Problem Statement	Related Work	Manifold Approach	Numerical Results	Theoretical Results	Conclusion

Blind deconvolution by optimizing over a quotient manifold

Speaker: Wen Huang

Rice University

November 28, 2017

This is joint work with Paul Hand at Rice university

Problem Statement	Related Work		
	1		

Blind deconvolution

[Blind deconvolution]

Blind deconvolution is to recover two unknown signals from their convolution.

Blurred image

Problem Statement	Related Work		
DU L			

Blind deconvolution

[Blind deconvolution]

Blind deconvolution is to recover two unknown signals from their convolution.

Problem Statement	Related Work		

Blind deconvolution

[Blind deconvolution]

Blind deconvolution is to recover two unknown signals from their convolution.

ipeal	er:	Wen	Huang	
Blind	dec	onvol	ution	

Problem Statement

[Blind deconvolution (Discretized version)]

Blind deconvolution is to recover two unknown signals $\mathbf{w} \in \mathbb{C}^L$ and $\mathbf{x} \in \mathbb{C}^L$ from their convolution $\mathbf{y} = \mathbf{w} * \mathbf{x} \in \mathbb{C}^L$.

We only consider circular convolution:

$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \\ \vdots \\ \mathbf{y}_L \end{bmatrix} = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_L & \mathbf{w}_{L-1} & \dots & \mathbf{w}_2 \\ \mathbf{w}_2 & \mathbf{w}_1 & \mathbf{w}_L & \dots & \mathbf{w}_3 \\ \mathbf{w}_3 & \mathbf{w}_2 & \mathbf{w}_1 & \dots & \mathbf{w}_4 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{w}_L & \mathbf{w}_{L-1} & \mathbf{w}_{L-2} & \dots & \mathbf{w}_1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \vdots \\ \mathbf{x}_L \end{bmatrix}$$

Let y = Fy, w = Fw, and x = Fx, where F is the DFT matrix;
y = w ⊙ x, where ⊙ is the Hadamard product, i.e., y_i = w_ix_i.

Problem Statement

[Blind deconvolution (Discretized version)]

Blind deconvolution is to recover two unknown signals $\mathbf{w} \in \mathbb{C}^L$ and $\mathbf{x} \in \mathbb{C}^L$ from their convolution $\mathbf{y} = \mathbf{w} * \mathbf{x} \in \mathbb{C}^L$.

We only consider circular convolution:

$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \\ \vdots \\ \mathbf{y}_L \end{bmatrix} = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_L & \mathbf{w}_{L-1} & \dots & \mathbf{w}_2 \\ \mathbf{w}_2 & \mathbf{w}_1 & \mathbf{w}_L & \dots & \mathbf{w}_3 \\ \mathbf{w}_3 & \mathbf{w}_2 & \mathbf{w}_1 & \dots & \mathbf{w}_4 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{w}_L & \mathbf{w}_{L-1} & \mathbf{w}_{L-2} & \dots & \mathbf{w}_1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \vdots \\ \mathbf{x}_L \end{bmatrix}$$

• Let $y = \mathbf{F}\mathbf{y}$, $w = \mathbf{F}\mathbf{w}$, and $x = \mathbf{F}\mathbf{x}$, where **F** is the DFT matrix;

■ $y = w \odot x$, where \odot is the Hadamard product, i.e., $y_i = w_i x_i$.

• Equivalent question: Given *y*, find *w* and *x*.

Problem Statement	Related Work		
Problem S	Statement		

An ill-posed problem. Infinite solutions exist;

Problem Statement	Related Work			
Problem S	Statement	t		

An ill-posed problem. Infinite solutions exist;

Assumption: w and x are in known subspaces, i.e., w = Bh and $x = \overline{Cm}, B \in \mathbb{C}^{L \times K}$ and $C \in \mathbb{C}^{L \times N}$;

Problem Statement	Related Work			
Problem S	Statement	:		

- An ill-posed problem. Infinite solutions exist;
- Assumption: w and x are in known subspaces, i.e., w = Bh and $x = \overline{Cm}, B \in \mathbb{C}^{L \times K}$ and $C \in \mathbb{C}^{L \times N}$;
 - Reasonable in various applications;
 - Leads to mathematical rigor; (L/(K + N) reasonably large)

