Blind deconvolution by optimizing over a quotient manifold

Speaker: Wen Huang

Rice University

November 13, 2017

This is joint work with Paul Hand at Rice university

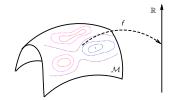
Riemannian Optimization

Riemannian Optimization

Problem: Given $f(x): \mathcal{M} \to \mathbb{R}$, solve

$$\min_{x \in \mathcal{M}} f(x)$$

where \mathcal{M} is a Riemannian manifold.



What is a Riemannian manifold? manifold + Riemannian metric

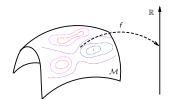
Riemannian Optimization

Riemannian Optimization

Problem: Given $f(x): \mathcal{M} \to \mathbb{R}$, solve

$$\min_{x \in \mathcal{M}} f(x)$$

where \mathcal{M} is a Riemannian manifold.



What is a Riemannian manifold? manifold + Riemannian metric

Examples of manifolds:

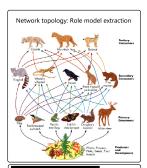
- $X \in \mathbb{R}^{n \times p} \mid X^T X = I_p$
- $X \in \mathbb{R}^{n \times n} \mid X = X^T, X \succ 0$
- All p-dimensional linear subspaces of \mathbb{R}^n

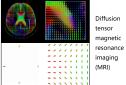
Riemannian metric:

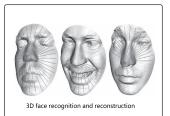
- Inner product on tangent spaces
- Define angles and lengths

Riemannian Optimization Numerical Results

Applications







Tracking and identifying people

See [LKS+12, DBS+13, HGSA15, CS15, MHB+16, YHAG17]

ROPTLIB

Riemannian manifold optimization library (ROPTLIB) is used to optimize a function on a manifold.

- Most state-of-the-art methods:
- Commonly-encountered manifolds;
- Written in C++:
- Interfaces with Matlab, Julia and R;
- BLAS and LAPACK:
- www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html

d Work Manifold Approach Numerical Results Theoretical Results Co

Blind deconvolution

Riemannian Optimization

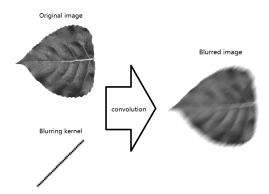
[Blind deconvolution]

Blind deconvolution is to recover two unknown signals from their convolution.

Blind deconvolution

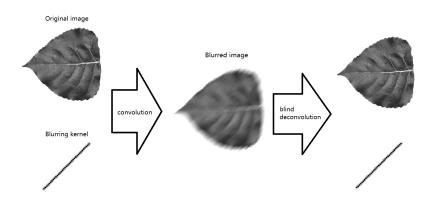
[Blind deconvolution]

Blind deconvolution is to recover two unknown signals from their convolution.



[Blind deconvolution]

Blind deconvolution is to recover two unknown signals from their convolution.



Riemannian Optimization

[Blind deconvolution (Discretized version)]

Blind deconvolution is to recover two unknown signals $\mathbf{w} \in \mathbb{C}^L$ and $\mathbf{x} \in \mathbb{C}^L$ from their convolution $\mathbf{y} = \mathbf{w} * \mathbf{x} \in \mathbb{C}^L$.

■ We only consider circular convolution:

$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \\ \vdots \\ \mathbf{y}_L \end{bmatrix} = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_L & \mathbf{w}_{L-1} & \dots & \mathbf{w}_2 \\ \mathbf{w}_2 & \mathbf{w}_1 & \mathbf{w}_L & \dots & \mathbf{w}_3 \\ \mathbf{w}_3 & \mathbf{w}_2 & \mathbf{w}_1 & \dots & \mathbf{w}_4 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{w}_L & \mathbf{w}_{L-1} & \mathbf{w}_{L-2} & \dots & \mathbf{w}_1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \vdots \\ \mathbf{x}_L \end{bmatrix}$$

- Let $y = \mathbf{F}\mathbf{y}$, $w = \mathbf{F}\mathbf{w}$, and $x = \mathbf{F}\mathbf{x}$, where \mathbf{F} is the DFT matrix;
- $y = w \odot x$, where \odot is the Hadamard product, i.e., $y_i = w_i x_i$.

Riemannian Optimization

[Blind deconvolution (Discretized version)]

Blind deconvolution is to recover two unknown signals $\mathbf{w} \in \mathbb{C}^L$ and $\mathbf{x} \in \mathbb{C}^L$ from their convolution $\mathbf{y} = \mathbf{w} * \mathbf{x} \in \mathbb{C}^L$.

