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Federated Learning Review

General Federated Learning Optimization:

S S
min F(x) = > pifi(x), withp; > 0and > " p =1, (1.1)

XERN
i=1 i=1

e Sis the number of agents;
® f;is the local objective of agent /, and covers

f(x) = EgND,[f(x )] with D; being a local data distribution
g % f(x;zi;)  with D; = {Zi1,. ..,z s} being a local dataset;
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General Federated Learning Optimization:

S S
min F(x) = Zp,f,(x), with p; > 0and » " p =1, (1.1)

i=1
® Sis the number of agents;
® f;is the local objective of agent /, and covers

f(x) = EgND,[f(x )] with D; being a local data distribution
g % f(x;zi;)  with D; = {Zi1,. ..,z s} being a local dataset;

Riemannian Federated Learning considers (1.1) with x in a manifold M

Applications:
e Matrix completion €
® Principal component analysis
¢ Online learning
® Taxonomy embedding
® efc
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Federated Learning Review
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Figure 1: Flowchart of a federated learning algorithm
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Federated Learning Review

Euclidean version:

Algorithm: A representative federated averaging algorithm [McM+17]

1.fort=0,1,..., T —1do

2. The server uniformly selects a subset S; of s agents at random;

3. The server upload global parameter X; to all agents in S, i.e., x{ 0% Xt;
4

5

for j € S;in parallel do
Agent j updates a local parameter « by K-step SGD with X; being

initial iterate; ming ez F(X)
6.  Sentx ! « o the server; GERT T
7. end for .
8. Server aggregates the received local parameters {X{,K}/es, by averaging
Fror e 30 s X
JESt ZIESr pj
9. end for

e Sever: Steps 2, 3, and 8;
® Agents: Steps 5 and 6;

[McM+17] B. McMahan, E. Moore, D. Ramage, B. A. y Arcas. Communication-Efficient Learning of Deep Networks
from Decentralized Data. Proceedings of Machine Learning Research, 54, P.1273-1282, 2017.
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Federated Learning Review

Euclidean to Riemannian

Algorithm: A Riemannian federated learning algorithm

1.fort=0,1,...,T—1do
2. The server uniformly selects a subset S; of s agents at random;

3.  The server upload global parameter X; to all agents in S, i.e., x{ 0 < Xt;

4. forj e S;in parallel do ‘

5. Agent j updates a local parameter x{ « by K-step Riemannian SGD with k;
being initial iterate; -

6. Sent x! . to the server;

7. end for .

8. Server aggregates the received local parameters {x{’ k Yies; by averaging

Sip1  ave(X] | € Sp);
9. end for

e Agents: Riemannian SGD [Bon13]
e Sever: Aggregation
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Federated Learning Review

Euclidean to Riemannian

Algorithm: A Riemannian federated learning algorithm

1.fort=0,1,...,T—1do
2. The server uniformly selects a subset S; of s agents at random;

3.  The server upload global parameter X; to all agents in S, i.e., x{ 0 < Xt;

4. forj e S;in parallel do ‘

5. Agent j updates a local parameter x{ « by K-step Riemannian SGD with k;
being initial iterate; -

6. Sent x! . to the server;

7. end for .

8. Server aggregates the received local parameters {X{,K}/es, by averaging

Sip1  ave(X] | € Sp);
9. end for

® Agents: Riemannian SGD [Bon13]
e Sever: Aggregation
How to aggregates {X{K}jes, on a manifold?
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Federated Learning Review

Euclidean to Riemannian (Aggregation: an existing approach):

* Naive generalization:
% Py i i i
X1 < Djes, s B XK #= Riemannian setting
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Euclidean to Riemannian (Aggregation: an existing approach):

* Naive generalization:
% Py i i i
X1 < Djes, o 7= Riemannian setting
* An alternative approach:
j pi
St D 5o X = K =argminy s 5l x| |7
l€5t

jes Z/ES, pl j€s;

<= X1 = arg min Z Ldlst (x, x ) — Riemannian setting;

jes; Zlesr

~ _ . pi . Jj
® X =argmin, > i o mdlst (X, X; x): computationally expensive;

Riemannian Federated Learning via Averaging Gradient Stream 7



Federated Learning Review

Euclidean to Riemannian (Aggregation: an existing approach):

* Naive generalization:
% Py i i i
X1 < Djes, s B XK #= Riemannian setting

* An alternative approach:
Xt41 <—ZZ ,K<:>X,+1 :argmlnzzp Jlx — XtKH,:
jes; “IE€St Pj j€s; /ESt

<= X1 = arg min Z Ldlst (x, x ) — Riemannian setting;

jes; Zlesr

~ _ . pi . Jj
® Xip1 = argmin, Ejes,- mdlst (X, X; x): computationally expensive;

® One step of Riemannian gradient descent (called tangent mean) [L\V23]:

o B (3 522 (4o )
i€St

J€St

[LM23] Jiaxiang Li and Shigian Ma. Federated learning on Riemannian manifolds. Applied Set-Valued Analysis and
Optimization, 5(2), 2023.
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Federated Learning Review

Existing Riemannian Federated Learning:
® Federated Learning on Riemannian Manifolds [LM23]

® |ntegrate SVRG technique within Riemannian federated learning
® Use tangent mean as the server aggregation
® Requirements for convergence

® Full agent participation, and one step of local update;

® One agent participates, and multiple steps of local update.

[LM23] J. Li and S. Ma. Federated Learning on Riemannian Manifolds. Applied Set-Valued Analysis and Optimization,
2023.
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Existing Riemannian Federated Learning:
® Federated Learning on Riemannian Manifolds [LM23]

® |ntegrate SVRG technique within Riemannian federated learning
® Use tangent mean as the server aggregation
® Requirements for convergence

® Full agent participation, and one step of local update;

® One agent participates, and multiple steps of local update.

