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Riemannian optimization;

Problem statement;
Applications;
Smooth optimization framework;
Research foci of Riemannian optimization;

A Riemannian proximal Newton-CG method;

Optimization with a structure;
Proximal gradient-type methods;
A Riemannian proximal Newton method;
Globalization by truncated CG;
Numerical experiments;

Summary;
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Riemannian Optimization

Problem: Given f (x) :M→ R,
solve

min
x∈M

f (x)

where M is a Riemannian manifold.
M

R
f

Two kinds of commonly-encountered manifolds

Embedded submanifold of a Euclidean space

M

x

E

Quotient manifold from an embedded submanifold

M̄

x

E
M = M̄/G

[x ]
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Riemannian Optimization

Problem: Given f (x) :M→ R,
solve

min
x∈M

f (x)

where M is a Riemannian manifold.
M

R
f

Examples:

Sphere: {x ∈ Rn | ‖x‖ = 1};
Stiefel manifold:
St(p, n) = {X ∈ Rn×p | XTX = Ip};
Fixed rank:
Rm×n

r = {X ∈ Rm×n : rank(X ) = r};
etc;

Embedded submanifold of a Euclidean space

M

x

E
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Riemannian Optimization

Problem: Given f (x) :M→ R,
solve

min
x∈M

f (x)

where M is a Riemannian manifold.
M

R
f

Examples:

Grassmann manifold:
the set of p dimensional linear
spaces in Rn

Gr(p, n) = St(p, n)/Op;

Shape space;

etc;

Quotient manifold from an embedded submanifold

M̄

x

E
M = M̄/G

[x ]
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Riemannian Optimization

Roughly, a Riemannian manifold M is a smooth set with a
smoothly-varying inner product on the tangent spaces.

M

x

ξ

η

R

〈η, ξ〉x
TxM

Riemannian manifold = Manifold + Riemannian metric (inner products)
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Applications

Embedded submanifold: Computation on SPD manifold

SPD manifold:
Sn++ = {X ∈ Rn×n : X = XT ,X � 0};

Applications of SPD matrices

- Diffusion tensors in medical imaging
[CSV12, FJ07, RTM07]

- Describing images and video
[LWM13, SFD02, ASF+05, TPM06,
HWSC15]

Motivation of averaging SPD matrices

- denoising / interpolation
- clustering / classification

Speaker: Wen Huang Riemannian Optimization: A Proximal Newton-CG Method
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Applications

Embedded submanifold: Computation on SPD manifold

One averaging SPD matrices method:

G (A1, . . . ,Ak) = arg min
X∈Sn

++

1

2k

k∑
i=1

dist2(X ,Ai ),

where dist(X ,Y ) = ‖ log(X−1/2YX−1/2)‖F is the distance under the
Riemannian metric 〈ηX , ξX 〉X = trace(ηXX

−1ξXX
−1).

Why shall we use Riemannian optimization approach?

Metric: 〈ηX , ξX 〉X = trace(ηXX
−1ξXX

−1) Metric: 〈η, ξ〉X = trace(ηT ξ)

Condition number of the Riemannian Hessian [YHAG2020]

- κ(HR) ≤ 1 + ln(maxκi )
2

, where

κi = κ(µ−1/2Aiµ
−1/2)

- κ(HR) ≤ 20 if max(κi ) = 1016

- κ2(µ)

κ(HR)
≤ κ(HE) ≤ κ(HR)κ2(µ)

- κ(HE ) ≥ κ2(µ)/20

[YHAG2020]: X. Yuan, W. Huang*, P.-A. Absil, K. A. Gallivan. “Computing the matrix geometric mean: Riemannian vs Euclidean

conditioning, implementation techniques, and a Riemannian BFGS method”, Numerical Linear Algebra with Applications, 27:5, 1-23, 2020.
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Applications

Quotient manifold: Computation on shape space

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

Classification
[LKS+12, HGSA15]

Face recognition
[DBS+13]
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Applications

Quotient manifold: Computation on shape space

Elastic shape analysis invariants:

Rescaling

Translation

Rotation

Reparametrization

The shape space is a quotient space

Figure: All are the same shape.
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Applications

Quotient manifold: Computation on shape space

Registration

shape 1 shape 2

q1

q̃2

q2

[q1] [q2]

Optimization problem minq2∈[q2] dist(q1, q2) is defined on a
Riemannian manifold

Speaker: Wen Huang Riemannian Optimization: A Proximal Newton-CG Method
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Applications

Quotient manifold: Computation on shape space

Geodesic / Interpolation

min
α∈Hx,y

1

2

∫ 1

0

〈α̇(τ), α̇(τ)〉α(τ)dτ

Computation of a geodesic between two shapes

Interpolation in shape space
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Applications

Quotient manifold: Computation on shape space

Karcher mean

min
X is a shape

1

2k

k∑
i=1

dist2(X ,Si ),

Computation of Karcher mean of a population of shapes

Riemannian optimization is used since these problems
naturally involve a Riemannian manifold

Speaker: Wen Huang Riemannian Optimization: A Proximal Newton-CG Method
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Smooth Optimization Framework
Iterations on the Manifold

Consider the following generic update for an iterative Euclidean
optimization algorithm:

xk+1 = xk + ∆xk = xk + αksk .