■ We only consider circular convolution:

$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \\ \vdots \\ \mathbf{y}_L \end{bmatrix} = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_L & \mathbf{w}_{L-1} & \dots & \mathbf{w}_2 \\ \mathbf{w}_2 & \mathbf{w}_1 & \mathbf{w}_L & \dots & \mathbf{w}_3 \\ \mathbf{w}_3 & \mathbf{w}_2 & \mathbf{w}_1 & \dots & \mathbf{w}_4 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{w}_L & \mathbf{w}_{L-1} & \mathbf{w}_{L-2} & \dots & \mathbf{w}_1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \vdots \\ \mathbf{x}_L \end{bmatrix}$$

- Let $y = \mathbf{F}\mathbf{y}$, $w = \mathbf{F}\mathbf{w}$, and $x = \mathbf{F}\mathbf{x}$, where \mathbf{F} is the DFT matrix;
- $y = w \odot x$, where \odot is the Hadamard product, i.e., $y_i = w_i x_i$.
- **Equivalent question:** Given y, find w and x.

Problem: Given $y \in \mathbb{C}^L$, find $w, x \in \mathbb{C}^L$ so that $y = w \odot x$.

An ill-posed problem. Infinite solutions exist;

Numerical Results

Problem Statement

Problem: Given $y \in \mathbb{C}^L$, find $w, x \in \mathbb{C}^L$ so that $y = w \odot x$.

- An ill-posed problem. Infinite solutions exist;
- Assumption: w and x are in known subspaces, i.e., w = Bh and $x = \overline{Cm}$, $B \in \mathbb{C}^{L \times K}$ and $C \in \mathbb{C}^{L \times N}$;

Riemannian Optimization

Problem: Given $y \in \mathbb{C}^L$, find $w, x \in \mathbb{C}^L$ so that $y = w \odot x$.

- An ill-posed problem. Infinite solutions exist;
- Assumption: w and x are in known subspaces, i.e., w = Bh and $x = \overline{Cm}$, $B \in \mathbb{C}^{L \times K}$ and $C \in \mathbb{C}^{L \times N}$;
 - Reasonable in various applications;
 - Leads to mathematical rigor; (L/(K + N)) reasonably large)

Riemannian Optimization

Problem: Given $y \in \mathbb{C}^L$, find $w, x \in \mathbb{C}^L$ so that $y = w \odot x$.

- An ill-posed problem. Infinite solutions exist;
- Assumption: w and x are in known subspaces, i.e., w = Bh and $x = \overline{Cm}$, $B \in \mathbb{C}^{L \times K}$ and $C \in \mathbb{C}^{L \times N}$:
 - Reasonable in various applications;
 - Leads to mathematical rigor; (L/(K+N)) reasonably large)

Problem under the assumption

Given $v \in \mathbb{C}^L$, $B \in \mathbb{C}^{L \times K}$ and $C \in \mathbb{C}^{L \times N}$, find $h \in \mathbb{C}^K$ and $m \in \mathbb{C}^N$ so that

$$y = Bh \odot \overline{Cm} = \operatorname{diag}(Bhm^*C^*).$$

Riemannian Optimization

Find
$$h, m$$
, s. t. $y = \operatorname{diag}(Bhm^*C^*)$;

- Ahmed et al. [ARR14]¹
 - Convex problem:

$$\min_{X \in \mathbb{C}^{K \times N}} \|X\|_n, \text{ s. t. } y = \operatorname{diag}(BXC^*),$$

where $\|\cdot\|_n$ denotes the nuclear norm, and $X=hm^*$;

¹A. Ahmed, B. Recht, and J. Romberg, Blind deconvolution using convex programming, *IEEE Transactions on Information Theory*, 60:1711-1732, 2014

Riemannian Optimization

Find
$$h, m$$
, s. t. $y = \operatorname{diag}(Bhm^*C^*)$;

- Ahmed et al. [ARR14]¹
 - Convex problem:

$$\min_{X \in \mathbb{C}^{K \times N}} \|X\|_n, \text{ s. t. } y = \operatorname{diag}(BXC^*),$$

where $\|\cdot\|_n$ denotes the nuclear norm, and $X = hm^*$;

■ (Theoretical result): the unique minimizer — high probability _____ the true solution:

