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Problem Statement

Generalized Lyapunov equation: Given matrix A, M and C, find X
such that
AXMT + MXAT = C (1)

Applications: signal processing, model reduction, and system and
control theory. [Moo03, Ben06]
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Problem Statement

Generalized Lyapunov equation: Given matrix A, M and C, find X
such that
AXMT + MXAT = C (1)

Applications: signal processing, model reduction, and system and
control theory. [Moo03, Ben06]

Problem: We focus on the problem:

e A, M, C € R"™" are symmetric;

e A= 0,M > 0 (positive definite), C = 0 (positive semidefinite);
o A, M are sparse;
"]

medium- to large-scale problems;
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Problem Statement

A=0,M>=0and C =0, A, M, and C are symmetric:

AXM+ MXA—-C =0

@ X is not sparse, even A and M are sparse;

@ How to solve it for large-scale problems?
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Problem Statement

A=0,M>=0and C =0, A, M, and C are symmetric:

AXM+ MXA—-C =0

@ X is not sparse, even A and M are sparse;

@ How to solve it for large-scale problems? Low rank solution
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Problem Statement

A=0,M>=0and C =0, A, M, and C are symmetric:

AXM+ MXA—-C =0

@ X is not sparse, even A and M are sparse;
@ How to solve it for large-scale problems? Low rank solution

@ Reasonable: For low rank C, the solution X has low numerical
rank [Pen00b]
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Existing Methods

A=0,M>=0and C >0, A M, and C are symmetric:

AXM + MXA—-C=0

Unique solution X and X = X7, X = 0 [Pen98] = X = YYT
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Existing Methods

A=0,M>=0and C >0, A M, and C are symmetric:

AXM + MXA—-C=0

Unique solution X and X = X", X = 0 [Pen98] = X = YYT
@ Alternating Direction Implicit Iteration (ADI) or Smith method;
@ Krylov subspace technique;

@ Optimization method;
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Existing Methods

A=0,M>=0and C >0, A M, and C are symmetric:

AXM + MXA—-C=0

Unique solution X and X = X", X = 0 [Pen98] = X = YYT
@ Alternating Direction Implicit Iteration (ADI) or Smith method;
@ Krylov subspace technique;

Reformulate well-known iterative method to a low-rank setting. Work on
the factor Y of X = YY'T.
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Existing Methods

A=0,M>=0and C >0, A M, and C are symmetric:

AXM + MXA—-C=0

Unique solution X and X = X", X = 0 [Pen98] = X = YYT
@ Alternating Direction Implicit Iteration (ADI) or Smith method;
@ Krylov subspace technique;

@ Optimization method,;
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Problem Reformulation [VV10]

@ Consider a cost function on the set of symmetric matrices:
o Cost function: F :S"™" — R : X — trace(XAXM) — trace(XC);

o Gradient: AXM + MXA — C;
e The critical point is unique [Pen98].

o The minimizer is the solution.

[VV10]: B. Vandereycken and S. Vandewalle, A Riemannian optimization approach for computing
low-rank solutions of Lyapunov equations, SIAM Journal on Matrix Analysis and Applications,

31(5):2553-2579, 2010.
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Problem Reformulation [VV10]

@ Consider a cost function on the set of symmetric matrices:
o Cost function: F :S"™" — R : X — trace(XAXM) — trace(XC);

o Gradient: AXM + MXA — C;
e The critical point is unique [Pen98].
o The minimizer is the solution.

@ Add low-rank constraints by fixing the rank to be r:
o Cost function: f:S}*" — R : X — trace(XAXM) — trace(XC);

o Gradient: Pp gmxin(AXM + MXA — C);

o Minimizer can be viewed as a low-rank approximation of the solution;

[VV10]: B. Vandereycken and S. Vandewalle, A Riemannian optimization approach for computing
low-rank solutions of Lyapunov equations, SIAM Journal on Matrix Analysis and Applications,

31(5):2553-2579, 2010.
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Existing Riemannian Optimization technique

