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General Federated Learning Optimization:

min
x∈Rn

F (x) =
S∑

i=1

pi fi (x), with pi ≥ 0 and
S∑

i=1

pi = 1, (1.1)

• S is the number of agents;
• fi is the local objective of agent i , and covers

fi (x) =

{
Eξ∼Di [fi (x ; ξ)] with Di being a local data distribution
1
Si

∑Si
i=1 fi (x ; zi,j ) with Di = {zi,1, . . . , zi,Si } being a local dataset;
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Figure 1: Flowchart of a federated learning algorithm
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Euclidean version:

Algorithm: A representative federated averaging algorithm [McM+17]

1. for t = 0, 1, . . . ,T − 1 do
2. The server uniformly selects a subset St of s agents at random;
3. The server upload global parameter x̃t to all agents in St , i.e., x j

t,0 ← x̃t ;
4. for j ∈ St in parallel do
5. Agent j updates a local parameter x j

t,K by K -step SGD with x̃t being
initial iterate;

6. Sent x j
t,K to the server;

7. end for
8. Server aggregates the received local parameters {x j

t,K }j∈St by averaging

x̃t+1 ←
∑
j∈St

pj∑
j∈St

pj
x j

t,K ;

9. end for

• Sever: Steps 2, 3, and 8;
• Agents: Steps 5 and 6;

Riemannian Federated Learning via Averaging Gradient Stream 5

minxj∈Rn fi (x)

[McM+17] B. McMahan, E. Moore, D. Ramage, B. A. y Arcas. Communication-Efficient Learning of Deep Networks
from Decentralized Data. Proceedings of Machine Learning Research, 54, P.1273-1282, 2017.
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Euclidean to Riemannian

Algorithm: A Riemannian federated learning algorithm

1. for t = 0, 1, . . . ,T − 1 do
2. The server uniformly selects a subset St of s agents at random;
3. The server upload global parameter x̃t to all agents in St , i.e., x j

t,0 ← x̃t ;
4. for j ∈ St in parallel do
5. Agent j updates a local parameter x j

t,K by K -step Riemannian SGD with x̃t

being initial iterate;
6. Sent x j

t,K to the server;
7. end for
8. Server aggregates the received local parameters {x j

t,K }j∈St by averaging

x̃t+1 ← ave(x j
t,K | j ∈ Sj );

9. end for

• Agents: Riemannian SGD [Bon13]
• Sever: Aggregation

How to aggregates {x j
t,K}j∈St on a manifold?

Riemannian Federated Learning via Averaging Gradient Stream 6

minxj∈M fi (x)
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Euclidean to Riemannian (Aggregation: an existing approach):

• Naive generalization:
x̃t+1 ←

∑
j∈St

pj∑
j∈St

pj
x j

t,K 6=⇒ Riemannian setting

• An alternative approach:

x̃t+1 ←
∑
j∈St

pj∑
j∈St

pj
x j

t,K ⇐⇒ x̃t+1 = arg min
x

∑
j∈Sj

pj∑
j∈St

pj
‖x − x j

t,K‖
2
F

⇐⇒ x̃t+1 = arg min
x

∑
j∈Sj

pj∑
j∈St

pj
dist2(x , x j

t,K ) =⇒ Riemannian setting;

• x̃t+1 = arg minx
∑

j∈Sj

pj∑
j∈St

pj
dist2(x , x j

t,K ): computationally expensive;

• One step of Riemannian gradient descent (called tangent mean) [LM23]:

x̃t+1 ← Expx̃t

(∑
j∈St

pj∑
i∈St

pi
Exp−1

x̃t
(x j

t,K )

)
;

Riemannian Federated Learning via Averaging Gradient Stream 7

[LM23] Jiaxiang Li and Shiqian Ma. Federated learning on Riemannian manifolds. Applied Set-Valued Analysis and
Optimization, 5(2), 2023.
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Existing Riemannian Federated Learning:
• Federated Learning on Riemannian Manifolds [LM23]

• Integrate SVRG technique within Riemannian federated learning
• Use tangent mean as the server aggregation
• Requirements for convergence

• Full agent participation, and one step of local update;
• One agent participates, and multiple steps of local update.

• Federated Learning on Riemannian Manifolds with Differential
Privacy [Hua+24]
• Use differential privacy to enhance the privacy of federated learning;
• Use tangent mean as the server aggregation.
• Requirements for convergence similar to that in [LM23].