® Federated Learning on Riemannian Manifolds with Differential
Privacy [Hua+24]
® Use differential privacy to enhance the privacy of federated learning;
® Use tangent mean as the server aggregation.
® Requirements for convergence similar to that in [LM23].

[LM23] J. Li and S. Ma. Federated Learning on Riemannian Manifolds. Applied Set-Valued Analysis and Optimization,

2023.
[Hua+24] Z. Huang, W. Huang, P. Jawanpuria, B. Mishra. Federated Learning on Riemannian Manifolds with
Differential Privacy. arxiv:2404.10029, 2024.
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Existing Riemannian Federated Learning:
® Federated Learning on Riemannian Manifolds [LM23]

® |ntegrate SVRG technique within Riemannian federated learning
® Use tangent mean as the server aggregation
® Requirements for convergence

® Full agent participation, and one step of local update;

® One agent participates, and multiple steps of local update.

® Federated Learning on Riemannian Manifolds with Differential
Privacy [Hua+24]
® Use differential privacy to enhance the privacy of federated learning;
® Use tangent mean as the server aggregation.
® Requirements for convergence similar to that in [LM23].

¢ Riemannian Federated Learning on Compact Submanifolds with
Heterogeneous Data [Zha+24]
- Use projection onto the manifold
- Allow multiple agents and multiple local updates

[LM23] J. Li and S. Ma. Federated Learning on Riemannian Manifolds. Applied Set-Valued Analysis and Optimization,

2023.

[Hua+24] Z. Huang, W. Huang, P. Jawanpuria, B. Mishra. Federated Learning on Riemannian Manifolds with
Differential Privacy. arxiv:2404.10029, 2024.

[Zha+24] J. Zhang and J. Hu and A. M.-C. So and M. Johansson. Nonconvex Federated Learning on Compact Smooth
Submanifolds With Heterogeneous Data. arxiv:2406.08465, 2024.
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Federated Learning Review

Limitations
® Full agent participation and one step of local update [LM23; Hua+24]
e Compact submanifolds embedded in Euclidean spaces [Zha+24]

[LM23] J. Li and S. Ma. Federated Learning on Riemannian Manifolds. Applied Set-Valued Analysis and Optimization,

2023.

[Hua+24] Z. Huang, W. Huang, P. Jawanpuria, B. Mishra. Federated Learning on Riemannian Manifolds with
Differential Privacy. arxiv:2404.10029, 2024.

[Zha+24] J. Zhang and J. Hu and A. M.-C. So and M. Johansson. Nonconvex Federated Learning on Compact Smooth
Submanifolds With Heterogeneous Data. arxiv:2406.08465, 2024.
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Limitations
® Full agent participation and one step of local update [LM23; Hua+24]
e Compact submanifolds embedded in Euclidean spaces [Zha+24]

Proposed Riemannian federated learning algorithm
overcomes these limitations!

[LM23] J. Li and S. Ma. Federated Learning on Riemannian Manifolds. Applied Set-Valued Analysis and Optimization,

2023.

[Hua+24] Z. Huang, W. Huang, P. Jawanpuria, B. Mishra. Federated Learning on Riemannian Manifolds with
Differential Privacy. arxiv:2404.10029, 2024.

[Zha+24] J. Zhang and J. Hu and A. M.-C. So and M. Johansson. Nonconvex Federated Learning on Compact Smooth
Submanifolds With Heterogeneous Data. arxiv:2406.08465, 2024.
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2. Riemannian Federated Learning Averaging Gradient Stream
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A new server aggregation: average of gradient stream

Euclidean aggregation: X1 =3, %x{ﬂ
t

ot K—1 J i
Z V(X k—15 6t k—1,p)

Bt k-1 /
be BtK 1

i
Xtk =Xt k-1~

RSGD for instance

; « o
L t,K—2 t,K—1
_Xt,K72_7BIK2 Z Vf(zK Z'EtK 2.6) ~ B, Z Vii(x tK1fzK1b)
’ beB’t K o ’ ber,K ;

K=,
Y
= =Xo0~ Z Vf(xtkgtkb)

~~ k=0 t’k bEB/
Xt

K—1

) ; ek o
= K1 — X =—>) Z > B > VO 3 €k p)-
jes, 2iestPi ko Puk beB),
3

Riemannian Federated Learning via Averaging Gradient Stream



A new server aggregation: average of gradient stream

i iON: %, — Fi J
Euclidean aggregation: Xi.1 = 3, Sies B XK

_3 % _ pi K—1 otk (] g
—ar = Xep1 — Xe = — Z/ES, Ties, Pi Zk:o B k ZbEB’r,k Vf/(xr,k' ft,k,b)

. ] 1y
Tangent mean: X..1 = Expy, (— 2jes mEXP;,1(Xf,K)>

j Ot K—1 ; ;
Tk = : j i
Xk = Exp,g - E radfi(x] . _;
tK pxr,K—1 Bi k—1 - gradf( t,K—1 £[,K—1,b)
bes)
' Qa0 o
j : S,
X 1 = Expy, "B, E grad)j(xt’o,gtyoyb)
" bes,
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A new server aggregation: average of gradient stream

Euclidean aggregation: X1 = > /

I B

JESt Z/‘gst p K

[ T v v Pj K—1 2tk ) () el
= X1 — Xt = Z/ES, Ties, Pi Zk:o B k ZbeB’t . Vf/(X’,k’ ft,k,b)

