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Abstract In elastic shape analysis, a representation
of a shape is invariant to translation, scaling, rota-
tion and reparameterization, and important problems

such as computing the distance and geodesic between
two curves, the mean of a set of curves, and other s-
tatistical analyses require finding a best rotation and

reparameterization between two curves. In this paper,
we focus on this key subproblem and study different
tools for optimizations on the joint group of rotation-

s and reparameterizations. We develop and analyze a
novel Riemannian optimization approach and evaluate
its use in shape distance computation and classification

using two public data sets. Experiments show signifi-
cant advantages in computational time and reliability
in performance compared to the current state-of-the-

art method. A brief version of this paper can be found
in [HGSA14].
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1 Introduction

Shape analysis of curves plays an important role in a va-
riety of imaging applications. The basic idea is to isolate
contours of objects in images (2D or 3D) and use the

shapes of these contours to characterize the original ob-
jects. Hence, there is a great interest in tools for shape
analysis of planar, closed contours. Many approaches

to shape analysis have been proposed in the literature
and used to varying degrees of success in applications,
e.g., point-based methods, domain-based shape repre-

sentations and parameterized curve representations. A
large majority of past work on statistical shape analysis
has been using landmark-based descriptions [DM98]. In

this setup, one samples contours with a fixed number
of points in a pre-determined way, e.g., using uniform
spacing, and the ensuing analysis is based on Euclidean

analysis of vectors of landmarks. A consequence of this
analysis is that the registration of landmarks—which
points on one contour match with which points on the

other—is already predetermined. This often results in
matching parts across shapes that have different geo-
metrical features. An important solution to this and

related problems in shape analysis of contours came in
the form of elastic shape analysis which has become
increasingly important in recent years due to its su-

perior theoretical basis and empirically demonstrated
effectiveness. In elastic shape analysis of contour, the
objects of study are parameterized contours and, in

pairwise comparisons, one solves for the optimal repa-
rameterizations of contours using an appropriate met-
ric. Figure 1 shows geodesics between two closed curves

with and without reparameterization, and using repa-
rameterization clearly gives a more natural transforma-
tion between the two curves. More abstractly, elastic

shape analysis leads to shape metrics and statistical
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summaries of shapes that are invariant to the original

parameterizations of the contours. The flexibility in pa-
rameterizations of curves helps in improving matching
of parts across shapes and has the effect of stretch-

ing/bending the curves in optimally deforming one in-
to the other—hence, the name elastic shape analysis.
Such a framework was first introduced for general 2D

curves by Younes [You98] and later studied by several
groups. Klassen et al. [KSMJ04] narrowed the focus by
studying shape analysis of closed, planar curves but did

not allow the curves to have arbitrary parameterization-
s. Younes et al. [YMSM08] focused on elastic analysis
of closed curves using complex representations of 2D

coordinates of curves. Srivastava et al. [SKJJ11] fur-
ther extended this analysis to include curves in general
Euclidean spaces by introducing a novel mathematical

representation called the square root velocity functions
(SRVFs).

An important advantage of SRVFs was that their
usage transformed a complicated elastic Riemannian
metric into the more standard L2 metric. Naturally,

it preserved the isometry property of the elastic metric
despite simplification. The isometry property is that if
any two curves are reparameterized by the same func-

tion, then the resulting distance between them under
the elastic metric does not change. Thus, one can de-
fine reparameterization (and rotation) orbits of given

contours as equivalence classes from the perspective of
shape analysis, and induce the L2 norm from the SRVF
representation to a quotient space modulo rotation and

reparameterization. This leads to a definition of shape
distance between any two curves as the distance be-
tween the corresponding orbits in the quotient space.

The accurate and efficient computation of distance be-
tween shapes of two curves is a fundamental operation
in elastic shape analysis, upon which many other im-

portant tasks depend. This typically involves solving an
optimization problem on the joint space of reparame-
terizations and rotations. In this paper, we focus on this

important subproblem in elastic shape analysis and s-
tudy different tools for optimizations on the joint group.
We develop and analyze a novel optimization approach

to solving for optimal reparameterizations and rotation-
s between two curves and evaluate its use in computing
the distance between two curves and for classification

of closed curves in the plane.

This paper is organized as follows. Section 2 presents
the Riemannian framework for shape analysis including
the definition of the elastic metric for open and closed

curves in Rn. Section 3 presents the algorithm of Srivas-
tava et al. [SKJJ11], the approximations upon which it
is based and its core dynamic programming algorithm.

The proposed Riemannian approach to the solution of

geodesic without reparameterization

geodesic with reparameterization

Fig. 1 Geodesics without and with reparameterization are
given by the frameworks of landmark-based Kendall’s shape
analysis [Ken84,DM98] and elastic shape analysis [SKJJ11]
respectively.

the optimization problem that defines the elastic met-
ric evaluation is derived in Section 4, and a detailed
discussion of its implementation using Riemannian op-

timization algorithms follows in Section 5. Empirical
evaluation of the relative efficiency and effectiveness of
the methods is presented in Section 6, and our conclu-

sions are given in Section 7.

2 Riemannian Framework and Problem

Statement

2.1 Curve Representation

The derivation of the basic representation of a shape
begins with a parameterized curve, i.e., β(t) : D→ Rn,
where D is the domain of the curve — D = [0, 1] for an

open curve and D = S1, i.e., the unit circle in R2, for a
closed curve — and β is a smooth function on D. The
shape is taken to be invariant with respect to rescal-

ing, translation, and rotation for inelastic shape anal-
ysis, while elastic shape analysis adds invariance with
respect to reparameterization. All four invariants must

be taken into account when developing a representation
that supports efficient and robust computation.

The framework of Srivastava et al. [SKJJ11] uses
the square root velocity (SRV) function

q(t) =

{
β̇(t)√
∥β̇(t)∥2

, if ∥β̇(t)∥2 ̸= 0;

0, if ∥β̇(t)∥2 = 0.

as the basis for elastic analysis of a shape defined by the

parameterized curve β(t). Observe that β̇(t) can be re-
covered from q(t) by β̇(t) = ∥q(t)∥2q(t). Translation is
removed automatically by the use of β̇(t) in the defini-

tion. Rescaling is removed by the normalization of the
length of the curve to 1. Since the length of a curve,
β(t), is

∫
D ∥β̇(t)∥2dt =

∫
D ∥q(t)∥

2
2dt, the normalization

requires that
∫
D ∥q(t)∥

2
2dt = 1, and the set of all SRV
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functions is the unit sphere in L2(D,Rn). This sphere

is called the preshape space. For open curves in Rn, the
domain is D = [0, 1], and the preshape space

lon =

{
q ∈ L2([0, 1],Rn)

∣∣∣ ∫ 1

0

∥q(t)∥22dt = 1

}
,

is the unit sphere of L2([0, 1],Rn). For closed curves,
the domain is D = S1, and the preshape space is

lcn =
{
q ∈ L2(S1,Rn)

∣∣∣∫
S1
∥q(t)∥22dt = 1,

∫
S1
q(t)∥q(t)∥2dt = 0

}
, (1)

where
∫
S1 q(t)∥q(t)∥2dt = 0 is the closure condition.

Note that the preshape space of closed curves also can
be written in a more intuitive expression:

lcn =
{
q ∈ L2([0, 1],Rn)

∣∣∣∫ 1

0

∥q(t)∥22dt = 1,

∫ 1

0

q(t)∥q(t)∥2dt = 0
}

(2)

and the closure condition requires β(0) = β(1). It is
known that lcn is a submanifold of lon [SKJJ11, Ap-

pendix]. In the later discussions, lcn denotes (2) rather
than (1).

Removing rotation and reparameterization is required

to define the shape space. This is done by defining an
appropriate quotient operation via isometric group ac-
tions. This, in turn, defines the distance between curves,

the associated optimization problem, and other key tasks
such as determining geodesics containing the two curves.
Since the approaches taken differ for open and closed

curves, they are considered separately below. However,
both approaches require the rotation and reparameter-
ization groups, and their actions. In these two defini-

tions, Γ and ln are used to indicate the reparameter-
ization group and preshape space for both open and
closed curves.

Definition 1 The rotation group for curves in Rn is

SO(n) =
{
O ∈ Rn×n|OTO = In, det(O) = 1

}
,

and its action is SO(n)× ln → ln : (O, q)→ Oq.

Definition 2 The reparameterization group for curves
in Rn is

Γ = {γ : D→ D|γ ∈ D(D,D)},

and its action is ln×Γ → ln : (q, γ)→ (q ◦γ)
√
γ̇, where

D(D,D) is the set of orientation-preserving, absolutely

continuous bijections.

Specifically, the reparameterization group for open

curves lon is

Γ o =
{
γ : [0, 1]→ [0, 1]|γ is absolutely continuous,

γ(0) = 0, γ(1) = 1, and γ̇(t) > 0 almost everywhere.
}
.

The reparameterization group for closed curves lcn is

Γ c = [0, 1]× Γ o,

and its action is therefore lcn × Γ c → lcn : (q, (m, γ)) →
(q̂ ◦ γ mod 1))

√
γ̇, where q̂(t) = (q,m)(t) := q(t + m

mod 1).

We denote by γ−1 the reciprocal (also called in-

verse) of function γ. To avoid confusion, we use 1
γ for

the pointwise numerical inverse.

2.2 Open Curves in Rn

The preshape space for open curves, lon, is a well-known
infinite dimensional manifold. The tangent space of q ∈
lon is

Tq l
o
n =

{
v ∈ L2([0, 1],Rn)

∣∣∣ ∫ 1

0

q(t)T v(t)dt = 0

}
.

The Riemannian metric on lon can be taken as the en-
dowed metric from the embedding space L2([0, 1],Rn),
i.e.,

⟨v1, v2⟩lon = ⟨v1, v2⟩L2 =

∫ 1

0

v1(t)
T v2(t)dt,

where v1, v2 ∈ Tq l
o
n. The distance function on lon in-

duced by this Riemannian metric is

dlon(x, y) = cos−1 ⟨x, y⟩L2 . (3)

Observe that dlon
(
(x ◦ γ)

√
γ̇, (y ◦ γ)

√
γ̇
)
= dlon(x, y) for

all γ ∈ Γ o.

The shape space for open curves is given by the
quotient

Lo
n = {[q]|q ∈ lon},

where the orbit [q] is the closure of the set

[q] = {O(q ◦ γ)
√
γ̇|(O, γ(t)) ∈ SO(n)× Γ o},

and the closure is with respect to the L2 metric.
Another way to elaborate this is to first introduce a

semigroup:

Γ o
s = {γ : [0, 1]→ [0, 1]|γ(0) = 0, γ(1) = 1,

γ is an absolutely continuous

and non-decreasing function } .

It is shown in Theorem 1 that [q] is the orbit of q under
the semigroup Γ o

s and rotation group SO(n) under the
assumption that q−1(0n) has measure zero, where 0n ∈
Rn is the zero vector.
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Theorem 1 Let [q]SO(n)×Γ o
s
denote the orbit of q un-

der the semigroup Γ o
s and rotation group SO(n). Then

[q]SO(n)×Γ o
s
⊆ [q]. Moreover, if q−1(0n) has measure ze-

ro, then [q]SO(n)×Γ o
s
= [q].

Proof See the appendix.

Now we can define a distance between orbits of Γ o
s

and SO(n), [q1] and [q2] as:

dLo
n
([q1], [q2]) =

inf
γ1,γ2∈Γ o

s ,O1,O2∈SO(n)
dlon(O1(q1 ◦ γ1)

√
γ̇1, O2(q2 ◦ γ2)

√
γ̇2) .

By the definition of closure, elements in [q] can be

approximated arbitrarily well by elements in [q] with
respect to L2 metric. Therefore, we have for any ϵ > 0,
there exists a γ∗ ∈ Γ o and an O∗ ∈ SO(n) such that :

|dLo
n
([q1], [q2])− dlon(q1, O

∗(q2 ◦ γ∗)
√
γ̇∗)| < ϵ .