Problem Statement	Related Work			
Problem S	Statement	:		

An ill-posed problem. Infinite solutions exist;

Assumption: w and x are in known subspaces, i.e., w = Bh and $x = \overline{Cm}, B \in \mathbb{C}^{L \times K}$ and $C \in \mathbb{C}^{L \times N}$;

Reasonable in various applications;

• Leads to mathematical rigor; (L/(K + N) reasonably large)

Problem under the assumption

Given $y \in \mathbb{C}^L$, $B \in \mathbb{C}^{L \times K}$ and $C \in \mathbb{C}^{L \times N}$, find $h \in \mathbb{C}^K$ and $m \in \mathbb{C}^N$ so that

$$y = Bh \odot \overline{Cm} = \operatorname{diag}(Bhm^*C^*).$$

	Related Work						
Related work							

Find
$$h, m, s. t. y = diag(Bhm^*C^*);$$

Ahmed et al. [ARR14]¹

Convex problem:

$$\min_{X\in\mathbb{C}^{K\times N}} \|X\|_n, \text{ s. t. } y = \operatorname{diag}(BXC^*),$$

where $\|\cdot\|_n$ denotes the nuclear norm, and $X = hm^*$;

¹A. Ahmed, B. Recht, and J. Romberg, Blind deconvolution using convex programming, *IEEE Transactions on Information Theory*, 60:1711-1732, 2014

	Related Work		
Related w	vork		

Find $h, m, s. t. y = diag(Bhm^*C^*);$

- Ahmed et al. [ARR14]¹
 - Convex problem:

$$\min_{X \in \mathbb{C}^{K \times N}} \|X\|_n, \text{ s. t. } y = \operatorname{diag}(BXC^*),$$

where $\|\cdot\|_n$ denotes the nuclear norm, and $X = hm^*$;

 (Theoretical result): the unique minimizer <u>high probability</u> the true solution;

¹A. Ahmed, B. Recht, and J. Romberg, Blind deconvolution using convex programming, *IEEE Transactions on Information Theory*, 60:1711-1732, 2014

	Related Work		
Related w	<i>i</i> ork		

Find h, m, s. t. $y = \operatorname{diag}(Bhm^*C^*)$;

- Ahmed et al. [ARR14]¹
 - Convex problem:

$$\min_{X\in\mathbb{C}^{K\times N}} \|X\|_n, \text{ s. t. } y = \operatorname{diag}(BXC^*),$$

where $\|\cdot\|_n$ denotes the nuclear norm, and $X = hm^*$;

- (Theoretical result): the unique minimizer <u>high probability</u> the true solution;
- The convex problem is expensive to solve;

¹A. Ahmed, B. Recht, and J. Romberg, Blind deconvolution using convex programming, *IEEE Transactions on Information Theory*, 60:1711-1732, 2014

Problem Statement	Related Work	Manifold Approach	Numerical Results	Theoretical Results	Conclusion
Related w	vork				
∎ Lie	t al. [LLSW1	6] ²	Find <i>h</i> , <i>m</i> , s	t. $y = \operatorname{diag}(BI)$	nm* C*);

■ Nonconvex problem³:

 $\min_{(h,m)\in\mathbb{C}^{K}\times\mathbb{C}^{N}}\|y-\operatorname{diag}(Bhm^{*}C^{*})\|_{2}^{2};$

²X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, *preprint arXiv:1606.04933*, 2016

³The penalty in the cost function is not added for simplicity

Speaker: Wen Huang Blind deconvolution Rice University

Problem Statement	Related Work	Manifold Approach	Numerical Results	Theoretical Results	Conclusion
Related w	vork				
∎ Li e	t al. [LLSW1	6] ²	Find <i>h</i> , <i>m</i> , s	t. $y = \operatorname{diag}(Bh)$	nm* C*);

Nonconvex problem³:

Find
$$n, m, s. t. y = diag(Bnm^{+}C^{+})$$

$$\min_{\substack{h,m\}\in\mathbb{C}^{K}\times\mathbb{C}^{N}}}\|y-\operatorname{diag}(Bhm^{*}C^{*})\|_{2}^{2};$$