Optimization problem on the symmetric positive semidefinite with rank r

min f(X) = trace( XAXM) — trace(XC)
Xespxn

@ Ingredients for Riemannian optimization;
@ Trust-region Newton method

@ Preconditioner

Riemannian optimization for Generalized Lyapunov Equations 6



Ingredients for Riemannian optimization

o Tangent space at X = YY T is

o 2S NT|[YT
ware (i v ][

={YZT +2zy" | ZeR™};

:| | Se Sr><r7 N e R(nr)xr}
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Ingredients for Riemannian optimization

o Tangent space at X = YY T is {YZT +ZY T | Z e R™"};
@ Riemannian metric:
gx(nx,Ex) = trace(ngéx).
for any nx,&x € Tx S7*";
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Ingredients for Riemannian optimization

o Tangent space at X = YY T is {YZT +ZY T | Z e R™"};
e Riemannian metric: gx(nx,&x) = trace(néx);
@ Retraction:

Rx (11x) = Pgpxn(X 4 11x),

where Pgxn(Z) = 3y oivivi|, Z=VEV, V =[v,..., v,
¥ = diag(o1,...,0p) and 01 > 02> ... > 0, > 0.
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Ingredients for Riemannian optimization

Tangent space at X = YY T is {YZT + ZYT | Z e R™"};

e Riemannian metric: gx(nx,&x) = trace(néx);

Retraction: Rx(nx) = Pgrxn(X + 1x);

@ Riemannian gradient:
grad f(X) = Py goxn(AXM + MXA — C),

where P, coxn(Z) = PyZPy + Py ZPy + PyZPy, Py = | — Py and
Py = Y(YTY)1yT;
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Ingredients for Riemannian optimization

Tangent space at X = YY T is {YZT + ZYT | Z e R™"};

e Riemannian metric: gx(nx,&x) = trace(néx);

Retraction: Rx(nx) = Pgrxn(X + 1x);

o Riemannian gradient: grad f(X) = Py coxn(AXM + MXA — C);

@ Action of the Riemannian Hessian:

Hess f(X)[nx] =Py, g (AnxM + MnxA)
+ Py gpor (D P spxn[nx](AXM + MXA — C))
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Riemannian Trust-region Newton method

1: for k=0,1,2,... do
2. Let mi(n) = F(Xk) + gx, (grad £ (Xk),n) + 38x, (Hess f(Xi)[n], n);
3:  Obtain 1 by approximately solving minneTXk 77 |l <A my(n);
f(Xi)—f(Rx, (1x)) .

mi(0)—my(mk) '
Set X411 = Rx,(nk) if pk is sufficient large, Otherwise Xii1 = Xi;

4
b:
6:  Set Apy1 = 2Ay if py is sufficient large;
7
8

Compute py =

o Set Ay = Ay /4 if pi is small;
: end for

@ Build a local quadratic model,

@ Solve the local model approximately by truncated CG;
@ Accept the candidate if the local model is good enough;
@ Update the radius of the trust region;
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Riemannian Trust-region Newton method

1: for k=0,1,2,... do
2 Let my(n) = F(Xk) + gx, (grad f(X«), n) + 38x, (Hess f(X)[n],n);
3:  Obtain 7, by approximately solving minneTXk 77 |l <A my(n);
f(Xi)—f(Rx, (1x)) .

mi(0)—my(mk) '
Set X411 = Rx,(nk) if pk is sufficient large, Otherwise Xii1 = Xi;

4
b:
6:  Set Apy1 = 2Ay if py is sufficient large;
7
8

Compute py =

o Set Ay = Ay /4 if pi is small;
: end for

@ Build a local quadratic model,

@ Solve the local model approximately by truncated CG;
@ Accept the candidate if the local model is good enough;
@ Update the radius of the trust region;

(1) RTR-Newton converges quadratically locally; (2) Solving the local
model is expensive.
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Preconditioner

The action of the Riemannian Hessian is

Hess f(X)[nx] =Pr, gpxa(Anx M + Mnx A)
+ Prygper (D Pry s [nx](AXM + MXA — C))
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Preconditioner