. ] 1y
Tangent mean: X..1 = Expy, (— 2jes mExp;(’1(X{’K)>

j Ot K—1 ; ;
Tk = : j i
Xk = Exp,g - E radfi(x] . _;
tK pxr,K—1 Bi k—1 - gradf( t,K—1 £[,K—1,b)
bes)
' Qa0 o
j : S,
X 1 = Expy, "B, E grad)j(xt’o,gtyoyb)
" bes,

Exp and Exp~' are short of linearity!
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A new server aggregation: average of gradient stream

Back to the Euclidean aggregation, note that

K—1
) 3 . K o
i j ) Y

Dy =Xt — Xy o = E B, E V(X ki §t k)

k=0

Ny
beB)
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Back to the Euclidean aggregation, note that

K—1
) 3 . K o
i j ) Y

Dy =Xt — Xy o = E B, E V(X ki §t k)

k=0

k -
beB’t’k
Then one has

)?[+1 = ;(t — d{, with df = Z LA]&K
jes, ngs, p;
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In the Euclidean setting:
® agentj sends Aﬁk to the server

* the server averages these A/

¢ the server generates a new global
parameter X 1
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K—1
VR j Otk gl
Dy =Xt — Xy o = Z B Z V(X ki §t k)
k=0 ’ beB{k
Then one has

)?[+1 = ;(t — d{, with df = Z LA]&K
jes, ngs, p;

In the Euclidean setting:
® agentj sends Aﬁk to the server

* the server averages these A/

¢ the server generates a new global
parameter X 1
In existing works [Kar+20; Red+21],
sending A}  is to use acceleration
technique in the server aggregation.
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A new server aggregation: average of gradient stream

Back to the Euclidean aggregation, note that

Qi k P
B Z V'?(X{,kv'f{,k,b)

* pesl
beB)

K—1
VR j
A&K =Xt X = E
k=0

Then one has

)?[+1 = ;(t — d{, with df = Z LA]&K
jes, ngs, p;

In the Euclidean setting: In the Riemannian setting, we
proposed a similar aggregation

* agent j sends the “A} " to the
server;

* the server averages these “A/ ,”;

¢ the server retracts the average into
the manifold;

What is “A’;_K” in the Riemannian manifold?

® agentj sends Aﬁk to the server

* the server averages these A/

¢ the server generates a new global
parameter X 1

Riemannian Federated Learning via Averaging Gradient Stream 13



A new server aggregation: average of gradient stream

Construct the “A} ,”, which is dented by ¢/ , in the Riemannian setting:
® The local mini-batch gradients, _ _
ﬁ,o ZbeB’,' , gradfj(X{’O; fi,O,b)’ co 75[,:(71 ZbeB{ . gradfj(xnyi1 ; Elt,Kq,b)

are inside different tangent spaces.
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A new server aggregation: average of gradient stream

Construct the “A’t x_» Which is dented by C{,K in the Riemannian setting:
® The local mini-batch gradients, _ _
ﬁ Zbegl gradf(x; t,0° 5t 0,6)> "vﬁ ZbEB{,K—1 gradf/'(X{,Kq?f/t,Kq,b)
are msude dlfferent tangent spaces.

e Transport the local mini-batch gradients to the tangent space Ty M, i.e.,
Xt

Xt 1 : 1 )
rx{u (Bw Z,,EBI gradf(x] 1,0’ 5:0:;)) 4,rx{1 <B,1K,1 Z,,Eg/”( gradfi(xq ey er 1b>
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Construct the “A/ , 7, which is dented by C{,K in the Riemannian setting:

LK 3
® The local mini-batch gradients,

1 1 ) i Lol

Bro ZbeB’ gradfj(X i §p 0 p)s -+ Brk—1 Zbes’, o gradfi(X; i & k—1,)

are msude dlfferent tangent spaces.
e Transport the local mini-batch gradients to the tangent space Ty M, i.e.,

X 1 Xt 1 )
rx{u (Bw Z,,EBI gradf(x] 1,0’ 5:0:;)) 4,rx{1 <B,1K,1 Z,,Eg/”( gradfi(xq ey er 1b>

* Add these transported together to get to ({’K:
Cx = Yico er[ /\ (ﬁ 2bes, gradfi(X; ; ‘fjr,k,b))i
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Construct the “A/ , 7, which is dented by C{,K in the Riemannian setting:

LK 3
® The local mini-batch gradients,
1 1 ) i Lol
mzbes’ gradfj(X i §p 0 p)s -+ B k—1 Zbes’, o gradfi(X; i & k—1,)

are msude dlfferent tangent spaces.
e Transport the local mini-batch gradients to the tangent space Ty M, i.e.,

Xt 1 ) Xt 1 )
rx{u (Bho Z,,EBI gradf(x] 1,0’ 5:0:;)) 4,rx{1 <B,1K,1 Z,,Eg/”( gradfi(xq ey er 1b>

* Add these transported together to get to ({’K:
Gk = =Yoo er[ /\ (ﬁ ZbeB{l ; gradf,-(X{Yk; ‘S{,k,b));
The proposed server aggregation is given by
P

o T J
X1 =Ry, | = Djes, Sies Bl Gtk

—R. [ — P K- X o 1 ) e
=Ry < Yjes Ties, B 2k=0 a“‘rx{k (Bm Zbeﬁf,k grad’?(xr,k'gt,k,b))) :
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Construct the “A/ , 7, which is dented by C{,K in the Riemannian setting:

LK 3
® The local mini-batch gradients,

1 1 ) i Lol

Bro ZbeB’ gradfj(X i §p 0 p)s -+ Brk—1 Zbes’, o gradfi(X; i & k—1,)

are msude dlfferent tangent spaces.
e Transport the local mini-batch gradients to the tangent space Ty M, i.e.,