Rice University

¹A. Ahmed, B. Recht, and J. Romberg, Blind deconvolution using convex programming, IEEE Transactions on Information Theory, 60:1711-1732, 2014

Riemannian Optimization

Find
$$h, m, s. t. y = \operatorname{diag}(Bhm^*C^*);$$

- Ahmed et al. [ARR14]¹
 - Convex problem:

$$\min_{X \in \mathbb{C}^{K \times N}} \|X\|_n, \text{ s. t. } y = \operatorname{diag}(BXC^*),$$

where $\|\cdot\|_n$ denotes the nuclear norm, and $X = hm^*$;

- (Theoretical result): the unique minimizer high probability _____ the true solution:
- The convex problem is expensive to solve;

¹A. Ahmed, B. Recht, and J. Romberg, Blind deconvolution using convex programming, IEEE Transactions on Information Theory, 60:1711-1732, 2014

Riemannian Optimization

Find $h, m, s. t. y = \operatorname{diag}(Bhm^*C^*);$

- Li et al. [LLSW16]²
 - Nonconvex problem³:

$$\min_{(h,m)\in\mathbb{C}^K\times\mathbb{C}^N}\|y-\mathrm{diag}(Bhm^*C^*)\|_2^2;$$

²X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933, 2016 ³The penalty in the cost function is not added for simplicity

Riemannian Optimization

Find h, m, s. t. $y = \operatorname{diag}(Bhm^*C^*)$;

- Li et al. [LLSW16]²
 - Nonconvex problem³:

$$\min_{(h,m)\in\mathbb{C}^K\times\mathbb{C}^N}\|y-\mathrm{diag}(Bhm^*C^*)\|_2^2;$$

- (Theoretical result):
 - A good initialization
 - (Wirtinger flow method + a good initialization) high probability the true solution:

²X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, *preprint arXiv:1606.04933*, 2016

³The penalty in the cost function is not added for simplicity

Manifold Approach

Related work

Riemannian Optimization

Find h, m, s. t. $y = \operatorname{diag}(Bhm^*C^*)$;

- Li et al. [LLSW16]²
 - Nonconvex problem³:

$$\min_{(h,m)\in\mathbb{C}^K\times\mathbb{C}^N}\|y-\mathrm{diag}(Bhm^*C^*)\|_2^2;$$

- (Theoretical result):
 - A good initialization
 - (Wirtinger flow method + a good initialization)

 high probability
 the true solution;
- Lower successful recovery probability than alternating minimization algorithm empirically.

³The penalty in the cost function is not added for simplicity

²X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, *preprint arXiv:1606.04933*, 2016

Manifold Approach

Find
$$h, m, s. t. y = \operatorname{diag}(Bhm^*C^*);$$

■ The problem is defined on the set of rank-one matrices (denoted by $\mathbb{C}_1^{K\times N}$), neither $\mathbb{C}^{K\times N}$ nor $\mathbb{C}^K\times \mathbb{C}^N$; Why not work on the manifold directly?

Numerical Results

Manifold Approach

Find
$$h, m, s. t. y = \operatorname{diag}(Bhm^*C^*);$$

- The problem is defined on the set of rank-one matrices (denoted by $\mathbb{C}_1^{K \times N}$), neither $\mathbb{C}^{K \times N}$ nor $\mathbb{C}^K \times \mathbb{C}^N$; Why not work on the manifold directly?
- Optimization on manifolds
 - A representation of $\mathbb{C}_1^{K \times N}$;
 - Representation of directions;
 - A Riemannian metric;
 - Riemannian gradient;
 - A Riemannian steepest descent method;

Numerical Results

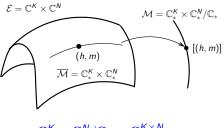
A Representation of $\mathbb{C}_1^{K imes N}$: $\mathbb{C}_*^K imes \mathbb{C}_*^N/\mathbb{C}_*$

- Given $X \in \mathbb{C}_1^{K \times N}$, there exist (h, m) such that $X = hm^*$;
- \bullet (h, m) is not unique;
- The equivalent class: $[(h, m)] = \{(ha, ma^{-*}) \mid a \neq 0\};$
- $\qquad \text{Quotient manifold: } \mathbb{C}_*^K \times \mathbb{C}_*^N/\mathbb{C}_* = \{ [(h,m)] \mid (h,m) \in \mathbb{C}_*^K \times \mathbb{C}_*^N \}$

Riemannian Optimization

A Representation of $\mathbb{C}_1^{K \times N}$: $\mathbb{C}_*^K \times \mathbb{C}_*^N / \mathbb{C}_*$