Note that since Γ o and SO(n) are isometries, O and γ

each can be associated with either q1 or q2. While in
the definition above both are associated with q2, it is
shown below that there are implementation and robust-

ness reasons to associate O with q1 and γ with q2.

Our goal is to find such a pair (O∗, γ∗) ∈ SO(n)×Γ o.
Even though this will not be an exact calculation of the

shape distance, approximating dLo
n
([q1], [q2]) by

dlon(q1, O(q2 ◦ γ)
√
γ̇) = cos−1 ⟨q1, O(q2 ◦ γ)

√
γ̇⟩L2 , (4)

evaluated at (O∗, γ∗) gives an approximate distance for
comparing shapes of curves in practical situations.

2.3 Closed Curves in Rn

The preshape space of closed curves, lcn, is a subman-
ifold of lon, and the Riemannian metric inherited from

the embedding space is

⟨v1, v2⟩lcn = ⟨v1, v2⟩L2 =

∫
S1
v1(t)

T v2(t)dt.

The shape space for closed curves is

Lc
n = {[q]|q ∈ lcn},

where the orbit [q] is the closure of the set {O(q ◦
γ)
√
γ̇|(O, γ(t)) ∈ SO(n)× Γ c}.
Proceeding as with open curves, a semigroup Γ c

s =

[0, 1] × Γ o
s , that is closed under composition, can be

defined. It also can be shown in Theorem 2 that [q]
is the orbit of q under the semigroup Γ c

s and rotation

group SO(n).

Theorem 2 Let [q]SO(n)×Γ c
s
denote the orbit of q un-

der the semigroup Γ c
s = [0, 1] × Γ o

s and rotation group
SO(n). Then [q]SO(n)×Γ o

s
⊆ [q]. Moreover, if q−1(0n)

has measure zero and q is absolutely continuous, then

[q]SO(n)×Γ o
s
= [q].

Proof See the appendix.

The distance between orbits [q1] and [q2] of q1 and
q2 under the semigroup Γ c

s is

dLc
n
([q1], [q2]) =

inf
γ1,γ2∈Γ c

s ,O1,O2∈SO(n)
dlcn(O1(q1 ◦ γ1)

√
γ̇1, O2(q2 ◦ γ2)

√
γ̇2),

and for any ϵ > 0, there exists a γ∗ ∈ Γ c and an O∗ ∈
SO(n) such that:

|dLc
n
([q1], [q2])− dlcn(q1, O

∗(q2 ◦ γ∗)
√

γ̇∗)| < ϵ. (5)

Unlike the case of open curves, there is no known an-

alytical expression of distance on lcn. Since lcn is a sub-
manifold of lon, dlon(q1, q2) is the extrinsic distance of
q1, q2 ∈ lcn. The approximation

inf
γ1,γ2∈Γ c

s ,O∈SO(n)
dlcn((q1 ◦ γ1)

√
γ̇1, O(q2 ◦ γ2)

√
γ̇2)

≈ inf
γ1,γ2∈Γ c

s ,O∈SO(n)
dlon((q1 ◦ γ1)

√
γ̇1, O(q2 ◦ γ2)

√
γ̇2)

is used (see Section 6.4). (In fact, we could have defined
dLc

n
([q1], [q2]) = infγ1,γ2∈Γ c

s ,O∈SO(n) dlon((q1◦γ1)
√
γ̇1, O(q2◦

γ2)
√
γ̇2) right away.) As with open curves, approximat-

ing dLc
n
([q1], [q2]) with the extrinsic distance

dlon(q1, O(q2◦γ)
√
γ̇) = cos−1 ⟨q1, O(q2 ◦ γ)

√
γ̇⟩L2 (6)

evaluated at (O∗, γ∗) gives an approximate distance for
comparing shapes of curves in practical situations.

3 The Coordinate Descent Method

The discussion in Sections 2.2 and 2.3 characterizes
the reparameterization problem from the Riemannian

manifold point of view but does not suggest an algo-
rithm. Sebastian et al. [SKK03] define an edit distance
to characterize differences between shapes and devel-

op an algorithm for closed curves with computation-
al complexity O(N2 logN), where N is the number of
points for representing a curve. It requires the cost func-

tion to be invariant to rotation which is clearly not
the case for all the cost functions discussed above, i.e.,
dlon(q1, O(q2 ◦ γ)

√
γ̇) for O ∈ SO(n), γ ∈ Γ o or γ ∈ Γ c,

and their variations (7) and (9) discussed later.
Srivastava et al. [SKJJ11] developed a method for

finding (γ∗, O∗) for open and closed curves based on the

idea of alternately optimizing on SO(n) and Γ o or Γ c,
i.e., a generalized Coordinate Descent method. The sim-
pler open curve problem and algorithm are discussed

first followed by the adaptation to closed curves.
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3.1 The Basic Ingredients

For open curves Srivastava et al. [SKJJ11] use the cost
function

Ho(O, γ) =

∫ 1

0

∥q1(t)−O(q2 ◦ γ(t))
√

γ̇(t)∥22dt, (7)

that has the same extreme points as the cost function
used in (4). This is easily seen from∫ 1

0

∥q1(t)−O(q2 ◦ γ(t))
√

γ̇(t)∥22dt

=⟨q1, q1⟩L2 + ⟨q2, q2⟩L2 − 2⟨q1, O(q2 ◦ γ)
√
γ̇⟩L2

=2− 2 cos(cos−1(⟨q1, O(q2 ◦ γ)
√

γ̇⟩L2))

=2− 2 cos(dlon(q1, O(q2 ◦ γ)
√

γ̇)).

Note that the cost function (7) is not applied to the
curve itself but to its corresponding q function. They
propose a variant of the general Coordinate Descent
method approach given in Algorithm 1.

Algorithm 1 Coordinate Descent Algorithm for
Ho(O, γ)

Require: Initial γ0;
1: k = 0;
2: Find Ok+1 = argminO Ho(O, γk) using the SVD;
3: Find γk+1 ≈ argminγ Ho(Ok+1, γ) using dynamic pro-

gramming;
4: If termination criterion is satisfied, stop, otherwise, k =

k + 1 and go to step 2.

The minimizer Ok+1 of Ho(O, γk) is Ok+1 = UV T ,
where USV T is the singular value decomposition (SVD)

of A =
∫ 1

0
q1(t)q̃2(t)

T dt and q̃2(t) = (q2 ◦ γk(t))
√
γ̇k(t).

The SVD of a generic dense matrix A ∈ Rn×n is well-
understood and can be computed reliably and efficient-

ly using well-known numerical linear algebra techniques
for n up to several hundred, i.e., much larger than typi-
cally required for typical shape analysis problems. This

is common to both open and closed curve problems.
To find approximately the minimizer γk+1 of Ho(Ok, γ)
for open curves, Srivastava et al. [SKJJ11] use dynamic

programming (DP) [Ber95].
The approximation arises for this problem because

DP works on a grid in [0, 1] × [0, 1] rather than the

continuous space Γ o. Srivastava et al. use GN × GN

where GN = {0/N, 1/N, . . . , (N − 1)/N, 1}. Here, we
consider a more general grid, GN × G̃N , where G̃N =

{g0, g1, . . . , gN} is not necessarily uniformly-spaced, g0 =
0, gN = 1, and gi < gj if i < j. On GN × G̃N , DP uses
a partial cost function

E(s, t; γ) =

∫ t

s

∥q1(τ)−O(q2 ◦ γ(τ))
√
γ̇(τ)∥22dτ

and determines a piecewise linear path defined by con-

necting points in GN × G̃N moving to the right and
up, i.e., (0, 0) = (i0, j0) < (i1, j1) < (i2, j2) < . . . <
(im, jm) = (1, 1) that minimize the cost

m−1∑
r=0

E(ir, ir+1;L(ir, jr; ir+1, jr+1)),

where L(ir, jr; ir+1, jr+1) is the linear function passing
though (ir, jr) and (ir+1, jr+1).

DP uses induction to construct a minimal path.
Suppose S ⊆ GN × G̃N is such that for any (p, q) ∈
S the globally minimizing path γ∗

(p,q) from (0, 0) to

(p, q), and the associated cost function valueW (p, q) are

known. Let Ui,j :=
{
(p, q) ∈ GN × G̃N |0 ≤ p < i, 0 ≤ q < j

}
.

When Ui,j ⊆ S, the basic DP step adds (i, j) to S

by computing γ∗
(i,j), the globally minimizing path on

GN × G̃N from (0, 0) to (i, j), and the associated cost
function value W (i, j). This is done by considering each

(p, q) ∈ Ui,j , adding the edge between (p, q) and (i, j)
to the path γ∗

(p,q) and determining its cost. Formally,
determining W (i, j) and γ∗

(i,j) is solving

min
(k,l)∈Ui,j

E(k, i;L(k, l; i, j))+W (k, l), with W (0, 0) = 0.

Eventually, S = GN × G̃N and a path with minimal

cost on S ⊂ Γ o is given by γ∗
(1,1).

The complexity of DP as described above is O(N5)
and too high for practical problems. To reduce the com-
plexity, the set Ui,j is constrained to

Ni,j = {(k, l)|max(i− h, 0) ≤ k < i,

max(j − h, 0) ≤ l < j} ⊂ Ui,j (8)

for some h. When the grid G̃N is chosen to be unifor-
m, i.e. G̃N = GN , the set Ni,j can be further reduced

by removing some repeated slopes, e.g., (i − 2, j − 2)
is deleted because (i − 1, j − 1) exists. Using the set
Ni,j rather than Ui,j reduces the complexity of DP to

O(N2). However, since the number of slopes considered
when adding (i, j) to S is constrained, the minimizer
may change and may no longer be a global minimizer

on GN × G̃N .
The quality of γ∗

(1,1) compared to a global minimiz-
er, γ̃∗

(1,1) on Γ o is not known analytically nor is the

potential further degradation in quality compared to
γ̃∗
(1,1) that results in replacing Ui,j with Ni,j .
The cost function defined on SO(n)× Γ c for closed

curves is

Hc(O, γ) =

∫
S1
∥q1(t)−O(q2 ◦ γ(t))

√
γ̇(t)∥22dt. (9)

A DP-based Coordinate Descent algorithm cannot be

applied to Hc(O, γ) directly since DP requires a grid
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of a domain that is the cross product of two intervals,

e.g., [0, 1]× [0, 1] rather than S1 × S1. Srivastava et al.
[SKJJ11] solve this by applying the open curve DP-
based algorithm to a set of open curves, {β̃(i), 1 ≤
i ≤ w} derived from the closed curve β using w break
points, ti, 1 ≤ i ≤ w, i.e.,

β̃(i)(t) =

{
β(t+ ti), if 0 ≤ t ≤ 1− ti;
β(t− (1− ti)), if 1− ti < t ≤ 1.

The open curve DP algorithm using Ho(O, γ) is ap-
plied to each open curve β̃(i) to determine γ(i). A γ(i)

with minimal cost is chosen as the closed curve repa-
rameterization. Since DP is run w times, the complex-
ity for this closed curve algorithm is O(wN2), and w is

usually proportional to N , e.g., every second or third
point is used as a break point, yielding O(N3) com-
plexity. Note that this complexity is for only one run of

DP in Algorithm 1. A key consideration for closed curve
reparameterization is therefore computational complex-
ity versus quality of γ.

3.2 Uniform Grid Coordinate Descent and Some

Difficulties

The use of DP on a grid to solve approximately the

optimization problem implies that γ is represented by
a sequence of scalars such that the i-th scalar is γ at
(i − 1)/N . The curves β1 and β2 are also represented

discretely by a sequence of points in Rn, and values
at points other than the discrete set are recovered us-
ing an interpolatory parameterized polynomial, e.g., an

interpolatory spline of degree 1, 2 or 3. The theoreti-
cal descriptions of the optimization algorithms for open
and closed curves assume that the operations of rota-

tion and reparameterization preserve the shape of the
curves. It is important to maintain this invariant in the
context of the discrete representations of γ, β1 and β2.