• Riemannian Federated Learning on Compact Submanifolds with
Heterogeneous Data [Zha+24]

- Use projection onto the manifold
- Allow multiple agents and multiple local updates

[LM23] J. Li and S. Ma. Federated Learning on Riemannian Manifolds. Applied Set-Valued Analysis and Optimization,
2023.

[Hua+24] Z. Huang, W. Huang, P. Jawanpuria, B. Mishra. Federated Learning on Riemannian Manifolds with
Differential Privacy. arxiv:2404.10029, 2024.

[Zha+24] J. Zhang and J. Hu and A. M.-C. So and M. Johansson. Nonconvex Federated Learning on Compact Smooth
Submanifolds With Heterogeneous Data. arxiv:2406.08465, 2024.
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Limitations
• Full agent participation and one step of local update [LM23; Hua+24]
• Compact submanifolds embedded in Euclidean spaces [Zha+24]

Proposed Riemannian federated learning algorithm
overcomes these limitations!

Riemannian Federated Learning via Averaging Gradient Stream 9

[LM23] J. Li and S. Ma. Federated Learning on Riemannian Manifolds. Applied Set-Valued Analysis and Optimization,
2023.
[Hua+24] Z. Huang, W. Huang, P. Jawanpuria, B. Mishra. Federated Learning on Riemannian Manifolds with

Differential Privacy. arxiv:2404.10029, 2024.
[Zha+24] J. Zhang and J. Hu and A. M.-C. So and M. Johansson. Nonconvex Federated Learning on Compact Smooth

Submanifolds With Heterogeneous Data. arxiv:2406.08465, 2024.



Federated Learning Review

Limitations
• Full agent participation and one step of local update [LM23; Hua+24]
• Compact submanifolds embedded in Euclidean spaces [Zha+24]

Proposed Riemannian federated learning algorithm
overcomes these limitations!

Riemannian Federated Learning via Averaging Gradient Stream 9

[LM23] J. Li and S. Ma. Federated Learning on Riemannian Manifolds. Applied Set-Valued Analysis and Optimization,
2023.
[Hua+24] Z. Huang, W. Huang, P. Jawanpuria, B. Mishra. Federated Learning on Riemannian Manifolds with

Differential Privacy. arxiv:2404.10029, 2024.
[Zha+24] J. Zhang and J. Hu and A. M.-C. So and M. Johansson. Nonconvex Federated Learning on Compact Smooth

Submanifolds With Heterogeneous Data. arxiv:2406.08465, 2024.



Outline

1. Federated Learning Review

2. Riemannian Federated Learning Averaging Gradient Stream

3. Convergence Analysis

4. Numerical Experiments

5. Summary

Riemannian Federated Learning via Averaging Gradient Stream 10



A new server aggregation: average of gradient stream

Euclidean aggregation: x̃t+1 =
∑

j∈St

pj∑
j∈St

pj
x j

t,K

x j
t,K = x j

t,K−1 −
αt,K−1

Bt,K−1

∑
b∈Bj

t,K−1

∇fj (x j
t,K−1; ξj

t,K−1,b)

︸ ︷︷ ︸
RSGD for instance

=x j
t,K−2 −

αt,K−2

Bt,K−2

∑
b∈Bj

t,K−2

∇fj (x j
t,K−2; ξj

t,K−2,b)−
αt,K−1

Bt,K−1

∑
b∈Bj

t,K−1

∇fj (x j
t,K−1; ξj

t,K−1,b)

= · · · = x j
t,0︸︷︷︸
x̃t

−
K−1∑
k=0

αt,k

Bt,k

∑
b∈Bj

t,k

∇fj (x j
t,k ; ξj

t,k,b)

=⇒ x̃t+1 − x̃t = −
∑
j∈St

pj∑
j∈St

pj

K−1∑
k=0

αt,k

Bt,k

∑
b∈Bj

t,k

∇fj (x j
t,k ; ξj

t,k,b).

Riemannian Federated Learning via Averaging Gradient Stream 11
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Euclidean aggregation: x̃t+1 =
∑

j∈St

pj∑
j∈St

pj
x j

t,K

−dt = x̃t+1 − x̃t = −
∑

j∈St

pj∑
j∈St

pj

∑K−1
k=0

αt,k
Bt,k

∑
b∈Bj

t,k
∇fj (x j

t,k ; ξj
t,k,b)

Tangent mean: x̃t+1 = Expx̃t

(
−
∑

j∈St

pj∑
j∈St

pj
Exp−1

x̃t
(x j

t,K )

)

x j
t,K = Expx j

t,K−1

−αt,K−1

Bt,K−1

∑
b∈Bj

t,K−1

gradfj (x j
t,K−1; ξj

t,K−1,b)


. . .

x j
t,1 = Expx̃t

−αt,0

Bt,0

∑
b∈Bj

t,0

gradfj (x j
t,0; ξj

t,0,b)



Exp and Exp−1 are short of linearity!