- (Theoretical result):
 - A good initialization

(

high probability ■ (Wirtinger flow method + a good initialization) the true solution:

²X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933, 2016

³The penalty in the cost function is not added for simplicity

Speaker: Wen Huang Blind deconvolution

Rice University

Problem Statement	Related Work	Manifold Approach	Numerical Results	Theoretical Results	Conclusion
Related wo	ork				

- Li et al. [LLSW16]²
 - Nonconvex problem³:

Find $h, m, s. t. y = diag(Bhm^*C^*);$

$$\min_{\substack{h,m\}\in\mathbb{C}^{K}\times\mathbb{C}^{N}}}\|y-\operatorname{diag}(Bhm^{*}C^{*})\|_{2}^{2};$$

(Theoretical result):

A good initialization

(

- Lower successful recovery probability than alternating minimization algorithm empirically.

²X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, *preprint arXiv:1606.04933*, 2016

³The penalty in the cost function is not added for simplicity

	Related Work	Manifold Approach			
Manifold	Approach				
			Find <i>h</i> , <i>m</i> , s	t. $y = \text{diag}(B)$	hm* C*);

■ The problem is defined on the set of rank-one matrices (denoted by C^{K×N}₁), neither C^{K×N} nor C^K × C^N; Why not work on the manifold directly?

	Related Work	Manifold Approach			
Manifold	Approach				
			Find <i>h</i> , <i>m</i> , s	t. $y = \text{diag}(B)$	hm* C*);

- The problem is defined on the set of rank-one matrices (denoted by C^{K×N}₁), neither C^{K×N} nor C^K × C^N; Why not work on the manifold directly?
- Optimization on manifolds
 - A representation of $\mathbb{C}_1^{K \times N}$;
 - Representation of directions;
 - A Riemannian metric;
 - Riemannian gradient;
 - A Riemannian steepest descent method;

- Given $X \in \mathbb{C}_1^{K \times N}$, there exist (h, m) such that $X = hm^*$;
- (*h*, *m*) is not unique;
- The equivalent class: $[(h, m)] = \{(ha, ma^{-*}) \mid a \neq 0\};$
- Quotient manifold: $\mathbb{C}_*^K \times \mathbb{C}_*^N / \mathbb{C}_* = \{ [(h, m)] \mid (h, m) \in \mathbb{C}_*^K \times \mathbb{C}_*^N \}$

- Given $X \in \mathbb{C}_1^{K \times N}$, there exist (h, m) such that $X = hm^*$;
- (h, m) is not unique;
- The equivalent class: $[(h, m)] = \{(ha, ma^{-*}) \mid a \neq 0\};$
- Quotient manifold: $\mathbb{C}_*^K \times \mathbb{C}_*^N / \mathbb{C}_* = \{ [(h, m)] \mid (h, m) \in \mathbb{C}_*^K \times \mathbb{C}_*^N \}$

 $\mathbb{C}_*^{\mathsf{K}} \times \mathbb{C}_*^{\mathsf{N}} / \mathbb{C}_* \simeq \mathbb{C}_1^{\mathsf{K} \times \mathsf{N}}$

Cost function⁴

- Riemannian approach:
 - $f: \mathbb{C}^K_* \times \mathbb{C}^N_* / \mathbb{C}_* \to \mathbb{R}: [(h, m)] \mapsto \|y \operatorname{diag}(Bhm^*C^*)\|_2^2.$
- Approach in [LLSW16]:

 $\mathfrak{f}:\mathbb{C}^{K}\times\mathbb{C}^{N}\rightarrow\mathbb{R}:(h,m)\mapsto \|y-\operatorname{diag}(Bhm^{*}C^{*})\|_{2}^{2}.$

⁴The penalty in the cost function is not added for simplicity.

Representation of directions on $\mathbb{C}_*^{\mathcal{K}} \times \mathbb{C}_*^{\mathcal{N}} / \mathbb{C}_*$

- x denotes (h, m);
- Green line: the tangent space of [x];
- Red line (horizontal space at x): orthogonal to the green line;
- Horizontal space at x: a representation of the tangent space of \mathcal{M} at [x];

Riemannian metric:

- Inner product on tangent spaces
- Define angles and lengths

Figure: Changing metric may influence the difficulty of a problem.

