Riemannian Optimization with its Application to Blind Deconvolution Problem

Wen Huang

Rice University

April 19, 2018

Wen Huang Riemannian Optimization 1/70 Rice University Riemannian Optimization

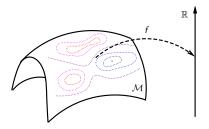
Problem Statement and Motivations

Riemannian Optimization

Problem: Given $f(x) : \mathcal{M} \to \mathbb{R}$, solve

 $\min_{x\in\mathcal{M}}f(x)$

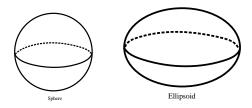
where $\ensuremath{\mathcal{M}}$ is a Riemannian manifold.



Riemannian Optimization

Problem Statement and Motivations

Examples of Manifolds

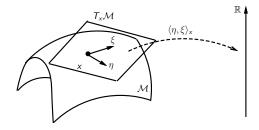


- Stiefel manifold: $St(p, n) = \{X \in \mathbb{R}^{n \times p} | X^T X = I_p\}$
- Grassmann manifold: Set of all *p*-dimensional subspaces of \mathbb{R}^n
- Set of fixed rank *m*-by-*n* matrices
- And many more

Problem Statement and Motivations

Riemannian Manifolds

Roughly, a Riemannian manifold \mathcal{M} is a smooth set with a smoothly-varying inner product on the tangent spaces.



Riemannian Optimization

Problem Statement and Motivations

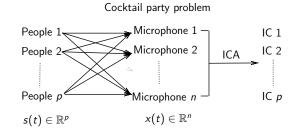
Applications

Four applications are used to demonstrate the importance of the Riemannian optimization:

- Independent component analysis [CS93]
- Matrix completion problem [Van13, HAGH16]
- Geometric mean of symmetric positive definite matrices [YHAG17]
- Elastic shape analysis of curves [SKJJ11, HGSA15]

Problem Statement and Motivations

Application: Independent Component Analysis



- Observed signal is x(t) = As(t)
- One approach:
 - Assumption: $E\{s(t)s(t+\tau)\}$ is diagonal for all τ
 - $C_{\tau}(x) := E\{x(t)x(x+\tau)^{T}\} = AE\{s(t)s(t+\tau)^{T}\}A^{T}$

Problem Statement and Motivations

Application: Independent Component Analysis

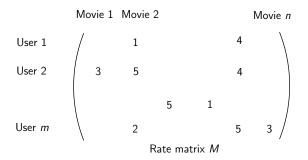
 Minimize joint diagonalization cost function on the Stiefel manifold [TI06]:

$$f: \operatorname{St}(p, n) \to \mathbb{R}: V \mapsto \sum_{i=1}^{N} \| V^{\mathsf{T}} C_i V - \operatorname{diag}(V^{\mathsf{T}} C_i V) \|_{F}^{2}.$$

• C_1, \ldots, C_N are covariance matrices and St $(p, n) = \{X \in \mathbb{R}^{n \times p} | X^T X = I_p\}.$ Riemannian Optimization

Problem Statement and Motivations

Application: Matrix Completion Problem



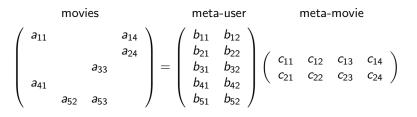
- The matrix *M* is sparse
- The goal: complete the matrix *M*

Wen Huang

Riemannian Optimization

Problem Statement and Motivations

Application: Matrix Completion Problem



Minimize the cost function

 $f: \mathbb{R}_r^{m \times n} \to \mathbb{R}: X \mapsto f(X) = \|P_\Omega M - P_\Omega X\|_F^2.$

■ $\mathbb{R}_r^{m \times n}$ is the set of *m*-by-*n* matrices with rank *r*. It is known to be a Riemannian manifold.

Problem Statement and Motivations

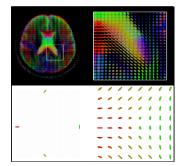
Application: Symmetric Positive Definite (SPD) Matrices

Symmetric positive definite (SPD) matrices are fundamental objects in various domains.

- Object recognition
- Human detection and tracking
- Diffusion tensor magnetic resonance imaging

Averaging SPD matrices (Geometric mean)

- Subtask in interpolation methods
- Aggregate noisy measurements



Application: Symmetric Positive Definite (SPD) Matrices

The desired properties of a geometric mean are given in the ALM^1 list, some of which are

- if A_1, \ldots, A_k commute, then $G(A_1, \ldots, A_k) = (A_1 \ldots A_k)^{\frac{1}{k}}$;
- $G(A_{\pi(1)}, ..., A_{\pi(k)}) = G(A_1, ..., A_k)$, with π a permutation of (1, ..., k);
- $G(A_1,...,A_k) = G(A_1^{-1},...A_k^{-1})^{-1};$
- det $G(A_1,\ldots,A_k) = (\det A_1 \ldots \det A_k)^{\frac{1}{k}};$

where A_1, \ldots, A_k are SPD matrices, and $G(\cdot, \ldots, \cdot)$ denotes the geometric mean of arguments.

Wen Huang

Riemannian Optimization

Rice University

¹T. Ando, C.-K. Li, and R. Mathias, Geometric means, *Linear Algebra and Its Applications*, 385:305-334, 2004

Riemannian Optimization

Problem Statement and Motivations

Application: Geometric Mean of Symmetric Positive Definite Matrices

One geometric mean is the Karcher mean of the manifold of SPD matrices with the affine invariant metric, i.e.,

$$G(A_1,\ldots,A_k) = \arg\min_{X\in \mathrm{S}^n_+} rac{1}{2k} \sum_{i=1}^k \mathrm{dist}^2(X,A_i),$$

where $dist(X, Y) = \| log(X^{-1/2}YX^{-1/2}) \|_F$ is the distance under the Riemannian metric

$$g(\eta_X,\xi_X) = \operatorname{trace}(\eta_X X^{-1}\xi_X X^{-1}).$$

Riemannian Optimization

Problem Statement and Motivations

Summary

Application: Elastic Shape Analysis of Curves

- Classification [LKS⁺12, HGSA15]
- Face recognition [DBS⁺13]

Problem Statement and Motivations

Summary

Application: Elastic Shape Analysis of Curves

- Elastic shape analysis invariants:
 - Rescaling
 - Translation
 - Rotation
 - Reparametrization
- The shape space is a quotient space

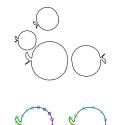


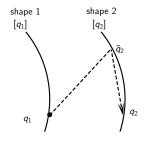
Figure: All are the same shape.