In this section, we consider a uniform grid on both
β1 and β2, and Algorithm 2 and Algorithm 3 are t-

wo discrete representation versions of the Coordinate
Descent algorithm applied to closed curves based on
the cost function (9). The open curve discrete versions

are easily derived from either. The differences between
Algorithm 2 and Algorithm 3 are specifically designed
to highlight some crucial implementation decisions and
the problems that arise in both implementations. These

problems are all overcome by the new Riemannian al-
gorithms we propose in Section 4. A concrete example
that illustrates the difficulties of Algorithm 2 and Al-

gorithm 3 is given in Section 6.3.

Note that cost function (9) applies the reparameter-

ization, γ to β2. Also note that in Step 10 of Algorithm 2

interpolation is used when evaluating the reparameter-

ized curve β2◦γ. This implies that the vector of discrete
points in Rn used to represent β2 is updated by each
reparameterization. If, equivalently from an optimiza-

tion point of view, γ is associated with β1 then the vec-
tor representation of β1 changes. Therefore, when mul-
tiple iterations of Coordinate Descent are performed,

a problem arises. Since the points upon which the in-
terpolatory parameterized polynomial is based change,
the parameterized polynomial changes, and therefore

the shape of the curve changes with each reparameter-
ization.

Algorithm 3 overcomes this difficulty by represent-

ing β2 as a continuous function determined by the inter-
polatory parameterized polynomial (Step 1) and main-
taining it throughout the algorithm. Algorithm 3, how-

ever, has a problem that is not seen in Algorithm 2. In
Step 11, the expression

β̄
(min,k)
2 = O(min,k)O

(k)
∗(

(β2 ◦ γ(k)
∗ ) ◦ ((γ(min,k) + b

(k)
min/N) mod 1)

)
(10)

is implicitly used when H(min,k) = Hc(O
(k)
∗ , γ

(k)
∗ ) is

computed and is then explicitly used to compute β̄
(min,k)
2 .

The curves β̄
(min,k)
2 and β

(k+1)
2 are, in theory, the same.

However, on the next iteration, k+ 1, the curve β
(k+1)
2

is explicitly computed using the composition

β
(k+1)
2 = O(min,k)O

(k)
∗(

β2 ◦ (γ(k)
∗ ◦ ((γ(min,k) + b

(k)
min/N) mod 1))

)
. (11)

Note that associativity has been applied in the compo-
sition of functions. This is required given that the in-
terpolatory parameterized polynomial representing β2

is maintained for all iterations. The change of order
does not matter theoretically in the continuous form
but the curves are different in the discrete case. If the

cost function valueH(min,k) was computed using the or-
der of composition in (11), it may yield a different value
than the cost function value used during iteration k to

update β2 mentioned above. In fact, the cost function
value associated with the form (11) implicit in iteration
k + 1 may be larger than the cost function value actu-

ally computed in iteration k using (10). Therefore, we

may compute a β
(k+1)
2 that does not decrease the cost

function value in practice.

3.3 Nonuniform Grid Coordinate Descent

The problem in Algorithm 3 with associativity can be

addressed by using a nonuniform grid that keeps track
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Algorithm 2 Coordinate Descent Algorithm for
Hc(O, γ)

Require: Two closed curves β1 =
{( 0

N
, v0), (

1
N
, v1), . . . , (

N−1
N

, vN−1), (
N
N
, v0)} and

β2 = {( 0
N
, u

(0)
0 ), ( 1

N
, u

(0)
1 ), . . . , (N−1

N
, u

(0)
N−1), (

N
N
, u

(0)
0 )}

where u
(0)
i , vi ∈ Rn; a set of break indices

{b1, b2, . . . , bw};
1: k = 0;
2: for i = 1, 2, . . . , w do

3: Shift β
(k)
2 and get β̃

(i,k)
2 = {( 0

N
, u

(k)
bi

), ( 1
N
, u

(k)
bi+1), . . . ,

(N−1−bi

N
, u

(k)
N−1), (

N−bi

N
, u

(k)
0 ), . . . , (N

N
, u

(k)
bi

)};
4: Compute the rotation O(i,k) based on β1 and β̃

(i,k)
2 ;

5: Set β̄2 = O(i,k)β̃
(i,k)
2 ;

6: Compute γ(i,k) for β1 and β̄2 by DP;
7: Compute cost function H(i,k)

8: end for
9: Find H(min,k) = min1≤i≤w{H(i,k)} and get the corre-

sponding O(min,k), γ(min,k) and β̄
(min,k)
2 ;

10: Interpolate β̄
(min,k)
2 by a function F (e.g., cu-

bic spline interpolation) and set β
(k+1)
2 =

{( 0
N
, F (γ(min,k)( 0

N
))), ( 1

N
, F (γ(min,k)( 1

N
))), . . . ,

(N
N
, F (γ(min,k)(N

N
)))}

11: If a stopping criterion is satisfied, then stop, otherwise
k = k + 1 and goto step 2;

of the reassigned parameter values of the ui’s. The de-
tails can be found in Algorithm 4.

The example shown in Figures 2 and 3 is used to

understand the idea in Algorithm 4. As shown in Fig-
ure 2, the γ(0) given by DP assigns parameter values to
points on β2. Therefore, a nonuniform grid on β2 can be

used to absorb the effect of γ(0). In the next iteration as
shown in Figure 3, one finds another γ(1) which assigns
new parameter values to points on β2. The accumu-

lated γ
(2)
∗ shown in Figure 3 is exactly defined by the

values of (γ
(2)
∗ )−1 at i/N . In general, the accumulated

γ
(k)
∗ can be exactly defined by the values of (γ

(k)
∗ )−1 at

i/N . Therefore, the associativity difficulty is avoided.
Even though Algorithm 4 avoids the problems in Algo-
rithms 2 and 3, and therefore can reliably perform more

than one iteration to determine the reparameterization,
this improves only the quality of the distance approxi-
mation. The computational complexity required can be

substantial and limits the size of problem that can be
handled. Specific examples are given in Section 6.9 to
demonstrate that Algorithm 4 avoids the difficulties of

Algorithms 2 and 3 to produce a more accurate distance
estimation.

The experiments in Srivastava et. al. [SKJJ11] sim-
plify the optimization considerably by using only a sin-

gle iteration of the Coordinate Descent algorithm, de-
noted CD1. Algorithms 2, 3 and 4 are then identical
and avoid both of these problems. If a more accurate

optimization is demanded therefore requiring more it-

Algorithm 3 Coordinate Descent Algorithm for
Hc(O, γ)

Require: Two closed curves β1 =
{( 0

N
, v0), (

1
N
, v1), . . . , (

N−1
N

, vN−1), (
N
N
, v0)} and

β
(0)
2 = {( 0

N
, u0), (

1
N
, u1), . . . , (

N−1
N

, uN−1), (
N
N
, u0)}

where ui, vi ∈ Rn; a set of break indices {b1, b2, . . . , bw};
initial γ

(0)
∗ = {0, 1/N, . . . , 1}; O(0)

∗ = In;
1: Compute interpolation function Fβ2

for β2, e.g., a spline
cubic function;

2: k = 0;

3: Compute β
(k)
2 by evaluating Fβ2

at γ
(k)
∗ and left multi-

plying by O
(k)
∗ ;

4: for i = 1, 2, . . . , w do

5: Shift β
(k)
2 and get β̃

(i,k)
2 = {( 0

N
, u

(k)
bi

), ( 1
N
, u

(k)
bi+1), . . . ,

(N−1−bi

N
, u

(k)
N−1), (

N−bi

N
, u

(k)
0 ), . . . , (N

N
, u

(k)
bi

)};
6: Compute the rotation O(i,k) based on β1 and β̃

(i,k)
2 ;

7: Set β̄2 = O(i,k)β̃
(i,k)
2 ;

8: Compute γ(i,k) for β1 and β̄2 by DP;
9: Compute cost function H(i,k);
10: end for
11: Find H(min,k) = min1≤i≤w{H(i,k)} and get the corre-

sponding O(min,k), γ(min,k), β̄
(min,k)
2 and the shift b

(k)
min;

12: Set O
(k+1)
∗ = O(min,k)O

(k)
∗ ;

13: Interpolate points γ
(k)
∗ to get a function, e.g., spline func-

tion and evaluate the function at

(γ(min,k) + b
(k)
min/N) mod 1 =

(γ(min,k)(0) + b
(k)
min/N) mod 1

(γ(min,k)(1/N) + b
(k)
min/N) mod 1

...

(γ(min,k)(1) + b
(k)
min/N) mod 1


to get γ

(k+1)
∗ ; (this is the implementation of γ

(k+1)
∗ =

γ
(k)
∗ ◦ γ(min,k));

14: If a stopping criterion is satisfied, then stop, otherwise
k = k + 1 and goto step 3;

0
0 1

1

γ(0) found

Grid GN

G
ri
d
G̃

(0
)

N
=

G
N

0
0 1

1

γ
(1)
∗

Grid G̃
(1)
N

G
ri
d
G

N

Fig. 2 DP in the first iteration of Algorithm 4. Observe that,

as annouced in Step 14 of Algorithm 4, γ
(1)
∗ can be recovered

as the piecewise-linear function that connects the ascending-

diagonal points of the grid G̃
(1)
N ×GN .
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0
0 1

1

γ(1) by DP

6/15

2/15

4/15

7/10

Grid GN

G
ri
d
G̃

(1
)

N

0
0 1

1

γ
(2)
∗ = γ

(1)
∗ ◦ γ(1)

3/5

1/5

2/5

4/5

Grid G̃
(2)
N

G
ri
d
G

N

Fig. 3 DP in the second iterate of Algorithm 4. Observe

again that, as announced in Step 14 of Algorithm 4, γ
(2)
∗ can

be recovered as the piecewise-linear function that connects

the ascending-diagonal points of the grid G̃
(2)
N ×GN .

Algorithm 4 Coordinate Descent Algorithm for
Hc(O, γ)

Require: Two closed curves β1 and β2; a set of break indices

{b1, b2, . . . , bw}; G̃(0)
N = GN ;

1: k = 0 and γ
(0)
∗ = id;

2: Compute q functions, q1 =
{( 0

N
, v0), (

1
N
, v1), . . . , (

N−1
N

, vN−1), (
N
N
, v0)} and

q2 = {( 0
N
, u0), (

1
N
, u1), . . . , (

N−1
N

, uN−1), (
N
N
, u0)}, for

β1 and β2, where ui, vi ∈ Rn.
3: Interpolate q2 by a function Fq2

(e.g., cubic spline inter-
polation)

4: for i = 1, 2, . . . , w do

5: Shift G̃
(k)
N such that the grid is from 0 to 1 to get

G̃
(i,k)
N = {g(k)

bi
− g

(k)
bi

, g
(k)
bi+1 − g

(k)
bi

, . . . , g
(k)
N −

g
(k)
bi

, g
(k)
1 + 1− g

(k)
bi

, . . . , g
(k)
bi

+ 1− g
(k)
bi
};

6: Shift q2 to get q
(i,k)
2 =

{(g(i,k)
0 , u

(k)
bi

), (g
(i,k)
1 , u

(k)
bi+1), . . . , (g

(i,k)
N−1−bi

,

u
(k)
N−1), (g

(i,k)
N−bi

, u
(k)
0 ), . . . , (g

(i,k)
N , u

(k)
bi

)}, where g
(i,k)
m

denote m-th point in G̃
(i,k)
N ;

7: Resample q2 to get q̂
(i,k)
2 = Fq2

(γ
(k)
∗ (t) +

bi

N
mod1)|t∈GN

;

8: Compute the rotation O(i,k) based on q1 and q̂
(i,k)
2 ;

9: Set q̄
(i,k)
1 = (O(i,k))T q

(i,k)
1 ;

10: Get a piecewise linear γ(i,k) for q̄
(i,k)
1 and q

(i,k)
2

by applying DP on the grid GN × G̃
(i,k)
N , where

L(a, b; c, d) in DP is now the linear function passing

through (a/N, g
(i,k)
b ) and (c/N, g

(i,k)
d ). Evaluate the

corresponding H(i,k);
11: end for
12: Find H(min,k) = min1≤i≤w{H(i,k)} and get the corre-

sponding γ(min,k), and G̃
(min,k)
N ;

13: Compute the new grid G̃
(k+1)
N by formula g

(k+1)
i =

κ−1(g
(min,k)
i ), where κ = γ(min,k) and g

(min,k)
m is m-th

point in G̃
(min,k)
N ;

14: γ
(k+1)
∗ is the piecewise linear function passing through

(g
(k+1)
i , i/N) shifted so that γ

(k+1)
∗ (0) = γ

(k)
∗ (0) +

bmin/N ;
15: If a stopping criterion is satisfied, then stop, otherwise

k = k + 1 and goto step 4;

erations, as done in Section 6, problems ensue. Note

that these problems are not the result of using DP to
approximate the optimization problem. Rather, they
arise from updating γ by composition in the Coordi-

nate Descent approach. The new Riemannian algorithm
discussed in Section 4 avoids these difficulties.

