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Problem Statement

Generalized Lyapunov equation: Given matrix A, M and C , find X
such that

AXMT + MXAT = C (1)

Applications: signal processing, model reduction, and system and
control theory. [Moo03, Ben06]

Problem: We focus on the problem:

A,M,C ∈ Rn×n are symmetric;

A � 0,M � 0 (positive definite), C � 0 (positive semidefinite);

A,M are sparse;

medium- to large-scale problems;
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Problem Statement

A � 0,M � 0 and C � 0, A, M, and C are symmetric:

AXM + MXA− C = 0

X is not sparse, even A and M are sparse;

How to solve it for large-scale problems?

Low rank solution

Reasonable: For low rank C , the solution X has low numerical
rank [Pen00b]
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Existing Methods

A � 0,M � 0 and C � 0, A, M, and C are symmetric:

AXM + MXA− C = 0

Unique solution X and X = XT ,X � 0 [Pen98] =⇒ X = YY T

Alternating Direction Implicit Iteration (ADI) or Smith method;

Krylov subspace technique;

Optimization method;

Reformulate well-known iterative method to a low-rank setting. Work on
the factor Y of X = YY T .
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Problem Reformulation [VV10]

Consider a cost function on the set of symmetric matrices:

Cost function: F : Sn×n → R : X 7→ trace(XAXM)− trace(XC);

Gradient: AXM +MXA− C ;

The critical point is unique [Pen98].

The minimizer is the solution.

Add low-rank constraints by fixing the rank to be r :

Cost function: f : Sn×n
r → R : X 7→ trace(XAXM)− trace(XC);

Gradient: P
TX Sn×n

r
(AXM +MXA− C);

Minimizer can be viewed as a low-rank approximation of the solution;

[VV10]: B. Vandereycken and S. Vandewalle, A Riemannian optimization approach for computing

low-rank solutions of Lyapunov equations, SIAM Journal on Matrix Analysis and Applications,

31(5):2553-2579, 2010.
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Existing Riemannian Optimization technique

Optimization problem on the symmetric positive semidefinite with rank r

min
X∈Sn×n

r

f (X ) = trace(XAXM)− trace(XC )

Ingredients for Riemannian optimization;

Trust-region Newton method

Preconditioner
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Ingredients for Riemannian optimization

Tangent space at X = YY T is

TX Sn×nr =

{[
Y Y⊥

] [2S NT

N 0

] [
Y T

Y T
⊥

]
| S ∈ Sr×r ,N ∈ R(n−r)×r

}
=
{
YZT + ZY T | Z ∈ Rn×r} ;
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Ingredients for Riemannian optimization

Tangent space at X = YY T is
{
YZT + ZY T | Z ∈ Rn×r};

Riemannian metric:

gX (ηX , ξX ) = trace(ηTX ξX ).

for any ηX , ξX ∈ TX Sn×nr ;
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Ingredients for Riemannian optimization

Tangent space at X = YY T is
{
YZT + ZY T | Z ∈ Rn×r};

Riemannian metric: gX (ηX , ξX ) = trace(ηTX ξX );

Retraction:

RX (ηX ) = PSn×n
r

(X + ηX ),

where PSn×n
r

(Z ) =
∑r

i=1 σiviv
T
i , Z = VΣV , V = [v1, . . . , vn],

Σ = diag(σ1, . . . , σn) and σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0.
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Ingredients for Riemannian optimization

Tangent space at X = YY T is
{
YZT + ZY T | Z ∈ Rn×r};

Riemannian metric: gX (ηX , ξX ) = trace(ηTX ξX );

Retraction: RX (ηX ) = PSn×n
r

(X + ηX );

Riemannian gradient:

grad f (X ) = PTX Sn×n
r

(AXM + MXA− C ),

where PTX Sn×n
r

(Z ) = PYZPY + P⊥Y ZPY + PYZP
⊥
Y , P⊥Y = I − PY and

PY = Y (Y TY )−1Y T ;
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Ingredients for Riemannian optimization

Tangent space at X = YY T is
{
YZT + ZY T | Z ∈ Rn×r};

Riemannian metric: gX (ηX , ξX ) = trace(ηTX ξX );

Retraction: RX (ηX ) = PSn×n
r

(X + ηX );

Riemannian gradient: grad f (X ) = PTX Sn×n
r

(AXM + MXA− C );

Action of the Riemannian Hessian:

Hess f (X )[ηX ] =PTX Sn×n
r

(AηXM + MηXA)

+ PTX Sn×n
r

(
DPTX Sn×n

r
[ηX ](AXM + MXA− C )

)
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Riemannian Trust-region Newton method

1: for k = 0, 1, 2, . . . do
2: Let mk(η) = f (Xk) + gXk

(grad f (Xk), η) + 1
2gXk

(Hess f (Xk)[η], η);
3: Obtain ηk by approximately solving minη∈TXk

Sn×n
r ,‖η‖≤∆k

mk(η);

