
Tech. report INS Preprint No. 1626

LINE SEARCH ALGORITHMS FOR LOCALLY LIPSCHITZ FUNCTIONS ON

RIEMANNIAN MANIFOLDS

SOMAYEH HOSSEINI, WEN HUANG, ROHOLLAH YOUSEFPOUR

Abstract. This paper presents line search algorithms for finding extrema of locally Lipschitz functions

defined on Riemannian manifolds. To this end we generalize the so-called Wolfe conditions for nonsmooth
functions on Riemannian manifolds. Using ε-subgradient-oriented descent directions and the Wolfe con-

ditions, we propose a nonsmooth Riemannian line search algorithm and establish the convergence of our

algorithm to a stationary point. Moreover, we extend the classical BFGS algorithm to nonsmooth functions
on Riemannian manifolds. Numerical experiments illustrate the effectiveness and efficiency of the proposed

algorithm.

1. introduction

This paper is concerned with the numerical solution of optimization problems defined on Riemannian
manifolds where the objective function may be nonsmooth. Such problems arise in a variety of applications,
e.g., in computer vision, signal processing, motion and structure estimation and numerical linear algebra; see
for instance [1, 2, 19, 28].

In the linear case, it is well known that the line search strategy is one of the basic iterative approaches to
find a local minimum of an objective function. For smooth functions defined on linear spaces, each iteration
of a line search method computes a search direction and then shows how far to move along that direction.
Let f : Rn → R be a smooth function and the direction p be given, define

φ(α) = f(x+ αp).

The problem that finds a step size in the direction p such that φ(α) ≤ φ(0) is just line search about α. If we
find α such that the objective function in the direction p is minimized, such a line search is called an exact
line search. If we choose α such that the objective function has an acceptable descent amount, such a line
search is called an inexact line search. Theoretically, an exact line search may not accelerate a line search
algorithm due to, such as, the hemstitching phenomenon. Practically, exact optimal step sizes generally
cannot be found, and it is also expensive to find almost exact step sizes. Therefore the inexact line search
with less computation load is highly popular.

A popular inexact line search condition stipulates that α should first of all give sufficient decrease in the
objective function f , as usually measured by the following inequality named the Armijo condition

f(x+ αp)− f(x) ≤ c1α〈grad f(x), p〉2, (1.1)

for some c1 ∈ (0, 1), where grad f(x) denotes the gradient of f at x and 〈u, v〉2 denotes the Euclidean inner
product uT v. To rule out unacceptably short steps, a second requirement called the curvature condition is
used, which requires α to satisfy

〈p, grad f(x+ αp)〉2 ≥ c2〈grad f(x), p〉2,

for some c2 ∈ (c1, 1), where c1 is the constant in (1.1). If α satisfies the Armijo and curvature conditions,
then we say α satisfies the Wolfe conditions.

Key words and phrases. Riemannian manifolds, Lipschitz functions, Descent directions, Clarke subdifferential.
AMS Subject Classifications: 49J52, 65K05, 58C05.

Somayeh Hosseini, Hausdorff Center for Mathematics and Institute for Numerical Simulation, University of Bonn, 53115

Bonn, Germany (hosseini@ins.uni-bonn.de).
Wen Huang, Department of Computational and Applied Mathematics, Rice University, Houston, USA (huwst08@gmail.com).
Rohollah Yousefpour, Department of Mathematical Sciences, University of Mazandaran, Babolsar, Iran (yousefpour@umz.ac.ir).

1

2

In smooth optimization algorithms on linear spaces for choosing the search direction p at x, we need that
the angle θ, defined below, is bounded away from 90◦;

cos θ =
〈− grad f(x), p〉2
‖ grad f(x)‖‖p‖

. (1.2)

The convergence results are obtained by the Armijo condition along with a safeguard against too small step
sizes; see [24]. Indeed, classical convergence results establish that accumulation points of the sequence of
iterates are stationary points of the objective function f and the convergence of the whole sequence to a
single limit-point is not guaranteed. The question is that whether similar results are correct in nonsmooth
optimization problems? In [32], the authors generalized the aforementioned Wolfe conditions for nonsmooth
convex functions. They used the Clarke subdifferential instead of the gradient. But to obtain convergence, one
must not only have well-chosen step lengths but also well-chosen search directions. In nonsmooth problems
the angle condition (1.2) does not propose a proper set of search directions. However, an equivalent condition
carried over nonsmooth problems to obtain the convergence results has been introduced in [25].

Euclidean spaces are not the only spaces in which optimization algorithms are used. There are many ap-
plications of optimization on Riemannian manifolds. A manifold, in general, does not have a linear structure,
hence the usual techniques, which are often used to study optimization problems on linear spaces cannot be
applied and new techniques need to be developed. The common denominator of approaches in optimization
methods on manifolds is that instead of conducting a linear step during the line search procedure, one uses
retractions or defines the step along a geodesic via the use of the exponential map.

Contribution. Our main contributions are fourfold. First, we generalize the concept of a subgradient-
oriented descent sequence from [25], to Riemannian manifolds. We define also a new notion called ε-
subgradient-oriented descent sequence. Then we present a numerical search direction algorithm to find a
descent direction for a nonsmooth objective function defined on a Riemannian manifold. In this algorithm,
we use a positive definite matrix P in order to define a P-norm equivalent to the norm induced by the inner
product on our tangent space. If we use the identity matrix and, therefore, work with the induced norm on
the tangent space, then the algorithm reduces to the descent search algorithm presented in [8]. Second, we
define a nonsmooth Armijo condition on Riemannian manifolds, which is a generalization of the nonsmooth
Armijo condition presented in [32] to a Riemannian setting. Similar to Euclidean spaces we can add a curva-
ture condition to the nonsmooth Armijo condition to get a nonsmooth generalization of the Wolfe conditions
on Riemannian manifolds. This curvature condition is indeed a Riemannian version of the curvature condi-
tion presented in [32]. However, due to working on different tangent spaces, it is not a trivial generalization
and using a notion of vector transport is needed. We present also numerical line search algorithms to find
a suitable step length satisfying the Wolfe conditions for nonsmooth optimization problems on Riemannian
manifolds and study the behavior of the algorithms. The idea of these algorithms are inspired by some similar
algorithms from [33]. Third, we combine the search direction algorithm with the line search algorithm to
define a minimization algorithm for a nonsmooth optimization problem on a Riemannian manifold. To prove
the convergence results for our minimization algorithm, we need to have a sequence of ε-subgradient-oriented
descent directions, hence it is important to update the sequence of positive definite matrices, which define the
equivalent norms on the tangent spaces, such that the sequences of their smallest and largest eigenvalues are
bounded. As our last contribution in this paper, we have also plan to present a practical strategy to update
the sequence of matrices to impose such a condition on the sequences of eigenvalues. This strategy can be
seen as a version of nonsmooth BFGS method on Riemannian manifolds, which is presented on this setting
for the first time and can be considered as a generalization of the smooth BFGS on Riemannian manifolds
in [14]. To the best of our knowledge, this version of nonsmooth BFGS has not been presented before for
optimization problems on linear spaces, therefore it is not only new on Riemannian settings, but also on
linear spaces.

This paper is organized as follows. Section 2 presents the proposed Riemannian optimization for nonsmooth
cost functions. Specifically, Sections 2.1 and 2.2 respectively analyze the line search conditions and search
direction for nonsmooth functions theoretically. Sections 2.3 and 2.4 respectively give a practical approach
to compute a search direction and a step size. Section 2.5 combines the search direction with the line search
algorithm and gives a minimization algorithm. This algorithm can be combined with the BFGS strategy
and the result is presented in Section 3. Finally, experiments that compare the proposed algorithm with the
Riemannian BFGS and Riemannian gradient sampling are reported in Section 4.

3

Previous Work. For the smooth optimization on Riemannian manifolds the line search algorithms have
been studied in [1, 27, 30, 31]. In considering optimization problems with nonsmooth objective functions on
Riemannian manifolds, it is necessary to generalize concepts of nonsmooth analysis to Riemannian manifolds.
In the past few years a number of results have been obtained on numerous aspects of nonsmooth analysis on
Riemannian manifolds, [3, 4, 10, 11, 12, 21]. Papers [8, 9] are among the first papers on numerical algorithms
for minimization of nonsmooth functions on Riemannian manifolds.