Riemannian Federated Learning via Averaging Gradient Stream 12
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Back to the Euclidean aggregation, note that

∆j
t,K := x̃t − x j

t,K =
K−1∑
k=0

αt,k

Bt,k

∑
b∈Bj

t,k

∇fj (x j
t,k ; ξj

t,k,b).

Then one has

x̃t+1 = x̃t − dt , with dt =
∑
j∈St

pj∑
j∈St

pj
∆j

t,K .

In the Euclidean setting:
• agent j sends ∆j

t,k to the server

• the server averages these ∆j
t,K

• the server generates a new global
parameter x̃t+1

In existing works [Kar+20; Red+21],
sending ∆j

t,K is to use acceleration
technique in the server aggregation.

In the Riemannian setting, we
proposed a similar aggregation
• agent j sends the “∆j

t,K ” to the
server;
• the server averages these “∆j

t,K ”;
• the server retracts the average into

the manifold;
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A new server aggregation: average of gradient stream

Construct the “∆j
t,K ”, which is dented by ζ j

t,K in the Riemannian setting:
• The local mini-batch gradients,

1
Bt,0

∑
b∈Bj

t,0
gradfj (x j

t,0; ξj
t,0,b), . . . , 1

Bt,K−1

∑
b∈Bj

t,K−1
gradfj (x j

t,K−1; ξj
t,K−1,b)

are inside different tangent spaces.

• Transport the local mini-batch gradients to the tangent space Tx̃tM, i.e.,

Γ
x̃t
x j
t,0

(
1

Bt,0

∑
b∈Bj

t,0
gradfj (x j

t,0; ξ
j
t,0,b)

)
, . . . , Γ

x̃t
x j
t,1

(
1

Bt,K−1

∑
b∈Bj

t,K−1
gradfj (x j

t,K−1; ξ
j
t,K−1,b

)
,

• Add these transported together to get to ζ j
t,K :

ζ j
t,K =

∑K−1
k=0 αt,k Γx̃t

x j
t,k

(
1

Bt,k

∑
b∈Bj

t,k
gradfj (x j

t,k ; ξj
t,k,b)

)
;

The proposed server aggregation is given by

x̃t+1 = Rx̃t

(
−
∑

j∈St

pj∑
j∈St

pj
ζ

j
t,K

)
= Rx̃t

(
−
∑

j∈St

pj∑
j∈St

pj

∑K−1
k=0 αt,k Γ

x̃t

x j
t,k

(
1

Bt,k

∑
b∈Bj

t,k
gradfj (x j

t,k ; ξj
t,k,b)

))
.

The proposed aggregation is another generalization of the Euclidean aggregation.
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Riemannian Federated Learning via Averaging Gradient Stream

Algorithm: Riemannian Federated Learning Averaging Gradient Stream
1. for t = 0, 1, . . . , T − 1 do
2. The server uniformly selects a subset St of s agents at random;
3. The server upload global parameter x̃t to all agents in St , i.e., x j

t,0 ← x̃t ;
4. for j ∈ St in parallel do
5. Set ζ j

t,0 ← 0x̃t
;

6. for k = 1, 2, . . . , K do
7. Agent j randomly samples an i.i.d. mini-batch Bj

t,k−1 of size Bt,k−1;

8. Set ηj
t,k−1 ← −

αt,k−1
Bt,k−1

∑
b∈Bj

t,k−1
gradfj (x j

t,k−1; ξ
j
t,k−1,b);

9. Set x j
t,k ← R

xj
t,k−1

(η
j
k−1), and ζ j

t,k ← ζ
j
t,k−1 + Γ

x̃t
x j
t,k−1

(η
j
t,k−1)

10. end for
11. Sent ζ j

t,K to the server;
12. end for
13. Server aggregates the received local parameter difference {ζ j

t,K }j∈St
by averaging

x̃t+1 ← Rx̃t

−∑
j∈St

pj∑
j∈St

pj
ζ

j
t,K

 ;

14.end for

• The communication cost remains unchanged.
• The computational cost of the server remains unchanged.
• K − 1 times more transport calculations on the agent.
• The algorithm works for general manifolds.
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Convergence Analysis

Assumptions:
• (Full Participation) Full agents participate in local updates at each

communication round.
• (I.I.D. Data) Agent’s data are subjected to an independently identical

distribution.