- Given $X \in \mathbb{C}_1^{K \times N}$, there exist (h, m) such that $X = hm^*$;
- \bullet (h, m) is not unique;
- The equivalent class: $[(h, m)] = \{(ha, ma^{-*}) \mid a \neq 0\};$
- $\qquad \text{Quotient manifold: } \mathbb{C}_*^K \times \mathbb{C}_*^N/\mathbb{C}_* = \{ [(h,m)] \mid (h,m) \in \mathbb{C}_*^K \times \mathbb{C}_*^N \}$



 $\mathbb{C}_*^K \times \mathbb{C}_*^N / \mathbb{C}_* \simeq \mathbb{C}_1^{K \times N}$

Speaker: Wen Huang Rice University
Blind deconvolution

A Representation of $\mathbb{C}_1^{K imes N}$: $\mathbb{C}_*^K imes \mathbb{C}_*^N/\mathbb{C}_*$

Cost function⁴

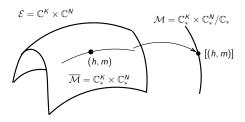
Riemannian Optimization

Riemannian approach:

$$f: \mathbb{C}_*^K \times \mathbb{C}_*^N/\mathbb{C}_* \to \mathbb{R}: [(h,m)] \mapsto \|y - \operatorname{diag}(Bhm^*C^*)\|_2^2.$$

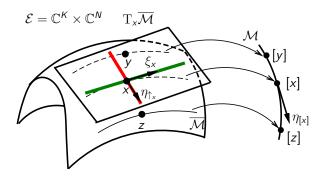
Approach in [LLSW16]:

$$\mathfrak{f}: \mathbb{C}^K \times \mathbb{C}^N \to \mathbb{R}: (h, m) \mapsto \|y - \operatorname{diag}(Bhm^*C^*)\|_2^2.$$



⁴The penalty in the cost function is not added for simplicity.

Representation of directions on $\mathbb{C}_*^K \times \mathbb{C}_*^N/\mathbb{C}_*$



- \blacksquare x denotes (h, m);
- Green line: the tangent space of [x];
- Red line (horizontal space at x): orthogonal to the green line;
- Horizontal space at x: a representation of the tangent space of \mathcal{M} at [x];

13/3

Manifold Approach Related Work Numerical Results Theoretical Results

A Riemannian metric

Riemannian metric:

- Inner product on tangent spaces
- Define angles and lengths

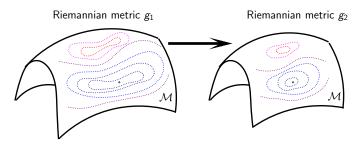


Figure: Changing metric may influence the difficulty of a problem.

Numerical Results

A Riemannian metric

$$\min_{[(h,m)]} \|y - \operatorname{diag}(Bhm^*C^*)\|_2^2$$

Idea for choosing a Riemannian metric

The block diagonal terms in the Euclidean Hessian are used to choose the Riemannian metric.

Riemannian Optimization

$$\min_{[(h,m)]} \|y - \operatorname{diag}(Bhm^*C^*)\|_2^2$$

Theoretical Results

Idea for choosing a Riemannian metric

The block diagonal terms in the Euclidean Hessian are used to choose the Riemannian metric.

Let $\langle u, v \rangle_2 = \text{Re}(\text{trace}(u^*v))$:

$$\begin{split} &\langle \eta_h, \operatorname{Hess}_h f[\xi_h] \rangle_2 = 2 \langle \operatorname{diag}(B\eta_h m^* C^*), \operatorname{diag}(B\xi_h m^* C^*) \rangle_2 \approx 2 \langle \eta_h m^*, \xi_h m^* \rangle_2 \\ &\langle \eta_m, \operatorname{Hess}_m f[\xi_m] \rangle_2 = 2 \langle \operatorname{diag}(Bh\eta_m^* C^*), \operatorname{diag}(Bh\xi_m^* C^*) \rangle_2 \approx 2 \langle h\eta_m^*, h\xi_m^* \rangle_2; \end{split}$$

A Riemannian metric

Riemannian Optimization

$$\min_{[(h,m)]} \|y - \operatorname{diag}(Bhm^*C^*)\|_2^2$$

Idea for choosing a Riemannian metric

The block diagonal terms in the Euclidean Hessian are used to choose the Riemannian metric.