X 1 Xt 1 )
rx{u (Bho Z,,EBI gradf(x] 1,0’ 5:0:;)) 4,rx{1 <B,1K,1 Z,,Eg/”( gradfi(xq ey er 1b>

* Add these transported together to get to ({’K:
Cx = Yico er[ /\ (ﬁ ZbeB{lyk gradfi(x] ; ‘S{,k,b));
The proposed server aggregation is given by
% =Rs (- Spes, w52 5%k
=Ry < Yjes, zj%tpj Zf;d Oét,kri;k (% ZbeB’;yk gradff(x{,k? gjt.,k,b))) :

The proposed aggregation is another generalization of the Euclidean aggregation.
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Riemannian Federated Learning via Averaging Gradient Stream

Algorithm: Riemannian Federated Learning Averaging Gradient Stream

i.fort=0,1,..., 7T —1do
2. The server uniformly selects a subset S; of s agents at random;
3.  The server upload global parameter X; to all agents in Sy, i.e., { 0 Xt
4. forj € S;inparallel do
J .
5. Set ¢} o+ Og,;
6. fork=1,2,...,Kdo )
7. Agent j randomly samples an i.i.d. mini-batch B’t k1 Of size B _1;
j St k—1 ) i el .
8. ety — B EbeB’,k 1 gradfi(xg 4184y p);
9. Setx, <R (M_q)andCy, < Gy g+ rx; (T 41
k= tk—1
10. end for
1. Sent¢ , tothe server;
12.  end for )
13.  Server aggregates the received local parameter difference {g{ klies . by averaging
- pj i
Rt Ry | = 20 =Gk
jes; Yjes Pi
14.end for
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Algorithm: Riemannian Federated Learning Averaging Gradient Stream

i.fort=0,1,..., 7T —1do

2. The server uniformly selects a subset S; of s agents at random;

3.  The server upload global parameter X; to all agents in Sy, i.e., x{ 0 Xt

4. forj € S;inparallel do

5. Set gt 0 < Ox

6. fork =1,2, , K do )

7. Agent j randomly samples an i.i.d. mini-batch B’t k1 Of size B _1;
j St k—1 ) i el .

8. ety — B EbeB’,k 1 gradfi(xg 4184y p);

9. Setx, <R (M_q)andCy, < Gy g+ rx; (T 41

tk—1 tk—1

10. end for

1. Sent¢ , tothe server;

12.  end for

13.  Server aggregates the received local parameter difference {g{ klie St by averaging
- pj j
By Ry | = D 7’,({,;( ;
jes; Yjes Pi
14.end for

® The communication cost remains unchanged.

® The computational cost of the server remains unchanged.
® K — 1 times more transport calculations on the agent.

® The algorithm works for general manifolds.
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3. Convergence Analysis
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Convergence Analysis

Assumptions:
e (Full Participation) Full agents participate in local updates at each
communication round.
¢ (I.I.D. Data) Agent’s data are subjected to an independently identical
distribution.
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communication round.
¢ (I.I.D. Data) Agent’s data are subjected to an independently identical
distribution.

We focus on expected risk minimization.

Riemannian Federated Learning via Averaging Gradient Stream



Convergence Analysis

Assumptions:
e (Full Participation) Full agents participate in local updates at each
communication round.
¢ (I.I.D. Data) Agent’s data are subjected to an independently identical
distribution.

We focus on expected risk minimization.

xeM

S
min F(x) := éZE§~Di[fi(X; €)]
i

= E[f(x;€)]

® Each agent only has access to f(x; ¢) and gradf(x; £).

Riemannian Federated Learning via Averaging Gradient Stream



Convergence Analysis

Assumption 3.1

We assume that:

(1) x* = arg min, , F(x), the outer iterates {X:}+>1 and the inner iterates

{ {{x{’ it te=0 =1 generated by FedAGS remain in a compact and
connected subset )V C M;

(2) the compact and connected subset WV is totally retractive with respect to
the retraction R;

(8) for each realization of ¢, the component f(-; ) are continuously
differentiable;

(4) the vector transport T is isometric;

(5) the cost function F is L-retraction smooth and L-Lipchitz continuous
differentiable with respect toT on W; and

(6) the step sizes oy x are upper bounded, i.e., there exists A > 0 such that
atx < Aforallt and k.

Riemannian Federated Learning via Averaging Gradient Stream
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Convergence Analysis
Assumption 3.2

For any fixed parameter x € M, the Riemannian stochastic gradient gradf(x; &)
is an unbiased estimator of the true gradient corresponding to the parameter x,
ie.,

E¢[gradf(x; £)] = gradF(x)

v

Assumption 3.3

For any fixed parameter x € M, there exists a scalar o > 0 such that for any
mini-batch indices set B of the realizations of random variable &, the following

holds .
2
] S i 7

Egn |:H1B Zgradf(x; &p) — gradF(x)
beB

where B is the size of B.
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Convergence Analysis

By the L-retraction smoothness of F, we have
~ ~ ~ . L1, 2
F(%1) = F(%) < (eradF (%), R, (%)) + 5 IRy, () 2

Taking expectation over the randomness at the t-th outer iteration conditioned
on X; yields

EAF(%1)] — F(%) < Bl gradF (%), Ry, (1) )] + SEAIRy, (o))
(3.1)

where E;[-] means the expectation over the randomness of the t-outer
iteration.
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Convergence Analysis

By the L-retraction smoothness of F, we have
~ ~ ~ . L1, 2
F(%1) = F(%) < (eradF (%), R, (%)) + 5 IRy, () 2

Taking expectation over the randomness at the t-th outer iteration conditioned
on X; yields

EAF(%1)] — F(%) < Bl gradF (%), Ry, (1) )] + SEAIRy, (o))
(3.1)

where E;[-] means the expectation over the randomness of the t-outer
iteration.