	Related Work	Manifold Approach		
A Riemar	nnian met	ric		

$$\left|\min_{[(h,m)]} \|y - \operatorname{diag}(Bhm^*C^*)\|_2^2\right|$$

Idea for choosing a Riemannian metric

The block diagonal terms in the Euclidean Hessian are used to choose the Riemannian metric.

A Riemannian metric

 $\left|\min_{[(h,m)]} \|y - \operatorname{diag}(Bhm^*C^*)\|_2^2\right|$

Idea for choosing a Riemannian metric

The block diagonal terms in the Euclidean Hessian are used to choose the Riemannian metric.

Let
$$\langle u, v \rangle_2 = \operatorname{Re}(\operatorname{trace}(u^*v))$$
:
 $\langle \eta_h, \operatorname{Hess}_h f[\xi_h] \rangle_2 = 2 \langle \operatorname{diag}(B\eta_h m^* C^*), \operatorname{diag}(B\xi_h m^* C^*) \rangle_2 \approx 2 \langle \eta_h m^*, \xi_h m^* \rangle_2$
 $\langle \eta_m, \operatorname{Hess}_m f[\xi_m] \rangle_2 = 2 \langle \operatorname{diag}(Bh\eta_m^* C^*), \operatorname{diag}(Bh\xi_m^* C^*) \rangle_2 \approx 2 \langle h\eta_m^*, h\xi_m^* \rangle_2$,

where \approx can be derived from some assumptions (given later);

A Riemannian metric

 $\min_{[(h,m)]} \|y - \operatorname{diag}(Bhm^*C^*)\|_2^2$

Idea for choosing a Riemannian metric

The block diagonal terms in the Euclidean Hessian are used to choose the Riemannian metric.

• Let
$$\langle u, v \rangle_2 = \operatorname{Re}(\operatorname{trace}(u^*v))$$
:
 $\langle \eta_h, \operatorname{Hess}_h f[\xi_h] \rangle_2 = 2 \langle \operatorname{diag}(B\eta_h m^*C^*), \operatorname{diag}(B\xi_h m^*C^*) \rangle_2 \approx 2 \langle \eta_h m^*, \xi_h m^* \rangle_2$
 $\langle \eta_m, \operatorname{Hess}_m f[\xi_m] \rangle_2 = 2 \langle \operatorname{diag}(Bh\eta_m^*C^*), \operatorname{diag}(Bh\xi_m^*C^*) \rangle_2 \approx 2 \langle h\eta_m^*, h\xi_m^* \rangle_2$,

where \approx can be derived from some assumptions (given later);

The Riemannian metric:

$$g\left(\eta_{[x]},\xi_{[x]}\right) = \langle \eta_h,\xi_h m^* m \rangle_2 + \langle \eta_m^*,\xi_m^* h^* h \rangle_2;$$

- Riemannian gradient
 - A tangent vector: $\operatorname{grad} \mathbf{f}([x]) \in \operatorname{T}_{[x]} \mathcal{M};$
 - Satisfies: $Df([x])[\eta_{[x]}] = g(\operatorname{grad} f([x]), \eta_{[x]}), \quad \forall \eta_{[x]} \in T_{[x]} \mathcal{M};$
- Represented by a vector in a horizontal space;
- Riemannian gradient:

$$\left(\operatorname{grad} f([(h,m)])\right)_{\uparrow_{(h,m)}} = \operatorname{Proj}\left(\nabla_h f(h,m)(m^*m)^{-1}, \nabla_m f(h,m)(h^*h)^{-1}\right);$$

A Riemannian steepest descent method (RSD)

An implementation of a Riemannian steepest descent method⁵ O Given (h_0, m_0) , step size $\alpha > 0$, and set k = 0 $d_k = ||h_k||_2 ||m_k||_2$, $h_k \leftarrow \sqrt{d_k} \frac{h_k}{||h_k||_2}$; $m_k \leftarrow \sqrt{d_k} \frac{m_k}{||m_k||_2}$; $(h_{k+1}, m_{k+1}) = (h_k, m_k) - \alpha \left(\frac{\nabla_{h_k} f(h_k, m_k)}{d_k}, \frac{\nabla_{m_k} f(h_k, m_k)}{d_k} \right)$; I f not converge, goto Step 2.