4 A Riemannian Optimization Method

Riemannian optimization concerns minimizing (or max-
imizing) a real-valued function, termed the cost func-
tion, defined on a Riemannian manifold M. Recent

theoretical and algorithmic results and a review of the
state-of-the-art can be found in [Bak08,Hua13,HAG15,
Qi11,RW12]. In order to make use of Riemannian op-
timization theory and algorithms in the fundamental

elastic shape analysis task of efficiently and effectively
computing the distance between two curves, we must
define an appropriate cost function on a Riemannian

manifold, the Riemannian gradient of the cost function,
the tangent space of an element in the manifold, the re-
traction operation on the manifold, and an appropriate

vector transport. The definitions of Riemannian gradi-
ent, tangent space, retraction and vector transport are
standard and can be found in [O’N83,AMS08].

Several Riemannian optimization algorithms are ap-

plicable to distance computation. A representative set is
investigated and compared to the DP-based approach
of Srivastava et al. for closed curves in this and the

following section. Specifically, the chosen state-of-the-
art Riemannian algorithms, Riemannian quasi-Newton
algorithms given in [Hua13,HAG15,HGA15] including

RBFGS, LRBFGS, RTR-SR1, LRTR-SR1 and RSD (see
full names in Section 6.1), are applied to the distance
problem, and it is shown that a Riemannian approach is

more efficient computationally and produces a superior
distance computation than the DP-based approach.

4.1 Cost Function

Using the Riemannian approach we can handle the closed
curve distance problem directly, i.e., breaking the curve
into several open curves and taking the minimal so-

lution is avoided. The first step in defining the cost
function and associated Riemannian manifold requires
reconsidering the representation of Γ c for closed curves

Γ c = [0, 1]× Γ o.

Note that the interval [0, 1] in the group definition
removes the need for break points since the offset has

been added as a decision variable.
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The cost function on the Riemannian manifold SO(n)×
R× Γ o is

H(O,m, γ) =∫ 1

0

∥q1(t)−O(q2(γ(t) +m mod 1))
√
γ̇(t)∥22dt, (12)

where we use R to replace [0, 1] due to the use of the
mod operator.

Note that any γ ∈ Γ o and its derivative γ̇ satis-
fy the constraints γ(0) = 0, γ(1) = 1 and γ̇(s) > 0
almost everywhere. These are equivalent to γ(0) = 0,∫ 1

0
γ̇(t)dt = 1 and γ̇(s) > 0 almost everywhere. The

positivity constraint on the derivative can be guaran-

teed by replacing γ̇ with an even power function. Let
l2 = γ̇, where l ∈ L2([0, 1],R). All three constraints

are condensed into the constraints
∫ 1

0
l2(t)dt = 1 and

l2(s) ̸= 0 almost everywhere. Therefore, l is an element
of the sphere, i.e.,

l ∈ L =

{
l ∈ L2([0, 1],R)

∣∣∣ ∫ 1

0

l2(t)dt = 1

}
,

and γ can be recovered by
∫ t

0
l2(s)ds. It follows that√

γ̇ = |l| and the cost function becomes

H̃(O,m, l) = (13)∫ 1

0

∥∥∥∥q1(t)−Oq2

(∫ t

0

l2(s)ds+m mod 1

)
|l(t)|

∥∥∥∥2
2

dt.

(14)

In order to guarantee l2(s) ̸= 0 almost everywhere, we
use a barrier function

B(γ) =

∫ 1

0

(
γ̇(t) +

1

γ̇(t)

)√
1 + γ̇2(t)dt

=

∫ 1

0

(
l2(t) +

1

l2(t)

)√
1 + l4(t)dt. (15)

When some region of γ is close to horizontal or ver-
tical, B(γ) increases and γ∗ does not have such a re-
gion. Observe that this specific choice of B ensures that

B(κ) = B(γ) since we have

B(γ) =

∫ 1

0

(
γ̇(t) +

1

γ̇(t)

)√
1 + γ̇2(t)dt

=

∫ 1

0

(
κ̇(γ(t)) +

1

κ̇(γ(t))

)√
1 +

1

κ̇2(γ(t))
dt

(since γ̇(t) = 1
κ̇(γ(t)) )

=

∫ 1

0

(
κ̇(s) +

1

κ̇(s)

)√
1 +

1

κ̇2(s)
dκ(s)

(substitution γ(t) = s)

= B(κ),

where κ = γ−1. Thus that (16) below remains sym-

metric with respect to q1 and q2.

Note that if the first iterate in an algorithm satisfies

l0(t) > 0, then choosing a suitable step size and using
the barrier function keep all iterates li(t) > 0. Therefore
the absolute sign in (14) can be ignored. Exploiting the

invariance of the norm under rotation, we obtain the
final cost function

L(O,m, l) =∫ 1

0

∥∥∥∥Oq1(t)− q2

(∫ t

0

l2(s)ds+m mod 1

)
l(t)

∥∥∥∥2
2

dt

+ωB(γ), (16)

where ω is a constant that makes the extra term rel-
atively small. The reason we put O on q1(t) will be
discussed in Section 5.1. Note that the smaller ω is, the

better (16) approximates (8). However, it is more likely
that the solution obtained by Riemannian algorithms
contains a region close to being horizontal or vertical.

4.2 The Riemannian Manifold

The Riemannian manifold used to define the constraints
for the optimization problem associated with the effi-

cient algorithm to compute the distance function for e-
lastic shape analysis is SO(n)×R×L. The Riemannian
gradient of the cost function, the retraction operation

on the manifold, and an appropriate vector transport
can be constructed by considering each on the compo-
nents of the product [Hua13, §9.4].

SO(n) is a well-known Riemannian manifold the
structure of which is discussed in the literature [AMS08],

and the associated implementation issues are consid-
ered in [Hua13, §10.5]. The required Riemannian ob-
jects are given in this section, and their derivations can

be found in the Appendix.

L is an infinite dimensional Riemannian manifold.

The tangent space of L at any point is therefore an
infinite dimensional linear space with elements that are
functions defined on [0, 1]. It is well-known that the

tangent space TlL of l ∈ L is

Tl L = {v ∈ L2([0, 1],R)|⟨l, v⟩L2 = 0},

and the projection onto the tangent space is

Pl(v) = v − l
⟨v, l⟩L2

⟨l, l⟩L2

.

Let the metric of L be endowed from the embedding
space L2([0, 1],R). Retraction is used in updating it-

erates in a Riemannian algorithm. Vector transport is
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used in comparing tangent vectors in different tangen-

t spaces and plays an important role in quasi-Newton
methods. Specifically, a retraction R is a smooth map-
ping from the tangent bundle TM ontoM such that (i)

R(0x) = x for all x ∈ M (where 0x denotes the origin
of TxM) and (ii) d

dtR(tξx)|t=0 = ξx for all ξx ∈ TxM.
The restriction of R to TxM is denoted by Rx. A vec-

tor transport T : TM ⊕ TM → TM, (ηx, ξx) 7→
Tηxξx with associated retraction R is a smooth map-
ping such that, for all (x, ηx) in the domain of R and

all ξx ∈ TxM, it holds that (i) Tηxξx ∈ TR(ηx)M, (ii)
T0xξx = ξx, (iii) Tηx is a linear map.

For L, the exponential mapping and parallel trans-

lation on L are well-known, and they are used as re-
traction and isometric vector transport in Riemannian
algorithms.

Lemma 1 The exponential mapping and parallel trans-

lation on L are

Rl(v) = cos(∥v∥L2)l +
v sin(∥v∥L2)

∥v∥L2

and

Tuv = v − 2⟨v, l̃⟩L2

∥l + l̃∥2L2

(l + l̃)

respectively, where u, v,∈ Tl L and l̃ = Rl(u).

For the cost function of interest, an analytical form

of the Riemannian gradient can be derived, and it is
given in Lemma 2.

Lemma 2 The Riemannian gradient of the cost func-
tion L(O,m, l) in (16) is

gradL(O,m, l) =(
PO

(
−2
∫ 1

0

q2 (ρl,m(t)) l(t)q1(t)
T dt

)
,

− 2

∫ 1

0

⟨
Oq1(t), l(t)q

′
2 (ρl,m(t))

⟩
2
dt,

Pl(2y(t)l(t)− 2x(t) + 2z(t))

)
,

where POU = (U−OUTO)/2 is the projection to TO SO(n),
ρl,m(t) denotes

∫ t

0
l2(s)ds+m mod 1,

x(t) =
⟨
Oq1(t), q2 (ρl,m(t))

⟩
2
,

y(t) is any antiderivative of

y′(t) =
⟨
Oq1(t), 2l(t)q

′
2 (ρl,m(t))

⟩
2
,

and z(t) = ωl(t)(2− 1/l4(t))
√
1 + l4(t))).

5 Implementation Comments

5.1 Representation and Cost Function

In practice, all of the curves are represented by a set
of points, and therefore, the q-function of a curve β(t)

is also represented by points that are on some smooth
function. Since O is an isometry in the cost function-
s, we can apply it to either q1 or q2. We apply it to

q1 because representing q1 does not require the use of
an interpolatory function and a vector of points is suffi-
cient, hence, (16) is computationally cheaper than (14).

In all of the cost functions considered, q2 is com-

posed with some function and, therefore, representing
q2 as a set of points is not sufficient. A suitable func-
tion must be used. Since the convergence analysis of

Riemannian quasi-Newton optimization algorithms re-
quires a C2 cost function, an interpolatory cubic spline
of the set of points on q2 is used, but splines of degree

1, i.e., piecewise linear, or degree 2 are also practical.

It should be noted however that there is nothing
in the formulation that requires an interpolatory ap-
proximation. The discrete points in the representation

could be control points for a continuous approximating
parameterized curve, e.g., a parameterized B-spline.

Finally, all integrals required by the algorithms are
approximated by the Composite Trapezoidal Rule.

5.2 Symmetry Considerations

As discussed earlier and seen from (6) and (9), the opti-
mum, denoted by γ∗, may not be absolutely continuous

and increasing almost everywhere due to a horizontal
and/or vertical region and is therefore in the closure of
Γ c. In order to guarantee the symmetry of the distance

function

dlcn(q1, O(q2 ◦ γ̃)
√

˙̃γ) = dlcn(O
T (q1 ◦ κ̃)

√
˙̃κ, q2),

where κ̃ = γ̃−1 ∈ Γ c, we must have a symmetric cost
function

1− Hc(O, γ̃)

2

=

∫
S1
⟨q1(t), O(q2 ◦ γ̃(t))

√
˙̃γ(t)⟩2dt (17)

=

∫
S1

⟨
OT (q1 ◦ κ̃(t))

√
˙̃κ(t), q2(t)

⟩
2

dt. (18)

If (O, γ̃) ∈ SO(n) × Γ c, then the symmetries are

guaranteed by the isometry of SO(n) and Γ c. Let γ̃ ∈
Γ c be represented by (m, γ) ∈ [0, 1]× Γ o and κ denote
γ−1. If γ is not in Γ o, then there are some problems.