The action of the Riemannian Hessian is
Hess f(X)[nx] =Py, goen(Anx M + Mnx A)
+ Py grn (D Pr oen [1x])(AXM + MXA — C))

@ Preconditioner for the first term in the Riemannian Hessian: for any
Ex € Tx SI*", find nx such that
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Preconditioner

The action of the Riemannian Hessian is

Hess f(X)[nx] =Pr, gpxa(Anx M + Mnx A)
+ Prygper (D Pry s [nx](AXM + MXA — C))

@ Preconditioner for the first term in the Riemannian Hessian: for any
Ex € Tx SI*", find nx such that

'DTX San(Aan + M77XA) = fx (2)
@ Is equation (2) solvable? Yes, it can be written as

PTX S?XN(A ® M + M ® A)PTX SanVeC('T]X) = VeC(fX)7
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Preconditioner

Preconditioner:

Pr smxn(A®@ M+ M ® A)Pr cnxnvec(nx) = vec(§x)

Existing Preconditioner in [VV10]

@ The preconditioner need be solved in O(nr€) with a reasonable
constant c;
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Preconditioner

Preconditioner:

Pr smxn(A®@ M+ M ® A)Pr cnxnvec(nx) = vec(§x)

Existing Preconditioner in [VV10]

@ The preconditioner need be solved in O(nr€) with a reasonable
constant c;
@ The existing one
e Assumption: solve (A+ Al)x = b in O(n)
e Only for M = I;
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@ Optimization formulation on quotient manifold;

A Riemannian Newton-tCG method based on line search;

New preconditioners considering M # [;

Increasing rank method;
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Our Work: Optimization on Quotient Manifold

min f(X) = trace(XAXM) — trace(XC)
Xespr"

Any X € S7*", there exists Y € R7*" such that X = YYT:
For any O € O,, Y = YO also satisfies X = \N’\N/T;

Define equivalence class: [Y]={YO | 0 € O,};

Quotient manifold R?*"/O, = {[Y] | Y € RI*'};

Map 5 :RI*7/O, — SI*" . [Y] — YY* is a diffeomorphism;
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Our Work: Optimization on Quotient Manifold

min f(X) = trace(XAXM) — trace(XC) (3)
Xespr"

Any X € S7*", there exists Y € R7*" such that X = YYT:
For any O € O,, Y = YO also satisfies X = \N’\N/T;

Define equivalence class: [Y]={YO | 0 € O,};

Quotient manifold R?*"/O, = {[Y] | Y € RI*'};

Map 5 :RI*7/O, — SI*" . [Y] — YY* is a diffeomorphism;

Optimization on quotient manifold:

—  min f([Y]) = trace(Y*AYY*MY) — trace(Y*CY)  (4)
[Y]IERL*" /O,
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Our Work: Optimization on Quotient Manifold

min f(X) = trace(XAXM) — trace(XC)
Xespr"

Any X € S7*", there exists Y € R7*" such that X = YYT:
For any O € O,, Y = YO also satisfies X = \N’\N/T;

Define equivalence class: [Y]={YO | 0 € O,};

Quotient manifold R?*"/O, = {[Y] | Y € RI*'};

Map 5 :RI*7/O, — SI*" . [Y] — YY* is a diffeomorphism;

Optimization on quotient manifold:

—  min f([Y]) = trace(Y*AYY*MY) — trace(Y*CY)
[Y]IERL*" /O,

Problem (3) and Problem (4) are equivalent.
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Our Work: Optimization on Quotient Manifold

Three metrics on the total space RI*" [ZHVZ23]:

gy(ny,&y) = 2trace(Y Tny Y &y + YT Y1l &y) + trace (YTY(ny)T(£Y)) ,
g2 (ny,&y) = trace(YT Yny&y),
gy (ny, &y) = trace(nyEy),

where nY = Y (YTY)72 YTy =l Y(YTY)™1) /2 and
& =Y((YTY)YTey - Y(yTy)h)/2

@ Metrics above yield three Riemannian metrics on R?*"/O,;
e gl is equivalent to the Euclidean metric on S7*";

e g is the Euclidean metric on the total space;
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Our Work: Optimization on Quotient Manifold