We focus on expected risk minimization.

min
x∈M

F (x) :=
1
S

S∑
i=1

Eξ∼Di [fi (x ; ξ)]

= E[f (x ; ξ)]

• Each agent only has access to f (x ; ξ) and gradf (x ; ξ).
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Convergence Analysis
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Assumption 3.1

We assume that:

(1) x∗ = arg minx∈M F (x), the outer iterates {x̃t}t≥1 and the inner iterates
{{{x j

t,k}
S
j=1}k≥0}t≥1 generated by FedAGS remain in a compact and

connected subsetW ⊆M;

(2) the compact and connected subsetW is totally retractive with respect to
the retraction R;

(3) for each realization of ξ, the component f (·; ξ) are continuously
differentiable;

(4) the vector transport Γ is isometric;

(5) the cost function F is L-retraction smooth and L-Lipchitz continuous
differentiable with respect to Γ onW; and

(6) the step sizes αt,k are upper bounded, i.e., there exists A > 0 such that
αt,k ≤ A for all t and k.



Convergence Analysis
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Assumption 3.2

For any fixed parameter x ∈M, the Riemannian stochastic gradient gradf (x ; ξ)
is an unbiased estimator of the true gradient corresponding to the parameter x,
i.e.,

Eξ[gradf (x ; ξ)] = gradF (x)

Assumption 3.3

For any fixed parameter x ∈M, there exists a scalar σ > 0 such that for any
mini-batch indices set B of the realizations of random variable ξ, the following
holds

EB

∥∥∥∥∥ 1
B

∑
b∈B

gradf (x ; ξb)− gradF (x)

∥∥∥∥∥
2
 ≤ σ2

B
,

where B is the size of B.



Convergence Analysis

By the L-retraction smoothness of F , we have

F (x̃t+1)− F (x̃t ) ≤
〈

gradF (x̃t ),R−1
x̃t

(x̃t+1)
〉

+
L
2
‖R−1

x̃t
(x̃t+1)‖2.

Taking expectation over the randomness at the t-th outer iteration conditioned
on x̃t yields

Et [F (x̃t+1)]− F (x̃t ) ≤ Et [
〈

gradF (x̃t ),R−1
x̃t

(x̃t+1)
〉

] +
L
2
Et [‖R−1

x̃t
(x̃t+1)‖2].

(3.1)

where Et [·] means the expectation over the randomness of the t-outer
iteration.

We focus on bounding the terms
on the right-hand side of (3.1)
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Convergence Analysis

The second term of the right-hand side

Lemma 1

The iterates {x̃t} generated by RFedAGS satisfy that

Et [‖R−1
x̃t

(x̃t+1)‖2] ≤
K−1∑
k=0

Kα2
t,kEt [‖gradF (x j

t,k )‖2] +
K−1∑
k=0

Kα2
t,kσ

2

SBt,k
,

where the expectation is taken over the randomness at the t-th outer iteration
conditioned on x̃t .
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Convergence Analysis

The first term of the right-hand side

Lemma 2

At the t-th outer iteration of RFedAGS with a fixed step size ᾱt,k = ᾱt within
the inner iteration of each agent, we have that

Et [
〈

gradF (x̃t ),R−1
x̃t

(x̃t+1)
〉

]

≤ − (K + 1)ᾱt

2
‖gradF (x̃t )‖2 − ᾱt

2

K−1∑
k=1

Et [‖gradF (x j
t,k )‖2]

+
ᾱtL2

2

K−1∑
k=1

Et [‖R−1
x̃t

(x j
t,k )‖2],

and, in particular, for K = 1,

Et [
〈

gradF (x̃t ),R−1
x̃t

(x̃t+1)
〉

] = −ᾱt‖gradF (x̃t )‖2,

where the expectation is taken over the randomness at the t-th outer iteration
conditioned on x̃t .
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Convergence Analysis

The first term of the right-hand side

Lemma 3

At the k-th inner iteration of the t-th outer iteration of RFedAGS, for each
agent j = 1, 2, . . . ,S and k = 1, 2, . . . ,K − 1, we have