This iteration is implemented in numerous ways, e.g.:

Steepest descent: xk+1 = xk − αk∇f (xk)

Newton’s method: xk+1 = xk −
[
∇2f (xk)

]−1∇f (xk)

Trust region method: ∆xk is set by optimizing a local model.

Riemannian Manifolds Provide

Riemannian concepts describing
directions and movement on the
manifold

Riemannian analogues for gradient
and Hessian

xk xk + dk

Speaker: Wen Huang Riemannian Optimization: A Proximal Newton-CG Method
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Smooth Optimization Framework
Riemannian gradient and Riemannian Hessian

Definition

The Riemannian gradient of f at x is the unique tangent vector in TxM
satisfying ∀η ∈ TxM, the directional derivative

D f (x)[η] = 〈grad f (x), η〉

and grad f (x) is the direction of steepest ascent.

Definition

The Riemannian Hessian of f at x is a symmetric linear operator from
TxM to TxM defined as

Hess f (x) : TxM→ TxM : η → ∇η grad f ,

where ∇ is the affine connection.

Speaker: Wen Huang Riemannian Optimization: A Proximal Newton-CG Method
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Smooth Optimization Framework
Retractions

Euclidean Riemannian
xk+1 = xk + αkdk xk+1 = Rxk (αkηk)

Definition

A retraction is a mapping R from TM to M
satisfying the following:

R is continuously differentiable

Rx(0) = x

DRx(0)[η] = η

maps tangent vectors back to the manifold

defines curves in a direction

η

x Rx(tη)

TxM
x

η

Rx(η)

M

Speaker: Wen Huang Riemannian Optimization: A Proximal Newton-CG Method
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Smooth Optimization Framework
Categories of Riemannian smooth optimization methods

Retraction-based: local information only

Line search-based: use local tangent vector and Rx(tη) to define line

Steepest decent

Newton

Local model-based: series of flat space problems

Riemannian trust region Newton (RTR)

Riemannian adaptive cubic overestimation (RACO)

Speaker: Wen Huang Riemannian Optimization: A Proximal Newton-CG Method
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Smooth Optimization Framework
Categories of Riemannian smooth optimization methods

Retraction and transport-based: information from multiple tangent spaces

Nonlinear conjugate gradient: multiple tangent vectors

Quasi-Newton e.g. Riemannian BFGS: transport operators between
tangent spaces

Additional element required for optimizing a cost function;
formulas for combining information from multiple tangent spaces.

Vector Transport:

Vector transport: Transport a
tangent vector from one tangent
space to another;

Tηx ξx , denotes transport of ξx to
tangent space of Rx(ηx). R is a
retraction associated with T ;

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx

Figure: Vector transport.
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Smooth Optimization Framework
Retraction/Transport-based Riemannian optimization

Given a retraction and a vector transport, we can generalize classical
unconstrained smooth optimization methods from Euclidean space to the

Riemannian manifold.

Do the Riemannian versions of those methods work well?

No, generally

Lose many theoretical results and important properties;

Impose restrictions on retraction/vector transport;

Speaker: Wen Huang Riemannian Optimization: A Proximal Newton-CG Method
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Research Foci of Riemannian Optimization

1 Manifold recognition, geometry structure analyses and computations;

2 Generalization Euclidean algorithms to the Riemannian setting;

3 Algorithms specialization for applications;

4 Library developments;
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Research Foci of Riemannian Optimization

1 Manifold recognition, geometry structure analyses and computations;

2 Generalization Euclidean algorithms to the Riemannian setting;

3 Algorithms specialization for applications;

4 Library developments;

Manifold recognition

Riemannian metric

Retraction / Geodesic

Vector transport / Parallel translation

[EAS1998] A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints. SIAM Journal on Matrix
Analysis and Applications, 20(2):303–353, 1998

[CMV2017] T Carson, D. G. Mixon, and S. Villar. Manifold optimization for k-means clustering. In 2017 International Conference on
Sampling Theory and Applications (SampTA), 73–77. IEEE, 2017

[SDN2021] G. Song, W. Ding, and M. K. Ng, Low rank pure quaternion approximation for pure quaternion matrices, SIAM Journal on Matrix
Analysis and Applications, 42, pp. 58–82, 2021

[VAV2013] B. Vandereycken, P.-A. Absil, and S. Vandewalle. A Riemannian geometry with complete geodesics for the set of positive
semidefinite matrices of fixed rank, IMA Journal of Numerical Analysis, 33.2, 481–514, 2013.