We focus on bounding the terms
on the right-hand side of (3.1)
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Convergence Analysis

The second term of the right-hand side

Lemma 1

The iterates {X;} generated by RFedAGS satisfy that

K—1 =
1z (2 2 j ,
EIIRy,' (%e1)IP] < D KafkEell|lgrad F(x] )] + SB,,

k=0 k=0 *

where the expectation is taken over the randomness at the t-th outer iteration
conditioned on X;.

V.
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Convergence Analysis

The first term of the right-hand side

At the t-th outer iteration of RFedAGS with a fixed step size & x = & within
the inner iteration of each agent, we have that

Ed[(grad F(5), Ry, (%¢11) )]

K—
K+1)a at
< 3 ) - & Bl (s )
k=1

2 K—1

a L
5 ZJEr[IIR O I,
and, in particular, for K =1,

Edl(grad F(%), Ry, (%e:1) )] = —GirllgradF (%),

where the expectation is taken over the randomness at the t-th outer iteration
conditioned on X;.
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Convergence Analysis

The first term of the right-hand side

Lemma 3

At the k-th inner iteration of the t-th outer iteration of RFedAGS, for each
agentj=1,2,...,Sandk=1,2,... ., K — 1, we have

k—1 k—1 2
_ i i Ot ¢
Ed|IR," (] )I°] < 2kM Y of - Eilllgrad F(x ,)|*] + 2kMo® B:’ ;
7=0 7=0 T

where the expectation is taken over the randomness at the t-th outer iteration
conditioned on %, M = (C3 + A2C2C2) is a positive constant, A is stated in
Assumption 3.1(6), Cy is a constant such that ||gradF(x)|| < Ci forall x € W
(as Assumption 3.1(1)), and C, and C3 are two constants related with the
manifold and retraction.
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Convergence Analysis

Based on Lemmas 2 and 3, if one uses ayx = & and B; x = B;, then the first
term of the right-hand side of (3.1) is bounded as

Ee (gradF(%), Ry, (%1)) < =5 (K + 1= MLGEK(K = 1)) gradF (%)
— K—1
a i .
= 5 (1= MPGH(K + 1)(K — 2)) > Edfl|grad F(x{ 1) ]
k=1
(2K — )K(K — 1)Mo®L2a?

+ _
6B;
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Convergence Analysis

We run RFedAGS with a fixed step size o x = & and a fixed batch size B; = B; within
parallel steps.

® |f K = 1 with step sizes a; satisfying
26> Lay; (3.2)

® or K > 1 with step sizes &; satisfying
1> [2a2M(K + 1)(K — 2) + &LK,
1—6>21%a2M,
where 6 € (0,1) is some constant, then it holds that

- . (K —1+6 . Ka?o?L
EdF(fe1)] - F (xf)<—ungradF(xt)n2 (@ K.S),

where H(at, K, S) = M + , and the expectations above are taken over
the randomness at the t-th outer iteration cond/tloned on X;.

(3.3)

Crucial result for the convergence analysis
® Inspired from Euclidean results in [ZC18];

e Difficulty: Ry '(y) versus y — x;

e Technique: Taylor expansion of R~ and further control the higher order term;

[ZC18] F. Zhou and G. Cong. On the convergence properties of a K-step averaging stochastic gradient descent
algorithm for nonconvex optimization. International Joint Conference on Artificial Intelligence, 2018.
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Convergence Analysis: fixed step size

Theorem 5 (Nonconvex)

If we run RFedAGS with a fixed step size oy x = &, a fixed batch size By x = B
satisfying (3.2) and (3.3). Then the resulting sequence of iterates {%:} [,
satisfies

(F(%) — F(x*)) | aKo®L
T(K—1+0)a ' (K—1+0)

.
1 ~ 112 2 _
TE [tz; llgradF ()" | < H(a, K, S),

where x* € argmin, .\, F(x).
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Convergence Analysis: fixed step size

A consequence of Theorem 5:

Corollary 6 (Nonconvex)

Under the conditions of Theorem 5, if the step size & and T are given by
(F(%) — F(x*))SB
TK202L
such that (3.3) holds, the following holds that

4K (F(%) — F(x*))o2L 1
s (K—1 +5> SB VT

(F(%) — F(x*))BLM2S3(2K — 1)2(K — 1)

a7 >
o G = 902K4

a =

.

1 .

—E [Z leradF (%)
=1
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Convergence Analysis: fixed step size

A consequence of Theorem 5:

Corollary 6 (Nonconvex)

Under the conditions of Theorem 5, if the step size & and T are given by

F(%) — F(x*))SB F(%) — F(x*))BLM2S3(2K — 1)2(K — 1)?
(GO~ FUONSB 7 (F) = Fx DBLVESIRK — 1K 1)

such that (3.3) holds, the following holds that

e[y P (F(%) = F(x*))oL 1
TJE[;gmdF(xf)n <(7575) \/ .