2. Line search algorithms on Riemannian manifolds

In this paper, we use the standard notations and known results of Riemannian manifolds, see, e.g. [18, 29].
Throughout this paper, M is an n-dimensional complete manifold endowed with a Riemannian metric 〈., .〉 on
the tangent space TxM . We identify tangent space of M at a point x, denoted by TxM , with the cotangent
space at x (via the Riemannian metric), denoted by TxM

∗. We denote by clN the closure of the set N . Also,
let S be a nonempty closed subset of a Riemannian manifold M , we define distS : M −→ R by

distS(x) := inf{dist(x, s) : s ∈ S },

where dist is the Riemannian distance on M . We use of a class of mappings called retractions.

Definition 2.1 (Retraction). A retraction on a manifold M is a smooth map R : TM → M with the
following properties. Let Rx denote the restriction of R to TxM .

• Rx(0x) = x, where 0x denotes the zero element of TxM .
• With the canonical identification T0xTxM ' TxM , DRx(0x) = idTxM , where idTxM denotes the

identity map on TxM .

By the inverse function Theorem, we have that Rx is a local diffeomorphism. For example, the exponential
map defined by exp : TM → M , v ∈ TxM → expx v, expx(v) = γ(1), where γ is a geodesic starting at x
with initial tangent vector v, is a retraction; see [1]. We define BR(x, ε) to be {Rx(ηx)|‖ηx‖ < ε}. If the
retraction R is the exponential function exp, then BR(x, ε) is the open ball centered at x with radius ε. By
using retractions, we extend the concepts of nonsmooth analysis on Riemannian manifolds.

Let f : M → R be a locally Lipschitz function on a Riemannian manifold. For x ∈M , we let f̂x = f ◦Rx
denote the restriction of the pullback f̂ = f ◦ R to TxM . Recall that if G is a locally Lipschitz function
defined from a Banach space X to R. The Clarke generalized directional derivative of G at the point x ∈ X
in the direction v ∈ X, denoted by G◦(x; v), is defined by

G◦(x; v) = lim sup
y→x, t↓0

G(y + tv)−G(y)

t
,

and the generalized subdifferential of G at x, denoted by ∂G(x), is defined by

∂G(x) := {ξ ∈ X : 〈ξ, v〉 ≤ G◦(x; v) for all v ∈ X}.

The Clarke generalized directional derivative of f at x in the direction p ∈ TxM , denoted by f◦(x; p), is

defined by f◦(x; p) = f̂x
◦
(0x; p), where f̂x

◦
(0x; p) denotes the Clarke generalized directional derivative of

f̂x : TxM → R at 0x in the direction p ∈ TxM . Therefore, the generalized subdifferential of f at x, denoted

by ∂f(x), is defined by ∂f(x) = ∂f̂x(0x). A point x is a stationary point of f if 0 ∈ ∂f(x). A necessary
condition that f achieves a local minimum at x is that x is a stationary point of f ; see [8, 10]. Theorem 2.2
can be proved along the same lines as [10, Theorem 2.9].

Theorem 2.2. Let M be a Riemannian manifold, x ∈M and f : M → R be a Lipschitz function of Lipschitz
constant L near x, i.e., |f(x)− f(y)| ≤ Ldist(x, y), for all y in a neighborhood x. Then
(a) ∂f(x) is a nonempty, convex, compact subset of TxM , and ‖ξ‖ ≤ L for every ξ ∈ ∂f(x).
(b) for every v in TxM, we have

f◦(x; v) = max{〈ξ, v〉 : ξ ∈ ∂f(x)}.

(c) if {xi} and {ξi} are sequences in M and TM such that ξi ∈ ∂f(xi) for each i, and if {xi} converges to
x and ξ is a cluster point of the sequence {ξi}, then we have ξ ∈ ∂f(x).
(d) ∂f is upper semicontinuous at x.

4

In classical optimization on linear spaces, line search methods are extensively used. They are based on
updating the iterate by finding a direction and then adding a multiple of the obtained direction to the
previous iterate. The extension of line search methods to manifolds is possible by the notion of retraction.
We consider algorithms of the general forms stated in Algorithm 1.

Algorithm 1 A line search minimization algorithm on a Riemannian manifold

1: Require: A Riemannian manifold M , a function f : M → R.
2: Input: x0 ∈M,k = 0.
3: Output: Sequence {xk}.
4: repeat
5: Choose a retraction Rxk : TxkM →M .
6: Choose a descent direction pk ∈ TxkM .
7: Choose a step length αk ∈ R.
8: Set xk+1 = Rxk(αkpk); k = k + 1.
9: until xk+1 sufficiently minimizes f .

Once the retraction Rxk is defined, the search direction pk and the step length αk are remained. We say
pk is a descent direction at xk, if there exists α > 0 such that for every t ∈ (0, α), we have

f(Rxk(tpk))− f(xk) < 0.

It is obvious that if f◦(xk; pk) < 0, then pk is a descent direction at xk.
In order to have global convergence results, some conditions must be imposed on the descent direction pk

as well as the step length αk.

2.1. Step length. The step length αk has to cause a substantial reduction of the objective function f . The
ideal choice would be αk = argminα>0f(Rxk(αpk)) if this exact line search can be carried out efficiently.
But in general, it is too expensive to find this value. More practical strategies to identify a step length
that achieves adequate reductions in the objective function at minimal cost, is an inexact line search. A
popular inexact line search condition stipulates that the step length αk should give a sufficient decrease in
the objective function f , which is measured by the following condition.

Definition 2.3 (Armijo condition). Let f : M → R be a locally Lipschitz function on a Riemannian manifold
M with a retraction R, x ∈M and p ∈ TxM . If the following inequality holds for a step length α and a fixed
constant c1 ∈ (0, 1)

f(Rx(αp))− f(x) ≤ c1αf◦(x; p),

then α satisfies in the Armijo condition.

The existence of such a step size is proven later in Theorem 2.8.

2.1.1. Sufficient decrease and backtracking. The Armijo condition does not ensure that the algorithm makes
reasonable progress. We present here a backtracking line search algorithm, which chooses its candidates
appropriately to make an adequate progress. An adequate step length will be found after a finite number of
iterations, because αk will finally become small enough that the Armijo condition holds.

Algorithm 2 A backtracking line search on a Riemannian manifold.

1: Require: A Riemannian manifold M , a locally Lipschitz function f : M → R, a retraction R from TM
to M , scalars c1, ρ ∈ (0, 1).

2: Input: α0 > 0.
3: Output: αk.
4: α = α0.
5: repeat
6: α = ρα.
7: until f(Rxk(αpk))− f(xk) ≤ c1αf◦(xk; pk).
8: Terminate with αk = α.

5

2.1.2. The Wolfe conditions. There are other useful conditions to rule out unacceptably short step lengths.
For example, one can use a second requirement, called the curvature condition. To present this requirement for
nonsmooth functions on nonlinear spaces, some preliminaries are needed. To define the curvature condition
on a Riemannian manifold, we have to translate a vector from one tangent space to another one.

Definition 2.4 (Vector transport). A vector transport associated to a retraction R is defined as a continuous
function T : TM × TM → TM , (ηx, ξx) 7→ Tηx(ξx), which for all (ηx, ξx) satisfies the following conditions:

(i) Tηx : TxM → TR(ηx)M is a linear map,
(ii) T0x(ξx) = ξx.

In short, if ηx ∈ TxM and Rx(ηx) = y, then Tηx transports vectors from the tangent space of M at x to
the tangent space at y. Two additional properties are needed in this paper. First, the vector transport need
to preserve inner products, that is,

〈Tηx(ξx), Tηx(ζx)〉 = 〈ξx, ζx〉. (2.1)

In particular, ξx 7→ Tηx(ξx) is then an isometry and possesses an isometric inverse.
Second, we will assume that T satisfies the following condition, called locking condition in [16], for trans-

porting vectors along their own direction:

Tξx(ξx) = βξxTRξx (ξx), βξx =
‖ξx‖

‖TRξx ξx‖
, (2.2)

where

TRηx (ξx) = DRx(ηx)(ξx) =
d

dt
Rx(ηx + tξx)|t=0.

These conditions can be difficult to verify, but are in particular satisfied for the most natural choices of
R and T ; for example the exponential map as a retraction and the parallel transport as a vector transport
satisfy these conditions with βξx = 1. For a further discussion, especially on construction of vector transports
satisfying the locking condition, we refer to [16, Sec. 4]. We introduce more intuitive notations:

Tx→y(ξx) = Tηx(ξx), Tx←y(ξy) = (Tηx)−1(ξy) whenever y = Rx(ηx).

Now we present the nonsmooth curvature condition for locally Lipschitz functions on Riemannian manifolds.

Definition 2.5 (Curvature condition). The step length α satisfies in the curvature inequality, if the following
inequality holds for constant c2 ∈ (c1, 1),

sup
ξ∈∂f(Rx(αp))

〈ξ, 1

βαp
Tx→Rx(αp)(p)〉 ≥ c2f◦(x; p),

where c1 is the Armijo constant.