Riemannian Optimization

Problem Statement and Motivations

Summary

Application: Elastic Shape Analysis of Curves



- Optimization problem $\min_{q_2 \in [q_2]} \operatorname{dist}(q_1, q_2)$ is defined on a Riemannian manifold
- Computation of a geodesic between two shapes
- Computation of Karcher mean of a population of shapes

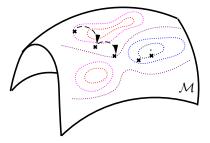
Problem Statement and Motivations

Applications

- Elastic shape analysis [HGSA15, YHGA15, HYGA15]
- Role model extraction [MHB⁺16]
- Computations on SPD matrices [YHAG17]
- Phase retrieval problem [HGZ17]
- Blind deconvolution [HH17]
- Synchronization of rotations [Hua13]
- Computations on low-rank tensor
- Low-rank approximate solution for Lyapunov equation

Comparison with Constrained Optimization

- All iterates on the manifold
- Convergence properties of unconstrained optimization algorithms
- No need to consider Lagrange multipliers or penalty functions
- Exploit the structure of the constrained set



Iterations on the Manifold

Consider the following generic update for an iterative Euclidean optimization algorithm:

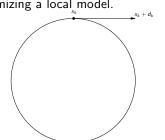
$$x_{k+1} = x_k + \Delta x_k = x_k + \alpha_k s_k .$$

This iteration is implemented in numerous ways, e.g.:

- Steepest descent: $x_{k+1} = x_k \alpha_k \nabla f(x_k)$
- Newton's method: $x_{k+1} = x_k \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)$
- Trust region method: Δx_k is set by optimizing a local model.

Riemannian Manifolds Provide

- Riemannian concepts describing directions and movement on the manifold
- Riemannian analogues for gradient and Hessian



Riemannian gradient and Riemannian Hessian

Definition

The Riemannian gradient of f at x is the unique tangent vector in T_xM satisfying $\forall \eta \in T_xM$, the directional derivative

 $D f(x)[\eta] = \langle \operatorname{grad} f(x), \eta \rangle$

and $\operatorname{grad} f(x)$ is the direction of steepest ascent.

Definition

The Riemannian Hessian of f at x is a symmetric linear operator from T_xM to T_xM defined as

Hess
$$f(x)$$
: $T_x M \to T_x M$: $\eta \to \nabla_\eta \operatorname{grad} f$,

where $\boldsymbol{\nabla}$ is the affine connection.

Wen Huang Riemannian Optimization Rice University

Х

Retractions

Euclidean	Riemannian
$x_{k+1} = x_k + \alpha_k d_k$	$x_{k+1} = R_{x_k}(\alpha_k \eta_k)$

Definition

A retraction is a mapping R from TM to M satisfying the following:

R is continuously differentiable

$$R_x(0) = x$$

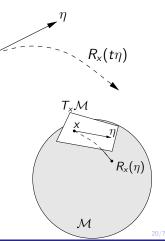
•
$$D R_x(0)[\eta] = \eta$$

maps tangent vectors back to the manifold

defines curves in a direction

Wen Huang

Riemannian Optimization



Rice University

Categories of Riemannian optimization methods

Retraction-based: local information only

Line search-based: use local tangent vector and $R_x(t\eta)$ to define line

- Steepest decent
- Newton

Local model-based: series of flat space problems

- Riemannian trust region Newton (RTR)
- Riemannian adaptive cubic overestimation (RACO)

Categories of Riemannian optimization methods

Retraction and transport-based: information from multiple tangent spaces

- Nonlinear conjugate gradient: multiple tangent vectors
- Quasi-Newton e.g. Riemannian BFGS: transport operators between tangent spaces

Additional element required for optimizing a cost function (M, g):

formulas for combining information from multiple tangent spaces.

Vector Transports

Vector Transport

- Vector transport: Transport a tangent vector from one tangent space to another
- $\mathcal{T}_{\eta_x}\xi_x$, denotes transport of ξ_x to tangent space of $R_x(\eta_x)$. R is a retraction associated with \mathcal{T}

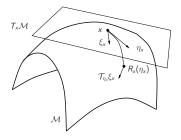


Figure: Vector transport.

Retraction/Transport-based Riemannian Optimization

Given a retraction and a vector transport, we can generalize many Euclidean methods to the Riemannian setting. Do the Riemannian versions of the methods work well?

Retraction/Transport-based Riemannian Optimization

Given a retraction and a vector transport, we can generalize many Euclidean methods to the Riemannian setting. Do the Riemannian versions of the methods work well?

No

- Lose many theoretical results and important properties;
- Impose restrictions on retraction/vector transport;

Retraction/Transport-based Riemannian Optimization

Benefits

- Increased generality does not compromise the important theory
- Less expensive than or similar to previous approaches
- May provide theory to explain behavior of algorithms specifically developed for a particular application – or closely related ones

Possible Problems

May be inefficient compared to algorithms that exploit application details

Some History of Optimization On Manifolds (I)

Luenberger (1973), Introduction to linear and nonlinear programming. Luenberger mentions the idea of performing line search along geodesics, "which we would use if it were computationally feasible (which it definitely is not)". Rosen (1961) essentially anticipated this but was not explicit in his Gradient Projection Algorithm.

Gabay (1982), Minimizing a differentiable function over a differential manifold. Steepest descent along geodesics; Newton's method along geodesics; Quasi-Newton methods along geodesics. On Riemannian submanifolds of \mathbb{R}^n .

Smith (1993-94), Optimization techniques on Riemannian manifolds. Levi-Civita connection ∇ ; Riemannian exponential mapping; parallel translation.

Some History of Optimization On Manifolds (II)

The "pragmatic era" begins:

Manton (2002), Optimization algorithms exploiting unitary constraints "The present paper breaks with tradition by not moving along geodesics". The geodesic update $\operatorname{Exp}_{x} \eta$ is replaced by a projective update $\pi(x + \eta)$, the projection of the point $x + \eta$ onto the manifold.

Adler, Dedieu, Shub, et al. (2002), Newton's method on Riemannian manifolds and a geometric model for the human spine. The exponential update is relaxed to the general notion of *retraction*. The geodesic can be replaced by any (smoothly prescribed) curve tangent to the search direction.

Absil, Mahony, Sepulchre (2007) Nonlinear conjugate gradient using retractions.

Some History of Optimization On Manifolds (III)

Theory, efficiency, and library design improve dramatically:

Absil, Baker, Gallivan (2004-07), Theory and implementations of Riemannian Trust Region method. Retraction-based approach. Matrix manifold problems, software repository

http://www.math.fsu.edu/~cbaker/GenRTR

Anasazi Eigenproblem package in Trilinos Library at Sandia National Laboratory

Absil, Gallivan, Qi (2007-10), Basic theory and implementations of Riemannian BFGS and Riemannian Adaptive Cubic Overestimation. Parallel translation and Exponential map theory, Retraction and vector transport empirical evidence.