[Zim2017] R. Zimmermann. A matrix-algebraic algorithm for the Riemannian logarithm on the Stiefel manifold under the canonical metric.
SIAM Journal on Matrix Analysis and Applications, 38.2, 322–342, 2017.
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Research Foci of Riemannian Optimization

1 Manifold recognition, geometry structure analyses and computations;

2 Generalization Euclidean algorithms to the Riemannian setting;

3 Algorithms specialization for applications;

4 Library developments;

Smooth unconstrained optimization algorithms

Nonsmooth unconstrained optimization algorithms

Constrained optimization algorithms

Riemannian optimization mainly focuses on this topic.
Discuss later.
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Research Foci of Riemannian Optimization

1 Manifold recognition, geometry structure analyses and computations;

2 Generalization Euclidean algorithms to the Riemannian setting;

3 Algorithms specialization for applications;

4 Library developments;

Computations on the SPD manifold;

Computations on the shape space;

Clustering and graph partitions;

Beamforming in wireless communication;

Blind source separation;

etc
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Research Foci of Riemannian Optimization

1 Manifold recognition, geometry structure analyses and computations;

2 Generalization Euclidean algorithms to the Riemannian setting;

3 Algorithms specialization for applications;

4 Library developments;

Representation of a manifold and tangent spaces;

Choose a Riemannian metric;

Choose a retraction;

Choose a vector transport;

Above factors may influence algorithms significantly.
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Research Foci of Riemannian Optimization

1 Manifold recognition, geometry structure analyses and computations;

2 Generalization Euclidean algorithms to the Riemannian setting;

3 Algorithms specialization for applications;

4 Library developments;

M

Riemannian metric g1

M

Riemannian metric g2

Figure: Changing Riemannian metric may influence the difficulty of a problem.
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Research Foci of Riemannian Optimization

1 Manifold recognition, geometry structure analyses and computations;

2 Generalization Euclidean algorithms to the Riemannian setting;

3 Algorithms specialization for applications;

4 Library developments;

Manopt (Matlab library) [Boumal, Mishra, Absil, Sepulchre(2014)]

Pymanopt (Python version of Manopt) [Townsend, Koep, Weichwald (2016)]

Manoptjl (Julia, nonsmooth methods) [Bergmann (2019)]

ROPTLIB (C++ library, interfaces to Matlab and Julia)
[Huang, Absil, Gallivan, Hand (2018)]

ManifoldOptim (R wrapper of ROPTLIB) [Martin, Raim, Huang, Adragni (2018)]

McTorch (Python, GPU acceleration)
[Meghawanshi, Jawanpuria, Kunchukuttan, Kasai, Mishra (2018)]

CDOpt (Python, embedded submanifold in the form of c(x) = 0)
[Xiao, Hu, Liu, Toh (2022)]
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Research Foci of Riemannian Optimization

1 Manifold recognition, geometry structure analyses and computations;

2 Generalization Euclidean algorithms to the Riemannian setting;

3 Algorithms specialization for applications;

4 Library developments;

Provide theories to explain behaviors of existing algorithms for
particular applications

[MBDG2023]: IRKA is a Riemannian gradient descent method;

[YHAG2020]: Richardson-like iteration for matrix geometric mean is a
Riemannian gradient descent method;

[BM2006]: The improved BFGS method is a Riemannian BFGS
method using vector transport by parallelization;

[MBDG2023] P. Mlinaric, C. Beattie, Z. Drmac, and S. Gugercin. IRKA is a Riemannian Gradient Descent Method. arxiv:2311.02031, 2023
[YHAG2020] X. Yuan, W. Huang, P.-A. Absil, K. A. Gallivan. Computing the matrix geometric mean: Riemannian vs Euclidean conditioning,

implementation techniques, and a Riemannian BFGS method, Numerical Linear Algebra with Applications, 27:5, 1-23, 2020
[BM2006] I. Brace and J. H. Manton. An improved BFGS-on-manifold algorithm for computing weighted low rank approximations.

