000, 80000
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Numerical Results

Image deblurring

Initial guess (N=5000) Initial guess (N=20000) Initial guess (N=80000)

<

Reconstructed image (N=5000) Reconstructed image (N=20000) Reconstructed image (N=80000)

e €@ ¢

Figure: Initial guess by running power method for 50 iterations and the
reconstructed image for N = 5000, 20000, and 80000.

&
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Numerical Results

Image deblurring

Table: Computational costs for multiple values of N on the image deblurring

N nBh/nCm  nFFT relres relerr t
5000 535 1330 48_3 b7, 170
20000 546 1358 213 53 ., 173
80000 452 1124 8.0_4 50, 144

m relres: ||y — diag(Bhm*C*)|2/|lyll2;

Yo — H”;;‘hy:‘” /HYOH

® yr: the vector by reshaping the reconstructed image

m relerr: ‘

m y,: the vector by reshaping the original image

Rice University
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Theoretical Results

Theoretical Results

Mathematical model:
m C is a complex Gaussian distribution; and

m B satisfies B*B = Ix and ||b;||3 < ¢, i=1,..., L for some
constant ¢.
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Theoretical Results

Theoretical Results

Initialization [LLSW16]°

If L> C,(1* + o) max(K, N) log?(L) /e, then with high probability, it holds
that

[(ho7 mo)] < Q%H N Q%E,
where Q, = {[(h, m)] | V'L||Bhllsc||ml|2 < 4d. 1},
Q. = {[(h,m)] | [|hm™ — hymj||r < ed.}, and (hy, my) is the true solution.

6X. Liet. al., Rapid, robust, and reliable blind deconvolution via nonconvex
optimization, preprint arXiv:1606.04933, 2016

Speaker: Wen Huang Rice University

Blind deconvolution



Theoretical Results

Theoretical Results

Initialization [LLSW16]°

If L> C,(1* + o) max(K, N) log?(L) /e, then with high probability, it holds
that
[(ho7 mo)] < Q%H N Qg

Zg9

where Q, = {[(h, m)] | V'L||Bhllsc||ml|2 < 4d. 1},
Q. = {[(h,m)] | [|hm™ — hymj||r < ed.}, and (hy, my) is the true solution.

Large enough number of measurements = the initial point in a small
neighborhood of the true solution.

6X. Liet. al., Rapid, robust, and reliable blind deconvolution via nonconvex
optimization, preprint arXiv:1606.04933, 2016
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Theoretical Results

Theoretical Results

Convergence analysis

Suppose L > C,(p? + ) max(K, N) log?(L)/e? and the initialization
[(ho, mo)] € Q1,NQ2.. Then with high probability, it holds that

« . 2 a \k/2
— < = - .
||hkl”k humﬁ ||F (1 ) ed 9

where « is a small enough fixed step size.
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Theoretical Results

Theoretical Results

Convergence analysis

Suppose L > C,(p? + ) max(K, N) log?(L)/e? and the initialization
[(ho, mo)] € Q1,NQ2.. Then with high probability, it holds that

« . 2 a \k/2
— < = - .
||hkl”k humﬁ ||F (1 ) ed 9

where « is a small enough fixed step size.

i) Large enough number of measurements; ii) the initial point in a small
neighborhood of the true solution = the Riemannian method converges
linearly to the true solution.
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Theoretical Results

Theoretical Results

Riemannian Hessian

Suppose L > C, max(K, u2N)log?(L). Then with high probability, it holds that

2 2
ol _,, 2k
5 = 5

for all i, where \; are eigenvalues of the Riemannian Hessian Hess f at the true
solution.

Rice University
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Theoretical Results

Theoretical Results

Riemannian Hessian

Suppose L > C, max(K, u2N)log?(L). Then with high probability, it holds that

2 2
ol _,, 2k
5 = 5

for all i, where \; are eigenvalues of the Riemannian Hessian Hess f at the true
solution.

The Riemannian Hessian f o R is well-conditioned near the true solution.

Rice University
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Conclusion

Conclusion

Blind deconvolution by optimizing over a quotient manifold
m A Riemannian steepest descent method
m Simple implementation
m Recovery guarantee

m Superior numerical performance
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Conclusion

Thank you

Thank you!
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Conclusion
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