⁵The penalty in the cost function is not added for simplicity

A Riemannian steepest descent method (RSD)

An implementation of a Riemannian steepest descent method⁵

O Given (h_0, m_0) , step size $\alpha > 0$, and set k = 0

$$\mathbf{1} \qquad d_k = \|h_k\|_2 \|m_k\|_2, \ h_k \leftarrow \sqrt{d_k} \frac{h_k}{\|h_k\|_2}; \ m_k \leftarrow \sqrt{d_k} \frac{m_k}{\|m_k\|_2};$$

$$(h_{k+1}, m_{k+1}) = (h_k, m_k) - \alpha \left(\frac{\nabla_{h_k} f(h_k, m_k)}{d_k}, \frac{\nabla_{m_k} f(h_k, m_k)}{d_k} \right);$$

If not converge, goto Step 2.

Wirtinger flow Method in [LLSW16]

O Given (h_0, m_0) , step size $\alpha > 0$, and set k = 0

$$(h_{k+1}, m_{k+1}) = (h_k, m_k) - \alpha \left(\nabla_{h_k} f(h_k, m_k), \nabla_{m_k} f(h_k, m_k) \right);$$

2 If not converge, goto Step 2.

⁵The penalty in the cost function is not added for simplicity

Speaker: Wen Huang Blind deconvolution Rice University

A Riemannian steepest descent method (RSD)

An implementation of a Riemannian steepest descent method⁵

O Given (h_0, m_0) , step size $\alpha > 0$, and set k = 0

$$(h_{k+1}, m_{k+1}) = (h_k, m_k) - \alpha \left(\frac{\nabla_{h_k} f(h_k, m_k)}{d_k}, \frac{\nabla_{m_k} f(h_k, m_k)}{d_k} \right);$$

If not converge, goto Step 2.

Wirtinger flow Method in [LLSW16]

O Given (h_0, m_0) , step size $\alpha > 0$, and set k = 0

$$(h_{k+1}, m_{k+1}) = (h_k, m_k) - \alpha \left(\nabla_{h_k} f(h_k, m_k), \nabla_{m_k} f(h_k, m_k) \right);$$

2 If not converge, goto Step 2.

⁵The penalty in the cost function is not added for simplicity

	Related Work	Manifold Approach		
Highlight	difference	es		

- The norms of *h* and *m*
 - Normalization in RSD: $||h||_2 = ||m||_2$;
 - Penalty in Wirtinger flow method:

$$G_0\left(\frac{\|h\|_2^2}{2d}\right) + G_0\left(\frac{\|m\|_2^2}{2d}\right)$$

	Related Work	Manifold Approach		
Highlight	difference	es		

- The norms of *h* and *m*
 - Normalization in RSD: $||h||_2 = ||m||_2$;
 - Penalty in Wirtinger flow method:

$$G_0\left(\frac{\|\boldsymbol{h}\|_2^2}{2d}\right) + G_0\left(\frac{\|\boldsymbol{m}\|_2^2}{2d}\right)$$

where $G_0(t) = \max(t - 1, 0)^2$;

Riemannian Gradient versus Euclidean Gradient:

$$(\operatorname{grad} f([(h, m)]))_{\uparrow_{(h,m)}} = \operatorname{Proj} \left(\nabla_h f(h, m) (m^* m)^{-1}, \nabla_m f(h, m) (h^* h)^{-1} \right)$$

If $\|h\|_2 = \|m\|_2$, then

$$(\operatorname{grad} f([(h, m)]))_{\uparrow_{(h, m)}} = \left(\nabla_h f(h, m)(m^*m)^{-1}, \nabla_m f(h, m)(h^*h)^{-1} \right)$$
$$= \frac{1}{\|h\|_2 \|m\|_2} \left(\nabla_h f(h, m), \nabla_m f(h, m) \right)$$

Coherence is defined as

$$\mu_h^2 = \frac{L \|Bh\|_{\infty}^2}{\|h\|_2^2} = \frac{L \max\left(|b_1^*h|^2, |b_2^*h|^2, \dots, |b_L^*h|^2\right)}{\|h\|_2^2};$$