Proceedings of 17th international Symposium on Mathematical Theory of Networks and Systems, P.1735–1738, 2006
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Comparison with Constrained Optimization

Not all Riemannian optimization problem can be formulated as
constrained optimization problems, and vice versa.

All iterates on the manifold

Convergence properties of unconstrained optimization algorithms

No need to consider Lagrange multipliers or penalty functions

Exploit the structure of the constrained set

M

Speaker: Wen Huang Riemannian Optimization: A Proximal Newton-CG Method
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A Non-exhaustive Review

Smooth unconstrained problems

Steepest descent: Smith 1994; Helmke-Moore 1994;
Iannazzo-Porcelli 2019;
Conjugate gradient: Smith 1994; Gallivan-Absil 2010; Ring-Wirth
2012; Sato-Iwai 2015;
Quasi-Newton: Ring-Wirth 2012; Huang-Absil-Gallivan 2018;
Huang-Gallivan 2022
Newton-CG: Absil-Baker-Gallivan 2007; Huang-Huang 2023

Nonsmooth unconstrained problems

Proximal point method: Ferreira-Oliveira 2002;
Optimality conditions: Yang-Zhang-Song 2014;
Gradient sampling: Huang 2013; Hosseini and Uschmajew 2017;
ε-subgradient-based methods: Grohs-Hosseini 2015;
Proximal gradient methods: Huang-Wei 2022;
Proximal Newton method: Si-Absil-Huang-Jiang-Vary 2023;

Constrained problems:

Augmented Lagrangian methods: Boumal-Liu 2019;
Sequential quadratic programming: Obara-Okuno-Takeda 2022;
Frank-Wolfe Methods: Weber-Sra 2023;

Speaker: Wen Huang Riemannian Optimization: A Proximal Newton-CG Method
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A Non-exhaustive Review

Smooth unconstrained problems:

Stiefel manifold: Wen-Yin 2012; Jiang-Dai 2014; Xiao-Liu-Yuan
2020; Dai-Wang-Zhou 2020
Symplectic Stiefel manifold: Gao-Son-Absil-Stykel 2021
Symmetric positive definite manifold: Bini-Iannazzo 2013; Zhang
2017; Yuan-Huang-Absil-Gallivan 2020;
Fixed rank manifold: Wen-Yin-Zhang 2012; Mishra 2014;
Sutti-Vandereycken 2021; Levin-Kileel-Boumal 2022

Nonsmooth unconstrained problems:

Stiefel Manifold: Huang-Wei 2019; Chen-Ma-So-Zhang 2020;
Xiao-Liu-Yuan 2020;
Fixed rank manifold: Cambier-Absil 2016;
Matrix manifolds: Zhou-Bao-Ding-Zhu 2022
Smooth equation constraints: Xiao-Liu-Toh 2023

Constrained problems:

Stiefel + non-negativity: Jiang-Meng-Wen-Chen 2019;
Symmetric positive definite + zeros: Phan-Menickelly 2020;

Speaker: Wen Huang Riemannian Optimization: A Proximal Newton-CG Method
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A Riemannian Proximal Newton-CG Method
Problem statement

Optimization on Manifolds with Structure:

min
x∈M

F (x) = f (x) + h(x),

M is a finite-dimensional Riemannian manifold;

f is smooth and may be nonconvex; and

h(x) is continuous and convex but may be nonsmooth;

M

R
f

Applications: sparse PCA [ZHT06], compressed modes [OLCO13],
sparse partial least squares regression [CSG+18], sparse inverse
covariance estimation [BESS19], sparse blind deconvolution [ZLK+17],
and clustering [HWGVD22].
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A Riemannian Proximal Newton-CG Method
Euclidean proximal gradient/Newton method

Optimization with Structure: M = Rn

min
x∈Rn

F (x) = f (x) + h(x),

Given x0,{
dk = arg minp∈Rn f (xk) + 〈∇f (xk), p〉 + 1

2 〈p,Hkp〉 + h(xk + p)
xk+1 = xk + dk .

proximal gradient:Hk = LIn

h ≡ 0⇒ Steepest descent;

Linear convergence;

proximal Newton:Hk = ∇2f (xk)

h ≡ 0⇒ Newton;

Superlinear convergence;

How to generalize to the Riemannian setting?
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A Riemannian Proximal Newton-CG Method
Generalizations of proximal gradient method

Euclidean Proximal gradient:

Given x0,{
dk = arg minp∈Rn f (xk) + 〈∇f (xk), p〉 + L

2 〈p, p〉 + h(xk + p)
xk+1 = xk + dk .