- Let $\langle u, v \rangle_2 = \text{Re}(\text{trace}(u^*v))$: $\langle \eta_h, \text{Hess}_h f[\xi_h] \rangle_2 = 2\langle \text{diag}(B\eta_h m^*C^*), \text{diag}(B\xi_h m^*C^*) \rangle_2 \approx 2\langle \eta_h m^*, \xi_h m^* \rangle_2$ $\langle \eta_m, \text{Hess}_m f[\xi_m] \rangle_2 = 2\langle \text{diag}(Bh\eta_m^*C^*), \text{diag}(Bh\xi_m^*C^*) \rangle_2 \approx 2\langle h\eta_m^*, h\xi_m^* \rangle_2$;
- The Riemannian metric:

$$g\left(\eta_{[x]},\xi_{[x]}\right)=\langle\eta_h,\xi_hm^*m\rangle_2+\langle\eta_m^*,\xi_m^*h^*h\rangle_2;$$

15/35

Numerical Results

Riemannian gradient

- \blacksquare grad $\mathbf{f}([x]) \in \mathrm{T}_{[x]} \mathcal{M};$
- A vector in horizontal space;
- Riemannian gradient:

$$(\operatorname{grad} f([(h,m)]))_{\uparrow_{(h,m)}} = Proj(\nabla_h f(h,m)(m^*m)^{-1}, \nabla_m f(h,m)(h^*h)^{-1});$$

A Riemannian steepest descent method (RSD)

An implementation of a Riemannian steepest descent method⁵

- O Given (h_0, m_0) , step size $\alpha > 0$, and set k = 0
- $d_k = ||h_k||_2 ||m_k||_2, \ h_k \leftarrow \sqrt{d_k} \frac{h_k}{||h_k||_2}; \ m_k \leftarrow \sqrt{d_k} \frac{m_k}{||m_k||_2};$
- $(h_{k+1}, m_{k+1}) = (h_k, m_k) \alpha \left(\frac{\nabla_{h_k} f(h_k, m_k)}{d_k}, \frac{\nabla_{m_k} f(h_k, m_k)}{d_k} \right);$
- If not converge, goto Step 2.

⁵The penalty in the cost function is not added for simplicity

A Riemannian steepest descent method (RSD)

An implementation of a Riemannian steepest descent method⁵

- O Given (h_0, m_0) , step size $\alpha > 0$, and set k = 0
- $d_k = ||h_k||_2 ||m_k||_2, \ h_k \leftarrow \sqrt{d_k} \frac{h_k}{||h_k||_2}; \ m_k \leftarrow \sqrt{d_k} \frac{m_k}{||m_k||_2};$
- $(h_{k+1}, m_{k+1}) = (h_k, m_k) \alpha \left(\frac{\nabla_{h_k} f(h_k, m_k)}{d_k}, \frac{\nabla_{m_k} f(h_k, m_k)}{d_k} \right);$
- If not converge, goto Step 2.

Wirtinger flow Method in [LLSW16]

- O Given (h_0, m_0) , step size $\alpha > 0$, and set k = 0
- $(h_{k+1}, m_{k+1}) = (h_k, m_k) \alpha (\nabla_{h_k} f(h_k, m_k), \nabla_{m_k} f(h_k, m_k));$
- 2 If not converge, goto Step 2.

⁵The penalty in the cost function is not added for simplicity

A Riemannian steepest descent method (RSD)

An implementation of a Riemannian steepest descent method⁵

- O Given (h_0, m_0) , step size $\alpha > 0$, and set k = 0
- $\mathbf{1} d_k = \|h_k\|_2 \|m_k\|_2, \ h_k \leftarrow \sqrt{d_k} \frac{h_k}{\|h_k\|_2}; \ m_k \leftarrow \sqrt{d_k} \frac{m_k}{\|m_k\|_2};$
- $(h_{k+1}, m_{k+1}) = (h_k, m_k) \alpha \left(\frac{\nabla_{h_k} f(h_k, m_k)}{d_k}, \frac{\nabla_{m_k} f(h_k, m_k)}{d_k} \right);$
- If not converge, goto Step 2.

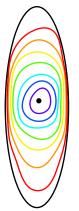
Wirtinger flow Method in [LLSW16]

- O Given (h_0, m_0) , step size $\alpha > 0$, and set k = 0
- $(h_{k+1}, m_{k+1}) = (h_k, m_k) \alpha (\nabla_{h_k} f(h_k, m_k), \nabla_{m_k} f(h_k, m_k));$
- 2 If not converge, goto Step 2.