- Assume B is orthonormal and $||b_i||_2^2 \le \phi_L^{\kappa}$, i = 1, ..., L for some constant ϕ .
- large if h is parallel to one of b_i ;
- small if h is sparse;
- Coherence at the true solution [(h_♯, m_♯)]
 - influences the probability for recovery
 - Small coherence is preferred

	Related Work	Manifold Approach		
Penalty				

$$\rho \sum_{i=1}^{L} G_0\left(\frac{L|b_i^*h|^2 ||m||_2^2}{8d^2\mu^2}\right),\,$$

	Related Work	Manifold Approach		
Penalty				

$$\rho \sum_{i=1}^{L} G_0\left(\frac{L|b_i^*h|^2 ||m||_2^2}{8d^2\mu^2}\right),$$

where $G_0(t) = \max(t - 1, 0)^2$;

Ω: ellipsoid;

	Related Work	Manifold Approach		
Penalty				

$$\rho \sum_{i=1}^{L} G_0\left(\frac{L|b_i^*h|^2 ||m||_2^2}{8d^2\mu^2}\right),\,$$

- Ω: ellipsoid;
- Unique minimizer in Ω ;

	Related Work	Manifold Approach		
Penalty				

$$\rho \sum_{i=1}^{L} G_0\left(\frac{L|b_i^*h|^2 ||m||_2^2}{8d^2\mu^2}\right),$$

- Ω: ellipsoid;
- Unique minimizer in Ω ;
- Initial iterate in Ω;

	Related Work	Manifold Approach		
Penalty				

$$\rho \sum_{i=1}^{L} G_0\left(\frac{L|b_i^*h|^2 ||m||_2^2}{8d^2\mu^2}\right),$$

- Ω: ellipsoid;
- Unique minimizer in Ω ;
- Initial iterate in Ω;
- Importance of the penalty;

	Related Work	Manifold Approach		
Donalty				
гепацу				

Riemannian approach:

$$\rho \sum_{i=1}^{L} G_0 \left(\frac{L|b_i^* h|^2 ||m||_2^2}{8d^2 \mu^2} \right)$$

$$\rho \left[G_0 \left(\frac{\|h\|_2^2}{2d} \right) + G_0 \left(\frac{\|m\|_2^2}{2d} \right) + \sum_{i=1}^L G_0 \left(\frac{L|b_i^*h|^2}{8d\mu^2} \right) \right]$$

• $G_0(t) = \max(t-1,0)^2$, $[b_1b_2 \dots b_L]^* = B$;

	Related Work	Manifold Approach		
Penalty				

Riemannian approach:

$$\rho \sum_{i=1}^{L} G_0 \left(\frac{L|b_i^* h|^2 ||m||_2^2}{8d^2 \mu^2} \right)$$

$$\rho\left[G_0\left(\frac{\|h\|_2^2}{2d}\right) + G_0\left(\frac{\|m\|_2^2}{2d}\right) + \sum_{i=1}^L G_0\left(\frac{L|b_i^*h|^2}{8d\mu^2}\right)\right]$$

•
$$G_0(t) = \max(t-1,0)^2$$
, $[b_1b_2...b_L]^* = B$;

Riemannian approach avoids the two terms.

	Related Work	Manifold Approach		
Initializati	on			

Initialization method [LLSW16]

- $(d, \tilde{h}_0, \tilde{m}_0)$: SVD of $B^* \operatorname{diag}(y)C$;
- Project $(\tilde{h}_0, \tilde{m}_0)$ to a neighborhood of the true solution;
- Initial iterate [(h₀, m₀)];

Synthetic tests

- Efficiency
- Probability of successful recovery
- Image deblurring

	Related Work	Numerical Results	
Efficiency			

Table: Comparisons of efficiency	Table:	Comparisons	s ot	efficiency
----------------------------------	--------	-------------	------	------------

	L = 40	00, K = N =	= 50	L = 6	00, K = N =	= 50
Algorithms	[LLSW16]	[LWB13]	R-SD	[LLSW16]	[LWB13]	R-SD
nBh/nCm	351	718	208	162	294	122
nFFT	870	1436	518	401	588	303
RMSE	2.22_{-8}	3.67 ₋₈	2.20_{-8}	1.48_{-8}	2.34_{-8}	1.42_{-8}