Et [‖R−1
x̃t

(x j
t,k )‖2] ≤ 2kM

k−1∑
τ=0

α2
t,τEt [‖gradF (x j

t,τ )‖2] + 2kMσ2
k−1∑
τ=0

α2
t,τ

Bt,τ
,

where the expectation is taken over the randomness at the t-th outer iteration
conditioned on x̃t , M = (C2

2 + A2C2
1 C2

3 ) is a positive constant, A is stated in
Assumption 3.1(6), C1 is a constant such that ‖gradF (x)‖ ≤ C1 for all x ∈ W
(as Assumption 3.1(1)), and C2 and C3 are two constants related with the
manifold and retraction.
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Convergence Analysis

Based on Lemmas 2 and 3, if one uses αt,k = ᾱt and Bt,k = B̄t , then the first
term of the right-hand side of (3.1) is bounded as

Et

〈
gradF (x̃t ),R−1

x̃t
(x̃t+1)

〉
≤ − ᾱt

2
(K + 1−ML2ᾱ2

t K (K − 1))‖gradF (x̃t )‖2

− ᾱt

2
(1−ML2ᾱ2

t (K + 1)(K − 2))
K−1∑
k=1

Et [‖gradF (x j
t,k )‖2]

+
(2K − 1)K (K − 1)Mσ2L2ᾱ3

t

6B̄t
.
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Convergence Analysis
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Theorem 4

We run RFedAGS with a fixed step size αt,k = ᾱt and a fixed batch size Bt,k = B̄t within
parallel steps.
• If K = 1 with step sizes ᾱt satisfying

2− δ ≥ Lᾱt ; (3.2)

• or K > 1 with step sizes ᾱt satisfying{
1 ≥ L2ᾱ2

t M(K + 1)(K − 2) + ᾱt LK ,
1− δ ≥ 2L2ᾱ2

t M,
(3.3)

where δ ∈ (0, 1) is some constant, then it holds that

Et [F (x̃t+1)]− F (x̃t ) ≤ −
ᾱt (K − 1 + δ)

2
‖gradF (x̃t )‖2 +

K ᾱ2
t σ

2L
2B̄t

H(ᾱt ,K ,S),

where H(ᾱt ,K ,S) = ᾱt (2K−1)(K−1)ML
3 + K

S , and the expectations above are taken over
the randomness at the t-th outer iteration conditioned on x̃t .

Crucial result for the convergence analysis
• Inspired from Euclidean results in [ZC18];

• Difficulty: R−1
x (y) versus y − x ;

• Technique: Taylor expansion of R−1 and further control the higher order term;

[ZC18] F. Zhou and G. Cong. On the convergence properties of a K-step averaging stochastic gradient descent
algorithm for nonconvex optimization. International Joint Conference on Artificial Intelligence, 2018.



Convergence Analysis: fixed step size

Theorem 5 (Nonconvex)

If we run RFedAGS with a fixed step size αt,k = ᾱ, a fixed batch size Bt,k = B̄
satisfying (3.2) and (3.3). Then the resulting sequence of iterates {x̃t}T

t=1
satisfies

1
T
E

[
T∑

t=1

‖gradF (x̃t )‖2

]
≤ 2(F (x̃1)− F (x∗))

T (K − 1 + δ)ᾱ
+

ᾱKσ2L
(K − 1 + δ)

H(ᾱ,K ,S),

where x∗ ∈ arg minx∈M F (x).
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Convergence Analysis: fixed step size

A consequence of Theorem 5:

Corollary 6 (Nonconvex)

Under the conditions of Theorem 5, if the step size ᾱ and T are given by

ᾱ =

√
(F (x̃t )− F (x∗))SB̄

TK 2σ2L
, and T ≥

(F (x̃1)− F (x∗))B̄LM2S3(2K − 1)2(K − 1)2

9σ2K 4
,

such that (3.3) holds, the following holds that

1
T
E

[ T∑
t=1

‖gradF (x̃t )‖2

]
≤
(

4K
K − 1 + δ

)√
(F (x̃1)− F (x∗))σ2L

SB̄
1
√

T
.