Riemannian gradient and Riemannian Hessian depend on Riemannian metric

Choose gy, for example:

@ Riemannian gradient:
(rad F([Y])r, = (1 = 3 Y(YTY) Y T)VAOY )Y (Y TY) !
where Vh(X) = AXM + MXA — C;
@ The action of the Riemannian Hessian:
(HessF([YDnpvi])ry =(1 — %PY)V%(WT)[YUTTY +an YTIY (YY)
+ (1= Py)VA(YYT)(I = Py, (YY)
where V2h(X)[V] = AVM + MVA and Py = Y(YTY) 1Y T,
e Riemannian gradient and Hessian can be derived for g\ and g2;
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Our Work: Optimization on Quotient Manifold

min f(X) = trace(XAXM) — trace(XC)
Xesx”

min  f([Y]) =trace(Y*AYY*MY) — trace(Y*CY)
[Y]ERL" /O,

Preferences to quotient manifold:
@ More Riemannian metric;
o Lower complexity retraction: Rpyj(ny)) = [Y +mp,];

@ Easier derivation for new preconditioners;
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Our Work: A Riemannian Newton-tCG method

Consider the Riemannian optimization problem in the form of
min f(x) s.t. x € M
X

where M is a finite dimension Riemannian manifold, and f : M — R is a
real-valued function.
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Our Work: A Riemannian Newton-tCG method

Riemannian Newton-tCG

@ Approximate

Hessf (xk)[nk] = —gradf (xx) for
Nk -

@ Find a step-size a, such that

— h/ (0) or
) = 0 = may, gz
hi(a) — he(0) < x2h)(0),

where hi(t) = f(Re(tnk)).

Euclidean Newton-tCG

@ Approximate
V2 ()] = =V (x) for pr.

o Find a step-size a such that

h ( ) < hk( )+ Clotkhk(()), and
hi(cu) = c2hi(0),

where hy(t) = f(xk + tpk).
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Our Work: A Riemannian Newton-tCG method

Riemannian Newton-tCG Euclidean Newton-tCG

@ Approximate
Hessf (x)[nk] = —gradf(xx) for V2f(xx)[pk] = —VF(xk) for px.
Nk -

@ Find a step-size a, such that

@ Approximate

o Find a step-size a such that

hi(cu) — he(0) < h/ hi(0)® or hi(au) < hi(0) + craichi(0), and

T hi(ou) > c2hi(0),
hi(a) — he(0) < x2h)(0),

where hy(t) = f(xk + tpk).
where hi(t) = f(Re(tnk)).

@ Truncated conjugate gradient for Approximating Newton equation in
both methods.
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Our Work: A Riemannian Newton-tCG method

Riemannian Newton-tCG Euclidean Newton-tCG

@ Approximate

Hessf (xk)[nk] = —gradf (xx) for
Nk -

@ Find a step-size a, such that

@ Approximate
V2 ()] = =V (x) for pr.

@ Find a step-size a, such that
H, (0)? ,
hk(ak) o hk(O) < X1 k(o) Cor h ( ) < hk( )+ Cl()ékhk(O), and

7[> hi(ak) > cahi(0),
hic(a) — hi(0) < x2hi(0),

where hi(t) = f(xk + tp).
where hi(t) = f(Re(tnk)).

@ Truncated conjugate gradient for Approximating Newton equation in
both methods.

@ BN conditions [BN89] for RNewton-tCG and the Wolfe conditions
for Newton-tCG.
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Our Work: A Riemannian Newton-tCG method

Riemannian Newton-tCG Euclidean Newton-tCG
@ Approximate @ Approximate
Hessf (xx)[nk] = —gradf (xx) for V2f(xx)[pk] = —VF(xk) for px.
k-
o Find a step-size « such that e Find a step-size a such that
he(ak) — he(0) < — ,1h2(0)2, or hic(oue) < hi(0) + crauchi(0), and
72 h. (o) > e (0),

hk((l’k) - hk(o) < X2h:<(0)7 here h ( ) f( +tp )
where hy Xk k
where hi(t) = f(Re(tnk)).