4: Compute ρk =
f (Xk )−f (RXk

(ηk ))

mk (0)−mk (ηk ) ;

5: Set Xk+1 = RXk
(ηk) if ρk is sufficient large, Otherwise Xk+1 = Xk ;

6: Set ∆k+1 = 2∆k if ρk is sufficient large;
7: Set ∆k+1 = ∆k/4 if ρk is small;
8: end for

Build a local quadratic model;

Solve the local model approximately by truncated CG;

Accept the candidate if the local model is good enough;

Update the radius of the trust region;

(1) RTR-Newton converges quadratically locally; (2) Solving the local
model is expensive.
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Preconditioner

The action of the Riemannian Hessian is

Hess f (X )[ηX ] =PTX Sn×n
r

(AηXM + MηXA)

+ PTX Sn×n
r

(
DPTX Sn×n

r
[ηX ](AXM + MXA− C )

)

Preconditioner for the first term in the Riemannian Hessian: for any
ξX ∈ TX Sn×nr , find ηX such that

PTX Sn×n
r

(AηXM + MηXA) = ξX (2)

Is equation (2) solvable? Yes, it can be written as

PTX Sn×n
r

(A⊗M + M ⊗ A)PTX Sn×n
r

vec(ηX ) = vec(ξX ),
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Preconditioner

Preconditioner:

PTX Sn×n
r

(A⊗M + M ⊗ A)PTX Sn×n
r

vec(ηX ) = vec(ξX )

Existing Preconditioner in [VV10]

The preconditioner need be solved in O(nr c) with a reasonable
constant c ;

The existing one

Assumption: solve (A+ λI )x = b in O(n)
Only for M = I ;
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Our Work

Optimization formulation on quotient manifold;

A Riemannian Newton-tCG method based on line search;

New preconditioners considering M 6= I ;

Increasing rank method;
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Our Work: Optimization on Quotient Manifold

min
X∈Sn×n

r

f (X ) = trace(XAXM)− trace(XC ) (3)

Any X ∈ Sn×nr , there exists Y ∈ Rn×r
∗ such that X = YY T ;

For any O ∈ Or , Ỹ = YO also satisfies X = Ỹ Ỹ T ;

Define equivalence class: [Y ] = {YO | O ∈ Or};
Quotient manifold Rn×r

∗ /Or = {[Y ] | Y ∈ Rn×r
∗ };

Map β : Rn×r
∗ /Or → Sn×nr : [Y ] 7→ YY ∗ is a diffeomorphism;

Optimization on quotient manifold:

=⇒ min
[Y ]∈Rn×r

∗ /Or

f̃ ([Y ]) = trace(Y ∗AYY ∗MY )− trace(Y ∗CY ) (4)

Problem (3) and Problem (4) are equivalent.
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Our Work: Optimization on Quotient Manifold

Three metrics on the total space Rn×r
∗ [ZHVZ23]:

g1
Y (ηY , ξY ) = 2trace(Y TηYY

T ξY + Y TY ηTY ξY ) + trace
(
Y TY (ηVY )T (ξVY )

)
,

g2
Y (ηY , ξY ) = trace(Y TY ηTY ξY ),

g3
Y (ηY , ξY ) = trace(ηTY ξY ),

where ηVY = Y
(
(Y TY )−1Y TηY − ηTYY (Y TY )−1

)
/2 and

ξVY = Y ((Y TY )−1Y T ξY− ξTY Y (Y TY )−1)/2.

Metrics above yield three Riemannian metrics on Rn×r
∗ /Or ;

g1
Y is equivalent to the Euclidean metric on Sn×nr ;

g3
Y is the Euclidean metric on the total space;
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Our Work: Optimization on Quotient Manifold

Riemannian gradient and Riemannian Hessian depend on Riemannian metric

Choose g1
Y for example:

Riemannian gradient:

(gradf̃ ([Y ]))↑Y = (I − 1

2
Y (Y TY )−1Y T )∇h(YY T )Y (Y TY )−1

where ∇h(X ) = AXM + MXA− C ;

The action of the Riemannian Hessian:

(Hessf̃ ([Y ])[η[Y ]])↑Y =(1− 1

2
PY )∇2h(YY T )[Y ηT↑Y + η↑YY

T ]Y (Y TY )−1

+ (I − PY )∇h(YY T )(I − PY )η↑Y (Y TY )−1

where ∇2h(X )[V ] = AVM + MVA and PY = Y (Y TY )−1Y T .