- An average of 100 random runs
- nBh/nCm: the numbers of Bh and Cm multiplication operations respectively
- nFFT: the number of Fourier transform
- RMSE: the relative error $\frac{\|hm^* h_{\sharp}m_{\sharp}^*\|_F}{\|h_{\sharp}\|_2 \|m_{\sharp}\|_2}$

[[]LLSW16]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933, 2016 [LWB13]: K. Lee et. al., Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization preprint arXiv:1312.0525, 2013

Related Work	Numerical Results	

Probability of successful recovery

• Success if
$$\frac{\|hm^* - h_{\sharp}m_{\sharp}^*\|_F}{\|h_{\sharp}\|_2 \|m_{\sharp}\|_2} \le 10^{-2}$$

Speaker: Wen Huang

Blind deconvolution

[[]LLSW16]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933, 2016 [LWB13]: K. Lee et. al., Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization preprint arXiv:1312.0525, 2013

	Related Work	Numerical Results	
Image de	blurring		

- Original image [WBX+07]: 1024-by-1024 pixels
- Motion blurring kernel (Matlab: fspecial('motion', 50, 45))

What subspaces are the two unknown signals in?

 Image is approximately sparse in the Haar wavelet basis

 Support of the blurring kernel is learned from the blurred image

What subspaces are the two unknown signals in?

Image is approximately sparse in the Haar wavelet basis

Use the blurred image to learn the dominated basis: \mathbf{C} .

 Support of the blurring kernel is learned from the blurred image

Suppose the support of the blurring kernel is known: ${f B}.$

■ *L* = 1048576, *K* = 109, *N* = 5000, 20000, 80000

	Related Work		Numerical Results		
lmage d	eblurring				
	Initial guess (N=5000)	Initial guess (N=20	000)	Initial guess (N=80000)	
	Reconstructed image (N=5000)	Reconstructed image (N=20000) Re	constructed image (N=80000)	

Figure: Initial guess by running power method for 50 iterations and the reconstructed image for N = 5000, 20000, and 80000.

	Related Work	Numerical Results	
Image det	olurring		

Table: Computational costs for multiple values of N on the image deblurring

N	nBh/nCm	nFFT	relres	relerr	t
5000	535	1330	4.8_3	5.7_{-2}	170
20000	546	1358	2.1_{-3}	5.3_{-2}	173
80000	452	1124	8.0-4	5.0-2	144

• relres:
$$||y - \text{diag}(Bhm^*C^*)||_2/||y||_2;$$

• relerr:
$$\left\|\mathbf{y}_{o} - \frac{\|\mathbf{y}\|}{\|\mathbf{y}_{f}\|}\mathbf{y}_{f}\right\| / \|\mathbf{y}_{o}\|$$

y_f: the vector by reshaping the reconstructed image

y_o: the vector by reshaping the original image

Mathematical model:

- C is a complex Gaussian distribution; and
- B satisfies $B^*B = I_K$ and $||b_i||_2^2 \le \phi_L^K$, i = 1, ..., L for some constant ϕ .

Initialization [LLSW16]⁶

If $L > C_{\gamma}(\mu^2 + \sigma^2) \max(K, N) \log^2(L)/\varepsilon$, then with high probability, it holds that

$$[(h_0, m_0)] \in \Omega_{\frac{1}{2}\mu} \cap \Omega_{\frac{2}{5}\varepsilon},$$

where $\Omega_{\mu} = \{ [(h, m)] \mid \sqrt{L} \|Bh\|_{\infty} \|m\|_2 < 4d_*\mu \},\$ $\Omega_{\varepsilon} = \{ [(h, m)] \mid ||hm^* - h_{\sharp}m_{\sharp}^*||_F \leq \varepsilon d_* \}, \text{ and } (h_{\sharp}, m_{\sharp}) \text{ is the true solution.}$