@ Truncated conjugate gradient for Approximating Newton equation in
both methods.

@ BN conditions [BN89] for RNewton-tCG and the Wolfe conditions
for Newton-tCG.

o If f is radially L-C*, then the Wolfe conditions, Armijo-Goldstein
conditions imply the BN conditions [HAG18].
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Our Work: A Riemannian Newton-tCG method

Assumption 1. f is twice continuously differentiable.
Assumption 2. For all starting xg € M, the level set
L(x) == {x € M : f(x) < f(xo)} is bounded.

Theorem

Let {x,} denote the sequence generated by Riemannian Newton-tCG
method. Then it holds that

lim_[lgradf (x,)]| = 0.

If x* is an accumulation point of the sequence {xi} and Hessf(x*) is
positive definite, then x;, — x*.

Riemannian optimization for Generalized Lyapunov Equations 22



Our Work: A Riemannian Newton-tCG method

Assumption 1. f is twice continuously differentiable.
Assumption 2. For all starting xo € M the level set
L(xp) :={x € M : f(x) < f(x0)} is bounded.
Assumption 3. f is radially L-Lipschitz continuous.

Theorem

Let {xx} be the sequence generated by Riemannian Newton-tCG method.
Suppose that {xx} converges to x* at which Hessf(x*) is positive
definite and Hessf(x) is continuous in a neighborhood of x*. Then

1. the stepsize ax = 1 is acceptable for sufficiently large k; and

2. the convergence rate is superlinear.
Moreover, suppose that Hessf satisfies that )
|[Hessf (xx) — Hessty, (04, )|l < Billgradf(xx)||, f =fo R: TM — R,
with a positive constant 31. and that there exist o > 0, uy > 0 and
p2 > 0 such that for all x € B,,(x*) and all . € B,,(0y), it holds that
[[Hessfy(nx) — Hessfi(0x)l| < B2l|nx||- Then,

3. the convergence rate is 1 + min(1, t).
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Our Work: New preconditioners

Consider gy as an example

Newton equation:
Hess F([Y])Inv)] = &v) =
(1= POV ROV YA, i, YTV (YT V)
(1= Py)VA(YYT)I = Py)nr, (YTY) P =&,

where 14, &, are in the horizontal space at Y, Hy.

@ Preconditioner: solve for i, € Hy in

1 _ _
(- 5Y(YTY) YYOV2h(YY )Yl + 00, YTIY(YTY) T =&,
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Our Work: New preconditioners

Preconditioner:

(1= YY) YR IR, o, YTV Y) =, (9)

o Key idea: for any ny € TyR}*", ny can be decomposed into
ny =YS+ YK

where S € S¥™ and K € RO=*7 ' YTMY, =0 and
YL Y, =t

@ Assumption: solve (A+ AM)x = b in O(n).

@ Using such decomposition for 77y, one can solve for n¢, in O(nr€)
with a constant c.
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Our Work: Increasing Rank M

@ Use Riemannian Newton-tCG method, if the rank is known;
@ Use increasing rank technique if rank is unknown;
e Used in [VV10];

Algorithm 3 An Increasing Rank Riemannian Method for Lyapunov Equations (IRRLyap)

Input: minimum rank ppn; maximum rank ppay; rank increment pinc; initial iterate Y;;‘:al S
R}*Pmin; tolerance sequence of inner iteration {7, : p € {Pmin, Pmin + Pincs Pmin +2Pinc - - - » Pmax } 13
residual tolerance T; _

Output: low-rank approximation Y;

1: for P = Pmins Pmin + Pincs Pmin + 2Pinc; - - - , Pmax do
2:  Invoke an optimization algorithm, such as Algorithm 1, to approximately solve Problem
(3.2) with the initial iterate (Y"%e!) until the last iterate m(Y}) satisfies || grad f(m(¥,))| <

Tpllgrad f (m (Y;M)

3:  Compute relative residual of Y}: 7, < ||AY;,Y;]TM + MYPYPTA —C|r/IClF;