Riemannian generalization 1: (for embedded submanifold)

∇f (xk) =⇒ grad f (xk)
xk+1 = xk + dk =⇒ xk+1 = Rxk (dk)

p ∈ Rn =⇒ p ∈ TxkM

 =⇒ Converge globally

{
dk = arg minp∈Txk

M f (xk) + 〈grad f (xk), p〉 + L
2 〈p, p〉 + h(xk + p)

xk+1 = Rxk (dk).

Speaker: Wen Huang Riemannian Optimization: A Proximal Newton-CG Method



26/59

A Riemannian Proximal Newton-CG Method
Generalizations of proximal gradient method

Euclidean Proximal gradient:

Given x0,{
dk = arg minp∈Rn f (xk) + 〈∇f (xk), p〉 + L

2 〈p, p〉 + h(xk + p)
xk+1 = xk + dk .

Riemannian generalization 2: (for general manifold)

∇f (xk) =⇒ grad f (xk)
xk+1 = xk + dk =⇒ xk+1 = Rxk (dk)

p ∈ Rn =⇒ p ∈ TxkM
h(xk + p) =⇒ h(Rxk (p))

 =⇒ Converge globally
Convergence rate analyses

{
dk = arg minp∈Txk

M f (xk) + 〈grad f (xk), p〉 + L
2 〈p, p〉 + h(Rxk (p))

xk+1 = Rxk (dk).
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A Riemannian Proximal Newton-CG Method
A native generalization

Euclidean proximal Newton:{
dk = argminp∈Rn f (xk) + 〈∇f (xk), p〉+ 1

2 〈p,∇
2f (xk)p〉 + h(xk + p)

xk+1 = xk + dk

A native generalization by replacing the Euclidean gradient and Hessian
by the Riemannian gradient and Hessian:

{
ηk = arg minη∈Txk

M f (xk) + 〈grad f (xk), η〉 + 1
2
〈η,Hess f (xk)η〉 + h(xk + η)

xk+1 = Rxk (ηk)

Does it converge superlinearly locally?

Not necessarily!
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A Riemannian Proximal Newton-CG Method
A native generalization

Consider the Sparse PCA over sphere:

min
x∈Sn−1

−xTATAx + µ‖x‖1,

where f (x) = −xTATAx , h(x) = µ‖x‖1.
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Figure: Comparisons of native generalization (RPN-N) and the proximal
gradient method (ManPG) in [CMSZ20].
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A Riemannian Proximal Newton-CG Method
A native generalization

Euclidean version:{
dk = argminp〈∇f (xk), p〉+ 1

2 〈p,∇
2f (xk)p〉 + h(xk + p)

xk+1 = xk + dk

A native generalization by replacing the Euclidean gradient and Hessian
by the Riemannian gradient and Hessian:{

ηk = arg minη∈Txk
M f (xk ) + 〈grad f (xk ), η〉 + 1

2
〈η,Hess f (xk )η〉 + h(xk + η)

xk+1 = Rxk (ηk )

{
ηk = arg minη∈Txk

M f (xk ) + 〈grad f (xk ), η〉 + 1
2
〈η,Hess f (xk )η〉 + h(xk + η + 1

2
Π(η, η))

xk+1 = Rxk (ηk )

xk + η in h is only a first order approximation;

If an second order approximation is used, then the subproblem is
difficult to solve;
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A Riemannian proximal Newton-CG method
A Riemannian proximal Newton method: descripion

minx∈M F (x) = f (x) + h(x), h(x) = µ‖x‖1

A Riemannian proximal Newton method (RPN)

1 Compute the ManPG direction

v(xk) = argminv∈Txk
M f (xk) + 〈∇f (xk), v〉 + 1

2t ‖v‖
2
F + h(xk + v);

2 Find u(xk) ∈ TxkM by solving
J(xk)[u(xk)] = −v(xk),

where J(xk) = −
[
In − Λxk + tΛxk (∇2f (xk)− Lxk )

]
, Λxk and Lxk are

defined later;

3 xk+1 = Rxk (u(xk));
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[
In − Λxk + tΛxk (∇2f (xk)− Lxk )

]
, Λxk and Lxk are

defined later;

3 xk+1 = Rxk (u(xk));

1 Step 1: compute a Riemannian proximal gradient direction (ManPG)

2 Step 2: compute the Riemannian proximal Newton direction, where
J(xk) is from a generalized Jacobi of v(xk);

3 Step 3: Update iterate by a retraction;
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A Riemannian proximal Newton-CG method
A Riemannian proximal Newton method: local superlinear convergence rate

Without loss of generality, we assume that the nonzero entries of x∗ are
in the first part, i.e., x∗ = [x̄T∗ , 0

T ]T . Bx denotes an orthonormal basis of
T⊥x M at x .