Note that if there exists ξ ∈ ∂f(Rx(αp)) such that

〈ξ, 1

βαp
Tx→Rx(αp)(p)〉 ≥ c2f◦(x; p),

then the curvature inequality holds. As in the smooth case, we can define a strong curvature condition by

| sup
ξ∈∂f(Rx(αp))

〈ξ, 1

βαp
Tx→Rx(αp)(p)〉| ≤ −c2f◦(x; p).

The following lemma can be proved using Lemma 3.1 of [22].

Lemma 2.6. Let f : M → R be a locally Lipschitz function on a Riemannian manifold M and the function
W defined by

W (α) := f(Rx(αp))− f(x)− c2αf◦(x; p), (2.3)

where c2 ∈ (c1, 1), x ∈ M and p ∈ TxM , be increasing on a neighborhood of some α0, then α0 satisfies the
curvature condition.

Indeed, if W is increasing on a neighborhood of some α0, then there exists ξ in

∂W (α0) ⊂ 〈∂f(Rx(α0p)), DRx(α0p)(p)〉 − c2f◦(x; p),

such that ξ ≥ 0. The result will be obtained using the locking condition.

6

Definition 2.7 (Wolfe conditions). Let f : M → R be a locally Lipschitz function and p ∈ TxM . If α
satisfies the Armijo and curvature conditions, then we say α satisfies the Wolfe conditions.

In the following theorem the existence of step lengths satisfying the Wolfe conditions under some assump-
tions is proved.

Theorem 2.8. Assume that f : M → R is a locally Lipschitz function on a Riemannian manifold M ,
Rx : TxM → M is a retraction, p ∈ TxM is chosen such that f◦(x; p) < 0 and f is bounded below on
{Rx(αp) : α > 0}, if 0 < c1 < c2 < 1, then there exist step lengths satisfying the Wolfe conditions.

Proof. Since φ(α) = f(Rx(αp)) is bounded below for all α > 0 and 0 < c1 < 1, the line l(α) = f(x) +
αc1f

◦(x; p) must intersect the graph φ at least once. Since if we assume l(α) < Φ(α) for all α > 0, then

f◦(x; p) < c1f
◦(x; p) ≤ lim sup

α→0

f(Rx(αp))− f(x)

α
≤ f◦(x; p),

which is a contradiction. It means that there exists α̃ > 0 such that l(α̃) ≥ Φ(α̃). But since l(α) is not
bounded below and Φ(α) is bounded below, then there exists α̂ > 0, l(α̂) = Φ(α̂). Let α1 > 0 be the smallest
intersecting value of α, hence

f(Rx(α1p)) = f(x) + α1c1f
◦(x; p). (2.4)

It follows that the Armijo condition is satisfied for all step lengths less than α1. Now by the mean value
theorem, there exist ε∗ ∈ (0, 1) and ξ ∈ ∂f(Rx(ε∗α1p)) such that

f(Rx(α1p))− f(x) = α1〈ξ,DRx(ε∗α1p)(p)〉. (2.5)

By combining (2.4) and (2.5), we obtain 〈ξ,DRx(ε∗α1p)(p)〉 = c1f
◦(x; p) > c2f

◦(x; p). Using the locking
condition, we conclude that ε∗α1 satisfies the curvature condition.

�

Remark 2.9. There are a number of rules for choosing the step length α for problems on linear spaces;
see [23, 32]. We can define their generalizations on Riemannian manifolds using the concepts of nonsmooth
analysis on Riemannian manifolds and the notions of retraction and vector transport. For instance, one can
use a generalization of the Mifflin condition, proposed first by Mifflin in [23]. The step length α satisfies the
Mifflin condition if the following inequalities hold for the fixed constants c1 ∈ (0, 1), c2 ∈ (c1, 1)

f(Rx(αp))− f(x) ≤ −c1α‖p‖,

sup
ξ∈∂f(Rx(αp))

〈ξ, 1

βαp
Tx→Rx(αp)(p)〉 ≥ −c2‖p‖.

2.2. Descent directions. To obtain global convergence result for a line search method, we must not only
have well-chosen step lengths but also well-chosen search directions. The following definition is equivalent
to gradient-orientedness carried over nonsmooth problems; see [25]. We know that the search direction for
a smooth optimization problem often has the form pk = −Pk grad f(xk), where Pk is a symmetric and non-
singular linear map. Therefore, it is not far from expectation to use elements of the subdifferential of f at
xk in Definition 2.10 and produce a subgradient-oriented descent sequence in nonsmooth problems.

Definition 2.10 (Subgradient-oriented descent sequence). A sequence {pk} of descent directions is called
subgradient-oriented if there exist a sequence of subgradients {gk} and a sequence of symmetric linear maps
{Pk : TxkM → TxkM} satisfying

0 < λ ≤ λmin(Pk) ≤ λmax(Pk) ≤ Λ <∞,
for 0 < λ < Λ <∞ and all k ∈ N such that pk = −Pkgk, where λmin(Pk) and λmax(Pk) denote respectively
the smallest and largest eigenvalues of Pk.

In the next definition, we present an approximation of the subdifferential which can be computed approx-
imately. As we aim at transporting subgradients from tangent spaces at nearby points of x ∈ M to the
tangent space at x, it is important to define a notion of injectivity radius for Rx. Let

ι(x) := sup{ε > 0| Rx : B(0x, ε)→ BR(x, ε) is injective}.
Then the injectivity radius of M with respect to the retraction R is defined as

ι(M) := inf
x∈M

ι(x).

7

When using the exponential map as a retraction, this definition coincides with the usual one.

Definition 2.11 (ε-subdifferential). Let f : M → R be a locally Lipschitz function on a Riemannian manifold
M and 0 < 2ε < ι(x)1. We define the ε-subdifferential of f at x denoted by ∂εf(x) as follows;

∂εf(x) = clconv{β−1
η Tx←y(∂f(y)) : y ∈ clBR(x, ε)},

where η = R−1
x (y). Every element of the ε-subdifferential is called an ε-subgradient.

Definition 2.12 (ε-subgradient-oriented descent sequence). A sequence {pk} of descent directions is called
ε-subgradient-oriented if there exist a sequence of ε-subgradients {gk} and a sequence of symmetric linear
maps {Pk : TxkM → TxkM} satisfying

0 < λ ≤ λmin(Pk) ≤ λmax(Pk) ≤ Λ <∞,

for 0 < λ < Λ <∞ and all k ∈ N such that pk = −Pkgk, where λmin(Pk) and λmax(Pk) denote respectively
the smallest and largest eigenvalues of Pk.

From now, we assume that a basis of TxM , for all x ∈ M is given and we denote every linear map using
its matrix representation with respect to the given basis. In the following, we use a positive definite matrix
P in order to define a P-norm equivalent to the induced norm induced by the inner product on our tangent
space. Indeed ‖ξ‖P = 〈Pξ, ξ〉1/2 and λmin(P)‖.‖2 ≤ ‖.‖2P ≤ λmax(P)‖.‖2.

Theorem 2.13. Assume that f : M → R is a locally Lipschitz function on a Riemannian manifold M ,
Rx : TxM →M is a retraction and 0 /∈ ∂εf(x),

g = argminξ∈∂εf(x)‖ξ‖P ,

where P is a positive definite matrix. Assume that p = −Pg. Then f◦ε (x; p) = −‖g‖2P and p is a descent
direction, where f◦ε (x; p) = supξ∈∂εf(x)〈ξ,−Pg〉.

Proof. We first prove that f◦ε (x; p) = −‖g‖2P . It is clear that

f◦ε (x; p) = sup
ξ∈∂εf(x)

〈ξ,−Pg〉 ≥ 〈g,−Pg〉 = −‖g‖2P .

Now we claim that ‖g‖2P ≤ 〈ξ, Pg〉 for every ξ ∈ ∂εf(x), which implies supξ∈∂εf(x)〈ξ,−Pg〉 ≤ −‖g‖2P .
Proof of the claim: assume on the contrary; there exists ξ ∈ ∂εf(x) such that 〈ξ, Pg〉 < ‖g‖2P and consider
w := g + t(ξ − g) ∈ ∂εf(x), then

‖g‖2P − ‖w‖2P = −t(2〈ξ − g, Pg〉+ t〈ξ − g, P (ξ − g)〉),

we can assume that t is small enough such that ‖g‖2P > ‖w‖2P , which is a contradiction and the first part of
the theorem is proved. Now we prove that p is a descent direction. Let α := ε

‖p‖ , then for every t ∈ (0, α),

by Lebourg’s mean value theorem, there exist 0 < t0 < 1 and ξ ∈ ∂f(Rx(t0tp)) such that

f(Rx(tp))− f(x) = 〈ξ,DRx(t0tp)(tp)〉.