Some History of Optimization On Manifolds (IV)

Ring and With (2012), combination of differentiated retraction and isometric vector transport for convergence analysis of RBFGS

Absil, Gallivan, Huang (2009-2017), Complete theory of Riemannian Quasi-Newton and related transport/retraction conditions, Riemannian SR1 with trust-region, RBFGS on partly smooth problems, A C++ library: http://www.math.fsu.edu/~whuang2/ROPTLIB

Sato, Iwai (2013-2015), Zhu (2017), Global convergence analysis for Riemannian conjugate gradient methods

Bonnabel (2011), Sato, Kasai, Mishra(2017) Riemannian stochastic gradient descent method.

Many people Application interests increase noticeably

Current UCL/FSU Methods

- Riemannian Steepest Descent [AMS08]
- Riemannian conjugate gradient [AMS08]
- Riemannian Trust Region Newton [ABG07]: global, quadratic convergence
- Riemannian Broyden Family [HGA15, HAG18] : global (convex), superlinear convergence
- Riemannian Trust Region SR1 [HAG15]: global, (d + 1)-superlinear convergence
- For large problems
 - Limited memory RTRSR1
 - Limited memory RBFGS

Current UCL/FSU Methods

Riemannian manifold optimization library (ROPTLIB) is used to optimize a function on a manifold.

- Most state-of-the-art methods;
- Commonly-encountered manifolds;
- Written in C++;
- Interfaces with Matlab, Julia and R;
- BLAS and LAPACK;
- www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html

Current/Future Work on Riemannian methods

- Manifold and inequality constraints
- Discretization of infinite dimensional manifolds and the convergence/accuracy of the approximate minimizers – specific to a problem and extracting general conclusions
- Partly smooth cost functions on Riemannian manifold
- Limited-memory quasi-Newton methods on manifolds

Problem Statement and Methods

Blind deconvolution

[Blind deconvolution]

Blind deconvolution is to recover two unknown signals from their convolution.

Blurred image

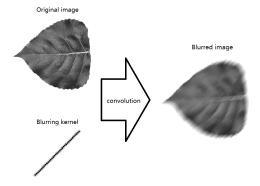
Wen Huang Riemannian Optimization 33/70 Rice University

Problem Statement and Methods

Blind deconvolution

[Blind deconvolution]

Blind deconvolution is to recover two unknown signals from their convolution.



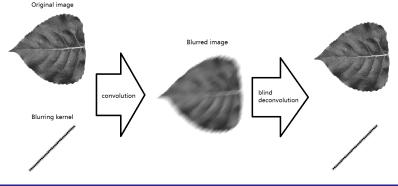
Wen Huang Riemannian Optimization Rice University

Problem Statement and Methods

Blind deconvolution

[Blind deconvolution]

Blind deconvolution is to recover two unknown signals from their convolution.



Wen Huang Riemannian Optimization Rice University

Problem Statement

[Blind deconvolution (Discretized version)]

Blind deconvolution is to recover two unknown signals $\mathbf{w} \in \mathbb{C}^L$ and $\mathbf{x} \in \mathbb{C}^L$ from their convolution $\mathbf{y} = \mathbf{w} * \mathbf{x} \in \mathbb{C}^L$.

We only consider circular convolution:

$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \\ \vdots \\ \mathbf{y}_L \end{bmatrix} = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_L & \mathbf{w}_{L-1} & \dots & \mathbf{w}_2 \\ \mathbf{w}_2 & \mathbf{w}_1 & \mathbf{w}_L & \dots & \mathbf{w}_3 \\ \mathbf{w}_3 & \mathbf{w}_2 & \mathbf{w}_1 & \dots & \mathbf{w}_4 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{w}_L & \mathbf{w}_{L-1} & \mathbf{w}_{L-2} & \dots & \mathbf{w}_1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \vdots \\ \mathbf{x}_L \end{bmatrix}$$

• Let $y = \mathbf{F}\mathbf{y}$, $w = \mathbf{F}\mathbf{w}$, and $x = \mathbf{F}\mathbf{x}$, where **F** is the DFT matrix;

■ $y = w \odot x$, where \odot is the Hadamard product, i.e., $y_i = w_i x_i$.

Equivalent question: Given y, find w and x.

Wen Huang Riemannian Optimization

Problem Statement

Problem: Given $y \in \mathbb{C}^L$, find $w, x \in \mathbb{C}^L$ so that $y = w \odot x$.

An ill-posed problem. Infinite solutions exist;

Problem Statement

Problem: Given $y \in \mathbb{C}^L$, find $w, x \in \mathbb{C}^L$ so that $y = w \odot x$.

- An ill-posed problem. Infinite solutions exist;
- Assumption: w and x are in known subspaces, i.e., w = Bh and $x = \overline{Cm}$, $B \in \mathbb{C}^{L \times K}$ and $C \in \mathbb{C}^{L \times N}$;

Problem Statement

Problem: Given $y \in \mathbb{C}^L$, find $w, x \in \mathbb{C}^L$ so that $y = w \odot x$.

- An ill-posed problem. Infinite solutions exist;
- Assumption: w and x are in known subspaces, i.e., w = Bh and $x = \overline{Cm}, B \in \mathbb{C}^{L \times K}$ and $C \in \mathbb{C}^{L \times N}$;
 - Reasonable in various applications;
 - Leads to mathematical rigor; (L/(K + N) reasonably large)

Problem Statement

Problem: Given $y \in \mathbb{C}^L$, find $w, x \in \mathbb{C}^L$ so that $y = w \odot x$.

- An ill-posed problem. Infinite solutions exist;
- Assumption: w and x are in known subspaces, i.e., w = Bh and $x = \overline{Cm}$, $B \in \mathbb{C}^{L \times K}$ and $C \in \mathbb{C}^{L \times N}$;
 - Reasonable in various applications;
 - Leads to mathematical rigor; (L/(K + N) reasonably large)

Problem under the assumption

Given $y \in \mathbb{C}^L$, $B \in \mathbb{C}^{L \times K}$ and $C \in \mathbb{C}^{L \times N}$, find $h \in \mathbb{C}^K$ and $m \in \mathbb{C}^N$ so that

$$y = Bh \odot \overline{Cm} = \operatorname{diag}(Bhm^*C^*).$$

Blind deconvolution

Related work

Find
$$h, m$$
, s. t. $y = \operatorname{diag}(Bhm^*C^*)$;

- Ahmed et al. [ARR14]²
 - Convex problem:

$$\min_{X \in \mathbb{C}^{K \times N}} \|X\|_n, \text{ s. t. } y = \operatorname{diag}(BXC^*),$$

where $\|\cdot\|_n$ denotes the nuclear norm, and $X = hm^*$;

²A. Ahmed, B. Recht, and J. Romberg, Blind deconvolution using convex programming, *IEEE Transactions on Information Theory*, 60:1711-1732, 2014