Riemannian gradient and Hessian can be derived for g1
Y and g2

Y ;
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Our Work: Optimization on Quotient Manifold

min
X∈Sn×n

r

f (X ) = trace(XAXM)− trace(XC )

min
[Y ]∈Rn×r

∗ /Or

f̃ ([Y ]) = trace(Y ∗AYY ∗MY )− trace(Y ∗CY )

Preferences to quotient manifold:

More Riemannian metric;

Lower complexity retraction: R[Y ](η[Y ]) = [Y + η↑Y ];

Easier derivation for new preconditioners;
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Our Work: A Riemannian Newton-tCG method

Consider the Riemannian optimization problem in the form of

min
x

f (x) s.t. x ∈M

where M is a finite dimension Riemannian manifold, and f :M→ R is a
real-valued function.
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Our Work: A Riemannian Newton-tCG method

Riemannian Newton-tCG

Approximate
Hessf (xk)[ηk ] = −gradf (xk) for
ηk .

Find a step-size αk such that

hk(αk)− hk(0) ≤ −χ1
h′k(0)2

‖ηk‖2
, or

hk(αk)− hk(0) ≤ χ2h
′
k(0),

where hk(t) = f (Rk(tηk)).

Euclidean Newton-tCG

Approximate
∇2f (xk)[pk ] = −∇f (xk) for pk .

Find a step-size αk such that

hk(αk) ≤ hk(0) + c1αkh
′
k(0), and

h′k(αk) ≥ c2h
′
k(0),

where hk(t) = f (xk + tpk).

Truncated conjugate gradient for Approximating Newton equation in
both methods.

BN conditions [BN89] for RNewton-tCG and the Wolfe conditions
for Newton-tCG.

If f is radially L-C 1, then the Wolfe conditions, Armijo-Goldstein
conditions imply the BN conditions [HAG18].
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Our Work: A Riemannian Newton-tCG method

Assumption 1. f is twice continuously differentiable.
Assumption 2. For all starting x0 ∈M, the level set
L(x0) := {x ∈M : f (x) ≤ f (x0)} is bounded.

Theorem

Let {xn} denote the sequence generated by Riemannian Newton-tCG
method. Then it holds that

lim
n→∞

‖gradf (xn)‖ = 0.

If x∗ is an accumulation point of the sequence {xk} and Hessf (x∗) is
positive definite, then xk → x∗.
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Our Work: A Riemannian Newton-tCG method

Assumption 1. f is twice continuously differentiable.
Assumption 2. For all starting x0 ∈M the level set
L(x0) := {x ∈M : f (x) ≤ f (x0)} is bounded.
Assumption 3. f is radially L-Lipschitz continuous.

Theorem

Let {xk} be the sequence generated by Riemannian Newton-tCG method.
Suppose that {xk} converges to x∗ at which Hessf (x∗) is positive
definite and Hessf (x) is continuous in a neighborhood of x∗. Then

1. the stepsize αk = 1 is acceptable for sufficiently large k; and

2. the convergence rate is superlinear.

Moreover, suppose that Hessf̂ satisfies that
‖Hessf (xk)−Hessf̂xk (0xk )‖ ≤ β1‖gradf (xk)‖, f̂ = f ◦ R : TM→ R,
with a positive constant β1. and that there exist β2 > 0, µ1 > 0 and
µ2 > 0 such that for all x ∈ Bµ1 (x∗) and all ηx ∈ Bµ2 (0x), it holds that

‖Hessf̂x(ηx)−Hessf̂x(0x)‖ ≤ β2‖ηx‖. Then,

3. the convergence rate is 1 + min(1, t).
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Our Work: New preconditioners

Consider g 1
Y as an example

Newton equation:

Hess f̃ ([Y ])[η[Y ]] = ξ[Y ] =⇒

(1− 1

2
PY )∇2h(YY T )[Y ηT↑Y +η↑Y Y

T ]Y (Y TY )−1+

(1− PY )∇h(YY T )(I − PY )η↑Y (Y
TY )−1 = ξ↑Y .

where η↑Y , ξ↑Y are in the horizontal space at Y , HY .

Preconditioner: solve for η↑Y ∈ HY in

(I − 1

2
Y (Y TY )−1Y T )∇2h(YY T )[Y ηT↑Y + η↑YY

T ]Y (Y TY )−1 = ξ↑Y
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Our Work: New preconditioners

Preconditioner:

(I − 1

2
Y (Y TY )−1Y T )∇2h(YY T )[Y ηT↑Y + η↑Y Y

T ]Y (Y TY )−1 = ξ↑Y (5)

Key idea: for any ηY ∈ TYRn×r
∗ , ηY can be decomposed into

ηY = YS + Y⊥M
K

where S ∈ Ssymr and K ∈ R(n−r)×r , Y TMY⊥M
= 0 and

Y T
⊥M

Y⊥M
= In−r .

Assumption: solve (A + λM)x = b in O(n).