Using locking condition and isometric property of the vector transport, we have that

f(Rx(tp))− f(x) = 〈ξ,DRx(tt0p)(tp)〉

=
t

βtt0p
〈Tx←Rx(tt0p)(ξ), p〉.

Since ‖tt0p‖ ≤ ε, it follows that 1
βtt0p
Tx←Rx(tt0p)(ξ) ∈ ∂εf(x). Therefore, f(Rx(tp))− f(x) ≤ tf◦ε (x; p). �

1Note y ∈ clB(x, ε). The coefficient 2 guarantees inverse vector transports is well-defined on the boundary of B(x, ε).

8

2.3. A descent direction algorithm. For general nonsmooth optimization problems it may be difficult
to give an explicit description of the full ε-subdifferential set. Therefore, we need an iterative procedure to
approximate the ε-subdifferential. We start with a subgradient of an arbitrary point nearby x and move
the subgradient to the tangent space in x and in every subsequent iteration, the subgradient of a new point
nearby x is computed and moved to the tangent space in x to be added to the working set to improve the
approximation of ∂εf(x). Indeed, we do not want to provide a description of the entire ε-subdifferential set
at each iteration, what we do is to approximate ∂εf(x) by the convex hull of its elements. In this way, let P
be a positive definite matrix and Wk := {v1, ..., vk} ⊆ ∂εf(x), then we define

gk := argmin
v∈convWk

‖v‖P .

Now if we have

f(Rx(
εpk
‖pk‖

))− f(x) ≤ −cε‖gk‖
2
P

‖pk‖
, c ∈ (0, 1) (2.6)

where pk = −Pgk, then we can say convWk is an acceptable approximation for ∂εf(x). Otherwise, using the
next lemma we add a new element of ∂εf(x) \ convWk to Wk.

Lemma 2.14. Let Wk = {v1, ..., vk} ⊂ ∂εf(x), 0 /∈ convWk and

gk = argmin{‖v‖P : v ∈ convWk}.

If we have

f(Rx(
εpk
‖pk‖

))− f(x) >
−cε‖gk‖2P
‖pk‖

,

where c ∈ (0, 1) and pk = −Pgk, then there exist θ0 ∈ (0, ε
‖pk‖] and v̄k+1 ∈ ∂f(Rx(θ0pk)) such that

〈β−1
θ0p
Tx←Rx(θ0p)(v̄k+1), pk〉≥ − c‖gk‖2P ,

and vk+1 :=β−1
θ0p
Tx←Rx(θ0p)(v̄k+1) /∈ convWk.

Proof. We prove this lemma using Lemma 3.1 and Proposition 3.1 in [22]. Define

h(t) := f(Rx(tpk))− f(x) + ct‖gk‖2P , t ∈ R, (2.7)

and a new locally Lipschitz function G : B(0x, ε) ⊂ TxM → R by G(g) = f(Rx(g)), then h(t) = G(tpk) −
G(0) + ct‖gk‖2P . Assume that h(ε

‖pk‖) > 0, then by Proposition 3.1 of [22], there exists θ0 ∈ [0, ε
‖pk‖] such

that h is increasing in a neighborhood of θ0. Therefore, by Lemma 3.1 of [22] for every ξ ∈ ∂h(θ0), one has
ξ ≥ 0. By [10, Proposition 3.1]

∂h(θ0) ⊆ 〈∂f(Rx(θ0pk)), DRx(θ0pk)(pk)〉+ c‖gk‖2P .

If v̄k+1 ∈ ∂f(Rx(θ0pk)) such that

〈v̄k+1, DRx(θ0pk)(pk)〉+ c‖gk‖2P ∈ ∂h(θ0),

then by the locking condition

〈β−1
θ0p
Tx←Rx(θ0p)(v̄k+1), pk〉+ c‖gk‖2P ≥ 0.

This implies that

vk+1 :=β−1
θ0p
Tx←Rx(θ0p)(v̄k+1) /∈ convWk,

which proves our claim. �

Now we present Algorithm 3 to find a vector vk+1 ∈ ∂εf(x) which can be added to the set Wk in order to
improve the approximation of ∂εf(x). This algorithm terminates after finitely many iterations; see [8].

Then we give Algorithm 4 for finding a descent direction. Moreover, Theorem 2.15 proves that Algorithm
4 terminates after finitely many iterations.

Theorem 2.15. For the point x1 ∈ M , let the level set N = {x : f(x) ≤ f(x1)} be bounded, then for each
x ∈ N, Algorithm 4 terminates after finitely many iterations.

9

Algorithm 3 An h-increasing point algorithm; (v, t) = Increasing(x, p, g, a, b, P, c).

1: Require: A Riemannian manifold M , a locally Lipschitz function f : M → R, a retraction R from TM
to M and a vector transport T .

2: Input x ∈M, g, p ∈ TxM,a, b ∈ R, c ∈ (0, 1) and P a positive definite matrix such that p = −Pg.
3: Let t← b

‖p‖ , b←
b
‖p‖ and a← a

‖p‖ .

4: repeat
5: select v ∈ ∂f(Rx(tp)) such that 〈v, 1

βtp
Tx→Rx(tp)(p)〉+ c‖g‖2P ∈ ∂h(t), where h is defined in (2.7),

6: if 〈v, 1
βtp
Tx→Rx(tp)(p)〉+ c‖g‖2P < 0 then

7: t = a+b
2

8: if h(b) > h(t) then
9: a = t

10: else
11: b = t
12: end if
13: end if
14: until 〈v, 1

βtp
Tx→Rx(tp)(p)〉+ c‖g‖2P ≥ 0

Algorithm 4 A descent direction algorithm; (gk, pk) = Descent(x, δ, c, ε, P).

1: Require: A Riemannian manifold M , a locally Lipschitz function f : M → R, a retraction R from TM
to M , the injectivity radius ι(M) > 0 and a vector transport T .

2: Input x ∈M, δ, c ∈ (0, 1), 0 < ε < ι(M) and a positive definite matrix P .
3: Select arbitrary v ∈ ∂εf(x).
4: Set W1 = {v} and let k = 1.
5: Step 1: (Compute a descent direction)
6: Solve the following minimization problem and let gk be its solution:

min
v∈convWk

‖v‖P .

7: if ‖gk‖2 ≤ δ then Stop.
8: else let pk = −Pgk.
9: end if

10: Step 2: (Stopping condition)

11: if f(Rx(
εpk
‖pk‖

))− f(x) ≤ −cε‖gk‖
2
P

‖pk‖
, then Stop.

12: end if
13: Step 3: (v, t) = Increasing(x, pk, gk, 0, ε, P, c).
14: Set vk+1 = β−1

tpk
Tx←Rx(tpk)(v), Wk+1 = Wk ∪ {vk+1} and k = k + 1. Go to Step 1.

Proof. We claim that either after a finite number of iterations the stopping condition is satisfied or for some
m,

‖gm‖2 ≤ δ,

and the algorithm terminates. If the stopping condition is not satisfied and ‖gk‖2 > δ, then by Lemma 2.14
we find vk+1 /∈ convWk such that

〈vk+1,−pk〉 ≤ c‖gk‖2P .

Note that DRx on clB(0x, ε) is bounded by some m1 ≥ 0, therefore βη
−1 ≤ m1 for every η ∈ clB(0x, ε).

Hence by isometry property of the vector transport and by the Lipschitzness of f of the constant L, Theorem
2.9 of [10] implies that for every ξ ∈ ∂εf(x), ‖ξ‖ ≤ m1L. Now, by definition, gk+1 ∈ conv({vk+1} ∪Wk) has

10

the minimum norm, therefore for all t ∈ (0, 1),

‖gk+1‖2P ≤ ‖tvk+1 + (1− t)gk‖2P
≤ ‖gk‖2P + 2t〈Pgk, (vk+1 − gk)〉+ t2‖vk+1 − gk‖2P
≤ ‖gk‖2P − 2t(1− c)‖gk‖2P + 4t2L2m2

1λmax(P)

≤ (1− [(1− c)(2Lm1)−1δ1/2λmin(P)1/2λmax(P)−1/2]2)‖gk‖2P ,

(2.8)

where the last inequality is obtained by assuming

t = (1− c)(2Lm1)−2λmax(P)−1‖gk‖2P ∈ (0, 1),

δ1/2 ∈ (0, Lm1) and λ−1
min(P)‖gk‖2P ≥ ‖gk‖2 > δ. Now considering

r = 1− [(1− c)(2Lm1)−1δ1/2λmin(P)1/2λmax(P)−1/2]2 ∈ (0, 1),

it follows that
‖gk+1‖2P ≤ r‖gk‖2P ≤ ... ≤ rk(Lm1)2λmax(P).