Given small € > 0, ensuring TE[>"/_, [lgradF(%;)[|?] < e resuires T > O(%)

a =
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Convergence Analysis: fixed step size

Theorem 7 (Riemannian Polyak-tojasiewicz)

Under the same conditions as Theorem 5 together with assuming that the
function F satisfies the Riemannian Polyak-tojasiewicz (RPL) condition

F(x) — F(x") < 21—”||gradF(x)||2, Vx W,

where x* = argmin, . ,, F(x) and v is a positive constant. Under
Conditions (3.2) and (3.3) and & < m we have

E[F(%r) — F(x")] < (1 — pa(K — 1+ 8)) 'E[F (%) — F(x")]
Kao?L

__Ract &K, S).
T Bk =150 @S
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Convergence Analysis: fixed step size

Theorem 7 (Riemannian Polyak-tojasiewicz)

Under the same conditions as Theorem 5 together with assuming that the
function F satisfies the Riemannian Polyak-tojasiewicz (RPL) condition

F(x) — F(x") < 21—”||gradF(x)||2, Vx W,

where x* = argmin, . ,, F(x) and v is a positive constant. Under
Conditions (3.2) and (3.3) and & < m we have

E[F(%r) — F(x")] < (1 — pa(K — 1+ 68)) "E[F (%) — F(x")]
Kao?L

__Ract &K, S).
T Bk =150 @S

Linearly converge to a small neighborhood of the solution.
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Convergence Analysis: decaying step sizes

Theorem 8 (Nonconvex)

If we run RFedAGS with decaying step sizes ot x = &, and not fixed but
bounded batch sizes B; x = B for outer iterations satisfying (3.2) and (3.3)
and Biow < B < B, with Bi.w and B, being positive integers, then the
resulting sequence of iterates {X:},_ satisfies

v a
E{Z L Hgmdp(;,)ﬂg H(ar, K, S).

2(F(%) — F(x*)) s a2Ko2L
T =
=1 2= Ot =

+ _
K=1+8)Xl 6 S (K-1+8B >, a:

Further, if the step size a:’s satisfy

o0 oo
Zo‘q = oo, and Zo‘z? < 00,
t=1

t=1

then the following holds
lim inf E[||gradF (%)||%] = 0.
t—oo
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Convergence Analysis: decaying step sizes

Theorem 8 (Nonconvex)

If we run RFedAGS with decaying step sizes ot x = &, and not fixed but
bounded batch sizes B; x = B for outer iterations satisfying (3.2) and (3.3)
and Biow < B < B, with Bi.w and B, being positive integers, then the
resulting sequence of iterates {X:},_ satisfies

v a
E{Z L Hgmdp(;,)ﬂg H(ar, K, S).

2(F(%) — F(x*)) s a2Ko2L
T =
=1 2= Ot =

+ _
K=1+8)Xl 6 S (K-1+8B >, a:

Further, if the step size a:’s satisfy

o0 oo
Zo‘q = oo, and Zo‘z? < 00,
t=1

t=1

then the following holds
lim inf E[||gradF (%)||%] = 0.
t— oo

The iterates has at least one accumulation point which is a critical point in the

sense of expectation
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Convergence Analysis: decaying step sizes

Theorem 9 (RPL)
Under the same conditions as Theorem 7 except for that the step size
sequence and the batch size sequence satisfy

-k _
ik = ar = poay for some~ > 0and x> such that a4

R=T)
satisfies (3.2) and (3.3), and
Bk = B: € [Biow, Bup)-
Then forallt € {1,2,..., T — 1}, the expected optimality gap is bounded by

v

E[F(%) = FOO)] = ~=

)

where
{ K2K2o2L k32K — )K(K — 1)0?L2M
v = max 5 )
SBiow (kp(K =14 6) — 1) 37yBiow(rpu(K —1+6) — 1)

(v + D)(F () — F(x*))}.
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Convergence Analysis: decaying step sizes

Theorem 9 (RPL)
Under the same conditions as Theorem 7 except for that the step size
sequence and the batch size sequence satisfy

-k _
ik = ar = poay for some~ > 0and x> such that a4

R=T)
satisfies (3.2) and (3.3), and
Bk = B: € [Biow, Bup)-
Then forallt € {1,2,..., T — 1}, the expected optimality gap is bounded by

v

E[F(%) = FOO)] = ~=

bl

where
{ K2K2o2L k32K — )K(K — 1)0?L2M
v = max , ,
SBiow (kp(K =14 6) — 1) 37yBiow(rpu(K —1+6) — 1)

(v + D)(F () — F(x*))}.

The expected optimal gaps vanish sublinearly
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Convergence Analysis: a summary

e Consider “nonconvex” and “RPL” scenarios;
® Fixed step size and decaying step size;
® Techniques inspired from [ZC18] (nonconvex) and [BCN18] (RPL);

® Convergence guaranteed for multiple agents S > 1 and multiple local
updates K > 1;

[ZC18] F. Zhou and G. Cong. On the convergence properties of a K-step averaging stochastic gradient descent
algorithm for nonconvex optimization. International Joint Conference on Artificial Intelligence, 2018.

[BCN18] L. Bottou, F. E. Curtis, and J. Nocedal, Optimization Methods for Large-Scale Machine Learning, SIAM
Review, 2018.
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Optimal choice for the number of local updates

An important question of RFedAGS is whether multiple inner iterations, i.e.,
K > 1, bring benefits.

In other words, is the optimal choice of K, denoted by K*, greater than 1?
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Optimal choice for the number of local updates

An important question of RFedAGS is whether multiple inner iterations, i.e.,
K > 1, bring benefits.

In other words, is the optimal choice of K, denoted by K*, greater than 1?

Yes!
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Optimal choice for the number of local updates

Theorem 10 (Fixed step size)

We run RFedAGS with a fixed batch size B x = B and a fixed step size
atk = & satisfying Conditions (3.2) and (3.3). Under the same conditions as
Theorem 5, if the number of outer iterations T satisfies
(86 —1)a2TLo?  6a3c2L2TM
2SB B ’
then the optimal choice of K, the number of inner iterations, is greater than 1.