⁵The penalty in the cost function is not added for simplicity

- Ω: ellipsoid;
- Unique minimizer in Ω ;
- Initial iterate in Ω;
- Importance of the penalty;

$$||y - diag(Bhm * C*)||_2^2 + penalty$$



Rice University

Penalty

Riemannian Optimization

■ Riemannian approach:

$$\rho \sum_{i=1}^{L} G_0 \left(\frac{L|b_i^* h|^2 ||m||_2^2}{8d^2 \mu^2} \right)$$

[LLSW16]:

$$\rho \left[G_0 \left(\frac{\|h\|_2^2}{2d} \right) + G_0 \left(\frac{\|m\|_2^2}{2d} \right) + \sum_{i=1}^L G_0 \left(\frac{L|b_i^* h|^2}{8d\mu^2} \right) \right]$$

• $G_0(t) = \max(t-1,0)^2, [b_1b_2...b_L]^* = B;$

Penalty

Riemannian Optimization

Riemannian approach:

$$\rho \sum_{i=1}^{L} G_0 \left(\frac{L|b_i^* h|^2 ||m||_2^2}{8d^2 \mu^2} \right)$$

[LLSW16]:

$$\rho \left[G_0 \left(\frac{\|h\|_2^2}{2d} \right) + G_0 \left(\frac{\|m\|_2^2}{2d} \right) + \sum_{i=1}^L G_0 \left(\frac{L|b_i^* h|^2}{8d\mu^2} \right) \right]$$

 $G_0(t) = \max(t-1,0)^2, [b_1b_2...b_l]^* = B$

Riemannian approach avoids the two terms.

Riemannian Optimization

Initialization method [LLSW16]

- $(d, \tilde{h}_0, \tilde{m}_0)$: SVD of $B^* \operatorname{diag}(y)C$;
- Project $(\tilde{h}_0, \tilde{m}_0)$ to a neighborhood of the true solution;
- Initial iterate $[(h_0, m_0)]$;

Numerical Results

- Synthetic tests
 - Efficiency
 - Probability of successful recovery
- Image deblurring

21/3

Efficiency

Riemannian Optimization

Table: Comparisons of efficiency

	L = 400, K = N = 50			L = 600, K = N = 50		
Algorithms	[LLSW16]	[LWB13]	R-SD	[LLSW16]	[LWB13]	R-SD
nBh/nCm	351	718	208	162	294	122
nFFT	870	1436	518	401	588	303
RMSE	2.22_{-8}	3.67_{-8}	2.20_{-8}	1.48_8	2.34_{-8}	1.42_8

- An average of 100 random runs
- nBh/nCm: the numbers of Bh and Cm multiplication operations respectively
- nFFT: the number of Fourier transform
- RMSE: the relative error $\frac{\|hm^* h_{\sharp}m_{\sharp}^*\|_F}{\|h_{\sharp}\|_2 \|m_{\sharp}\|_2}$

[[]LLSW16]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933, 2016 [LWB13]: K. Lee et. al., Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization preprint arXiv:1312.0525, 2013

Probability of successful recovery

■ Success if $\frac{\|hm^* - h_{\sharp}m_{\sharp}^*\|_F}{\|h_{\sharp}\|_2 \|m_{\sharp}\|_2} \le 10^{-2}$

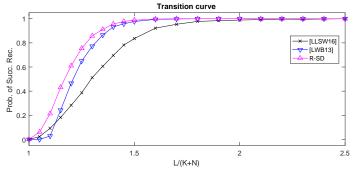


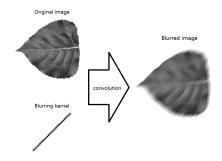
Figure: Empirical phase transition curves for 1000 random runs.

[LLSW16]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933, 2016 [LWB13]: K. Lee et. al., Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization preprint arXiv:1312.0525, 2013

Riemannian Optimization

ork Manifold Approach Nu

Image deblurring



- Original image [WBX+07]: 1024-by-1024 pixels
- Motion blurring kernel (Matlab: fspecial('motion', 50, 45))

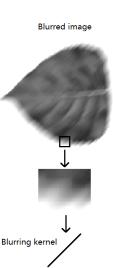
Riemannian Optimization Related Work Manifold Approach **Numerical Results** Theoretical Results Conclusion

Image deblurring

What subspaces are the two unknown signals in?

Image is approximately sparse in the Haar wavelet basis

 Support of the blurring kernel is learned from the blurred image



25/3

Riemannian Optimization Related Work Manifold Approach **Numerical Results** Theoretical Results Conclusic

Image deblurring

What subspaces are the two unknown signals in?