Given small ε > 0, ensuring 1
T E[
∑T

t=1 ‖gradF (x̃t )‖2] ≤ ε resuires T ≥ O( 1
ε2 )
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Convergence Analysis: fixed step size

Theorem 7 (Riemannian Polyak-Łojasiewicz)

Under the same conditions as Theorem 5 together with assuming that the
function F satisfies the Riemannian Polyak-Łojasiewicz (RPL) condition

F (x)− F (x∗) ≤ 1
2µ
‖gradF (x)‖2, ∀x ∈ W,

where x∗ = arg minx∈M F (x) and µ is a positive constant. Under
Conditions (3.2) and (3.3) and ᾱ ≤ 1

µ(K−1+δ)
, we have

E[F (x̃T )− F (x∗)] ≤ (1− µᾱ(K − 1 + δ))T−1E[F (x̃1)− F (x∗)]

+
K ᾱσ2L

2µB̄(K − 1 + δ)
H(ᾱ,K ,S).

Linearly converge to a small neighborhood of the solution.
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Convergence Analysis: decaying step sizes

Theorem 8 (Nonconvex)

If we run RFedAGS with decaying step sizes αt,k = ᾱt , and not fixed but
bounded batch sizes Bt,k = B̄t for outer iterations satisfying (3.2) and (3.3)
and Blow ≤ B̄t ≤ Bup with Blow and Bup being positive integers, then the
resulting sequence of iterates {x̃t}T

t=1 satisfies

E

 T∑
t=1

ᾱt∑T
t=1 ᾱt

‖gradF (x̃t )‖2

 ≤ 2(F (x̃1)− F (x∗))

(K − 1 + δ)
∑T

t=1 ᾱt
+

T∑
t=1

ᾱ2
t Kσ2L

(K − 1 + δ)B̄t
∑T

t=1 ᾱt
H(ᾱt , K , S).

Further, if the step size ᾱt ’s satisfy
∞∑
t=1

ᾱt =∞, and
∞∑
t=1

ᾱ2
t <∞,

then the following holds

lim inf
t→∞

E[‖gradF (x̃t )‖2] = 0.

The iterates has at least one accumulation point which is a critical point in the
sense of expectation
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Convergence Analysis: decaying step sizes
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bounded batch sizes Bt,k = B̄t for outer iterations satisfying (3.2) and (3.3)
and Blow ≤ B̄t ≤ Bup with Blow and Bup being positive integers, then the
resulting sequence of iterates {x̃t}T

t=1 satisfies

E

 T∑
t=1
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Convergence Analysis: decaying step sizes

Theorem 9 (RPL)

Under the same conditions as Theorem 7 except for that the step size
sequence and the batch size sequence satisfy

αt,k = ᾱt =
κ

γ + t
for some γ > 0 and κ > 1

µ(K−1+δ)
such that ᾱ1

satisfies (3.2) and (3.3), and

Bt,k = B̄t ∈ [Blow,Bup].

Then for all t ∈ {1, 2, . . . ,T − 1}, the expected optimality gap is bounded by

E[F (x̃t )− F (x∗)] ≤ ν

γ + t
,

where

ν = max

{
κ2K 2σ2L

SBlow(κµ(K − 1 + δ)− 1)
,
κ3(2K − 1)K (K − 1)σ2L2M
3γBlow(κµ(K − 1 + δ)− 1)

,

(γ + 1)(F (x̃1)− F (x∗))

}
.

The expected optimal gaps vanish sublinearly
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Convergence Analysis: a summary

• Consider “nonconvex” and “RPL” scenarios;

• Fixed step size and decaying step size;

• Techniques inspired from [ZC18] (nonconvex) and [BCN18] (RPL);

• Convergence guaranteed for multiple agents S > 1 and multiple local
updates K > 1;

Riemannian Federated Learning via Averaging Gradient Stream 31

[ZC18] F. Zhou and G. Cong. On the convergence properties of a K-step averaging stochastic gradient descent
algorithm for nonconvex optimization. International Joint Conference on Artificial Intelligence, 2018.
[BCN18] L. Bottou, F. E. Curtis, and J. Nocedal, Optimization Methods for Large-Scale Machine Learning, SIAM

Review, 2018.



Optimal choice for the number of local updates

An important question of RFedAGS is whether multiple inner iterations, i.e.,
K > 1, bring benefits.

In other words, is the optimal choice of K , denoted by K ∗, greater than 1?

Yes!
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Optimal choice for the number of local updates

Theorem 10 (Fixed step size)

We run RFedAGS with a fixed batch size Bt,k = B̄ and a fixed step size
αt,k = ᾱ satisfying Conditions (3.2) and (3.3). Under the same conditions as
Theorem 5, if the number of outer iterations T satisfies

(F (x̃1)− F (x∗)) >
(3δ − 1)ᾱ2TLσ2

2SB̄
+
δᾱ3σ2L2TM

B̄
,

then the optimal choice of K , the number of inner iterations, is greater than 1.