Therefore, after a finite number of iterations ‖gk+1‖2P ≤ δλmin(P), which proves that ‖gk+1‖2 ≤ δ. �

2.4. Step length selection algorithms. A crucial observation is that verifying the Wolfe conditions pre-
sented in Definition 2.7 can be impractical in case that no explicit expression for the subdifferential ∂f(x)
is available. Using an approximation of the Clarke subdifferential, we overcome this problem. In the last
subsection, we approximated f◦(x; pk) by −‖gk‖2P , where pk := −Pgk, gk = argmin{‖v‖P : v ∈ convWk}
and convWk is an approximation of ∂εf(x). Therefore, in our line search algorithm we use the approximation
of f◦(x; p) to find a suitable step length.

Algorithm 5 A line search algorithm; α = Line(x, p, g, P, c1, c2)

1: Require: A Riemannian manifold M , a locally Lipschitz function f : M → R, a retraction R from TM
to M , the injectivity radius ι(M) > 0 and a vector transport T .

2: Input x ∈M , a descent direction p in TxM with p = −Pg where g ∈ ∂εf(x) and P is a positive definite
matrix and c1 ∈ (0, 1), c2 ∈ (c1, 1).

3: Set α0 = 0, αmax < ι(M), α1 = 1 and i = 1.
4: Repeat
5: Evaluate A(αi) := f(Rx(αip))− f(x) + c1αi‖g‖2P
6: if A(αi) > 0 then
7: α must be obtained by Zoom(x, p, g, P, αi−1, αi, c1, c2)
8: Stop
9: end if

10: Compute ξ ∈ ∂f(Rx(αip)) such that 〈ξ, 1
βαip
Tx→Rx(αip)(p)〉 + c2‖g‖2P ∈ ∂W (αi), where W is defined in

(2.3).
11: if 〈ξ, 1

βαip
Tx→Rx(αip)(p)〉+ c2‖g‖2P ≥ 0 then α = αi

12: Stop
13: else
14: Choose αi+1 ∈ (αi, αmax)
15: end if
16: i = i+ 1.
17: End(Repeat)

The task of a line search algorithm is to find a step size which decreases the objective function along
the paths. The Wolfe conditions are used in the line search to enforce a sufficient decrease in the objective
function, and to exclude unnecessarily small step sizes. Algorithm 5 is a one dimensional search procedure
for the function φ(α) = f(Rx(αp)) to find a step length satisfying the Armijo and curvature conditions. The
procedure is a generalization of the algorithm for the well-known Wolfe conditions for smooth functions, see
[24, p. 59-60]. The algorithm has two stages. The first stage begins with a trial estimate α1 and keeps
it increasing until it finds either an acceptable step length or an interval that contains the desired step
length. The parameter αmax is a user-supplied bound on the maximum step length allowed. The last step

11

Algorithm 6 α = Zoom(x, p, g, P, a, b, c1, c2)

1: Require: A Riemannian manifold M , a locally Lipschitz function f : M → R, a retraction R from TM
to M and a vector transport T .

2: Input x ∈M , a descent direction p in TxM with p = −Pg, where g ∈ ∂εf(x) and P is a positive definite
matrix and c1 ∈ (0, 1), c2 ∈ (c1, 1), a, b ∈ R.

3: i = 1, a1 = a, b1 = b.
4: Repeat
5: αi = ai+bi

2

6: Evaluate A(αi) := f(Rx(αip))− f(x) + c1αi‖g‖2P ,
7: if A(αi) > 0 then
8: bi+1 = αi, ai+1 = ai.
9: else

10: Compute ξ ∈ ∂f(Rx(αip)) such that 〈ξ, 1
βαip
Tx→Rx(αip)(p)〉+ c2‖g‖2P ∈ ∂W (αi), where W is defined

in (2.3).
11: if 〈ξ, 1

βαip
Tx→Rx(αip)(p)〉+ c2‖g‖2P ≥ 0 then α = αi

12: Stop.
13: else ai+1 = αi, bi+1 = bi.
14: end if
15: end if
16: i = i+ 1.
17: End(Repeat)

of Algorithm 5 performs extrapolation to find the next trial value αi+1. To implement this step we can
simply set αi+1 to some constant multiple of αi. In the case that Algorithm 5 finds an interval [αi−1, αi] that
contains the desired step length, the second stage is invoked by Algorithm 6 called Zoom which successively
decreases the size of the interval.

Remark 2.16. By using Lemma 3.1 of [22], if there exists ξ ∈ ∂f(Rx(αip)) such that 〈ξ,DRx(αip)(p)〉 +
c2‖g‖2P ∈ ∂W (αi) and 〈ξ,DRx(αip)(p)〉+ c2‖g‖2P < 0, where W is defined in (2.3), then W is decreasing on
a neighborhood of αi, which means that for every η ∈ ∂W (αi), η ≤ 0.

Proposition 2.17. Assume that f : M → R is a locally Lipschitz function and p is the descent direction
obtained by Algorithm 4. Then either Algorithm 6 terminates after finitely many iterations or it generates
a sequence of intervals [ai, bi], such that each one contains some subintervals satisfying the Wolfe conditions
and ai and bi converge to a step length a > 0. Moreover, there exist ξ1, ξ2, ξ3 ∈ ∂f(Rx(ap)) such that

〈ξ1,
1

βap
Tx→Rx(ap)(p)〉 ≤ −c2‖g‖2P , 〈ξ2,

1

βap
Tx→Rx(ap)(p)〉 ≥ −c2‖g‖2P

〈ξ3,
1

βap
Tx→Rx(ap)(p)〉 ≥ −c1‖g‖2P .

Proof. Suppose that the algorithm does not terminate after finitely many iterations. Since {ai} and {bi} are

monotone sequences, they converge to some a and b. As we have bi − ai :=
b1 − a1

2i−1
, thus bi − ai converges

to zero. Therefore, a = b. We claim that ai > 0 after finitely many iterations. Since p is a descent direction,
then there exists α > 0 such that A(s) ≤ 0 for all s ∈ (0, α), where A(s) is defined in Algorithm 5. Note
that there exists m > 0 such that for every i ≥ m, b12i ≤ α. If am+1 = 0, then we must have A(αi) > 0 for all

i = 1, ...,m. Hence, we have bm+1 = αm, am = am+1 = 0 and αm+1 =
bm+1

2
=

b1
2m

. Therefore, αm+1 ≤ α.

This implies that A(αm+1) ≤ 0, then am+2 = αm+1. Let S be the set of all indices with ai+1 = αi. Therefore,
there exists ξi ∈ ∂f(Rx(αip)) such that

〈ξi,
1

βαip
Tx→Rx(αip)(p)〉+ c2‖g‖2P < 0

for all i ∈ S. Since ξi ∈ ∂f(Rx(αip)) and f is locally Lipschitz on a neighborhood of x, then by [10, Theorem
2.9] the sequence {ξi} contains a convergent subsequence and without loss of generality, we can assume this

12

sequence is convergent to some ξ1 ∈ ∂f(Rx(ap)). Therefore,

〈ξ1,
1

βap
Tx→Rx(ap)(p)〉+ c2‖g‖2P ≤ 0.

Since ai < bi, A(ai) ≤ 0 and A(ai) < A(bi), therefore A(.) contains a step length ri such that A(.) is increasing
on its neighborhood and A(ri) ≤ 0. Since c1 < c2, therefore W (.) is also increasing in a neighborhood of ri.
Therefore, the Wolfe conditions are satisfied at ri. Assume that 〈κi, 1

βrip
Tx→Rx(rip)(p)〉+c2‖g‖2P ∈ ∂W (ri) for

some κi ∈ ∂f(Rx(rip)), then 〈κi, 1
βrip
Tx→Rx(rip)(p)〉+c2‖g‖2P ≥ 0. Therefore, without loss of generality, we can

suppose that κi is convergent to some ξ2 ∈ ∂f(Rx(ap)). This implies that 〈ξ2, 1
βap
Tx→Rx(ap)(p)〉+c2‖g‖2P ≥ 0.