For γ containing a flat region, γ(t) = a,∀t ∈ [b, c], the
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cost function (17) is well defined. However, (18) is not

due to the non-existence of κ(a). One way to guarantee
symmetry is to define κ(a) to be b or c and κ̇(a) be any
finite number. In fact, for the purpose of computing

the value of the cost function, κ(a) can be defined as
any finite number since the jump discontinuity of κ at a
does not change the integral. For γ containing a vertical

region, γ(a) = [b, c], it is not a function. Similarly to
the previous idea, we can redefine γ(a), γ̇(a) to be any
finite number and κ to satisfy κ(t) = a, ∀t ∈ [b, c] and

symmetry is satisfied.
Theoretically, therefore, when γ is not in Γ o, eval-

uation and symmetry of the cost function can be han-

dled. In practice, however, numerically evaluating the
cost function Hc(O, γ) requires a quadrature rule that
depends on every point in the discrete set. If γ has a

vertical or near vertical segment then γ̇ is infinite or
very large and numerical overflow may occur. γ con-
taining a flat region does not cause numerical problem-

s when evaluating the cost function. In some versions,
e.g., Algorithms 3 and 4, an interpolatory spline is used
to represent γ. If a spline of degree 1, i.e., piecewise lin-
ear, is used there is no numerical problem. However, a

higher degree spline requires care to guarantee that it is
nondecreasing. This is not an issue during the iteration
of the new Riemannian algorithm.

These theoretical and practical issues can be avoid-
ed for both the Coordinate Descent DP-based Algo-
rithms 3 and 4 and the new Riemannian algorithm. In

Section 3.1, the DP algorithm constrains the set of s-
lope choices Ni,j to remain sufficiently far from 0 or ∞
and thereby avoids horizontal and vertical regions in

γ∗. In the Riemannian algorithm, the barrier function
B(γ) in (15) is added, and it does not destroy the sym-
metry of the cost function. There is no explicit lower

or upper bound for the slopes of γ unlike the approach
above for the DP-based algorithm.

5.3 Escaping Local Minima

Practical Riemannian optimization methods guarantee
convergence to local (possibly not global) minima. There
are many approaches to escape from nonglobal local

minima when working in Euclidean space. Two stan-
dard ones are the MCMC simulated annealing algo-
rithm and the use of multiple runs with different initial

conditions. For Riemannian optimization, we can use
similar ideas.

We have tested a Riemannian gradient-based MCM-

C simulated annealing algorithm using a Metropolis-
Hastings acceptance test. For sufficiently small “tem-
perature”, the algorithm changes to one of the Rieman-

nian quasi-Newton algorithms. The basic idea of this

algorithm is to search the domain sufficiently and find

a satisfactory minimum. Unfortunately, the dimension
of domain SO(n) × R × L is infinite, and the dimen-
sion of the finite approximation used is large enough so

that a sufficiently thorough search was often found to
be unacceptably expensive.

A simpler, and in practice effective, choice in this
setting is to run the Riemannian quasi-Newton algo-

rithms with multiple initial conditions. Let (O0,m0, l0) ∈
SO(n)×R×L denote the initial iterate. The initial ro-
tation O0 is given by the method of computing the SVD

used in Algorithm 1. The initial l0 is given by choos-
ing a small number of points on the curve, Ns, and
running DP with small h, where h is used in (8). The

motivation is to make use of the global minimization
property of DP on a coarse grid with slope constraints
and then improve the quality of the solution by Rie-

mannian quasi-Newton algorithms.

The initial value of m, denoted m0, can be chosen
uniformly spaced or randomly on [0, 2π]. However, we

automatically choose a set of m0’s as well as Ns for
Riemannian quasi-Newton algorithms by exploring the
structure of the curves. For example, let the curves in

Figure 4 be two parts of two closed curves. If the rest
of the curves are ignored, there are two minima that
correspond to the peak of curve 1 matching the first

peak or second peak of curve 2. The two minima can
be obtained by using only two m0’s. Suppose the start-
ing point of curve 1 is the point marked with a cross

on the graph. The starting point on curve 2 can be
any point in the green parts of curve 2. For these two
initial conditions, Riemannian algorithms are able to

search for the best matching point. Using this idea, if
the total change of the angle for some interval along the
curve is greater than a specified threshold Tm, an m0

is added at the end of the interval. In order to avoid

the effect of noise on curves, it is required that the dif-
ference between consecutive m0 points is greater than
or equal to some positive value z. Each of the m0’s

produced generates a distinct initial condition for the
Riemannian optimization. Ns is taken as a linear func-
tion of the total angle variation along the curve 2, i.e.,

τ1 + τ2θT , where θT denotes the total angle variation
along a curve. The Algorithm to generate the set of
initial iterates is stated in Algorithm 5.

In practice, when one curve changes direction fre-
quently and the other curve is relatively simple in shape,
choosing which curve is used as the basis for the gener-

ation of the set of m0’s depends on the context of the
distance computation. Two curves with significantly d-
ifferent shape are expected to have a large distance. If

the application requires an accurate approximation of
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Part of closed curve 1 Part of closed curve 2

Fig. 4 Choosing initial m for Riemannian algorithms.

Algorithm 5 Generate a set of initial iterates
{(O(i)

0 ,m
(i)
0 , l

(i)
0 )}

Require: Two q functions of closed curves
q1 = (v1, v2, . . . , vN , v1) ∈ Rn×(N+1) and
q2 = (u1, u2, . . . , uN , u1) ∈ Rn×(N+1); positive
integer z; positive constant τ1, τ2 > 0, Tm > 0.

1: Define θ = 0, θ̃T = θT = 0, idx = 1, u0 = uN and
v0 = vN ;

2: Initialize all the lists: ms = ∅, Os = ∅ and ls = ∅;
3: for i = 1, 2, . . . , N do
4: Compute the angle α between vi− vi−1 and vi+1− vi

and the angle α̃ between ui − ui−1 and ui+1 − ui;
5: θ ← θ + α; θT ← θT + α; θ̃T ← θ̃T + α̃;
6: if θ > θm and i− idx ≥ z then
7: Add i to the list ms;
8: idx← i; θ ← 0;
9: end if
10: end for
11: Let Ns ← round(τ1 + τ2 max(θT , θ̃T ));
12: for i = 1, 2, . . . , length(ms) do
13: Define q̃1 = (vms(i), vms(i)+1, . . . , vN , v1, . . . , vms(i)) ∈

Rn×(N+1) and q̃2 =
(ums(i), ums(i)+1, . . . , uN , v1, . . . , ums(i)) ∈
Rn×(N+1);

14: Compute O = UV T , where U, V are from
the singular value decomposition USV T =
q̃1 diag(

1
2N

, 1
N
, . . . , 1

N
, 1
2N

)q̃T2 ; (the diagonal ma-

trix diag( 1
2N

, 1
N
, . . . , 1

N
, 1
2N

) ∈ R(N+1)×(N+1)

defines the composite trapezoidal rule.)
15: q̃2 ← OT q̃2;
16: Resample q̃1 and q̃2 using a cubic interpolatory spline

and obtain Ns uniformly-spaced points for each curves.
Denote by q̃s1 and q̃s2 respectively;

17: Use DP method to obtain a γs that optimizes
∫ 1
0
∥q̃s1−

(q̃s2, γ)∥dt;
18: Compute the initial l from γs;
19: Add O to the list Os and add l to the list ls;
20: end for
21: {(Os(i),ms(i), ls(i))} is the set of initial iterates.

the large distance then the curve with the more com-
plicated shape should be used to generate the m0’s.
If, however, large distances need not be approximated

accurately, e.g., when distances are used to determine
that the shapes are not in the same class, then the sim-
pler curve should be used to generate the m0’s, and

the computational complexity of the optimization is re-
duced. One example is given in Figure 5. This asymme-
try of the resulting distance comes from the asymmetry

of the algorithm. This is quite different from DP which

curves
β

1

β
2 L:0.38338

m
0
's

curves

 

 β
1

β
2

m
0
’s

L:0.42218

Fig. 5 Comparisons for choosing one curve or the other to
generate m0’s. The black stars in the left column curves rep-
resent the start/end points. The black stars in the middle
column represent all m0’s generated by the curves. The col-
ors in the right column curves indicate corresponding points.

often requires a large number of break points to get a
satisfactory result in either case above.

6 Experiments

6.1 Overview of Experiments

The performance of the Riemannian optimization ap-
proach and Coordinate Descent methods to comput-
ing the elastic distance metric for curves in R2 is as-

sessed in this section. In Section 6.2, the performances
of the Riemannian optimization algorithms, including
the Riemannian trust region symmetric rank-one up-

date method (RTR-SR1) [HAG15, Algorithm 1], the
limited-memory RTR-SR1 (LRTR-SR1) [HAG15, Al-
gorithm 2], the Riemannian BFGS (RBFGS) [HGA15,

Algorithm 1 with ϕk ≡ 0], the limited-memory RBFGS
(LRBFGS) [HGA15, Algorithm 2], and the Riemanni-
an steepest descent (RSD) [AMS08, Page 62] are com-

pared to identify the preferred Riemannian method. In
Section 6.3, the difficulties that Algorithms 2 and 3 have
with multiple coordinate descent iterationsare illustrat-

ed. In Section 6.4, the quality of using the extrinsic dis-
tance dlon to approximate the intrinsic distance dlcn is
shown. The preferred Riemannian method is then com-

pared systematically with an adapted version of CD1
(coordinate descent with one single iteration) termed
CD1H that consists of doing “one and a half iteration”:

specifically, we do one iteration of the CD (coordinate
descent) method followed by the computation of the
best rotation. This is done since empirically the rota-

tion found with γ0 = id is usually not sufficiently close
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Fig. 6 Samples of leaves from the Flavia leaf dataset. One
sample per species is illustrated.
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Fig. 7 Samples of curves from the MPEG-7 dataset. One
sample per cluster is illustrated.

to O∗ and updating O based on γ1 improves the qual-
ity of the rotation. Section 6.5 presents the compar-

isons of the accuracies of the CD1H and the preferred
Riemannian method. Section 6.6 illustrates the influ-
ence of representing the curves with different sets of

points. Section 6.7 shows more concrete examples, and
in Section 6.8, the computational time, the final values
of the cost function and the quality of the distances

given by the preferred Riemannian method and CD1H
are compared. Finally, the problems with complexity
and optimization effectiveness for Algorithm 4 are also

demonstrated in Section 6.9.

Two public datasets are used in the experiments: the

Flavia leaf dataset [WBX+07] and the MPEG-7 dataset
[Uni]. The Flavia leaf dataset contains images of 1907
leaves from 32 species. Figure 6 shows an example leaf

from each species. MPEG-7 contains 1400 images in
70 clusters each of which contains 20 shapes. Figure 7
shows an example shape from each cluster. The bound-

ary curves of the shapes are extracted using the bw-
boundaries function in Matlab. 100 uniformly-spaced
points are chosen to represent the shape unless indicat-

ed otherwise in the description of the experiments.

6.2 The Preferred Riemannian Quasi-Newton

Algorithm

The two public datasets were used to compare the per-

formances of several Riemannian optimization algorithm-
s in minimizing the cost function (16). For these exper-
iments, the stopping criterion for the Riemannian algo-

rithms requires the relative change of the cost function
in two successive iterates to be less than 10−3 for more
than 5 consecutive iterations, and the minimum num-

ber of iterations is set to 10. The number of points used
to get the third component of the initial condition for
the Riemannian algorithms, Ns, is set as described in

Section 5.3. The weight, ω, in the cost function (16)
is 1/100 initially and decreases on each iteration by
ω ← 0.8ω. The more complex curve in the pair of β1

and β2 , i.e., the curve such that the total change of
the angle along the curve is larger, is used for setting
m0 and Ns. The values Tm = π/2, z = 4, τ1 = 30 and

τ2 = 2/π are used. These settings of parameters are
used for all experiments using Riemannian algorithms.