Assumption:

1 Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and and B̂x∗ ∈ R(n−j)×d . It

is assumed that j ≥ d and B̄x∗ is full column rank;

2 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that

for any x = [x̄T , x̂T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0.
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A Riemannian proximal Newton-CG method
A Riemannian proximal Newton method: local superlinear convergence rate

Theorem

Suppose that x∗ be a local optimal minimizer. Under the above
Assumptions, assume that J(x∗) is nonsingular. Then there exists a
neighborhood U of x∗ on M such that for any x0 ∈ U , RPN Algorithm
generates the sequence {xk} converging superlinearly to x∗.

The convergence rate is improved to quadratically convergence
in [SAH+24a]
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A Riemannian proximal Newton-CG method
A Riemannian proximal Newton method: a hybrid version

Similar to the Riemannian Newton method, this Riemannian proximal
Newton method does not guarantee global convergence;

A hybrid method that merges ManPG with RPN is proposed
in [SAH+24b];

Require: x0 ∈M, t > 0, ε > 0;
1: for k = 0, 1, . . . do
2: Compute a ManPG direction vk ;
3: If ‖vk‖ ≤ ε, then K = k and break;
4: xk+1 = Rxk (αvk) with an appropriate step size;
5: end for
6: for k = K+1, K+2, . . . do
7: Compute uk by solving J(xk)uk = −vk with vk being the ManPG

direction;
8: xk+1 = Rxk (uk);
9: end for

The switching parameter ε is crucial for the performance.
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A Riemannian proximal Newton-CG method
Truncated conjugate gradient

A Riemannian proximal Newton method (RPN)

1 Compute the ManPG direction

v(xk) = argminv∈Txk
M f (xk) + 〈∇f (xk), v〉 + 1

2t ‖v‖
2
F + h(xk + v);

2 Find u(xk) ∈ TxkM by solving
J(xk)[u(xk)] = −v(xk);

3 xk+1 = Rxk (u(xk));

Smooth case:

v(xk) = −t grad f (xk);

J(xk) = −t Hess f (xk);

J(xk)[u(xk)] = −v(xk) =⇒
Hess f (xk)[u(xk)] = − grad f (xk)︸ ︷︷ ︸

truncated conjugate gradient (tCG)

.

Nonsmooth case:

v(xk): ManPG direction;

J(xk): Generalized Jacobi of v ;

u(xk): solving a linear system by
J(xk)[u(xk)] = −v(xk)︸ ︷︷ ︸

tCG?

Problem: J(xk) is not symmetric!
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A Riemannian proximal Newton-CG method
Truncated conjugate gradient

Notation:

Bxk = ∇2f (xk)− Lxk =

(
B

(11)
xk B

(12)
xk

B
(21)
xk B

(22)
xk

)
,Bxk = B(11)

xk .

J(xk) = −
(
B̄xk B̄

†
xk + t(Ijk − B̄xk B̄

†
xk )Bxk t(Ijk − B̄xk B̄

†
xk )B

(12)
xk

0(n−jk )×jk In−jk

)

{
[B̄xk B̄

†
xk + t(Ijk − B̄xk B̄

†
xk )Bxk ]ū(xk) = v̄(xk)− t(Ijk − B̄xk B̄

†
xk )B

(12)
xk û(xk)

û(xk) = v̂(xk)
.

=⇒ ū(xk) = v̄(xk)− {Ijk + (Ijk − B̄xk B̄
†
xk )Nxk}−1(Ijk − B̄xk B̄

†
xk )`xk

where `xk = 1
tk

(−Ijk + tkBxk )v̄(xk) + B
(12)
xk v̂(xk) and Nxk = −Ijk + tBxk is

symmetric.
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A Riemannian proximal Newton-CG method
Truncated conjugate gradient

ū(xk) = v̄(xk)− {Ijk + (Ijk − B̄xk B̄
†
xk ) Nxk︸︷︷︸

symmetric

}−1(Ijk − B̄xk B̄
†
xk )`xk

Lemma

Let N ∈ Rj×j and B ∈ Rj×m with m ≤ j . Suppose that Ij + N is symmetric
positive definite on {w | BTw = 0} and that B is full column rank. Then it
holds that the unique solution of the problem

min
BTw=0

`Tw +
1

2
wT (Ij + N)w

is given by

w∗ = −
[
Ij + (Ij − BB†)N

]−1 [
Ij − BB†

]
`.

tCG can be used for the computation of w(xk).
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Corollary