Note that A(.) is increasing on a neighborhood of ri, therefore for all ηi ∈ ∂f(Rx(rip)) with

〈ηi,
1

βrip
Tx→Rx(rip)(p)〉+ c1‖g‖2P ∈ ∂A(ri),

we have 〈ηi, 1
βrip
Tx→Rx(rip)(p)〉+c1‖g‖2P ≥ 0. As before, we can say ηi is convergent to some ξ3 in ∂f(Rx(ap))

and 〈ξ3, 1
βap
Tx→Rx(ap)(p)〉+ c1‖g‖2P ≥ 0. �

In the next proposition, we prove that if Algorithms 6 does not terminate after finitely many iterations
and converges to a, then the Wolfe conditions are satisfied at a.

Proposition 2.18. Assume that f : M → R is a locally Lipschitz function and p := −Pg is a descent
direction obtained from Algorithm 4. If Algorithm 6 does not terminate after finitely many iterations and
converges to a. Then there exists ξ ∈ ∂f(Rx(ap)) such that

〈ξ, 1

βap
Tx→Rx(ap)(p)〉 = −c2‖g‖2P .

Proof. By Proposition 2.17, there exist ξ1, ξ2 ∈ ∂f(Rx(ap)) such that

〈ξ1,
1

βap
Tx→Rx(ap)(p)〉 ≤ −c2‖g‖2P , 〈ξ2,

1

βap
Tx→Rx(ap)(p)〉 ≥ −c2‖g‖2P ,

and

〈ξ1,
1

βap
Tx→Rx(ap)(p)〉+ c2‖g‖2P , 〈ξ2,

1

βap
Tx→Rx(ap)(p)〉+ c2‖g‖2P ∈ ∂W (a),

where W is defined in (2.3). Since ∂W (a) is convex, therefore 0 ∈ ∂W (a) which means there exists ξ ∈
∂f(Rx(ap)) such that

〈ξ, 1

βap
Tx→Rx(ap)(p)〉+ c2‖g‖2P = 0.

�

In the finite precision arithmetic, if the length of the interval [ai, bi] is too small, then two function values
f(Rx(aip)) and f(Rx(bip)) are close to each other. Therefore, in practice, Algorithm 6 must be terminated
after finitely many iterations; see [24]. If Algorithm 6 does not find a step length satisfying the Wolfe
conditions, then we select a step length satisfying the Armijo condition.

2.5. Minimization algorithms. Finally, Algorithm 7 is the minimization algorithm for locally Lipschitz
objective functions on Riemannian manifolds.

Theorem 2.19. If f : M → R is a locally Lipschitz function on a complete Riemannian manifold M , and

N = {x : f(x) ≤ f(x1)}

is bounded and the sequence of symmetric matrices {P sk} satisfies the following condition

0 < λ ≤ λmin(P sk) ≤ λmax(P sk) ≤ Λ <∞, (2.9)

for 0 < λ < Λ <∞ and all k, s. Then either Algorithm 7 terminates after a finite number of iterations with
‖gsk‖ = 0, or every accumulation point of the sequence {xk} belongs to the set

X = {x ∈M : 0 ∈ ∂f(x)}.

13

Algorithm 7 A minimization algorithm; xk = Min(f, x1, θε, θδ, ε1, δ1, c1, c2).

1: Require: A Riemannian manifold M , a locally Lipschitz function f : M → R, a retraction R from TM
to M and the injectivity radius ι(M) > 0.

2: Input: A starting point x1 ∈M , c1 ∈ (0, 1), c2 ∈ (c1, 1), θε, θδ ∈ (0, 1), δ1 ∈ (0, 1), ε1 ∈ (0, ι(M)), k = 1
and P1 = I.

3: Step 1 (Set new parameters) s = 1 and xsk = xk, P sk = Pk.
4: Step 2. (Descent direction) (gsk, p

s
k) = Descent(xsk, δk, c1, εk, P

s
k)

5: if ‖gsk‖ = 0, then Stop.
6: end if
7: if ‖gsk‖2 ≤ δk then set εk+1 = εkθε, δk+1 = δkθδ, xk+1 = xsk, Pk+1 = P sk , k = k + 1. Go to Step 1.
8: else

α = Line(xsk, p
s
k, g

s
k, P

s
k , c1, c2)

and construct the next iterate xs+1
k = Rxsk(αpsk) and update P s+1

k . Set s = s+ 1 and go to Step 2.
9: end if

Proof. If the algorithm terminates after finite number of iterations, then xsk is an ε−stationary point of f .
Suppose that the algorithm does not terminate after finitely many iterations. Assume that psk is a descent
direction, since α ≥ εk

‖pk‖ , we have

f(xs+1
k)− f(xsk) ≤ −

c1εk‖gsk‖2P sk
‖pk‖

< 0,

for s = 1, 2, ..., therefore, f(xs+1
k) < f(xsk) for s = 1, 2, Since f is Lipschitz and N is bounded, it follows

that f has a minimum in N . Therefore, f(xsk) is a bounded decreasing sequence in R, so is convergent. Thus

f(xsk)− f(xs+1
k) is convergent to zero and there exists sk such that

f(xsk)− f(xs+1
k) ≤ c1εkδkλ

‖pk‖
,

for all s ≥ sk. Thus

λ‖gsk‖2 ≤ ‖gsk‖2P sk ≤ (
f(xsk)− f(xs+1

k)

c1εk
)‖pk‖ ≤ δkλ, s ≥ sk. (2.10)

Hence after finitely many iterations, there exists sk such that

xk+1 = xskk .

Since M is a complete Riemannian manifold and {xk} ⊂ N is bounded, there exists a subsequence {xki}
converging to a point x∗ ∈M . Since convW

ski
ki

is a subset of ∂εki f(x
ski
ki

), then

‖g̃skiki
‖2
P
si
ki

:= min{‖v‖2
P
si
ki

: v ∈ ∂εki f(x
ski
ki

)} ≤ min{‖v‖2
P
si
ki

: v ∈W ski
ki
} ≤ Λδki .

Hence limki→∞ ‖gki‖ = 0. Note that gki ∈ ∂εki f(x
ski
ki

), hence 0 ∈ ∂f(x∗). �

3. Nonsmooth BFGS algorithms on Riemannian manifolds

In this section we discuss the nonsmooth BFGS methods on Riemannian manifolds. Let f be a smooth
function defined on Rn and Pk be a positive definite matrix which is the approximation of the Hessian of
f . We know that pk = −P−1

k grad f(xk) is a descent direction. The approximation of the Hessian can be
updated by the BFGS method, when the computed step length satisfies in the Wolfe conditions. Indeed we
assume that sk = xk+1 − xk, yk = grad f(xk+1)− grad f(xk) and αk satisfies the Wolfe conditions, then we
have the so-called secant inequality 〈yk, sk〉2 > 0. Therefore, Pk can be updated by the BFGS method as
follows;

Pk+1 := Pk +
yky

T
k

〈sk, yk〉2
− Pksks

T
k Pk

〈sk, Pksk〉2
.

The structure of smooth BFGS algorithm on Riemannian manifolds are given in several papers; see [7,
26, 27]. Note that the classical update formulas for the approximation of the Hessian have no meaning on
Riemannian manifolds. First,

sk := Txk→Rxk (αkpk)(αkpk),

14

yk :=
1

βαkpk
grad f(xk+1)− Txk→Rxk (αkpk)(grad f(xk))

are vectors in the tangent space Txk+1
M . The inner product on tangent spaces is then given by the chosen

Riemannian metric. Furthermore, the dyadic product of a vector with the transpose of another vector, which
results in a matrix in the Euclidean space, is not a naturally defined operation on a Riemannian manifold.
Moreover, while in Euclidean spaces the Hessian can be expressed as a symmetric matrix, on Riemannian
manifolds it can be defined as a symmetric and bilinear form. However, one can define a linear function
Pk : TxkM → TxkM by

D2f(xk)(η, ξ) := 〈η, Pkξ〉, η, ξ ∈ TxkM.

Therefore, the approximation of the Hessian can be updated by the BFGS method as follows;

Pk+1 := P̃k +
yky

[
k

y[ksk
− P̃ksk(P̃ksk)[

(P̃ksk)[sk
,

where P̃k := Txk→Rxk (αkpk) ◦ Pk ◦ Txk←Rxk (αkpk).

Now we assume that f : M → R is a locally Lipschitz function and

g := argmin
v∈convWk

‖v‖P−1 ,

p = −P−1g, where P is a positive definite matrix and convWk is an approximation of ∂εf(x). Let α be
returned by Algorithm 5 and ξ ∈ ∂f(Rx(αp)) be such that 〈ξ, 1

βαp
Tx→Rx(αp)(p)〉 + c2‖g‖2P−1 ≥ 0. Then for

all v ∈ convWk,

〈ξ − βαpTx→Rx(αp)(v),
1

βαp
Tx→Rx(αp)(p)〉 > 0.