Wen Huang

Riemannian Optimization

Blind deconvolution

Related work

Find h, m, s. t. $y = \operatorname{diag}(Bhm^*C^*)$;

- Ahmed et al. [ARR14]²
 - Convex problem:

$$\min_{X \in \mathbb{C}^{K \times N}} \|X\|_n, \text{ s. t. } y = \operatorname{diag}(BXC^*),$$

where $\|\cdot\|_n$ denotes the nuclear norm, and $X = hm^*$;

(Theoretical result): the unique minimizer <u>high probability</u> the true solution;

²A. Ahmed, B. Recht, and J. Romberg, Blind deconvolution using convex programming, *IEEE Transactions on Information Theory*, 60:1711-1732, 2014

Wen Huang

Riemannian Optimization

Blind deconvolution

Related work

Find h, m, s. t. $y = \operatorname{diag}(Bhm^*C^*)$;

- Ahmed et al. [ARR14]²
 - Convex problem:

$$\min_{X \in \mathbb{C}^{K \times N}} \|X\|_n, \text{ s. t. } y = \operatorname{diag}(BXC^*),$$

where $\|\cdot\|_n$ denotes the nuclear norm, and $X = hm^*$;

- (Theoretical result): the unique minimizer <u>high probability</u> the true solution;
- The convex problem is expensive to solve;

²A. Ahmed, B. Recht, and J. Romberg, Blind deconvolution using convex programming, *IEEE Transactions on Information Theory*, 60:1711-1732, 2014

Wen Huang

Riemannian Optimization

Related work

Li et al. [LLSW16]³

Nonconvex problem⁴:

Find $h, m, s. t. y = diag(Bhm^*C^*);$

$$\min_{\substack{h,m\}\in\mathbb{C}^{K}\times\mathbb{C}^{N}}}\|y-\operatorname{diag}(Bhm^{*}C^{*})\|_{2}^{2};$$

³X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, *preprint arXiv:1606.04933*, 2016

⁴The penalty in the cost function is not added for simplicity

Wen Huang

Riemannian Optimization

Related work

- Li et al. [LLSW16]³
 - Nonconvex problem⁴:

Find
$$h, m, s. t. y = diag(Bhm^*C^*);$$

$$\min_{\substack{h,m\}\in\mathbb{C}^{K}\times\mathbb{C}^{N}}}\|y-\operatorname{diag}(Bhm^{*}C^{*})\|_{2}^{2};$$

(Theoretical result):

- A good initialization

³X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, *preprint arXiv:1606.04933*, 2016

⁴The penalty in the cost function is not added for simplicity

Wen Huang

Related work

- Li et al. [LLSW16]³
 - Nonconvex problem⁴:

Find
$$h, m, s. t. y = diag(Bhm^*C^*);$$

$$\min_{h,m)\in\mathbb{C}^{K}\times\mathbb{C}^{N}}\|y-\operatorname{diag}(Bhm^{*}C^{*})\|_{2}^{2};$$

(Theoretical result):

- A good initialization
- Lower successful recovery probability than alternating minimization algorithm empirically.

³X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, *preprint arXiv:1606.04933*, 2016

⁴The penalty in the cost function is not added for simplicity

Wen Huang

Problem Statement and Methods

Manifold Approach

Find $h, m, s. t. y = diag(Bhm^*C^*);$

The problem is defined on the set of rank-one matrices (denoted by C^{K×N}₁), neither C^{K×N} nor C^K × C^N; Why not work on the manifold directly?

Problem Statement and Methods

Manifold Approach

Find h, m, s. t. $y = \operatorname{diag}(Bhm^*C^*)$;

- The problem is defined on the set of rank-one matrices (denoted by C^{K×N}₁), neither C^{K×N} nor C^K × C^N; Why not work on the manifold directly?
- Optimization on manifolds: A Riemannian steepest descent method;
 - Representation of $\mathbb{C}_1^{K \times N}$;
 - Representation of directions (tangent vectors);
 - Riemannian metric;
 - Riemannian gradient;

Problem Statement and Methods

Blind deconvolution

Summary

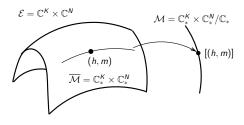
A Representation of $\mathbb{C}_1^{K \times N}$: $\mathbb{C}_*^K \times \mathbb{C}_*^N / \mathbb{C}_*$

- Given $X \in \mathbb{C}_1^{K \times N}$, there exists (h, m), $h \neq 0$ and $m \neq 0$ such that $X = hm^*$;
- (*h*, *m*) is not unique;
- The equivalent class: $[(h, m)] = \{(ha, ma^{-*}) \mid a \neq 0\};$
- Quotient manifold: $\mathbb{C}_*^K \times \mathbb{C}_*^N / \mathbb{C}_* = \{ [(h, m)] \mid (h, m) \in \mathbb{C}_*^K \times \mathbb{C}_*^N \}$

Summary

A Representation of $\mathbb{C}_1^{K \times N}$: $\mathbb{C}_*^K \times \mathbb{C}_*^N / \mathbb{C}_*$

- Given $X \in \mathbb{C}_1^{K \times N}$, there exists (h, m), $h \neq 0$ and $m \neq 0$ such that $X = hm^*$;
- (*h*, *m*) is not unique;
- The equivalent class: $[(h, m)] = \{(ha, ma^{-*}) \mid a \neq 0\};$
- Quotient manifold: $\mathbb{C}_*^K \times \mathbb{C}_*^N / \mathbb{C}_* = \{ [(h, m)] \mid (h, m) \in \mathbb{C}_*^K \times \mathbb{C}_*^N \}$



 $\mathbb{C}_*^{\mathsf{K}} \times \mathbb{C}_*^{\mathsf{N}} / \mathbb{C}_* \simeq \mathbb{C}_1^{\mathsf{K} \times \mathsf{N}}$

 Summary

A Representation of $\mathbb{C}_1^{K \times N}$: $\mathbb{C}_*^K \times \mathbb{C}_*^N / \mathbb{C}_*$

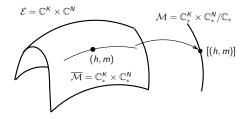
Cost function⁵

Riemannian approach:

 $f: \mathbb{C}^{K}_{*} \times \mathbb{C}^{N}_{*}/\mathbb{C}_{*} \to \mathbb{R}: [(h, m)] \mapsto \|y - \operatorname{diag}(Bhm^{*}C^{*})\|_{2}^{2}.$

Approach in [LLSW16]:

 $\mathfrak{f}:\mathbb{C}^{K}\times\mathbb{C}^{N}\rightarrow\mathbb{R}:(h,m)\mapsto \|y-\operatorname{diag}(Bhm^{*}C^{*})\|_{2}^{2}.$



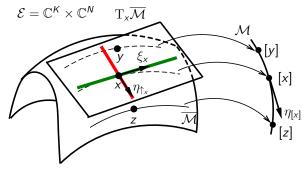
⁵The penalty in the cost function is not added for simplicity.