Suppose B̄xk has full column rank, Bxk is symmetric positive definite on
{w | BTw = 0}. Then the proximal Newton equation
J(xk)[u(xk)] = −v(xk) can be computed by

u(xk) =

(
v̄(xk) + w(xk)

v̂(xk)

)
,

where w(xk) = argminB̄T
xk
w=0 `

T
xkw + 1

2w
TBxkw .

tCG can be used for the computation of w(xk).
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A Riemannian proximal Newton-CG method
Truncated conjugate gradient

A Riemannian proximal Newton method (RPN)

1 v(xk) = argminv∈Txk
M f (xk) + 〈∇f (xk), v〉 + 1

2t ‖v‖
2
F + h(xk + v);

2 d(xk) =

(
d̄(xk)

d̂(xk)

)
=

(
v̄(xk) + w(xk)

v̂(xk)

)
, where w(xk) is an output of

tCG for solving minB̄T
xk
w=0 〈`xk ,w〉 + 1

2 〈w ,Bxkw〉.
3 xk+1 = Rxk (αkd(xk)) with an appropriate step size αk ;

Question:

Is Bxk symmetric positive definite near a local minimizer x∗?

What is the early termination conditions for tCG?

Guarantee global convergence;
Guarantee local superlinear convergence;
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A Riemannian proximal Newton-CG method
Truncated conjugate gradient

Is Bxk symmetric positive definite near x∗?

Assumption:

1 The function f is twice continuously differentiable with a Lipschitz
continuous Euclidean Hessian;

2 Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank;

3 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that for

any x = [x̄T , x̃T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0;

4 The linear operator Bx∗ is positive definite on the subspace
Lx∗ = {w | B̄T

x∗w = 0}.
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A Riemannian proximal Newton-CG method
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Assumption:

1 The function f is twice continuously differentiable with a Lipschitz
continuous Euclidean Hessian;

2 Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank;

3 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that for

any x = [x̄T , x̃T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0;

4 The linear operator Bx∗ is positive definite on the subspace
Lx∗ = {w | B̄T

x∗w = 0}.

Under the second assumption, the intersection of the manifold and the
sparsity constraints forms an embedded submanifold around x∗;

Bx∗ is the Riemannian Hessian of F at x∗ for the submanifold;

Bx∗ is symmetric positive semidefinite on Lx∗ ;
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Truncated conjugate gradient
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any x = [x̄T , x̃T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0;

4 The linear operator Bx∗ is positive definite on the subspace
Lx∗ = {w | B̄T

x∗w = 0}.

Lemma

Suppose the above Assumption holds. Then there exists a neighborhood of
x∗, denoted by V2, and a positive constant χε such that the smallest
eigenvalue of Bx on Lx is greater than χε for all x ∈ V2. This implies Bx is
positive definite on Lx for all x ∈ V2.

Speaker: Wen Huang Riemannian Optimization: A Proximal Newton-CG Method



39/59

A Riemannian proximal Newton-CG method
Truncated conjugate gradient

Early termination conditions in tCG

tCG step

2 d(xk) =

(
d̄(xk)

d̂(xk)

)
=

(
v̄(xk) + w(xk)

v̂(xk)

)
, where w(xk) is an output of

tCG for solving minB̄T
xk
w=0 〈`xk ,w〉 + 1

2 〈w ,Bxkw〉.

Difficulty
Smooth:

approximately min
d∈Txk

M
〈grad f (xk), d〉 +

1

2
〈Hess f (xk)[d ], d〉,

find d(xk) such that 〈d(xk), grad f (xk)〉 < 0;

Nonsmooth:

approximately min
B̄T
xk
w=0
〈`xk ,w〉 +

1

2
〈w ,Bxkw〉,

find w(xk) such that d(xk) is a descent direction;

The early termination conditions for the smooth case are not sufficient.
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A Riemannian proximal Newton-CG method
Truncated conjugate gradient

Early termination conditions in tCG

Algorithm: Truncated conjugate gradient (tCG)

Require: ϑ > 0, γ > 0, τ > 0, θ > 0, and κ ∈ (0, 1);
Ensure: (w(x), status);

1: if Gx(v(x)) > Gx(0) then

2: return w(x) = 0 and status =′ early1′;
3: end if
4: z = Bv(x);
5: if 〈v(x), z〉 + τ‖v̂(x)‖2

F < γ‖v(x)‖2
F then

6: return w(x) = 0 and status =′ early2′;
7: end if
8: w0 = 0, r0 = Px(`x), o0 = −r0, δ0 = 〈r0, r0〉, t0 = z ;
9: ...... (CG iterations)