(F(x1) — F(x*)) >

Theorem 11 (decaying step size)

We run RFedAGS with batch sizes B x = B: and decaying step sizes
atk = &y such that a4 satisfying Conditions (3.2) and (3.3). Under the same
conditions as Theorem 8, if the number of outer iterations T satisfies

T =2
%) — F(x" 2S5 (G 2
(F(X1) — F(x*)) > do L;:1 B, (OL[ML+ S>’

then the optimal choice K is greater than 1.
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4. Numerical Experiments
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Numerical Experiments

® The experiments conducted on the empirical risk minimization
¢ |.I.D. data and full agent participation

(%)

min F(x) : lz ;D) = = ! iilf(x-z--)
XeEM S NS

=1 =1 /:1

where S is the number of agents, D; = {z; 1, ..., zin} is the local dataset with
size of N held by agent /.

For decaying step sizes cases, the step sizes are computed by the following

formulation:
0 ift=0
_ (%)) If t=0 . . ’
ar = { . withc; = ¢ ¢—1+1 if mod(t,dec) = 0,
c) ift>0, .
ao/(+ ) Ct—1 otherwise,

where «y is the initial step size, 3 is the decaying parameter, and dec is the
decaying gap.
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Three simulation experiments

Computing principal eigenvector over sphere manifolds (CPESph)
o minyeso F(x) = —§ 37 & 2o X (2120 x with

SY = {x e R . ||x|2 = 1}
® The objective locally satisfies RPL condition

® Synthetize the samples D; = {z;1,...,zn}foralli=1,...,S:

® Diagonal matrix ¥; = diag{1,1 —1.1y,...,1 — 1.4y, @) [@ih
size (d + 1) x (d + 1) with v being the eigengap and y; € R being sampled
from the standard Gaussian distribution

® Set Z = U;x;V; with U; € RNX(d+1) and V € R(@+1)x(d+1) peing two
orthonormal matrix

® Setz;=Z(j,:)"
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Three simulation experiments

Computing Fréchet mean over SPD manifolds (CFMSPD)
o minyegs F(X) = § T2, 5 I Illogm(X~/2Z,,X~1/2)|2 with
S¢, ={X R X~ 0}

® The objective locally satisfies the RPL condition

e Synthetize the samples D; = {Z1,...,Zn} C S9.:
® Each data point is sampled from the Wishart distribution W(/ly/d, d) with a
diameter Dyy
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Three simulation experiments

Minimization of the Brockett cost function over Stiefel manifolds (MBCFSti)
® minxesip.a) F(X) = § X0 21, trace(XT Ai XH) with
St(p,d) = {X e R¥*P: XX = |,}
® H=diag{p,p—1,...,1}
® The objective locally satisfies the RPL condition
e Synthetize the samples D; = {A; 1,...,Ain} C S,

® SetAj; =B+ BT with B being drawn from the standard normal distribution
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Three simulation experiments

Table 1: The parameters of the three problems and RFedAGS. Notation a.b, denotes a
number a.b x 10¥ and the dash “—” means that the parameter does not exist in the

problem.
Parameters Problem-related Algorithm-related
Problems d p v Dw S N @ ag B dec B
CPESph 25 - 1.3 - 1.0, 80; 1 1 1.0_1 5.0 6.4
CFMSPD 2 - - 1 1.0, 6.0 3.0-3 80_3 104y 207 3.0
MBCFSti 25, 2 - - 20y 5.0y 30_3 20, 1.0_y 50¢ 254
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Three simulation experiments

o
% %mz M“‘\v %w‘ M*w
ha [-+-RFedAGSK=1
0|
C )
Heration eration eration
(a) CPESPph, fixed (b) CFMSPD, fixed (c) MBCSHi, fixed
102, 10%
& & Sroel_ >
[ Areinos et
o ehrenesich PR
1o 0 100 200 300 400 500 10 0 100 200 300 400 o 0 200 400 600 800
Iteration Iteration Iteration
(d) CPESPph, decaying (e) CFMSPD, decaying (f) MBCSti, decaying

Figure 2: The influence of the different number, K, of local updates on synthetic data.
Fixed step size cases (first row) and decaying step size cases (second row).
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Three simulation experiments

10
&?t::mmm“% M-\M
3 3102 S 3 M
z z o € 0 ",
H H s H e
é & 104 e é e
ha [-+-RFedAGSK=1
10 RFedAGS-K=8
C )
Heration eration eration
(a) CPESPph, fixed (b) CFMSPD, fixed (c) MBCSHi, fixed
102, 10%
& & &2
[ Areios et [ Areinos et
1o 0 100 200 300 400 500 10 0 100 200 300 400 o 0 200 400 600 800
Iteration Iteration Iteration
(d) CPESPph, decaying (e) CFMSPD, decaying (f) MBCSti, decaying

Figure 2: The influence of the different number, K, of local updates on synthetic data.
Fixed step size cases (first row) and decaying step size cases (second row).

® Linear convergence if fixed step sizes
® More accurate if decaying step size
e Optimal K greater than 1

Riemannian Federated Learning via Averaging Gradient Stream 40



A real-world application

Low-dimensional multitask feature learning
® Llet7T ={Ti,...,Ts} denote the S group task
e Each group task 7; is consisted of N tasks, i.e., 7/ = {Ti1,..., Tin}

® All tasks share a latent low-dimensional feature representation
® For each task 7 ;:

* (Xj,y;) with X; € R%>*™ and y; € RY% being the training instances and the
corresponding labels

The low-dimensional multitask feature learning problem can be formally
formulated as follows:

s N
. 1 1 2
ey 5 2 | R 25081 — i

=1

® The Grassmann manifold Gr(r, m) is equipped with the quotient manifold
structure Gr(r, m) = St(r, m)/Op

e For a given U, wjy is the least-squares solution to
minw,er 0.5 X;Uw; — y;|# + Allw;|?, which has a closed form for A > 0
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A real-world application