Theorem 11 (decaying step size)

We run RFedAGS with batch sizes Bt,k = B̄t and decaying step sizes
αt,k = ᾱt such that ᾱ1 satisfying Conditions (3.2) and (3.3). Under the same
conditions as Theorem 8, if the number of outer iterations T satisfies

(F (x̃1)− F (x∗)) > δσ2L
T∑

t=1

ᾱ2
t

B̄t

(
ᾱt ML +

2
S

)
,

then the optimal choice K is greater than 1.
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Numerical Experiments

• The experiments conducted on the empirical risk minimization
• I.I.D. data and full agent participation

min
x∈M

F (x) :=
1
S

S∑
i=1

f (x ;Di ) =
1
S

S∑
i=1

N∑
j=1

1
N

f (x ; zi,j ),

where S is the number of agents, Di = {zi,1, . . . , zi,N} is the local dataset with
size of N held by agent i .

For decaying step sizes cases, the step sizes are computed by the following
formulation:

ᾱt =

{
α0 if t = 0
α0/(β + ct ) if t > 0,

with ct =


0 if t = 0,
ct−1 + 1 if mod(t , dec) = 0,
ct−1 otherwise,

where α0 is the initial step size, β is the decaying parameter, and dec is the
decaying gap.
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Three simulation experiments

Computing principal eigenvector over sphere manifolds (CPESph)

• minx∈Sd F (x) := − 1
S

∑S
i=1

1
N

∑N
j=1 xT (zi,jzT

i,j )x with
Sd = {x ∈ Rd+1 : ‖x‖2 = 1}

• The objective locally satisfies RPL condition

• Synthetize the samples Di = {zi,1, . . . , zi,N} for all i = 1, . . . ,S:

• Diagonal matrix Σi = diag{1, 1− 1.1ν, . . . , 1− 1.4ν, |y1|
(d+1)

,
|y2|

(d+1)
, . . . } of

size (d + 1)× (d + 1) with ν being the eigengap and yi ∈ R being sampled
from the standard Gaussian distribution

• Set Zi = Ui Σi Vi with Ui ∈ RN×(d+1) and V ∈ R(d+1)×(d+1) being two
orthonormal matrix

• Set zi,j = Zi (j, :)T
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Three simulation experiments

Computing Fréchet mean over SPD manifolds (CFMSPD)

• minX∈Sd
++

F (X ) := 1
S

∑S
i=1

1
N

∑N
j=1 ‖logm(X−1/2Zi,jX−1/2)‖2

F with

Sd
++ = {X ∈ Rd×d : X � 0}

• The objective locally satisfies the RPL condition

• Synthetize the samples Di = {Zi,1, . . . ,Zi,N} ⊂ Sd
++:

• Each data point is sampled from the Wishart distribution W (Id/d , d) with a
diameter DW
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Three simulation experiments

Minimization of the Brockett cost function over Stiefel manifolds (MBCFSti)

• minX∈St(p,d) F (X ) = 1
S

∑S
i=1

∑N
j=1 trace(X T Ai,jXH) with

St(p, d) = {X ∈ Rd×p : X T X = Ip}

• H = diag{p, p − 1, . . . , 1}

• The objective locally satisfies the RPL condition

• Synthetize the samples Di = {Ai,1, . . . ,Ai,N} ⊂ Sd
++:

• Set Ai,j = B + BT with B being drawn from the standard normal distribution
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Three simulation experiments

Table 1: The parameters of the three problems and RFedAGS. Notation a.bk denotes a
number a.b × 10k and the dash “−” means that the parameter does not exist in the
problem.

Parameters

Problems

Problem-related Algorithm-related

d p ν DW S N ᾱ α0 β dec B̄

CPESph 2.51 – 1−3 – 1.01 8.01 1 1 1.0−1 5.01 6.41

CFMSPD 2 – – 1 1.01 6.01 3.0−3 8.0−3 1.0−1 2.01 3.01

MBCFSti 2.51 2 – – 2.01 5.01 3.0−3 2.0−2 1.0−1 5.01 2.51
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Three simulation experiments
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Figure 2: The influence of the different number, K , of local updates on synthetic data.
Fixed step size cases (first row) and decaying step size cases (second row).