4:  if 7, <7 then

5: Return Y < Yp;

6: else

7 Calculate the next initial iterate Yz;il;fl by performing one step of steepest descent on

[Yp Unxpmc]§
8: end if
9: end for
10: Return ¥ « Y,

max ?
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Numerical Experiments

@ Influence of Riemannian metrics

@ Riemannian Newton-tCG versus Riemannian trust region
Newton-tCG

@ Comparisons with existing methods
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Numerical Experiments

Influence of Riemannian metrics

Random data: Stopping criterion ||gradf(xx)||/|lgradf(xo)| < 10~8

n = 500,p =2 n = 1000,p = 2

RNewton non-preconditioner preconditioner non-preconditioner preconditioner

metric 1|metric 2|metric 3|metric 1|metric 2|metric 3|metric 1|metric 2|metric 3|metric 1|/metric 2{metric 3
success |20 20 20 20 20 20 20 20 20 20 20 20
iter 43 71 45 21 26 21 43 65 40 18 29 19
nf 53 84 54 24 29 25 52 79 48 21 34 22
ng 44 72 46 22 27 22 44 66 41 19 30 20
nH 2361 2140 3576 57 339 206 2611 2307 3515 46 413 219
time 3.56 3.28 5.27 1.21 7.15 4.37 1.351 1.20; 1.791 5.09 4.161 2.181
gfgfo 3.00_9 [3.97_9 |4.12_9 [2.11_9 [4.50_9 [3.39_¢ [3.40_9 |2.48_9 |4.39_¢ [1.41_g |4.64_9 [4.05_9

@ iter: number of iterations

@ nf: number of evaluations of cost function

@ ng: number of evaluations of norm of gradient

@ nH: number of evaluations of action of Hessian

@ time: running time

o gfgf: [lgradf (x| /Ilgradf (xo)]|.

The performance under the first metric is the best among three metrics.
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Numerical Experiments

Influence of Riemannian metrics

The finite difference discretized 2D poisson problem on the square

n = 4000,p =3 n = 40000,p = 3
RNewton non-preconditioner preconditioner non-preconditioner preconditioner
metric 1|metric 2|metric 3|metric 1|metric 2|metric 3 |metric 1|metric 2|metric 3| metric 1|metric 2|metric 3

success |20 20 20 20 20 20 20 20 18 20 20 20

iter 13 41 53 2 8 6 10 35 63 1 7 5

nf 15 49 67 3 9 7 12 43 80 2 8 6

ng 14 42 54 3 9 7 11 36 64 2 8 6

nH 723 602 287 2 22 9 550 536 314 1 16 6

time 1.07 9.50_1 (4.24_; |1.75_2 |1.70_1 |6.43_2 |7.96 7.67 3.94 6.98 2 (9.89_1 |[3.33_1
gfgfo 8.03—9 |8.00_9 |7.78_9 |7.04_9 [6.97_9 |443_9 [6.30_9 |7.32_9 [4.53_9 |1.02_10 |3.65—9 [2.56_9

iter: number of iterations

nf: number of evaluations of cost function

nH: number of evaluations of action of Hessian

°
°
@ ng: number of evaluations of norm of gradient
°
@ time: running time

°

gfgf0: [[gradf (x)ll/[lgradf (xo)||.
The performance under the first metric is the best among three metrics.
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Numerical Experiments

RNewton-tCG versus RTRNewton-tCG

Riemannian metric gi

e n=50% r = 10; Stop if || grad f(x;)||/| grad f(xo)|| < 1071°;

o A: the negative stiffness matrix of PDE Vu(x,y) = f on unit
square Q and u = 0 on 9Q (Lyapack [Pen00a));

e M: diagonal matrix;

e C: rank one matrix bbT with entries of b from standard normal

distribution;
Table: M =1
No precon.  precon. [VV10]  New precon.
iter 89 48 47
RTRNewton | — 439 57 54
iter 21 14 14
RNewton =5 328 2 %5
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Numerical Experiments
RNewton-tCG versus RTRNewton-tCG
Riemannian metric gi

e n=50% r = 10; Stop if || grad f(x;)||/| grad f(xo)|| < 1071°;

o A: the negative stiffness matrix of PDE Vu(x,y) = f on unit
square Q and u = 0 on 9Q (Lyapack [Pen00a));

e M: diagonal matrix;

e C: rank one matrix bbT with entries of b from standard normal
distribution;