Problem Statement and Methods

Blind deconvolution

Summary

Representation of directions on $\mathbb{C}_*^K \times \mathbb{C}_*^N / \mathbb{C}_*$



- x denotes (h, m);
- Green line: the tangent space of [x];
- Red line (horizontal space at x): orthogonal to the green line;
- Horizontal space at *x*: a representation of the tangent space of *M* at [*x*];

Wen Huang Riemannian Optimization

Blind deconvolution

Retraction

Euclidean	Riemannian		
$x_{k+1} = x_k + \alpha_k d_k$	$x_{k+1} = R_{x_k}(\alpha_k \eta_k)$		

- Retraction: $R : T \mathcal{M} \to \mathcal{M}$
- $R(0_{[x]}) = [x]$
- $\blacksquare \frac{dR(t\eta_{[x]})}{dt}|_{t=0} = \eta_{[x]};$
- Retraction on $\mathbb{C}^K_* \times \mathbb{C}^N_* / \mathbb{C}_*$:

$$\tilde{R}_{x}(\eta) \bullet R_{x}(\eta)$$

 $T_x\mathcal{M}$

 $R_{[(h,m)]}(\eta_{[(h,m)]}) = [(h + \eta_h, m + \eta_m)].$

I wo retractions: R and h

Wen Huang

Riemannian Optimization

Problem Statement and Methods

A Riemannian metric

Riemannian metric:

- Inner product on tangent spaces
- Define angles and lengths

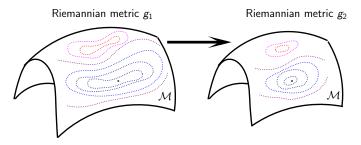


Figure: Changing metric may influence the difficulty of a problem.

A Riemannian metric

$$\min_{[(h,m)]} \|y - \operatorname{diag}(Bhm^*C^*)\|_2^2$$

Idea for choosing a Riemannian metric

The block diagonal terms in the Euclidean Hessian are used to choose the Riemannian metric.

A Riemannian metric

$$\min_{[(h,m)]} \|y - \operatorname{diag}(Bhm^*C^*)\|_2^2$$

Idea for choosing a Riemannian metric

The block diagonal terms in the Euclidean Hessian are used to choose the Riemannian metric.

• Let
$$\langle u, v \rangle_2 = \operatorname{Re}(\operatorname{trace}(u^*v))$$
:
 $\frac{1}{2}\langle \eta_h, \operatorname{Hess}_h f[\xi_h] \rangle_2 = \langle \operatorname{diag}(B\eta_h m^* C^*), \operatorname{diag}(B\xi_h m^* C^*) \rangle_2 \approx \langle \eta_h m^*, \xi_h m^* \rangle_2$
 $\frac{1}{2}\langle \eta_m, \operatorname{Hess}_m f[\xi_m] \rangle_2 = \langle \operatorname{diag}(Bh\eta_m^* C^*), \operatorname{diag}(Bh\xi_m^* C^*) \rangle_2 \approx \langle h\eta_m^*, h\xi_m^* \rangle_2$,

where \approx can be derived from some assumptions;

A Riemannian metric

$$\min_{[(h,m)]} \|y - \operatorname{diag}(Bhm^*C^*)\|_2^2$$

Idea for choosing a Riemannian metric

The block diagonal terms in the Euclidean Hessian are used to choose the Riemannian metric.

• Let
$$\langle u, v \rangle_2 = \operatorname{Re}(\operatorname{trace}(u^*v))$$
:
 $\frac{1}{2}\langle \eta_h, \operatorname{Hess}_h f[\xi_h] \rangle_2 = \langle \operatorname{diag}(B\eta_h m^* C^*), \operatorname{diag}(B\xi_h m^* C^*) \rangle_2 \approx \langle \eta_h m^*, \xi_h m^* \rangle_2$
 $\frac{1}{2}\langle \eta_m, \operatorname{Hess}_m f[\xi_m] \rangle_2 = \langle \operatorname{diag}(Bh\eta_m^* C^*), \operatorname{diag}(Bh\xi_m^* C^*) \rangle_2 \approx \langle h\eta_m^*, h\xi_m^* \rangle_2,$

where \approx can be derived from some assumptions;

The Riemannian metric:

$$g\left(\eta_{[x]},\xi_{[x]}\right) = \langle \eta_h,\xi_h m^* m \rangle_2 + \langle \eta_m^*,\xi_m^* h^* h \rangle_2;$$

Riemannian gradient

- Riemannian gradient
 - A tangent vector: $\operatorname{grad} f([x]) \in \operatorname{T}_{[x]} \mathcal{M};$
 - Satisfies: $Df([x])[\eta_{[x]}] = g(\operatorname{grad} f([x]), \eta_{[x]}), \quad \forall \eta_{[x]} \in T_{[x]} \mathcal{M};$
- Represented by a vector in a horizontal space;
- Riemannian gradient:

$$\left(\operatorname{grad} f([(h,m)])\right)_{\uparrow_{(h,m)}} = \operatorname{Proj}\left(\nabla_h f(h,m)(m^*m)^{-1}, \nabla_m f(h,m)(h^*h)^{-1}\right);$$

A Riemannian steepest descent method (RSD)

An implementation of a Riemannian steepest descent method⁶ O Given (h_0, m_0) , step size $\alpha > 0$, and set k = 0 $d_k = \|h_k\|_2 \|m_k\|_2$, $h_k \leftarrow \sqrt{d_k} \frac{h_k}{\|h_k\|_2}$; $m_k \leftarrow \sqrt{d_k} \frac{m_k}{\|m_k\|_2}$; $(h_{k+1}, m_{k+1}) = (h_k, m_k) - \alpha \left(\frac{\nabla_{h_k} f(h_k, m_k)}{d_k}, \frac{\nabla_{m_k} f(h_k, m_k)}{d_k} \right)$; I f not converge, goto Step 2.

⁶The penalty in the cost function is not added for simplicity

Wen Huang

Riemannian Optimization

A Riemannian steepest descent method (RSD)

An implementation of a Riemannian steepest descent method⁶ O Given (h_0, m_0) , step size $\alpha > 0$, and set k = 0 $d_k = ||h_k||_2 ||m_k||_2$, $h_k \leftarrow \sqrt{d_k} \frac{h_k}{||h_k||_2}$; $m_k \leftarrow \sqrt{d_k} \frac{m_k}{||m_k||_2}$; $(h_{k+1}, m_{k+1}) = (h_k, m_k) - \alpha \left(\frac{\nabla_{h_k} f(h_k, m_k)}{d_k}, \frac{\nabla_{m_k} f(h_k, m_k)}{d_k} \right)$; I f not converge, goto Step 2.