All codes are written in C++ using BLAS and LA-
PACK, compiled with g++ and run on a 64 bit Ubuntu
system with 3.6 GHz CPU (Intel (R) Core (TM)). The

code can be found on
www.math.fsu.edu/~whuang2/papers/RORCESA.htm.
The output time is the average CPU time of 10 run-

s with identical parameters. (The times observed had
very low variance.)

To find the preferred Riemannian method, all of the

methods were run on several sets of randomly chosen
pairs of shapes from the two datasets. Table 1 reports
tave, the average time to compute the distance between

two shapes, and Lave, the average cost function val-
ue for one of these sets from the Flavia and MPEG-7
shapes. The trends in other sets were similar.

The complexity of RBFGS and RTR-SR1 per iter-
ation is O(N2) due to the use of a dense matrix vector

product. This also implies the O(N2) space complexity.
In contrast, their limited memory versions, LRBFGS
and LRTR-SR1, require O(N) complexity. It follows

that the computational time of RBFGS and RTR-SR1
per iteration is larger than LRBFGS and LRTR-SR1
respectively. The total computational time further de-

pends on the number of iterations, and it is shown in
Table 1 that RBFGS and RTR-SR1 are slightly slower
than the LRBFGS and LRTR-SR1 respectively.

All the Riemannian quasi-Newton methods produce
similar final function values. Among them, RBFGS and
RTR-SR1 perform similarly while LRBFGS gives the

smallest final cost function values.

The RSD method has low computational times per

iteration due to its relatively low O(N) computational
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Table 1 Comparison of Riemannian Methods for represen-
tative sets from the Flavia (F) and MPEG-7 (M) datasets:
average time per pair (tave) in seconds and average cost func-
tion per pair (Lave).

RBFGS LRBFGS RTR-SR1 LRTR-SR1 RSD CD1H

Lave(F) 0.16338 0.16182 0.16367 0.16723 0.20665 0.22323

tave(F) 0.08963 0.07954 0.11603 0.10862 0.06488 0.42895

Lave(M) 0.33214 0.31893 0.33258 0.3418 0.48732 0.51664

tave(M) 0.19945 0.19318 0.24696 0.23102 0.14373 0.42817
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Fig. 8 Two shapes from the MPEG-7 dataset. Successive
points are connected by straight lines for display purposes.

complexity, but it does not result in a competitive final
cost function value due to the simplicity of the approach
and the large number of iterations required.

In summary, all of the Riemannian algorithms were

competitive with CD1H. LRBFGS with its small final
cost function and its low computational and storage
complexity is chosen as the preferred Riemannian algo-

rithm. It will be used in further comparisons to CD1H
from the point of view of quality of shape distance com-
putations.

6.3 Examples of Coordinate Descent Difficulties

For the experiments using Coordinate Descent based on
DP, the mesh size, h defined in (8), is 6, and every 4-th
point is chosen as a break point. γ0 is the identity, i.e.,

γ0(t) = t for all experiments using CD1H.

The shapes fromMPEG-7 dataset shown in Figure 8
are used to illustrate the difficulties of Algorithm 2 and

Algorithm 3, The variation in the shape of curve β2 in
Algorithm 2 was identified as a serious problem. Figure
9 shows the shape of β2 initially and in the first 4 iter-

ations of the algorithm along with the value of the cost
function. The change to the shape is clear with many
of its details disappearing gradually. Most significantly,

the cost function is increasing, and the algorithm is not
reliable for optimization.

The potential conflict in Algorithm 3 between the
value of the cost function, Hc, evaluated during itera-

tion k for β̄
(min,k)
2 computed using (10) and the value of

Hc for the theoretically identical curve β(k+1) comput-
ed using (11) is also observed for the illustrative pair of

shapes. Table 2 shows the variations of the cost func-

Original Curve 1st : 0.343 2nd : 0.251 3rd : 0.234 4th : 0.253

Fig. 9 The variation of curve β2 during the iteration in Algo-
rithm 2. Curves are shown by connecting consecutive points
using straight lines. The cost function values are given in the
titles.

Table 2 The variations of the cost function values in Algo-
rithm 3

iteration (k) 1 2 3

Hc for β(k) of (11) 1.561523 0.365177 0.355348

Hc for β̄
(min,k)
2 of (10) 0.343090 0.270597 0.284996

tion. The value of Hc in the second row for iteration k

should be the same as the value in the first row for iter-
ation k+1. Clearly, the values are significantly different.
Note also the values in the second row, which are the

ones used by the algorithm in optimization decisions,
are not decreasing. They in fact increase in subsequent
iterations, and the algorithm is unreliable.

The difficulties encountered with Algorithm 2 and

Algorithm 3 can be avoided by only performing a s-
ingle iteration of Coordinate Descent, i.e., CD1. This
was done by Srivastava et al. [SKJJ11], and as a result

they did not observe the problems. However, the accu-
racy of the distance computed using a single iteration
is thereby limited by the quality of the choice of the

initial reparameterization and rotation.

Figure 10 includes the optimization results for CD1,
CD1H, and for the Riemannian algorithm LRBFGS it-
erating until the cost function value is invariant to three

digits. The final cost function LRBFGS is smaller than
CD1, and the superior quality of the final rotation from
LRBFGS is clearly illustrated. The relationship of L-

RBFGS and CD1H is discussed in more detail in the
following sections.

6.4 Extrinsic Distance Versus Intrinsic Distance

In this section, the differences between the intrinsic dis-

tance dlcn and the extrinsic distance dlon are shown based
on 1000 randomly chosen pairs from the Flavia and
MPEG-7 data sets. The distance dlcn is computed by

the path-straightening algorithm [SKJJ11, Section 4.3].
The ratios of dlon and dlcn are shown in Figure 11 and all
of them are close to 1, i.e., between 1 and 1.007. There-

fore, it is acceptable to use dlon to approximate dlcn in
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Fig. 10 Results for LRBFGS, CD1 and CD1H. The optimal
rotation and reparameterization are applied to β2. The inter-
polation points of both curves are kept for display purpose.
The colors indicate corresponding points on the two curves.
The black stars represents the start/end points of the curves.
The title of the matching curves includes the final values of
the cost function.
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Fig. 11 The histogram of the ratio of the intrinsic distance
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n
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practical situations. For situations where the intrinsic
distance dlcn and the associated minimal geodesic are

required, e.g., Karcher mean computations, the com-
putational time for the algorithm of [SKJJ11] can be a
problem. An improved algorithm based on Riemannian

optimization has been developed and used for Karcher
means see [YHGA15] and [HYGA15].

6.5 Accuracy of CD1H and LRBFGS

CD1H improves somewhat the quality of the distance

approximation of CD1 by improving the rotation while
still avoiding the problems of Algorithms 2 and 3 and
the potential high computational cost of Algorithm 4

by avoiding additional iterations. However, this results
in limitations on the ultimate quality of the distance
approximation. In this section and the following sec-

tions, we focus on comparing the state-of-the-art CD1H
and the LRBFGS method with respect to computation-
al time and final cost function value. For those pairs

that do not achieve acceptable cost function values (and

therefore distance approximations) we know that Al-

gorithm 4 could improve the approximations. This is
discussed in Section 6.9.

For the remainder of the experiments LRBFGS in-

dicates algorithm choice along with using initial iterates
given by Algorithm 5 unless indicated otherwise in the
description of the experiments.

To show this, a selected curve is compared to a sec-
ond curve specifically created to be very close to the

first using changes that should be detectable by the
distance metric and the algorithms. Two methods for
specifying these changes are considered to highlight par-

ticular difficulties with CD1H compared to LRBFGS.
In the comparisons, the first ten curves of the ordered
list of shapes defining each cluster of the two data sets,

1020 in total, are used.

In the first set of comparisons, each curve in the set
of 1020 is taken as β2, in turn, and β1 is defined by

β1 = OT (β2 ◦ γT ), (19)

using cubic spline interpolation for β2, where γT (t) =
(t+sin(2πt)/(4π)) and OT ∈ SO(2) is randomly gener-
ated. Intuitively the optimal reparameterization should

be close to γ−1
T , and the structures and positions in β2

should map to the same structures and positions in β1.

Figure 13 shows the histogram of diffγ =
∫ 1

0
|γCD1H(t)−

γLRBFGS(t)|dt, where γCD1H and γLRBFGS denote the
optimal reparameterizations given by CD1H and LRBFGS

respectively. The difference of γ given by CD1H and L-
RBFGS satisfies diffγ < 0.1 for most of the samples,
and the differences are caused by the accuracies of the

solutions. Figure 12(a) shows an example and there is
almost no visible difference between the reparameteri-
zations given by CD1H and LRBFGS. However, if one

has a closer look, the number of points on the belly of
the cow on the right given by CD1H does not exactly
match the points on the cow on the left, but the points

on the bellies of the two curves resulting from LRBFGS
match very well. Additionally, the rotation given by
CD1H is also slightly off. While this pair shows that

CD1H can produce results close to those of LRBFGS
visually, the CD1H results are typically less satisfacto-
ry from a structural point of view for these specially

created pairs of curves.

For 64 of the 1020 pairs of very close curves, the
difference in reparameterization computed by the two

algorithms is significant in the sense of diffγ > 0.1.
Those 64 samples can be categorized into two classes.
The first class contains 39 samples satisfying the prop-

erty that rotating the samples by an angle θ < 2π gives
a shape close to the original one, e.g., the shape in Fig-
ure 12(b). For this kind of shape, there are multiple e-

quivalent global minimizers. CD1H and LRBFGS may
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Fig. 12 Matching curves given by LRBFGS and CD1H. The
optimal rotation and reparameterization are applied for the
right curve, i.e., β2. The color of points on the two curves
represents correspondence between two curves.

find different minimizers, and therefore the difference
in reparameterization is understandable and not prob-

lematic. The second class contains 25 samples for which
CD1H cannot give intuitive reparameterizations while
LRBFGS can. Figures 12 (c), (d) and (e) are three such

examples. These examples demonstrate that the quality
of the initial guess at the reparameterization is crucial
to finding a good rotation and, similarly, a bad approx-

imation of the rotation can cause significant inaccuracy
in the associated reparameterization found using DP.

The second set of experiments on pairs of curves

specifically created to be near each other considers the
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Fig. 13 The histogram of
∫ 1
0
|γCD1H(t)− γLRBFGS(t)|dt.

effect of the choice of break points on CD1H and the

strategy used with LRBFGS to avoid simple subset s-
election for break points. The first set of tests above
chose β1 to be (19) which indicates that the correct
break point is always used. This can be seen from not-

ing that γT (0) = 0 implies no shifting and the initial
break point is always used. In particular it is seen that
the accuracy of CD1H may suffer significantly when not

every point is available on a curve as a break point.

The same 1020 sample curves are used. β1 is chosen
to be one of the samples, and β2 is created by shifting
all points on β1 by p positions and applying a random

rotation. (Examples of shifting 8 points clockwise and
counterclockwise are given in the left column of Fig-
ure 14.) Note merely shifting p points does not affect,

e.g., rotate, the curve in the plane. It simply changes
the choice of the initial point in the discrete data rep-
resenting the curve. For this set of tests, LRBFGS and

CD1H only use one initial point and one break point
respectively.

Table 3 shows the average of the final cost function
values given by CD1H and LRBFGS and the number of
those values fewer than 10−3 with varying values of p.