This shows that if we update the approximation of the Hessian matrix by the BFGS method as:

Pk+1 := P̃k +
yky

[
k

y[ksk
− P̃ksk(P̃ksk)[

(P̃ksk)[sk
,

where P̃k := Txk→Rxk (αkpk)◦Pk◦Txk←Rxk (αkpk) and sk := Txk→Rxk (αkpk)(αkpk), yk := 1
βαkpk

ξk−Txk→Rxk (αkpk)(gk)

are vectors provided that

〈ξk,
1

βαkpk
Txk→Rxk (αkpk)(pk)〉+ c2‖gk‖2P−1

k

≥ 0,

then the Hessian approximation Pk+1 is symmetric positive definite.
It is worthwhile to mention that to have the global convergence of the minimization algorithm 7, the

sequence of symmetric matrices {P sk} must satisfy the following condition

0 < λ ≤ λmin(P sk) ≤ λmax(P sk) ≤ Λ <∞, (3.1)

for 0 < λ < Λ < ∞ and all k, s. From a theoretical point of view it is difficult to guarantee (3.1); see[24,
page 212]. But we can translate the bounds on the spectrum of P sk into conditions that only involve sk and
yk as follow;

s[kyk

s[ksk
≥ λ, y

[
kyk

y[ksk
≤ Λ.

This technique is used in [24, Theorem 8.5]; see also Algorithm 1 in [32]. It is worthwhile to mention that,
in practice, Algorithm 6 must be terminated after finitely many iterations. But we need to assume that even
if Algorithm 6 does not find a step length satisfying the Wolfe conditions, then we can select a step length
satisfying the Armijo condition and update P s+1

k in Algorithm 8 by identity matrix.

4. Experiments

The oriented bounding box problem [5], which aims to find a minimum volume box containing n given
points in d dimensional space, is used to illustrate the performance of Algorithm 8. Suppose points are given
by a matrix E ∈ Rd×n, where each column represents the coordinate of a point. A cost function of volume
is given by

f : Od → R : O 7→ V (OE) =

d∏
i=1

(ei,max − ei,min),

15

Algorithm 8 A nonsmooth BFGS algorithm on a Riemannian manifold; xk =
subRBFGS(f, x1, θε, θδ, ε1, δ1, c1, c2).

1: Require: A Riemannian manifold M , a locally Lipschitz function f : M → R, a retraction R from TM
to M , the injectivity radius ι(M) > 0 and a vector transport T .

2: Input: A starting point x1 ∈ M , c1 ∈ (0, 1), c2 ∈ (c1, 1), θε, θδ ∈ (0, 1), δ1 ∈ (0, 1), ε1 ∈ (0, ι(M)),

k = 1, P1 = I, a bound 1/Λ > 0 on
y[ksk

y[kyk
and λ on

s[kyk

s[ksk
.

3: Step 1 (Set new parameters) s = 1, xsk = xk and P sk = Pk.

4: Step 2. (Descent direction) (gsk, p
s
k) = Descent(xsk, δk, c1, εk, P

s
k
−1)

5: if ‖gsk‖ = 0 then Stop.
6: end if
7: if ‖gsk‖2 ≤ δk, then set εk+1 = εkθε, δk+1 = δkθδ, xk+1 = xsk, Pk+1 = P sk , k = k + 1. Go to Step 1.
8: else

α = Line(xsk, p
s
k, g

s
k, P

s
k
−1, c1, c2)

and construct the next iterate xs+1
k = Rxsk(αpsk) and define sk := Txsk→Rxsk (αpsk)(αp

s
k), yk := 1

βαps
k

ξk −

Txsk→Rxsk (αpsk)(g
s
k), sk := sk + max(0, 1

Λ −
s[kyk
y[kyk

)yk.

9: if
s[kyk

s[ksk
≥ λ then, Update

P s+1
k := P̃ sk +

yky
[
k

y[ksk
− P̃ sk sk(P̃ sk sk)[

(P̃ sk sk)[sk
.

10: else P s+1
k := I.

11: end if
Set s = s+ 1 and go to Step 2.

12: end if

where Od denotes the d-by-d orthogonal group, ei,max and ei,min denote max and min entries, respectively, of
the i-th row of OE. If there exists more than one entry at any row reaching maximum or minimum values for
a given O, then the cost function f is not differentiable at O. Otherwise, f is differentiable and its gradient
is

grad f(O) = PO(TET),

where T ∈ Rd×n and

i-th row of T =


w

ei,max−ei,min
, the column of ei,max;

− w
ei,max−ei,min

, the column of ei,min;

0, otherwise.

for i = 1, . . . , d, w = f(O), and PO(M) = M −O(OTM +MTO)/2.
The qf retraction is used

RX(ηX) = qf(X + ηX),

where qf(M) denotes the Q factor of the QR decomposition with nonnegative elements on the diagonal of
R. The vector transport by parallelization [17] is isometric and essentially identity. We modify it by the
approach in [16, Section 4.2] and use the resulting vector transport satisfying the locking condition. To the
best of our knowledge, it is unknown how large the injectivity radius for this retraction. But in practice, the
vector transport can be represented by a matrix. Therefore, we always use the inverse of the matrix as the
inverse of the vector transport.

Algorithm 8 is compared with the Riemannian gradient sampling (see [15, Section 7.2] or [13, Algorithm
1]) and the modified Riemannian BFGS method (see [15, Section 7.3]), which is a Riemannian generalization
of [20].

The main difference between the Riemannian gradient sampling (RGS) method, the modified Riemannian
BFGS method, and Algorithm 7 is the search direction. Specifically, the search direction ηk in RGS at xk

16

is computed as follows: i) randomly generate m points in a small enough neighborhood of xk; ii) transport
the gradients at those m points to the tangent space at xk; iii) compute the shortest tangent vector in the
convex hull of the resulting tangent vectors and the gradient at xk; and iv) set ηk to be the shortest vector.
Note that the number of points, m, is required to be larger than the dimension of the domain. The modified
Riemannian BFGS method makes an assumption that the cost function is differentiable at all the iterates. It
follows that the search direction is the same as the Riemannian BFGS method for smooth cost functions [16].
However, the stopping criterion is required to be modified for non-smooth cost functions. Specifically, let Gk
be defined as follows:

• jk = 1, Gk = {gk} if ‖R−1
xk−1

(xk)‖ > ε;

• jk = jk−1 + 1, Gk = {g(k)
k−jk+1, . . . , g

(k)
k−1, g

(k)
k } if ‖R−1

xk−1
(xk)‖ ≤ ε;

• jk = J , Gk = {g(k)
k−J+1, . . . , g

(k)
k−1, g

(k)
k } if ‖R−1

xk−1
(xk)‖ ≤ ε;

where g
(j)
i = Txi→xj (gi), ε > 0 and positive integer J are given parameters. The J also needs to be larger

than the dimension of the domain. The modified Riemannian BFGS method stops if the shortest length
vector in the convex hull of Gk is less than δk.

The tested algorithms stop if one of the following conditions is satisfied:

• the number of iterations reaches 5000;
• the step size is less than the machine epsilon 2.22 ∗ 10−16;
• εk ≤ 10−6 and δk ≤ 10−12.

We say that an algorithm successfully terminates if it is stopped by satisfying the last condition. Note that
an unsuccessfully terminated algorithm does not imply that the last iterate must be not close to a stationary
point. It may also imply that the stopping criterion is not robust.

The following parameters are used for Algorithm 8: ε1 = 10−4, δ1 = 10−8, θε = 10−2, θδ = 10−4, λ = 10−4,
Λ = 104, c1 = 10−4 and c2 = 0.999. The ε and J in the modified Riemannian BFGS method are set to be
10−6 and 2dim, respectively, where dim = d(d − 1)/2 is the dimension of the domain. Multiple values of
the parameter m in RGS are tested and given in the caption of Figures 1 and 2. Initial iterate is given by
orthonormalizing a matrix whose entries are drawn from a standard normal distribution.

The code is written in C++ and is available at http://www.math.fsu.edu/~whuang2/papers/LSALLFRM.
htm. All experiments are performed on a 64 bit Ubuntu platform with 3.6 GHz CPU (Intel Core i7-4790).

The three algorithms are tested with d = 3, 4, . . . 10. For each value of d, we use 100 random runs. Note
that the three algorithms use 100 same random seeds. Figure 1 reports the percentage of successful runs of
each algorithm. The success rate of RGS largely depends on the parameter m. Specifically, the larger m is,
the higher the success rate is. Algorithm 8 always successfully terminates, which means that Algorithm 8 is
more robust than all the other methods.