Wirtinger flow Method in [LLSW16] O Given (h_0, m_0) , step size $\alpha > 0$, and set k = 0 $(h_{k+1}, m_{k+1}) = (h_k, m_k) - \alpha (\nabla_{h_k} f(h_k, m_k), \nabla_{m_k} f(h_k, m_k));$ If not converge, goto Step 2.

⁶The penalty in the cost function is not added for simplicity

Wen Huang

A Riemannian steepest descent method (RSD)

An implementation of a Riemannian steepest descent method⁶ O Given (h_0, m_0) , step size $\alpha > 0$, and set k = 0 $d_k = ||h_k||_2 ||m_k||_2$, $h_k \leftarrow \sqrt{d_k} \frac{h_k}{||h_k||_2}$; $m_k \leftarrow \sqrt{d_k} \frac{m_k}{||m_k||_2}$; $(h_{k+1}, m_{k+1}) = (h_k, m_k) - \alpha \left(\frac{\nabla_{h_k} f(h_k, m_k)}{d_k}, \frac{\nabla_{m_k} f(h_k, m_k)}{d_k} \right)$;

If not converge, goto Step 2.

Wirtinger flow Method in [LLSW16] O Given (h_0, m_0) , step size $\alpha > 0$, and set k = 0 $(h_{k+1}, m_{k+1}) = (h_k, m_k) - \alpha (\nabla_{h_k} f(h_k, m_k), \nabla_{m_k} f(h_k, m_k));$ If not converge, goto Step 2.

⁶The penalty in the cost function is not added for simplicity

Wen Huang

Penalty

Penalty term for (i) Riemannian method, (ii) Wirtinger flow [LLSW16]

(i):
$$\rho \sum_{i=1}^{L} G_0\left(\frac{L|b_i^*h|^2 ||m||_2^2}{8d^2\mu^2}\right)$$

(ii): $\rho \left[G_0\left(\frac{||h||_2^2}{2d}\right) + G_0\left(\frac{||m||_2^2}{2d}\right) + \sum_{i=1}^{L} G_0\left(\frac{L|b_i^*h|^2}{8d\mu^2}\right)\right],$

where $G_0(t) = \max(t - 1, 0)^2$, $[b_1 b_2 \dots b_L]^* = B$. The first two terms in (ii) penalize large values of $||h||_2$ and $||m||_2$;

Penalty

Penalty term for (i) Riemannian method, (ii) Wirtinger flow [LLSW16]

(i):
$$\rho \sum_{i=1}^{L} G_0\left(\frac{L|b_i^*h|^2 ||m||_2^2}{8d^2\mu^2}\right)$$

(ii): $\rho \left[G_0\left(\frac{\|h\|_2^2}{2d}\right) + G_0\left(\frac{\|m\|_2^2}{2d}\right) + \sum_{i=1}^{L} G_0\left(\frac{L|b_i^*h|^2}{8d\mu^2}\right)\right],$

where $G_0(t) = \max(t-1,0)^2$, $[b_1b_2...b_L]^* = B$.

- The first two terms in (ii) penalize large values of $||h||_2$ and $||m||_2$;
- The other terms promote a small coherence;
- The one in (i) is defined in the quotient space whereas the one in (ii) is not.

Penalty/Coherence

Coherence is defined as

$$\mu_h^2 = \frac{L \|Bh\|_{\infty}^2}{\|h\|_2^2} = \frac{L \max\left(|b_1^*h|^2, |b_2^*h|^2, \dots, |b_L^*h|^2\right)}{\|h\|_2^2};$$

■ Coherence at the true solution [(h_♯, m_♯)]

- influences the probability of recovery
- Small coherence is preferred

Penalty

 $||y - diag(Bhm * C*)||_2^2$ $||y - diag(Bhm * C*)||_2^2 + penalty$ Initial point.

Promote low coherence:

$$\rho \sum_{i=1}^{L} G_0\left(\frac{L|b_i^*h|^2 ||m||_2^2}{8d^2\mu^2}\right),\,$$

where $G_0(t) = \max(t - 1, 0)^2$;

Wen Huang Riemannian Optimization

Problem Statement and Methods

 Summary

Initialization

Initialization method [LLSW16]

- $(d, \tilde{h}_0, \tilde{m}_0)$: SVD of $B^* \operatorname{diag}(y)C$;
- $h_0 = \operatorname{argmin}_z \|z \sqrt{d}\tilde{h}_0\|_2^2$, subject to $\sqrt{L}\|Bz\|_{\infty} \le 2\sqrt{d}\mu$;

$$\bullet m_0 = \sqrt{d} \tilde{m}_0;$$

Initial iterate [(h₀, m₀)];

Numerical and Theoretical Results

Blind deconvolution

Numerical Results

Synthetic tests

- Efficiency
- Probability of successful recovery

Image deblurring

- Kernels with known supports
- Motion kernel with unknown supports

Numerical and Theoretical Results

Synthetic tests

- The matrix *B* is the first *K* column of the unitary DFT matrix;
- The matrix C is a Gaussian random matrix;
- The measurement $y = \text{diag}(Bh_{\sharp}m_{\sharp}^{*}C^{*})$, where entries in the true solution (h_{\sharp}, m_{\sharp}) are drawn from Gaussian distribution;
- All tested algorithms use the same initial point;
- Stop when $||y \operatorname{diag}(Bhm^*C^*)||_2 / ||y||_2 \le 10^{-8}$;

Numerical and Theoretical Results

Efficiency

$\min \|y - \operatorname{diag}(Bhm^*C^*)\|_2^2$

Table: Comparisons of efficiency

	L = 400, K = N = 50			L = 600, K = N = 50		
Algorithms	[LLSW16]	[LWB13]	R-SD	[LLSW16]	[LWB13]	R-SD
nBh/nCm	351	718	208	162	294	122
nFFT	870	1436	518	401	588	303
RMSE	2.22_{-8}	3.67 ₋₈	2.20_{-8}	1.48_{-8}	2.34_{-8}	1.42_{-8}

- An average of 100 random runs
- nBh/nCm: the numbers of Bh and Cm multiplication operations respectively
- nFFT: the number of Fourier transform

RMSE: the relative error
$$\frac{\|hm^* - h_{\sharp}m_{\sharp}^*\|_{I}}{\|h_{\sharp}\|_{2}\|m_{\sharp}\|_{2}}$$

Wen Huang

Riemannian Optimization

[[]LLSW16]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933, 2016 [LWB13]: K. Lee et. al., Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization preprint arXiv:1312.0525, 2013