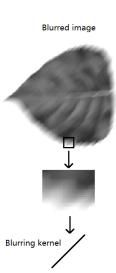
 Image is approximately sparse in the Haar wavelet basis

Use the blurred image to learn the dominated basis: **C**.

 Support of the blurring kernel is learned from the blurred image

Suppose the support of the blurring kernel is known: **B**.

L = 1048576, K = 109, N = 5000, 20000, 80000



Related Work Manifold Approach **Numerical Results** Theoretical Results Conclusion

Image deblurring

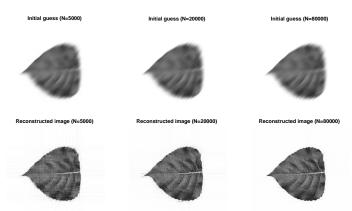


Figure: Initial guess by running power method for 50 iterations and the reconstructed image for N = 5000, 20000, and 80000.

26/3

Image deblurring

Riemannian Optimization

Table: Computational costs for multiple values of N on the image deblurring

N	nBh/nCm	nFFT	relres	relerr	t
5000	535	1330	4.8_3	5.7_2	170
20000	546	1358	2.1_{-3}	5.3_{-2}	173
80000	452	1124	8.0_4	5.0_{-2}	144

- relres: $||y \operatorname{diag}(Bhm^*C^*)||_2/||y||_2$;
- relerr: $\left\|\mathbf{y}_o \frac{\|\mathbf{y}\|}{\|\mathbf{y}_f\|} \mathbf{y}_f \right\| / \|\mathbf{y}_o\|$
- \mathbf{v}_f : the vector by reshaping the reconstructed image
- \mathbf{v}_{o} : the vector by reshaping the original image

Mathematical model:

- C is a complex Gaussian distribution; and
- B satisfies $B^*B = I_K$ and $||b_i||_2^2 \le \phi \frac{K}{L}, i = 1, \dots, L$ for some constant ϕ .

Riemannian Optimization

Initialization [LLSW16]⁶

If $L \ge C_\gamma(\mu_h^2 + \sigma^2) \max(K, N) \log^2(L)/\varepsilon$, then with high probability, it holds that

$$[(h_0,m_0)]\in\Omega_{\frac{1}{2}\mu}\cap\Omega_{\frac{2}{5}\varepsilon},$$

where $\Omega_{\mu} = \{[(h,m)] \mid \sqrt{L} \|Bh\|_{\infty} \|m\|_2 \le 4d_*\mu\},$ $\Omega_{\varepsilon} = \{[(h,m)] \mid \|hm^* - h_{\sharp}m_{\sharp}^*\|_F \le \varepsilon d_*\}, \text{ and } (h_{\sharp},m_{\sharp}) \text{ is the true solution.}$

⁶X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, *preprint arXiv:1606.04933*, 2016

Initialization [LLSW16]⁶

If $L > C_{\gamma}(\mu_h^2 + \sigma^2) \max(K, N) \log^2(L)/\varepsilon$, then with high probability, it holds that

$$[(h_0,m_0)]\in\Omega_{\frac{1}{2}\mu}\cap\Omega_{\frac{2}{5}\varepsilon},$$

where
$$\Omega_{\mu} = \{ [(h,m)] \mid \sqrt{L} \|Bh\|_{\infty} \|m\|_2 \le 4d_*\mu \},$$

 $\Omega_{\varepsilon} = \{ [(h,m)] \mid \|hm^* - h_{\sharp}m_{\sharp}^*\|_F \le \varepsilon d_* \}, \text{ and } (h_{\sharp}, m_{\sharp}) \text{ is the true solution.}$

Large enough number of measurements \implies the initial point in a small neighborhood of the true solution.

⁶X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933, 2016

Riemannian Optimization

Convergence analysis

Suppose $L \geq C_{\gamma}(\mu^2 + \sigma^2) \max(K, N) \log^2(L)/\varepsilon^2$ and the initialization $[(h_0, m_0)] \in \Omega_{\frac{1}{2}\mu} \cap \Omega_{\frac{2}{5}\varepsilon}$. Then with high probability, it holds that

$$\|h_k m_k^* - h_{\sharp} m_{\sharp}^*\|_F \leq \frac{2}{3} \left(1 - \frac{\alpha}{3000}\right)^{k/2} \varepsilon d_*,$$

where α is a small enough fixed step size.