⁶X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933, 2016

Speaker: Wen Huang Blind deconvolution

Rice University

Initialization [LLSW16]⁶

If $L \ge C_{\gamma}(\mu^2 + \sigma^2) \max(K, N) \log^2(L)/\varepsilon$, then with high probability, it holds that

$$[(h_0, m_0)] \in \Omega_{\frac{1}{2}\mu} \cap \Omega_{\frac{2}{5}\varepsilon},$$

where $\Omega_{\mu} = \{[(h, m)] \mid \sqrt{L} \|Bh\|_{\infty} \|m\|_2 \le 4d_*\mu\},\$ $\Omega_{\varepsilon} = \{[(h, m)] \mid \|hm^* - h_{\sharp}m_{\sharp}^*\|_F \le \varepsilon d_*\}, \text{ and } (h_{\sharp}, m_{\sharp}) \text{ is the true solution.}$

Large enough number of measurements \implies the initial point in a small neighborhood of the true solution.

⁶X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, *preprint arXiv:1606.04933*, 2016

Speaker: Wen Huang Blind deconvolution Rice University

Convergence analysis

Suppose $L \geq C_{\gamma}(\mu^2 + \sigma^2) \max(K, N) \log^2(L) / \varepsilon^2$ and the initialization $[(h_0, m_0)] \in \Omega_{\frac{1}{2}\mu} \cap \Omega_{\frac{2}{5}\varepsilon}$. Then with high probability, it holds that

$$\|h_k m_k^* - h_{\sharp} m_{\sharp}^*\|_{\mathsf{F}} \leq \frac{2}{3} \left(1 - \frac{\alpha}{3000}\right)^{k/2} \varepsilon d_*,$$

where α is a small enough fixed step size.

Convergence analysis

Suppose $L \ge C_{\gamma}(\mu^2 + \sigma^2) \max(K, N) \log^2(L) / \varepsilon^2$ and the initialization $[(h_0, m_0)] \in \Omega_{\frac{1}{2}\mu} \cap \Omega_{\frac{2}{\varepsilon}\varepsilon}$. Then with high probability, it holds that

$$\|h_k m_k^* - h_{\sharp} m_{\sharp}^*\|_{\mathsf{F}} \leq \frac{2}{3} \left(1 - \frac{\alpha}{3000}\right)^{k/2} \varepsilon d_*,$$

where α is a small enough fixed step size.

i) Large enough number of measurements; ii) the initial point in a small neighborhood of the true solution \implies the Riemannian method converges linearly to the true solution.

Riemannian Hessian

Suppose $L \ge C_{\gamma} \max(K, \mu_h^2 N) \log^2(L)$. Then with high probability, it holds that

$$\frac{\partial d_*^2}{5} \leq \lambda_i \leq \frac{22d_*^2}{5}$$

for all *i*, where λ_i are eigenvalues of the Riemannian Hessian Hess *f* at the true solution.

Riemannian Hessian

Suppose $L \ge C_{\gamma} \max(K, \mu_h^2 N) \log^2(L)$. Then with high probability, it holds that

$$\frac{\partial d_*^2}{5} \leq \lambda_i \leq \frac{22d_*^2}{5}$$

for all *i*, where λ_i are eigenvalues of the Riemannian Hessian Hess *f* at the true solution.

The Riemannian Hessian $f \circ R$ is well-conditioned near the true solution.

	Related Work		Conclusion
Conclusior	ı		

Blind deconvolution by optimizing over a quotient manifold

- A Riemannian steepest descent method
- Simple implementation
- Recovery guarantee
- Superior numerical performance

	Related Work		Conclusion
Thank you			

Thank you!

32/33 Rice University

A. Ahmed, B. Recht, and J. Romberg.

Blind deconvolution using convex programming. IEEE Transactions on Information Theory, 60(3):1711-1732, March 2014.

Xiaodong Li, Shuyang Ling, Thomas Strohmer, and Ke Wei.

Rapid, robust, and reliable blind deconvolution via nonconvex optimization. CoRR. abs/1606.04933. 2016.

K. Lee, Y. Wu, and Y. Bresler,

Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization. pages 1-80, 2013.

S. G. Wu, F. S. Bao, E. Y. Xu, Y.-X. Wang, Y.-F. Chang, and Q.-L. Xiang,

A leaf recognition algorithm for plant classification using probabilistic neural network. 2007 IEEE International Symposium on Signal Processing and Information Technology, pages 11-16, 2007. arXiv:0707.4289v1.