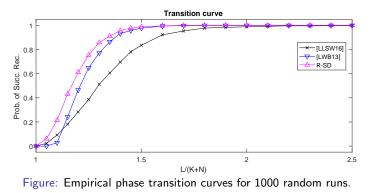
Blind deconvolution

Summary

Numerical and Theoretical Results

Probability of successful recovery

• Success if
$$\frac{\|hm^* - h_{\sharp}m_{\sharp}^*\|_{F}}{\|h_{\sharp}\|_{2}\|m_{\sharp}\|_{2}} \le 10^{-2}$$



[LLSW16]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933, 2016 [LWB13]: K. Lee et. al., Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization preprint arXiv:1312.0525, 2013

Wen Huang

Riemannian Optimization

Numerical and Theoretical Results

Image deblurring

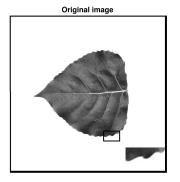


Image [WBX+07]: 1024-by-1024 pixels

Wen Huang Riemannian Optimization

Image deblurring with various kernels

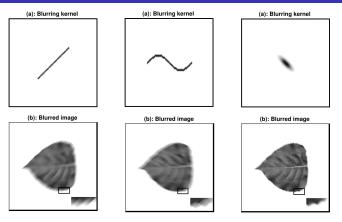


Figure: Left: Motion kernel by Matlab function "fspecial('motion', 50, 45)"; Middle: Kernel like function "sin"; Right: Gaussian kernel with covariance [1, 0.8; 0.8, 1];

Blind deconvolution

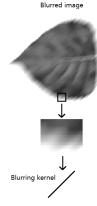
Image deblurring with various kernels

What subspaces are the two unknown signals in?

 Image is approximately sparse in the Haar wavelet basis

 Support of the blurring kernel is learned from the blurred image

 $\min \|y - \operatorname{diag}(Bhm^*C^*)\|_2^2$



Blind deconvolution

Image deblurring with various kernels

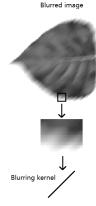
What subspaces are the two unknown signals in?

 Image is approximately sparse in the Haar wavelet basis

Use the blurred image to learn the dominated basis vectors: **C**.

 Support of the blurring kernel is learned from the blurred image

 $\min \|y - \operatorname{diag}(Bhm^*C^*)\|_2^2$



Blind deconvolution

Summary

Image deblurring with various kernels

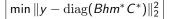
What subspaces are the two unknown signals in?

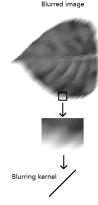
 Image is approximately sparse in the Haar wavelet basis

Use the blurred image to learn the dominated basis vectors: **C**.

 Support of the blurring kernel is learned from the blurred image

Suppose the supports of the blurring kernels are known: \mathbf{B} .





Blind deconvolution

Summary

Image deblurring with various kernels

What subspaces are the two unknown signals in?

 Image is approximately sparse in the Haar wavelet basis

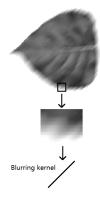
Use the blurred image to learn the dominated basis vectors: **C**.

 Support of the blurring kernel is learned from the blurred image

Suppose the supports of the blurring kernels are known: \mathbf{B} .

•
$$L = 1048576$$
, $N = 20000$, $K_{motion} = 109$,
 $K_{sin} = 153$, $K_{Gaussian} = 181$;

$$\min \|y - \operatorname{diag}(Bhm^*C^*)\|_2^2$$



Riemannian Optimization

Numerical and Theoretical Results

Blind deconvolution

Image deblurring with various kernels

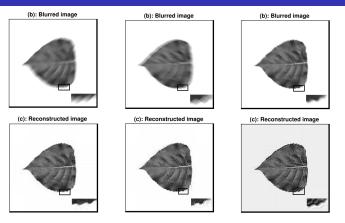


Figure: The number of iterations is 80; Computational times are about 48s; Relative errors $\left\| \hat{\mathbf{y}} - \frac{\|\mathbf{y}\|}{\|\mathbf{y}_f\|} \mathbf{y}_f \right\| / \|\hat{\mathbf{y}}\|$ are 0.038, 0.040, and 0.089 from left to right.

Blind deconvolution

Image deblurring with unknown supports

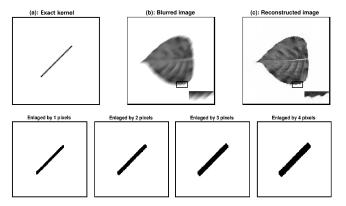


Figure: Top: reconstructed image using the exact support; Bottom: estimated supports with the numbers of nonzero entries: $K_1 = 183$, $K_2 = 265$, $K_3 = 351$, and $K_4 = 441$;

Image deblurring with unknown supports

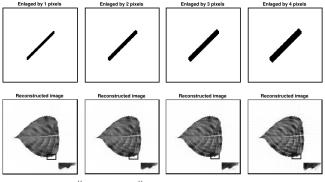


Figure: Relative errors $\left\| \hat{\mathbf{y}} - \frac{\|\mathbf{y}\|}{\|\mathbf{y}_f\|} \mathbf{y}_f \right\| / \|\hat{\mathbf{y}}\|$ are 0.044, 0.048, 0.052, and 0.067 from left to right.

Numerical and Theoretical Results

Theoretical Results

Mathematical model:

- The entries in C are drawn from Gaussian distribution; and
- B satisfies $B^*B = I_K$ and $||b_i||_2^2 \le \phi \frac{K}{L}$, i = 1, ..., L for some constant ϕ .

Blind deconvolution

Theoretical Results

Initialization [LLSW16]⁷

If $L \ge C_{\gamma}(\mu^2 + \sigma^2) \max(K, N) \log^2(L)/\varepsilon$, then with high probability, it holds that

$$[(h_0, m_0)] \in \Omega_{\frac{1}{2}\mu} \cap \Omega_{\frac{2}{5}\varepsilon},$$

where h_0 and m_0 are from a spectral method, $\Omega_{\mu} = \{ [(h, m)] \mid \sqrt{L} \|Bh\|_{\infty} \|m\|_2 \le 4d_*\mu \},$ $\Omega_{\varepsilon} = \{ [(h, m)] \mid \|hm^* - h_{\sharp}m_{\sharp}^*\|_{F} \le \varepsilon d_* \}, \text{ and } (h_{\sharp}, m_{\sharp}) \text{ is the true solution.}$

Large enough number of measurements \implies the initial point in a small neighborhood of the true solution.