The average number of function and gradient evaluations of successful runs and the average computational
time of the successful runs are reported in Figure 2. Among the successful tests, the modified Riemannian
BFGS method needs the least number of function and gradient evaluations due to its simple approach
while Algorithm 8 needs the second least. For the bounding box problem, the larger the dimension of the
domain is, the cheaper the function and gradient evaluations are when compared to solving the quadratic
programming problem, i.e., finding the shortest length vector in a convex hull of a set of vectors. Therefore,
as shown in Figure 2, even though the number of function and gradient evaluations are different for big d,
the computational time is not significantly different. However, Algorithm 8 is still always slightly faster than
all the other methods for all the values of d.

In conclusion, the experiments show that the proposed method, Algorithm 8, is more robust and faster
than RGS and the modified Riemannian BFGS method in the sense of success rate and computational time.

5. Acknowledgements

We thank Pierre-Antoine Absil at Université catholique de Louvain for his helpful comments. This paper
presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and Optimization),
funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office.
This work was supported by FNRS under grant PDR T.0173.13.

http://www.math.fsu.edu/~whuang2/papers/LSALLFRM.htm
http://www.math.fsu.edu/~whuang2/papers/LSALLFRM.htm

17

3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1
percentage of success versus d

Algorithm 8
RBFGS
RGS1
RGS2
RGS3

Figure 1. The percentage of successfully runs for each algorithms versus d. RGS1, RGS2,
and RGS3 denote RGS method with m = dim + 1, 2dim, 3dim, respectively, where dim =
d(d− 1)/2.

References

[1] P. A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithm on Matrix Manifolds, Princeton University Press, 2008.
[2] R. L. Adler, J. P. Dedieu, J. Y. Margulies, M. Martens, M. Shub, Newton’s method on Riemannian manifolds and a

geometric model for the human spine, IMA J. Numer. Anal., 22 (2002), pp. 359-390.

[3] D. Azagra, J. Ferrera, F. López-Mesas, Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds, J.
Funct. Anal., 220 (2005), pp. 304-361.

[4] D. Azagra, J. Ferrera, Applications of proximal calculus to fixed point theory on Riemannian manifolds, Nonlinear. Anal.,

67 (2007), pp. 154-174.
[5] P. B. Borckmans, P. A. Absil, Fast oriented bounding box computation using particle swarm optimization, In Proceedings

of the 18th European Symposium on Artificial Neural Network(ESANN), 2010.

[6] G. Dirr, U. Helmke, C. Lageman, Nonsmooth Riemannian optimization with applications to sphere packing and grasping,
In Lagrangian and Hamiltonian Methods for Nonlinear Control 2006: Proceedings from the 3rd IFAC Workshop, Nagoya,

Japan, 2006, Lecture Notes in Control and Information Sciences, Vol. 366, Springer Verlag, Berlin, 2007.

[7] D. Gabay, Minimizing a differentiable function over a differentiable manifold, J. Optim. Theory Appl., 37(1982), pp.
177-219.

[8] P. Grohs, S. Hosseini, ε-subgradient algorithms for locally Lipschitz functions on Riemannian manifolds, Adv. Comput.
Math., 42(2)(2016), pp. 333-360.

[9] P. Grohs, S. Hosseini, Nonsmooth trust region algorithms for locally Lipschitz functions on Riemannian manifolds, IMA

J. Numer. Anal., 36(3)(2016), pp. 1167-1192.
[10] S. Hosseini, M. R. Pouryayevali, Generalized gradients and characterization of epi-Lipschitz sets in Riemannian manifolds,

Nonlinear Anal., 74 (2011), pp. 3884-3895.

[11] S. Hosseini, M. R. Pouryayevali, Euler characterization of epi-Lipschitz subsets of Riemannian manifolds, J. Convex. Anal.,
20 (2013), No. 1, pp. 67-91.

[12] S. Hosseini, M. R. Pouryayevali, On the metric projection onto prox-regular subsets of Riemannian manifolds, Proc. Amer.

Math. Soc., 141 (2013), pp. 233-244.
[13] S. Hosseini, A. Uschmajew, A Riemannian gradient sampling algorithm for nonsmooth optimization on manifolds, Institut

für Numerische Simulation, INS Preprint No. 1607, 2016.

[14] W. Huang, P.-A. Absil, K. Gallivan, A Riemannian BFGS Method for Nonconvex Optimization Problems, Lecture Notes
in Computational Science and Engineering, to appear, 2016.

[15] W. Huang, Optimization algorithms on Riemannian manifolds with applications, Ph.D thesis, Florida State University,

Department of Mathematics, 2014.
[16] W. Huang, K. A. Gallivan, and P.-A. Absil, A Broyden class of quasi-Newton methods for Riemannian optimization, SIAM

J. Optim., 25(3)(2015), pp. 1660-1685.

18

3 4 5 6 7 8 9 10
102

103

104

105 number of function/gradient evaluations versus d

Algorithm 8
RBFGS
RGS1
RGS2
RGS3

3 4 5 6 7 8 9 10
10-2

10-1

100

101

102 computational time versus d

Algorithm 8
RBFGS
RGS1
RGS2
RGS3

Figure 2. Top: an average of 100 runs of the number of function evaluations versus d.
Bottom: an average of 100 runs of the computational time (second) versus d. RGS1, RGS2,
and RGS3 denote RGS method with m = dim + 1, 2dim, 3dim, respectively, where dim =
d(d− 1)/2.

[17] W. Huang, P.-A. Absil, K. A. Gallivan, Intrinsic Representation of Tangent Vector and Vector Transport on Matrix
Manifolds, Numerische Mathematik, DOI:0.1007/s00211-016-0848-4, 2016.

[18] S. Lang, Fundamentals of Differential Geometry, Graduate Texts in Mathematics, Vol. 191, Springer, New York, 1999.
[19] P. Y. Lee, Geometric Optimization for Computer Vision, PhD thesis, Australian National University, 2005.

[20] A. S. Lewis, M. L. Overton, Nonsmooth optimization via quasi-Newton methods, Mathematical Programming, 141(1-2),
(2013), pp. 135-163.

[21] C. Li, B. S. Mordukhovich, J. Wang, J. C. Yao, Weak sharp minima on Riemannian manifolds, SIAM J. Optim., 21(4)

(2011), pp. 1523-1560.

19

[22] N. Mahdavi-Amiri, R. Yousefpour, An effective nonsmooth optimization algorithm for locally Lipschitz functions, J. Optim.
Theory Appl., 155 (2012), pp. 180-195.

[23] R. Mifflin, An algorithm for constrained optimization with semismooth functions, Math. Oper. Res., 2 (1977), pp. 191-207.

[24] J. Nocedal, S. J. Wright,Numerical Optimization, Springer, 1999.
[25] D. Noll, Convergence of non-smooth descent methods using the Kurdyka-Lojasiewicz Inequality., J. Optim. Theory Appl.,

160(2014), pp. 553 -572.
[26] C. Qi, K. A. Gallivan, P.-A. Absil , Riemannian BFGS algorithm with applications, Recent advances in Optimization and

its Applications in Engineering, Springer, 2009.

[27] W. Ring, B. Wirth, Optimization methods on Riemannian manifolds and their application to shape space, SIAM J. Optim.,
22(2) (2012), pp. 596-627.

[28] R. C. Riddell, Minimax problems on Grassmann manifolds. Sums of eigenvalues, Adv. Math., 54 (1984), pp. 107-199.

[29] T. Sakai, Riemannian Geometry, Trans. Math. Monogor. Vol. 149, Amer. Math. Soc. 1992.
[30] S. T. Smith, Optimization techniques on Riemannian manifolds, Fields Institute Communications, 3 (1994), pp. 113-146.

[31] C. Udriste, Convex Functions and Optimization Methods on Riemannian Manifolds, Kluwer Academic Publishers, Dor-

drecht, Netherlands, 1994.
[32] J. Yu, S. V. N. Vishwanathan, S. Günter, N. N. Schraudolph, A quasi-Newton approach to nonsmooth convex optimization

problems in machine learning, J. Mach. Learn. Res., 11 (2010), pp. 1145-1200.

[33] R. Yousefpour, Combination of steepest descent and BFGS methods for nonconvex nonsmooth optimization, Numer. Algo-
rithms., 72 (2016), pp. 57-90.

	1. introduction
	2. Line search algorithms on Riemannian manifolds
	2.1. Step length
	2.2. Descent directions
	2.3. A descent direction algorithm
	2.4. Step length selection algorithms
	2.5. Minimization algorithms

	3. Nonsmooth BFGS algorithms on Riemannian manifolds
	4. Experiments
	5. Acknowledgements
	References