Using such decomposition for ηY , one can solve for η↑Y in O(nr c)
with a constant c .
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Our Work: Increasing Rank Method

Use Riemannian Newton-tCG method, if the rank is known;

Use increasing rank technique if rank is unknown;

Used in [VV10];
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Numerical Experiments

Influence of Riemannian metrics

Riemannian Newton-tCG versus Riemannian trust region
Newton-tCG

Comparisons with existing methods
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Numerical Experiments
Influence of Riemannian metrics

Random data: Stopping criterion ‖gradf (xk)‖/‖gradf (x0)‖ ≤ 10−8

iter: number of iterations

nf: number of evaluations of cost function

ng: number of evaluations of norm of gradient

nH: number of evaluations of action of Hessian

time: running time

gfgf0: ‖gradf (xk)‖/‖gradf (x0)‖.

The performance under the first metric is the best among three metrics.
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Numerical Experiments
Influence of Riemannian metrics

The finite difference discretized 2D poisson problem on the square

iter: number of iterations

nf: number of evaluations of cost function

ng: number of evaluations of norm of gradient

nH: number of evaluations of action of Hessian

time: running time

gfgf0: ‖gradf (xk)‖/‖gradf (x0)‖.

The performance under the first metric is the best among three metrics.
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Numerical Experiments
RNewton-tCG versus RTRNewton-tCG

Riemannian metric g 1
Y

n = 502; r = 10; Stop if ‖ grad f (xi )‖/‖ grad f (x0)‖ < 10−10;

A: the negative stiffness matrix of PDE ∇u(x , y) = f on unit
square Ω and u = 0 on ∂Ω (Lyapack [Pen00a]);

M: diagonal matrix;

C : rank one matrix bbT with entries of b from standard normal
distribution;

Table: M = I

No precon. precon. [VV10] New precon.

RTRNewton
iter 89 48 47
nH 439 57 54

RNewton
iter 21 14 14
nH 328 22 25
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Numerical Experiments
RNewton-tCG versus RTRNewton-tCG

Riemannian metric g 1
Y

n = 502; r = 10; Stop if ‖ grad f (xi )‖/‖ grad f (x0)‖ < 10−10;

A: the negative stiffness matrix of PDE ∇u(x , y) = f on unit
square Ω and u = 0 on ∂Ω (Lyapack [Pen00a]);

M: diagonal matrix;

C : rank one matrix bbT with entries of b from standard normal
distribution;

Table: M = diag([rand(n − 1, 1); 0] + 0.1)

No precon. precon. [VV10] New precon.

RTRNewton
iter 48 57 49
nH 398 114 84

RNewton
iter 23 33 19
nH 324 95 46
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Numerical Experiments
RNewton-tCG versus RTRNewton-tCG

Riemannian metric g 1
Y

A, M and C ; from semidiscretization of a steel rail cooling
problem [Pen06];

Coarse discretization: n = 821; r = 20; Stop if
‖ grad f (xi )‖/‖ grad f (x0)‖ < 10−10;

0 200 400 600 800

nz = 5395

0

200

400

600

800

A

0 200 400 600 800

nz = 5405

0

200

400

600

800

M

No precon. precon. [VV10] New precon.

RTRNewton
iter 1476 68 83
nH 3838 155 114

RNewton
iter 260 47 21
nH 1160 129 51
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Numerical Experiments
RNewton-tCG versus RTRNewton-tCG

Riemannian metric g 1
Y

A, M and C ; from semidiscretization of a steel rail cooling
problem [Pen06];

Dense discretization: n = 3113; r = 20; Stop if
‖ grad f (xi )‖/‖ grad f (x0)‖ < 10−10;
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nz = 21069
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0 1000 2000 3000

nz = 21113

0

500

1000

1500

2000

2500

3000

M

No precon. precon. [VV10] New precon.

RTRNewton
iter 2000 79 79
nH 5942 195 127

RNewton
iter 320 60 30
nH 2015 267 91
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Numerical Experiments
Comparisons with existing methods

A, M and C from semidiscretization of a steel rail cooling
problem [BS05, SB04] with n = 1357.
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K-PIK is based on Krylov subspace technique.
mess lradi is based on ADI.
best low rank is given by the truncation of the first p singular values
for the exact solution.
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Numerical Experiments
Comparisons with existing methods

A, M and C from semidiscretization of a steel rail cooling
problem [BS05, SB04] with n = 5177, 20209, 79841.
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Summary

Briefly introduced the generalized Lyapunov equation;

Review the existing Riemannian method;

Our approach

Optimization over a quotient manifold with three metrics
A Riemannian Newton-tCG method with convergence analysis
New preconditioner with M 6= I ;
Increasing rank method;

For more details, see
Zhenwei Huang, Wen Huang. An increasing rank Riemannian method for
generalized Lyapunov equations. arXiv.2308.00213, 2023.
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