⁷X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, *preprint arXiv:1606.04933*, 2016

Wen Huang

Riemannian Optimization

62/70 Rice University Numerical and Theoretical Results

Blind deconvolution

Theoretical Results

Convergence analysis

Suppose $L \ge C_{\gamma}(\mu^2 + \sigma^2) \max(K, N) \log^2(L) / \varepsilon^2$ and the initialization $[(h_0, m_0)] \in \Omega_{\frac{1}{2}\mu} \cap \Omega_{\frac{2}{\varepsilon}\varepsilon}$. Then with high probability, it holds that

$$\|h_k m_k^* - h_{\sharp} m_{\sharp}^*\|_F \leq \frac{2}{3} \left(1 - \frac{\alpha}{3000}\right)^{k/2} \varepsilon d_*,$$

where α is a small enough fixed step size.

i) Large enough number of measurements; ii) the initial point in a small neighborhood of the true solution \implies the Riemannian method converges linearly to the true solution.

Numerical and Theoretical Results

Blind deconvolution

Theoretical Results

Riemannian Hessian

Suppose $L \ge C_{\gamma} \max(K, \mu_h^2 N) \log^2(L)$. Then with high probability, it holds that

$$\frac{\partial d_*^2}{5} \leq \lambda_i \leq \frac{22d_*^2}{5}$$

for all *i*, where λ_i are eigenvalues of the Riemannian Hessian Hess *f* at the true solution.

The Riemannian Hessian $f \circ R$ is well-conditioned near the true solution.

Summary

- Introduced the framework of Riemannian optimization
- Used applications to show the importance of Riemannian optimization
- Briefly reviewed the history of Riemannian optimization
- Introduced the blind deconvolution problem
- Reviewed related work
- Introduced a Riemannian steepest descent method
- Demonstrated the performance of the Riemannian steepest descent method

Blind deconvolution

Thank you

Thank you!

66/70 Rice University

Wen Huang Riemannian Optimization

References I

P.-A. Absil, C. G. Baker, and K. A. Gallivan.

Trust-region methods on Riemannian manifolds. Foundations of Computational Mathematics, 7(3):303–330, 2007.

P.-A. Absil, R. Mahony, and R. Sepulchre.

Optimization algorithms on matrix manifolds. Princeton University Press, Princeton, NJ, 2008.

A. Ahmed, B. Recht, and J. Romberg.

Blind deconvolution using convex programming. IEEE Transactions on Information Theory, 60(3):1711–1732, March 2014.

J. F. Cardoso and A. Souloumiac.

Blind beamforming for non-gaussian signals. IEE Proceedings F Radar and Signal Processing, 140(6):362, 1993.

H. Drira, B. Ben Amor, A. Srivastava, M. Daoudi, and R. Slama.

3D face recognition under expressions, occlusions, and pose variations. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(9):2270–2283, 2013.

W. Huang, P.-A. Absil, and K. A. Gallivan.

A Riemannian symmetric rank-one trust-region method. Mathematical Programming, 150(2):179–216, February 2015.

References II

Wen Huang, P.-A. Absil, and K. A. Gallivan.

A Riemannian BFGS Method without Differentiated Retraction for Nonconvex Optimization Problems. SIAM Journal on Optimization, 28(1):470–495, 2018.

Wen Huang, P.-A. Absil, K. A. Gallivan, and Paul Hand.

ROPTLIB: an object-oriented C++ library for optimization on Riemannian manifolds. Technical Report FSU16-14, Florida State University, 2016.

W. Huang, K. A. Gallivan, and P.-A. Absil.

A Broyden Class of Quasi-Newton Methods for Riemannian Optimization. SIAM Journal on Optimization, 25(3):1660–1685, 2015.

W. Huang, K. A. Gallivan, Anuj Srivastava, and P.-A. Absil.

Riemannian optimization for registration of curves in elastic shape analysis. Journal of Mathematical Imaging and Vision, 54(3):320–343, 2015. DOI:10.1007/s10851-015-0606-8.

Wen Huang, K. A. Gallivan, and Xiangxiong Zhang.

Solving PhaseLift by low rank Riemannian optimization methods for complex semidefinite constraints. SIAM Journal on Scientific Computing, 39(5):B840–B859, 2017.

W. Huang and P. Hand.

Blind deconvolution by a steepest descent algorithm on a quotient manifold, 2017. In preparation.

References III

W. Huang

Optimization algorithms on Riemannian manifolds with applications. PhD thesis, Florida State University, Department of Mathematics, 2013.

W. Huang, Y. You, K. Gallivan, and P.-A. Absil.

Karcher mean in elastic shape analysis.

In H. Drira, S. Kurtek, and P. Turaga, editors, Proceedings of the 1st International Workshop on DIFFerential Geometry in Computer Vision for Analysis of Shapes, Images and Trajectories (DIFF-CV 2015), pages 2.1–2.11. BMVA Press, September 2015.

H. Laga, S. Kurtek, A. Srivastava, M. Golzarian, and S. J. Miklavcic.

A Riemannian elastic metric for shape-based plant leaf classification.

2012 International Conference on Digital Image Computing Techniques and Applications (DICTA), pages 1–7, December 2012. doi:10.1109/DICTA.2012.6411702.

Xiaodong Li, Shuyang Ling, Thomas Strohmer, and Ke Wei.

Rapid, robust, and reliable blind deconvolution via nonconvex optimization. *CoRR*, abs/1606.04933, 2016.

K. Lee, Y. Wu, and Y. Bresler.

Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization. pages 1–80, 2013.

Melissa Marchand, Wen Huang, Arnaud Browet, Paul Van Dooren, and Kyle A. Gallivan.

A riemannian optimization approach for role model extraction.

In Proceedings of the 22nd International Symposium on Mathematical Theory of Networks and Systems, pages 58-64, 2016.

References IV

A. Srivastava, E. Klassen, S. H. Joshi, and I. H. Jermyn.

Shape analysis of elastic curves in Euclidean spaces.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(7):1415–1428, September 2011. doi:10.1109/TPAMI.2010.184.

F. J. Theis and Y. Inouye.

On the use of joint diagonalization in blind signal processing. 2006 IEEE International Symposium on Circuits and Systems, (2):7–10, 2006.

B. Vandereycken.

Low-rank matrix completion by Riemannian optimization—extended version. SIAM Journal on Optimization, 23(2):1214–1236, 2013.

S. G. Wu, F. S. Bao, E. Y. Xu, Y.-X. Wang, Y.-F. Chang, and Q.-L. Xiang.

A leaf recognition algorithm for plant classification using probabilistic neural network. 2007 IEEE International Symposium on Signal Processing and Information Technology, pages 11–16, 2007. arXiv:0707.4289v1.

Xinru Yuan, Wen Huang, P.-A. Absil, and K. A. Gallivan.

A Riemannian quasi-newton method for computing the Karcher mean of symmetric positive definite matrices. Technical Report FSU17-02, Florida State University, 2017. www.math.fsu.edu/ whuang2/papers/RMKMSPDM.htm.

Y. You, W. Huang, K. A. Gallivan, and P. A. Absil.

A Riemannian approach for computing geodesics in elastic shape analysis. In 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pages 727–731, Dec 2015.