When there is no shift on β2, the cost functions given by
both LRBFGS and CD1H are essentially 0. (The small
values are noise due to finite precision.) The average

final cost function values given by LRBFGS are smaller
than those given by CD1H for all values of p. More im-
portantly, even though the shift on β2 is not zero, the

final cost function values given by LRBFGS are smaller
than 10−3 for many samples, whereas, all of the final
cost function values given by CD1H are greater than

10−3. This demonstrates the power of the inclusion of
the locationm on the curve as an optimization variable.
Essentially, this allows LRBFGS to move in an intelli-

gent manner the initial point for its reparameterization.
CD1H, on the other hand, is at the mercy of the ini-
tial choice and can only respond by considering many

such choices independently thereby increasing the com-
putational time required. Figure 14 is one such example
where β2 is shifted 8 points clockwise or counterclock-

wise and LRBFGS adjusts the position of m effectively
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Table 3 The results of final cost function values given by
LRBFGS (L) and CD1H (C) with multiple p values. #<

denote the number of final cost function values that is smaller
than 10−3.

p 0 1 2 4 8

Lave(L) 3.28−14 5.04−4 9.71−4 3.38−2 1.04−1

#<(L) 1020 900 891 731 444

Lave(C) 3.66−14 2.53−2 9.22−2 2.66−1 4.54−1

#<(C) 1020 0 0 0 0

original matching CD1H LRBFGS

original matching CD1H LRBFGS

Fig. 14 Matching curves given by CD1H and LRBFGS with
only one initial point. β2 is given by shifting 8 points on β1

in clockwise or counterclockwise directions. The black stars
represents the start/end points of the curves.

while the breakpoint used for CD1H is clearly not a
good choice and others must be considered.

6.6 Points for Representing Curves

The set of boundary points extracted from a high reso-
lution image usually contain a large number of points.

As points are removed to reduce time and space com-
plexity important structures may be lost. Figure 15
shows this phenomenon by an example in the MPEG7

database. The boundary set extracted from the im-
age initially contains 5150 points which is too large
for computations that involve multiple distance com-

putations, e.g., classification. A method for choosing
points must be defined, and the effects on the distance
computation considered. The results of different num-

bers of points for representing the boundary curve are
shown. The blue and red points are chosen using d-
ifferent uniformly-spaced points in Figure 15. Table 4

illustrates the cost function values given by CD1H and
LRBFGS when β1 and β2 are the blue and red points
respectively. LRBFGS always gives a smaller cost func-

tion value than CD1H.

In addition to choosing a sufficient number of points

in the proper places to capture appropriately the struc-

50 points 100 points

200 points 400 points

Fig. 15 5150 points extracted from the image in data
base. Different numbers of points are chosen for represent-
ing the same curve. Red and blue points represent extracting
uniformly-spaced points from different initial points.

Table 4 The values of cost function L given by LRBFGS
and CD1H when β1 and β2 are the blue and red curves in
Figure 15.

# of points 50 100 200 400

L by LRBFGS 3.09−2 4.23−2 1.18−3 2.67−3

L by CD1H 1.27−1 1.29−1 4.27−2 3.03−2

ture of the curves, the influence of increasing the num-
ber of points used on the computational time is much

more significant for CD1H than for LRBFGS. The sub-
stantial difference in the complexities of LRBFGS and
CD1H is illustrated in Figure 16 for a representative

pair of leaf shapes from the 27th species of the Flavia
dataset. Boundary curves were extracted with different
numbers of points N to test the relationship between

N and time costs for LRBFGS and CD1H. LRBFGS
needs much smaller computational time than CD1H
as the number of points increases. The computation-

al complexity for LRBFGS with DP on a coarse grid is
O(Nkms+N2

sms) where k is the number of iterations,
ms is the number of initial conditions. CD1H, due to

the DP portion of the computation, contains an O(N3)
term. Note the rise in time for LRBFGS as N increases
is not indicative of a nonlinear growth in the number

of iterations required but due to the cubic term in the
complexity of a very coarse grid, i.e., much smaller than
N , used by DP to compute the initial reparameteriza-

tion.
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Fig. 16 Comparison of complexities of CD1H and LRBFGS.

6.7 Evaluation with Representative Pairs from Flavia
and MPEG-7 Datasets

All previous pairs used nearby pairs constructed by
very specific changes from a given image to compare
and highlight particular performance characteristics of

CD1H and LRBFGS. Figure 17 presents more detailed
results for some representative examples from the dataset-
s in which β1 and β2 are significantly different shapes.

The differences between the reparameterizations and
rotations computed by LRBFGS and CD1H are clearly
shown in those figures. Although a quantitative com-

parison between the results from the two algorithms is
not possible except by the cost function, examining the
results shows that LRBFGS produces more reasonable

rotations and mappings of structures from one curve to
the other.

Since the closed solutions of reparameterization and
rotation are unknown for this data, it is unknown whether

global minima are obtained. LRBFGS produces smaller
cost function values than CD1H for these pairs. Fur-
thermore, LRBFGS gives smaller cost function values

for more than 99% pairs of shapes in datasets FLAVIA
and MPEG-7 as shown in Section 6.8.

6.8 Performance Comparison for Flavia and MPEG-7

Datasets

In order to compare the computational cost and effica-
cy of the preferred Riemannian algorithm, LRBFGS, to

those of the current state-of-the-art, CD1H, all pair-
wise distances in the Flavia and MPEG-7 data sets were
computed (1, 819, 278 and 980, 700 pairs respectively)

using the testing environment described in Section 6.2.
For CD1H, the effect of the number of break points was
considered by running each pair with a break point ev-

ery 2, 4, 8 and 16 points given a fixed initial point, i.e.,
the sets are nested.

In addition to comparing the computation times and
cost function values for the two algorithms, the quali-

ty of the distance computations was assessed using the
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Fig. 17 Results of LRBFGS (R) and CD1H (C) for pairs
of shapes from Flavia and MPEG-7 datasets. The final ro-
tation and reparameterization are applied to β2 to compare
with β1. The colors of points on the two curves represent cor-
respondence between two curves. The black stars represent
the start/end points of the curves. The title of the matching
curves includes the final values of the cost function.

one-nearest-neighbor (1NN) metric of cluster (species)

preservation for the MPEG-7 (Flavia) shapes. The 1N-
N metric, µ, computes the percentage of points whose
nearest neighbor is in the same cluster, i.e.,

µ =
1

n

n∑
i=1

C(i), C(i) =


1 if point i and its

nearest neighbor are

in the same cluster;

0 otherwise.

(20)

A very significant improvement in the final value

of the cost function achieved by LRBFGS compared
to the value achieved by CD1H is observed. For the
Flavia dataset, LRBFGS reduces the cost function more

than CD1H in 99.16%, 99.45%, 99.68% and 99.83%
of the pairs when choosing break points every 2, 4, 8
and 16 points for CD1H respectively. For the MPEG-7

dataset, LRBFGS minimizes the cost function better
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Fig. 18 Histograms of ratios of the CD1H cost func-
tion value to the LRBFGS cost function value (C/L)
for MPEG-7 and Flavia datasets. N/i, i = 2, 4, 8, 16 de-
note the number of break points in CD1H. Bins are
(0, 0.1), . . . , (0.9, 1.0), . . . , (3.9, 4.0).

than CD1H in 99.73%, 99.81%, 99.89% and 99.93% of

the pairs when choosing break points every 2, 4, 8 and
16 points for CD1H respectively.

The distribution of the ratio of the cost function
value of CD1H to that of LRBFGS is shown in the
histograms in Figure 18. Ratios where LRBFGS was

more than 4 times better are not included for presen-
tation purposes. The maximum ratios for the Flavia
data set (and the number of ratios exceeding 4) were

1184 (1683), 1184 (3348), 1184 (13748) and 1184 (110096)
when choosing break points every 2, 4, 8 and 16 points
for CD1H respectively. The maximum ratios for the

MPEG-7 data set (and the number of ratios exceed-
ing 4) were 6.73 ∗ 1024 (564), 6.73 ∗ 1024 (1035), 4.76 ∗
1025 (2285) and 1.00∗1026 (5115) when choosing break

points every 2, 4, 8 and 16 points for CD1H respective-
ly. The amazingly large ratios beyond 4 occur for pairs
of shapes that are fairly close in shape where LRBFGS

achieves a very small cost function value. Not only is it
clear from this data that, in general, LRBFGS reduces
the cost function more than CD1H, but also in the cases

when CD1H produces a smaller cost function value it is
usually very close to the value produced by LRBFGS.

Of course, if the improvement in the reduction of
the cost function requires a very large increase in com-

putation time then the argument in favor of LRBFGS
and the other Riemannian methods weakens. The his-
tograms of computation times for CD1H and LRBFGS

for the MPEG-7 and Flavia datasets in Figure 19 show
that most of the computation time of LRBFGS is s-
maller than that of CD1H with break points chosen to

be every 2 and 4.
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Fig. 19 Histograms of computation times of LRBFGS and
CD1H for MPEG-7 and Flavia datasets.

A more careful examination of the times indicates
an advantage of the Riemannian approach. Specifically,

the computation time for a pair of shapes using CD1H
is essentially proportional to the number of break points
used. There is very little variation between computa-

tion times when using the same number of break points
as is seen in the CD1H spikes in Figure 19.

Figure 19 also shows that the, much smaller, com-
putation times for LRBFGS have significant variation.

Recall that the Riemannian methods automatically se-
lect the position and number of initial conditions used
to compute the distance for a pair of shapes. The com-

putation time per initial condition (PIC) for LRBFGS
varies only slightly as is shown also in Figure 20, and
the computation time for a pair of shapes is essentially

proportional to the number of initial conditions used.
Since the number of initial conditions is a simple mea-
sure of the complexity of one or both of the shapes in

the pair, the Riemannian methods have the additional
advantage of only requiring a computation time that
reflects the difficulty of the problem.

Table 5 shows the average time cost and 1NN metric

for both datasets. The trends are as expected given the
examples in Figures 6, 7. For the MPEG-7 dataset, the
shapes in different clusters are very distinct compared

to the significantly greater similarity of shapes in cer-
tain pairs of species in the Flavia dataset, e.g., species 1
and 21. Therefore, the µ values in (20) are expected to

be higher for MPEG-7 distances since the distinctions
are easier to make while lower µ values are expected for
Flavia distances. For CD1H it is expected that µ values

would increase as the number of break points increases.
All of these trends are observed in the µ data.

The comparison of µ achieved by LRBFGS to those
of CD1H shows a clear advantage to LRBFGS. LRBFGS

achieves a value of µ higher than CD1H using the dens-
est set of break points. Not surprisingly, given the dis-
tributions of computation times discussed earlier, the

average time for LRBFGS is smaller than the average
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Fig. 20 Histograms of computation times of LRBFGS and
computation times per initial condition (PIC) of LRBFGS
for MPEG-7 and Flavia datasets. The standard deviation of
time and PIC for MPEG-7 is 0.090 and 0.003 respectively.
The standard deviation of time and PIC for Flavia is 0.067
and 0.002 respectively.

Table 5 The average computation time and 1NN metric of
LRBFGS and CD1H with break points chosen to be every
2, 4, 8 and 16 points for Flavia (F) and MPEG-7 (M) data
sets. Results includes using complex (C) curves and simple
(S) curves to generate m0’s.

LRBFGS CD1H

(C) (S) N/16 N/8 N/4 N/2

tave(F) 0.088 0.047 0.126 0.233 0.448 0.897

1NN(F) 89.51% 89.04% 79.55% 83.01% 85.95% 87.52%

tave(M) 0.181 0.134 0.127 0.236 0.454 0.908

1NN(M) 97.79% 98.07% 90.29% 93.86% 96.07% 96.79%

time for even the second sparsest set of CD1H break

points (N/8).

All of the distances computed so far have used the

more complex curve, i.e., the one with greater angular
change, to drive the reparameterization. This is the pre-
ferred approach to get an accurate approximation of the

distance. If the simpler curve is used to drive the repa-
rameterization a reduction in the computational cost
is observed for pairs of curves that are sufficiently dif-

ferent. However, this results in a less accurate overesti-
mation of the distance and a less satisfactory reparam-
eterization. In some applications, the accuracy of the

reparameterization is not the main concern, and ac-
curacy can be usefully traded for lower computational
time. Of course, since this is for all pairs in the datasets

the distance for pairs of nearby curves do not change
significantly. Nevertheless, there is a reduction in the
average computational time without a negative effect

on the 1NN metric percentage.