Table: M = diag([rand(n — 1,1); 0] + 0.1)

No precon. precon. [VVI(Q] New precon.
iter 48 57 49
RTRNewton | — 398 114 84
iter 23 33 19
RNewton =5 324 95 26
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Numerical Experiments

RNewton-tCG versus RTRNewton-tCG

Riemannian metric gy

o A, M and C; from semidiscretization of a steel rail cooling
problem [Pen06];

@ Coarse discretization: n = 821; r = 20; Stop if
| grad £ (x;) || /|| grad f(xo)|| < 107,

0 200 400 600 800 0 200 400 600 800

nz = 5395 nz = 5405
No precon. precon. [VVI(Q] New precon.
iter 1476 68 83
RTRNewton —p 3838 155 114
iter 260 47 21
RNewton =5 1160 129 51
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Numerical Experiments

RNewton-tCG versus RTRNewton-tCG

Riemannian metric gy

o A, M and C; from semidiscretization of a steel rail cooling
problem [Pen06];

@ Dense discretization: n = 3113; r = 20; Stop if
| grad £ (x;) || /|| grad f(xo)|| < 107,

3000 - . N 3000 s . )
0 1000 2000 3000 0 1000 2000 3000
nz = 21069 nz = 21113
No precon. precon. [VV10] New precon.

iter 2000 79 79

RTRNewton ' — 1 5042 105 127
iter 320 60 30

RNewton  — g 2015 267 o1
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Numerical Experiments

Comparisons with existing methods

A, M and C from semidiscretization of a steel rail cooling
problem [BS05, SB04] with n = 1357.

102 T T T T T
-e-|RRLyap-RTRNewton
o —-IRRLyap-RNewton
10 K-PIK
—+—mess_lradi
_ 102k —=best low rank
3
B 104k
9_.)
o 2
_(% 10 E \{,
°
10—8 L
10—10 L
-12 I I I 1 L
10 5 10 15 20 25 30 35
rank

@ K-PIK is based on Krylov subspace technique.

@ mess_lradi is based on ADI.

@ best low rank is given by the truncation of the first p singular values
for the exact solution.
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Numerical Experiments

Comparisons with existing methods

A, M and C from semidiscretization of a steel rail cooling
problem [BS05, SB04] with n = 5177, 20209, 79841.

Table 3: Comparison for the simplified RAIL benchmark with existing methods. “rank”, “time”,
“rel_res” and “numSys” denote the rank of the approximation, running time, the relative residual
of the approximation and the number of solving shift systems (4 + AM)X = B for X with given
A, A\, M and B. The subscript —k indicates a scale of 10~%.

rank times(s.) rel res numSys |rank times(s.) rel res numSys|rank times(s.) rel res numSys
n = 5177 n = 20209 n = 79841
K-PIK 63 341 1.46_¢ 64 91 444 2.65_¢ 92 122 5.062 4.39_¢ 123
mess_ Iradi 32 1.57-1 1477 64 37 865-1 5.90-7 74 38 3.85 6.12_g 76
RLyap 22 142 4.92_7 15784 |27  1.063 2.25_7 23060 (27 6.093 8.68_7 29481
IRRLyap(RNewton) |22  5.70 6.94_7 588 27 4.29; 3.38_7 841 27 2.562 5.10_7 1100
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@ Briefly introduced the generalized Lyapunov equation;
@ Review the existing Riemannian method;

@ Our approach

o Optimization over a quotient manifold with three metrics

o A Riemannian Newton-tCG method with convergence analysis
o New preconditioner with M # [;

o Increasing rank method;

For more details, see
Zhenwei Huang, Wen Huang. An increasing rank Riemannian method for
generalized Lyapunov equations. arXiv.2308.00213, 2023.
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