• Linear convergence if fixed step sizes
• More accurate if decaying step size
• Optimal K greater than 1
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Three simulation experiments
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• Linear convergence if fixed step sizes
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• Optimal K greater than 1
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A real-world application

Low-dimensional multitask feature learning
• Let T = {T1, . . . , TS} denote the S group task
• Each group task Ti is consisted of N tasks, i.e., Ti = {Ti,1, . . . , Ti,N}
• All tasks share a latent low-dimensional feature representation
• For each task Ti,j :

• (Xij , yij ) with Xij ∈ Rdij×m and yij ∈ Rdij being the training instances and the
corresponding labels

The low-dimensional multitask feature learning problem can be formally
formulated as follows:

min
U∈Gr(r,m)

1
S

S∑
i=1

 1
N

N∑
j=1

0.5‖XijUwijU − yij‖2
F


• The Grassmann manifold Gr(r ,m) is equipped with the quotient manifold

structure Gr(r ,m) = St(r ,m)/Op

• For a given U, wijU is the least-squares solution to
minwij∈Rr 0.5‖XijUwij − yij‖2

F + λ‖wij‖2
F , which has a closed form for λ ≥ 0
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A real-world application

Synthetic case for each task Ti,j

• the number of instances dij is randomly chosen between 10 and 50
• the training instances Xij ∈ Rdij×m with m = 100 are given from the

standard Gaussian distribution
• the subspace U∗ for the problem is a random generated point in

St(5, 100) with the dimension r = 5
• the labels yij for training instances for Ti,j are generated by

yij = XijU∗(U∗)T wij with wij being generated by the standard Gaussian
distribution
• then the labels are perturbed by a random Gaussian noise with zero

mean and 10−6 standard deviation
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A real-world application

Synthetic case S = 20,N = 50, λ = 0, the fixed step size ᾱ = 0.003 and the
fixed batch size B̄ = 25
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Figure 3: The influence of the different number, K , of local updates on synthetic data.
Excess risk (left) and distance to the optimal subspaces, i.e., dist(Uk ,U∗), (right).

• Linear convergence
• Optimal K > 1 exists.
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A real-world application

Real-world case
• benchmark dataset [Gol91; Evg+05]: School, which is consisted of

15362 students’ information from 139 secondary.
• There are 139 tasks each of which is to predict student performance in

each school.
• We randomly sample 80% students from each school to form the training

set and set the remainder as the testing set
• In terms of FL setting, we consider S = 6 and N = 23 (implying that one

of the schools is ignored)
• measure the performance of those methods using the normalized mean

square error (NMSE)

NMSE =
MSE(ŷ , y)

var(y)
with MSE(ŷ , y) =

∑S
i=1

∑N
j=1

∑dij
k=1(ŷij (k)− yij (k))2∑S

i=1

∑N
j=1 dij

,
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A real-world application

Real-world case S = 6,N = 23 ᾱ = 1.0× 10−6, B̄ = 18, λ = 1.0× 10−3
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(a) r = 3
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(b) r = 4
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(c) r = 5
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(d) r = 3
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(e) r = 4
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(f) r = 5

Figure 4: Costs (first row) and NMSE scores (second row) against iterations for
RFedAGS with K ∈ {1, 4, 8, 10}, RFedAvg, RSD, RCG and RLBFGS. Here the x-axis
“iteration” in FL setting means the number of outer iterations
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A real-world application

Real-world case S = 6,N = 23 ᾱ = 1.0× 10−6, B̄ = 18, λ = 1.0× 10−3

Table 2: the best NMSE scores (lower is better) on testing set for different subspace
dimension r . Here a number a.bk means a.b × 10k . The numbers in parentheses
represent their corresponding x-axis coordinates in Figure 4.

Dimension RFedAGS RFedAvg RSD RCG RLBFGS

K = 1 K = 4 K = 8 K = 10

r = 3 5.09−1(100) 4.78−1(100) 4.72−1(100) 4.70−1(100) 5.09−1(100) 4.65−1(62) 4.60−1(62) 4.60−1(99)
r = 4 4.38−1(100) 4.37−1(30) 4.37−1(15) 4.37−1(12) 4.38−1(100) 4.32−1(100) 4.39−1(5) 4.29−1(23)
r = 5 4.07−1(100) 4.05−1(51) 4.05−1(23) 4.05−1(18) 4.07−1(100) 4.03−1(60) 3.96−1(44) 3.98−1(18)
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Summary

• Introduced the federated learning;

• Proposed a new server aggregation;

• Extensive convergence analysis;

• Numerical experiments;
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Thank you

Thank you for your attention!
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