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Problem Statements

Finding an optimum of a rank-constrained problem

min
X∈M≤k

f (X ),

M≤k = {X ∈M|rank(X ) ≤ k}
M is Rm×n or a submanifold of Rm×n

Roughly speaking, a manifold is a set endowed with
coordinate patches which overlap smoothly, e.g.,

sphere: {x ∈ Rn|‖x‖2 = 1}.
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Motivations

E.g. Compression of an image

Cost function: f (X ) = ‖X −M‖2
F , where M ∈ R371×600 is the

matrix representation of the image

Figure : Size : 371× 600
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Motivations

Figure : Low rank approximation of the image
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Motivations

Figure : Singular values of the image
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Motivations

Rank-constrained optimization problems have appeared in many
areas

M = Rm×n

Signal and image processing
System identification
Computational finance
Low-dimensional embedding

M 6= Rm×n

Low-rank approximation of graph similarity matrix
Low-rank similarity measure for role model extraction
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Existing Methods

SVD-based algorithms

Random multistart-type algorithms, e.g. Alternating
Projection method, Double Minimization method , EW-TLS ,
etc.

Method of alternating between fixed-rank optimization and a
simple update to the rank

Projected line-search method
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Challenges

Efficiency (both time and space)

Rigorous way for rank updating (explain on the next slide)

Find the rank independent of k

Exact solution
Approximate solution
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Framework of Modified Riemannian Optimization Method

M is a submanifold of Rm×n

In general, M≤k = {X ∈M|rank(X ) ≤ k} is not a manifold

M≤k =M0 ∪M1 ∪M2 ∪ · · · ∪Mk , where
Mr = {X ∈M|rank(X ) = r}
Assume Mr is a manifold
⇒ General Riemannian optimization algorithms, e.g.,
RTR-Newton, can be applied on (Mr , g)

Question: When and how to move from one fixed-rank
manifold to another one?
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When to increase from one fixed-rank manifold to another
one?

Consider two functions

fF :M→ R : X 7→ fF(X ),

fr :Mr → R : X 7→ fr (X ),

such that f = fF
∣∣
M≤k

, fr = f |Mr .
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When to increase from one fixed-rank manifold to another
one?

Condition I (angle threshold, θ0):

∠(gradfF(X ), gradfr (X )) = θ > θ0

Condition II (difference threshold, ε):

‖gradfF(X )− gradfr (X )‖ ≥ ε
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How to increase from one fixed-rank manifold to another
one?

Line-search method
Xi+1 = RXi

(tiηi ),

where ti ≥ 0 is a step-size, ηi is a search direction and RXi
is a

retraction, i.e., RXi
: TXi

M→M and d
dtRXi

(tη) = η

How to choose ηi? → Rank-related Direction Vector

How to choose retraction R? → Rank-related Retraction
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Rank-related Objects

ηx ,r̃ ∈ TxM≤r̃ and
ηx ,r̃ /∈ TxM≤r̃−1 is a
rank-r̃ -related direction vector

ηx ,r̃ ∈
argminη∈TxM≤r̃

‖−gradfF(x)−η‖F
Rank-related retraction R̃x satisfies
R̃x(tηx ,r̃ ) ∈Mr̃ ,∀t ∈ (0, δ)

x

M

MrMr̃

−gradfF(x) ∈ TxM

ηx,r̃

Rx(ηx,r̃)
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Rank Reduction

Truncate rank and retract to M
May increase the function value

Do not destroy the progress that is made in the previous rank
increasing step, i.e.,

f (Xi+1)− f (Xs) ≤ c(f (Xs+1)− f (Xs)),

where s is such that the latest rank increase was from Xs to
Xs+1, 0 < c < 1.
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Main Theoretical Results

Parameter ε is used to adjust the accuracy of the approximate
solutions.

(Global Convergence) Suppose some reasonable assumptions
hold. Then the sequence {Xi} generated by modified
Riemannian Optimization method satisfies

lim inf
i→∞
‖PTXi

M≤k
(gradfF (Xi ))‖ ≤

(√
1 +

1

tan(θ0)2

)
ε.
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Weighted Low-rank Approximation

Problem Formulation

argmin
X∈M≤k

‖B−X‖2
W , ‖B−X‖2

W = vec{B−X}TW vec{B−X}

M = Rm×n

B ∈ Rm×n is a given data matrix

W ∈ Rmn×mn is a positive definite symmetric weighting matrix

vec{A} denotes the vectorized form of A
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Experiment

Comparison of different methods.

The data matrix B = B1B
T
2 is a random generated 80× 10

matrix with rank 5, B1 ∈ R80×5,B2 ∈ R10×5.

The weighting matrix W ∈ R800×800 is a positive definite
symmetric matrix.

k = 3, 5, 7.
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Experiment

Four algorithms are compared.

MROM: modified Riemannian optimization method

SULS: Projected line-search method (Schneider and
Uschmajew [SU14])

DMM: Double minimization method (Brace and Manton
[BM06])

APM: Alternating projections method (Lu et. al [LPW97] or
Wentzell et. al [WAK97])
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Experiment

k method rank f Rel Err(‖A−X‖W‖A‖W ) t

k = 3 MROM 3 8.846+01 3.513−01 4.823−01

SULS 3 8.846+01 3.513−01 2.190+00

DMM 3 8.846+01 3.513−01 4.706+00

APM 3 8.846+01 3.513−01 5.000+00

k = 5 MROM 5 2.191−19 1.557−11 6.890−01

SULS 5 2.147−12 4.874−08 1.045+00

DMM 5 1.606−15 1.324−09 4.351+00

APM 5 7.611−09 2.895−06 3.585+00

k = 7 MROM 5 1.799−21 1.346−12 4.730−01

SULS 7(0/100) 1.401−12 3.780−08 2.316+00

DMM 5 1.915−18 4.407−11 2.182+00

APM 7(0/100) 2.349−10 4.865−07 7.002+00

Table : The number in the parenthesis indicates the fraction of
experiments where the numerical rank (number of singular values greater
than 10−8) found by the algorithm equals the true rank. The subscript
±k indicates a scale of 10±k .
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Conclusion

min
X∈M≤k

f (X )

Generalize the admissible set from Rm×n
≤k to M≤k ;

Define an algorithm solving a rank inequality constrained
problem while finding a suitable rank for approximation;

Prove theoretical convergence results;
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Thank you!

Thank you for your attention!
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