Synthetic case for each task 7;;

the number of instances dj is randomly chosen between 10 and 50
the training instances X; € R%*™ with m = 100 are given from the
standard Gaussian distribution

the subspace U* for the problem is a random generated point in
St(5, 100) with the dimension r = 5

the labels y; for training instances for 7;; are generated by
yi = X;U*(U")"w; with w; being generated by the standard Gaussian
distribution

then the labels are perturbed by a random Gaussian noise with zero
mean and 10~ standard deviation
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A real-world application

Synthetic case S = 20, N = 50, A = 0, the fixed step size @ = 0.003 and the

fixed batch size B = 25

~A-RFedAGS-K=1
~B-RFedAGS-K=4
RFedAGS-K=8

10° ~<-RFedAGSK=10
<
8
o
@ 10°
8
e
w
10—10
s =
0 20 40 60 80 100

Iteration

(a) Excess Risk

—A-RFedAGS-K=1

- RFedAGS-K=4
RFedAGS-K=8

kg, < RFedAGS-K=10|

Distance to the optimal subspace

0 20 40 60 80 100
Iteration

(b) Distance to the optimal subspace

Figure 3: The influence of the different number, K, of local updates on synthetic data.
Excess risk (left) and distance to the optimal subspaces, i.e., dist(UX, U*), (right).
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A real-world application

Synthetic case S = 20, N = 50, A = 0, the fixed step size @ = 0.003 and the

fixed batch size B = 25

~A-RFedAGS-K=1
~B-RFedAGS-K=4
RFedAGS-K=8

10° ~<-RFedAGSK=10
<
8
o
@ 10°
8
e
w
10—10
s =
0 20 40 60 80 100

Iteration

(a) Excess Risk

—A-RFedAGS-K=1

- RFedAGS-K=4
RFedAGS-K=8

kg, < RFedAGS-K=10|

Distance to the optimal subspace

0 20 40 60 80 100
Iteration

(b) Distance to the optimal subspace

Figure 3: The influence of the different number, K, of local updates on synthetic data.
Excess risk (left) and distance to the optimal subspaces, i.e., dist(UX, U*), (right).

® Linear convergence
e Optimal K > 1 exists.
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A real-world application

Real-world case

benchmark dataset [Gol91; Evg+05]: School, which is consisted of
15362 students’ information from 139 secondary.

There are 139 tasks each of which is to predict student performance in
each school.

We randomly sample 80% students from each school to form the training
set and set the remainder as the testing set

In terms of FL setting, we consider S = 6 and N = 23 (implying that one
of the schools is ignored)

measure the performance of those methods using the normalized mean
square error (NMSE)

S8 SN S (k) — yi(k))?
2/8:1 Z/L dj

MSE(y, y)
var(y)

NMSE =

I

with MSE(J, y) =
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A real-world application

Real-world case S=6,N=23a=10x10"% B=18, A=1.0x 1072

s500}h S~ RFedAvg S RFedAvg 4500 o~ RFedivg
4 RFodAGS K-1 52000 -4~ RFedAGS K=1 & RFedAGS K=1
- RFodAGS K=d i o RFedAGS Kt 4400 - RFedAGS K4
RFedAGS K-8 y RFedAGS K=8 RFedAGS K-8
K. 5000 . 43008 .
500 -o-RSD = RsD -<-RsD
5 RCG 3 4800 RCG 3 RCG
Q -6~ RLBFGS =3 -6-RLBFGS Q 4200 -6-RLBFGS
© © 4600 ©
4500f} 4400 410
4200 4000
4000 4000 I d 3900
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
lteration lteration lteration
(@r=3 (b)yr=4 (c)r=5
085 [+ Aredavg 08, [ Rrodh: 046 [ RFedAvg
-4~ RFedAGS K=1 -4 RFedAGS K-1 -5 RFedAGS K=1
-5 RFedAGS K=d >~ RFedAGS K=4 > RFedAGS K4
06 RFedAGSK=8 055 RFedAGS K-8 044 RFedAGS K-8
eRsD e-RSD omsp
u RCG u RCG B RCG
Soss o-RLBFGS S 05 |-e-RLBFGS = o-RLBFGS
z H Z 042
05 045
0.4
045 04
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration Iteration
(d)yr=3 (e)r=4 flr=5

Figure 4: Costs (first row) and NMSE scores (second row) against iterations for
RFedAGS with K € {1,4, 8,10}, RFedAvg, RSD, RCG and RLBFGS. Here the x-axis
“iteration” in FL setting means the number of outer iterations
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A real-world application

Real-world case S=6,N=23a=10x10"% B=18,A=1.0x 1073

Table 2: the best NMSE scores (lower is better) on testing set for different subspace
dimension r. Here a number a.by means a.b x 10X. The numbers in parentheses
represent their corresponding x-axis coordinates in Figure 4.

. . RFedAGS RFedAvg RSD RCG RLBFGS
Dimension

K=1 K=4 K=8 K=10
r=3 5.09_1(100) 4.78_1(100) 4.72_1(100) 4.70_;(100) 5.09_:(100) 4.65_(62) 4.60_(62) 4.60_;(99)
r=4 438 1(100) 4.37_(30) 4.37_4(15) 4.37_4(12) 4.38_4(100) 4.32_{(100) 4.39 {(5) 4.29 4(23)
r=5 4.07_4(100) 4.05_(51) 4.05_1(23) 4.05_4(18) 4.07_4(100) 4.03_{(60) 3.96_:(44) 3.98_(18)
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* Introduced the federated learning;
® Proposed a new server aggregation;
® Extensive convergence analysis;

® Numerical experiments;
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Thank you

Thank you for your attention!
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