β
1

β
2

β
1

β
2

Fig. 21 Successive points are connected by straight lines for
display purposes.

6.9 Performance of Algorithm 4

The nonuniform grid-based Algorithm 4 does not have

the problems of Algorithm 2 and Algorithm 3 described
earlier and therefore is a potential alternative coordi-
nate descent method, especially when CD1H does not

yield a sufficiently small final cost function value. We
next compare Algorithm 4 to LRBFGS to determine
if it is competitive. The shapes in Figure 22 show the

points of the resampled β2 on a uniform grid and the
cost function value at each iteration when Algorithm 4
is applied to the shapes in Figure 21. The resulting

matching curves, final cost function values and compu-
tational time given by LRBFGS and Algorithm 4 are
shown in Figure 23.

Algorithm 4 reduces the cost function more than
Algorithm 2 and Algorithm 3 therefore improving the
distance approximation. However, LRBFGS produces

smaller cost function values and uses significantly less
computational time. Over the set of experiments, that
includes the pairs presented here, Algorithm 4 is nev-

er faster than LRBFGS and has computational times
that range from 10 to 100 times more than those of L-
RBFGS. So while Algorithm 4 is more robust than the

other implementations of the DP-based approaches, it
is simply not competitive with LRBFGS with respect
to computational time and effectiveness.

7 Conclusion

We have explored the computation of the elastic dis-
tance metric for open and closed curves in Rn and

reviewed DP-based coordinate descent algorithms in-
cluding the state-of-art CD1/CD1H of Srivastava et
al., [SKJJ11]. The difficulties for the coordinate descen-

t methods with respect to convergence, robustness and
computationaly complexity were identified and an im-
proved coordinate descent method based on a nonuni-

form grid DP that fixes all of the difficulties was given.
As an alternative to the coordinate descent algorithms,
we have derived a Riemannian approach to computing

the elastic distance metric and developed an efficient
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original curve 1-th iter., Hc:0.70741

2-th iter., Hc:0.69576 3-th iter., Hc:0.69575

4-th iter., Hc:0.68804

5-th iter., Hc:0.62897 6-th iter., Hc:0.6596

original curve
1-th iter., Hc:0.71377

2-th iter., Hc:0.58409 3-th iter., Hc:0.57451

4-th iter., Hc:0.55123 5-th iter., Hc:0.55113 6-th iter., Hc:0.56245

Fig. 22 For display purposes, the β2 is re-sampled such
that points on uniformly-spaced are displayed, and succes-
sive points are connected by straight lines. The cost function
values are given in the titles.

LRBFGS, L:0.46052, time:0.103s
CD, L:0.62897, time:5.720s

LRBFGS, L:0.54745, time: 0.089s CD, L:0.55113, time:5.648s

Fig. 23 Matching curves obtained by LRBFGS and Algo-
rithm 4. The color of points on the two curves represents
correspondence between two curves. The cost function values
and computational time are given in the titles.

implementation using various Riemannian optimization

algorithms.

Empirical comparisons of the Riemannian approach
using LRBFGS with CD1H using shapes from the MPEG-

7 and Flavia datasets were performed. The results high-
light the difficulties and inaccuracies associated with
CD1H and demonstrate that the Riemannian approach

produces more accurate distance estimates in signifi-

cantly less time since the computational time required

adapts appropriately to the complexity of the shapes
compared. The nonuniform grid coordinate descent method
Algorithm 4 was verified to improve the final cost func-

tion value compared to CD1H but only at a significant
computational cost compared to CD1H and therefore
also the Riemannian approach.

The efficiency and efficacy of the Riemannian ap-
proach to computing the elastic distance metric promis-
es to improve substantially shape analysis computa-

tions that are based upon distance, e.g., the Karcher
mean of a set of shapes, geodesic paths between shapes,
and inferences on shapes. These improvements will be

demonstrated in future work.
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A Proofs

Proof of Theorem 1:

Proof By definition, for any q̃ ∈ [q]SO(n)×Γ o
s
, there exist Õ ∈

SO(n) and γ̃ ∈ Γo
s such that q̃ = Õ(q, γ̃). It follows from

[LRK15, Lemma 11] that there exists a sequence {γi} ⊂ Γo

such that (q, γi)→ (q, γ̃) with respect to the L2 metric. Since
SO(n) is isometric for L2, we have Õ(q, γi)→ Õ(q, γ̃), which

implies that q̃ ∈ [q]. Therefore, we obtain [q]SO(n)×Γ o
s
⊆ [q].

We finished proving the first statement.
For any v ∈ [q], there is a sequence of {Oi} and {γi}

such that Oi(q, γi)→ v with respect to the L2 metric. Since
SO(n) is a compact set, there exists a convergent subsequence
of {Oi}, i.e., {Oij} ⊆ {Oi} and Oij → Õ with respect to 2-

norm. Let q̃ denote ÕT v. It follows that Oij (q, γij ) → Õq̃.
We have

∥Oij (q, γij )− Õq̃∥L2

= ∥Oij (q, γij )− Õ(q, γij ) + Õ(q, γij )− Õq̃∥L2

≥ ∥Õ(q, γij )− Õq̃∥L2 − ∥Oij (q, γij )− Õ(q, γij )∥L2

= ∥(q, γij )− q̃∥L2 − ∥Oij − Õ∥2∥q∥L2 .

It follows that

∥Oij − Õ∥2∥q∥L2 + ∥Oij (q, γij )− Õq̃∥L2

≥ ∥(q, γij )− q̃∥L2 , (21)

which implies (q, γij ) → q̃. Since q−1(0n) has measure zero,
it follows from [LRK15, Corollary 3] that there exists γ̃ ∈ Γo

s

such that q̃ = (q, γ̃). Therefore, v = Õ(q, γ̃) ∈ [q]SO(n)×Γ o
s
,

which implies [q] ⊆ [q]SO(n)×Γ o
s
.

Proof of Theorem 2:

Proof By definition, for any q̃ ∈ [q]SO(n)×Γ c
s
, there exist

Õ ∈ SO(n) and (m̃, γ̃) ∈ Γ c
s such that q̃ = Õ((q, m̃), γ̃).

It follows from [LRK15, Lemma 11] that there exists a se-
quence {γi} ⊂ Γ o such that ((q, m̃), γi) → ((q, m̃), γ̃) with
respect to the L2 metric. Since SO(n) is isometric for L2, we

have Õ((q, m̃), γi)→ Õ((q, m̃), γ̃), which implies that q̃ ∈ [q].

Therefore, we obtain [q]SO(n)×Γ o
s
⊆ [q]. We finished proving

the first statement.
For any v ∈ [q], there is a sequence of {Oi}, {mi} and

{γi} such that Oi((q,mi), γi) → v with respect to the L2

metric. Since SO(n) and [0, 1] are compact sets, there exists
a convergent subsequence of {Oi} and mi, i.e., {Oij} ⊆ {Oi}
and Oij → Õ with respect to 2-norm and {mij} ⊆ {mi}
and mij → m̃. Let q̃ denote ÕT (v,−m̃). It follows that

Oij ((q,mij ), γij )→ Õ(q̃, m̃).
Proceeding as (21), we have

∥Oij − Õ∥2∥(q,mij )∥L2 + ∥Oij ((q,mij ), γij )− Õ(q̃, m̃)∥L2

≥ ∥((q,mij ), γij )− (q̃, m̃)∥L2 . (22)

It holds that

∥((q,mij ), γij )− (q̃, m̃)∥L2

= ∥((q,mij ), γij )− ((q, m̃), γij ) + ((q, m̃), γij )− (q̃, m̃)∥L2

≥ ∥((q, m̃), γij )− (q̃, m̃)∥L2 − ∥(q,mij )− (q, m̃)∥L2 . (23)

Since q is absolutely continuous, mij → m̃ implies ∥(q,mij )−
(q, m̃)∥L2 → 0. Therefore, using (22) and (23) yields ((q, m̃), γij )→
(q̃, m̃). Since q−1(0n) has measure zero, (q, m̃)−1(0n) also has
measure zero. It follows from [LRK15, Corollary 3] that there
exists γ̃ ∈ Γo

s such that (q̃, m̃) = ((q, m̃), γ̃). Therefore, v =

Õ((q, m̃), γ̃) ∈ [q]SO(n)×Γ c
s
, which implies [q] ⊆ [q]SO(n)×Γ c

s
.
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Proof of Lemma 2:

Proof The cost function L(O,m, l) is equal to

2− 2

∫ 1

0

trace(q2 (ρl,m(t)) l(t)q1(t)
TOT )dt

+ ω

∫ 1

0

(
l2(t) +

1

l2(t)

)√
1 + l4(t)dt.

Consider the cost function defined on the embedding man-
ifold

L̄(O,m, l) : Rn×n × R× L2 → R : (O,m, l) 7→

2− 2

∫ 1

0

trace(q2 (ρl,m(t)) l(t)q1(t)
TOT )dt

+ ω

∫ 1

0

(
l2(t) +

1

l2(t)

)√
1 + l4(t)dt.

The gradient for the variable O is

∇OL̄(O,m, l) = −2
∫ 1

0

q2 (ρl,m(t)) l(t)q1(t)
T dt ∈ Rn×n.

The gradient for the variable m is

∇mL̄(O,m, l) =

−2
∫ 1

0

⟨Oq1(t), l(t)q
′
2 (ρl,m(t))⟩2dt.

The gradient for the variable l is not easy to compute
directly. First, consider the directional derivative along v ∈
Tl L.

Dl L̄(O,m, l)[v]

=− 2

∫ 1

0

⟨
Oq1(t),

v(t)q2 (ρl,m(t)) + 2l(t)q′2 (ρl,m(t))

∫ t

0

l(s)v(s)ds
⟩
2
dt

+ ω

∫ 1

0

2v(t)l(t)(2− 1/l4(t))
√

1 + l4(t)dt.

Simplifying, we have

Dl L̄(O,m, l)[v] =

− 2

∫ 1

0

⟨Oq1(t), q2 (ρl,m(t))⟩2v(t)dt

− 2

∫ 1

0

⟨Oq1(t), 2l(t)q
′
2 (ρl,m(t))⟩2

∫ t

0

l3(s)v(s)dsdt

+ 2ω

∫ 1

0

l(t)(2− 1/l4(t))
√

1 + l4(t)v(t)dt.

If

x(t) = ⟨Oq1(t), q2 (ρl,m(t))⟩2
y′(t) = ⟨Oq1(t), 2l(t)q

′
2 (ρl,m(t))⟩2

z(t) = ωl(t)(2− 1/l4(t))
√

1 + l4(t),

then

Dl L̄(O,m, l)[v]− ⟨2z(t), v(t)⟩L2

= −2
∫ 1

0

x(t)v(t)dt− 2

∫ 1

0

y′(t)

∫ t

0

l(s)v(s)dsdt

= −2
∫ 1

0

x(t)v(t)dt− 2
(
y(t)

∫ t

0

l(s)v(s)ds|10

−
∫ 1

0

y(t)l(t)v(t)dt
)
(integration by parts)

= −2
∫ 1

0

x(t)v(t)dt+ 2

∫ 1

0

y(t)l(t)v(t)dt

(by v ∈ Tl L)

=

∫ 1

0

(2y(t)l(t)− 2x(t))v(t)dt

= ⟨2yl − 2x, v⟩L2 .

Since the gradient is the vector that satisfies

DlL̄(O,m, l)[v] = ⟨∇lL̄(O,m, l), v(t)⟩L2 ,

we obtain

∇lL̄(O,m, l) = 2y(t)l(t)− 2x(t) + 2z(t).

Finally, the Riemannian gradient is given by projecting each
component of L̄(O,m, l) to its associated manifold.