Riemannian Optimization

Convergence analysis

Suppose $L \geq C_{\gamma}(\mu^2 + \sigma^2) \max(K, N) \log^2(L)/\varepsilon^2$ and the initialization $[(h_0, m_0)] \in \Omega_{\frac{1}{2}\mu} \cap \Omega_{\frac{2}{5}\varepsilon}$. Then with high probability, it holds that

$$\|h_k m_k^* - h_\sharp m_\sharp^*\|_F \leq \frac{2}{3} \left(1 - \frac{\alpha}{3000}\right)^{k/2} \varepsilon d_*,$$

where α is a small enough fixed step size.

i) Large enough number of measurements; ii) the initial point in a small neighborhood of the true solution \Longrightarrow the Riemannian method converges linearly to the true solution.

Numerical Results

Theoretical Results

Riemannian Hessian

Suppose $L \ge C_{\gamma} \max(K, \mu_h^2 N) \log^2(L)$. Then with high probability, it holds that

$$\frac{9d_*^2}{5} \le \lambda_i \le \frac{22d_*^2}{5}$$

for all i, where λ_i are eigenvalues of the Riemannian Hessian $\operatorname{Hess} f$ at the true solution.

Riemannian Optimization

Riemannian Hessian

Suppose $L \ge C_{\gamma} \max(K, \mu_h^2 N) \log^2(L)$. Then with high probability, it holds that

$$\frac{9d_*^2}{5} \le \lambda_i \le \frac{22d_*^2}{5}$$

for all i, where λ_i are eigenvalues of the Riemannian Hessian $\operatorname{Hess} f$ at the true solution.

The Riemannian Hessian $f \circ R$ is well-conditioned near the true solution.

Rice University

Conclusion

Blind deconvolution by optimizing over a quotient manifold

- A Riemannian steepest descent method
- Simple implementation
- Recovery guarantee
- Superior numerical performance

Thank you

Conclusion

Riemannian Optimization Related Work Manifold Approach Numerical Results Theoretical Results Conclusion

References I

A. Ahmed, B. Recht, and J. Romberg.

Blind deconvolution using convex programming.

IEEE Transactions on Information Theory, 60(3):1711–1732, March 2014.

A. Cherian and S. Sra.

Riemannian dictionary learning and sparse coding for positive definite matrices. CoRR, abs/1507.02772, 2015.

H. Drira, B. Ben Amor, A. Srivastava, M. Daoudi, and R. Slama.

3D face recognition under expressions, occlusions, and pose variations.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(9):2270–2283, 2013.

Wen Huang, K. A. Gallivan, Anui Srivastava, and P.-A. Absil.

Riemannian optimization for registration of curves in elastic shape analysis. Journal of Mathematical Imaging and Vision, 54(3):320–343, 2015.

DOI:10.1007/s10851-015-0606-8.

H. Laga, S. Kurtek, A. Srivastava, M. Golzarian, and S. J. Miklavcic.

A Riemannian elastic metric for shape-based plant leaf classification.

2012 International Conference on Digital Image Computing Techniques and Applications (DICTA), pages 1–7, December 2012. doi:10.1109/DICTA.2012.6411702.

Xiaodong Li, Shuyang Ling, Thomas Strohmer, and Ke Wei.

Rapid, robust, and reliable blind deconvolution via nonconvex optimization. CoRR, abs/1606.04933, 2016.

Speaker: Wen Huang Rice University

Riemannian Optimization Related Work Manifold Approach Numerical Results Theoretical Results Conclusion

References II

K. Lee, Y. Wu, and Y. Bresler.

Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization. pages 1–80, 2013.

Melissa Marchand, Wen Huang, Arnaud Browet, Paul Van Dooren, and Kyle A. Gallivan.

A riemannian optimization approach for role model extraction.

In Proceedings of the 22nd International Symposium on Mathematical Theory of Networks and Systems, pages 58–64, 2016.

S. G. Wu, F. S. Bao, E. Y. Xu, Y.-X. Wang, Y.-F. Chang, and Q.-L. Xiang.

A leaf recognition algorithm for plant classification using probabilistic neural network.

2007 IEEE International Symposium on Signal Processing and Information Technology, pages 11–16, 2007. arXiv:0707.4289v1.

Xinru Yuan, Wen Huang, P.-A. Absil, and K. A. Gallivan.

A Riemannian quasi-newton method for computing the Karcher mean of symmetric positive definite matrices. Technical Report FSU17-02, Florida State University, 2017.