Omit subscript k for simplicity
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A Riemannian proximal Newton-CG method
Truncated conjugate gradient

Early termination conditions in tCG

Algorithm: Truncated conjugate gradient (tCG)

Require: ϑ > 0, γ > 0, τ > 0, θ > 0, and κ ∈ (0, 1);
Ensure: (w(x), status);

1: if Gx(v(x)) > Gx(0) then

2: return w(x) = 0 and status =′ early1′;
3: end if
4: z = Bv(x);
5: if 〈v(x), z〉 + τ‖v̂(x)‖2

F < γ‖v(x)‖2
F then

6: return w(x) = 0 and status =′ early2′;
7: end if
8: w0 = 0, r0 = Px(`x), o0 = −r0, δ0 = 〈r0, r0〉, t0 = z ;
9: ...... (CG iterations)

Gx(u) = f (x) + 〈∇f (x), u〉 + 1
2 〈u,Bxu〉 + τ

2 ‖û(x)‖2
F + h(x + u);

Use to guarantee global convergence;
τ
2 ‖û(x)‖2

F is added for the condition in Step 5;
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A Riemannian proximal Newton-CG method
Truncated conjugate gradient

Early termination conditions in tCG

Algorithm: Truncated conjugate gradient (tCG)

Require: ϑ > 0, γ > 0, τ > 0, θ > 0, and κ ∈ (0, 1);
Ensure: (w(x), status);

1: if Gx(v(x)) > Gx(0) then

2: return w(x) = 0 and status =′ early1′;
3: end if
4: z = Bv(x);
5: if 〈v(x), z〉 + τ‖v̂(x)‖2

F < γ‖v(x)‖2
F then

6: return w(x) = 0 and status =′ early2′;
7: end if
8: w0 = 0, r0 = Px(`x), o0 = −r0, δ0 = 〈r0, r0〉, t0 = z ;
9: ...... (CG iterations)

Use to guarantee global convergence;

τ‖v̂(x)‖2
F is used since Bx � 0 may not hold;
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A Riemannian proximal Newton-CG method
Truncated conjugate gradient

Early termination conditions in tCG

Algorithm: Truncated conjugate gradient (tCG)

Require: ϑ > 0, γ > 0, τ > 0, θ > 0, and κ ∈ (0, 1);
Ensure: (w(x), status);

1: ...... (See the previous slide)
2: w0 = 0, r0 = Px(`x), o0 = −r0, δ0 = 〈r0, r0〉, t0 = z ;
3: for i = 0, 1, . . . do
4: pi = Boi and qi = Px(pi );
5: if 〈oi , qi 〉 ≤ ϑδi then
6: return w(x) = wi and status =′ neg ′;
7: end if
8: ...... (Remaining CG iterations)
9: end for

An existing early termination condition
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A Riemannian proximal Newton-CG method
Truncated conjugate gradient

Early termination conditions in tCG

Algorithm: Truncated conjugate gradient (tCG)

Require: ϑ > 0, γ > 0, τ > 0, θ > 0, and κ ∈ (0, 1);
Ensure: (w(x), status);

1: ...... (See previous slides)
2: for i = 0, 1, . . . do
3: ...... (See previous slides)

4: αi = 〈ri ,ri 〉
〈oi ,qi 〉 ; wi+1 = wi + αioi ; ri+1 = ri + αiqi ;

5: di+1 =

(
v̄(x) + wi+1

v̂(x)

)
, ti+1 = ti + αi

(
pi

B21oi

)
;

6: if 〈di+1, ti+1〉 + τ‖v̂(x)‖2
F < γ‖di+1‖2

F or Gx (di+1) > Gx(0) then
7: return w(x) = wi and status =′ early3′;
8: end if
9: ...... (Remaining CG iterations)

10: end for

Use to guarantee global convergence
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A Riemannian proximal Newton-CG method
Truncated conjugate gradient

Early termination conditions in tCG

Algorithm: Truncated conjugate gradient (tCG)

Require: ϑ > 0, γ > 0, τ > 0, θ > 0, and κ ∈ (0, 1);
Ensure: (w(x), status);

1: ...... (See previous slides)
2: for i = 0, 1, . . . do
3: ...... (See previous slides)

4: βi+1 = 〈ri+1,ri+1〉
〈ri ,ri 〉 ; oi+1 = −ri+1 + βi+1oi ;

5: δi+1 = 〈ri+1, ri+1〉 + β2
i+1δi ; (Note that δi+1 = 〈oi+1, oi+1〉)

6: i = i + 1;
7: if ‖ri‖F ≤ ‖r0‖F min(‖r0‖θF , κ) then

8: return w(x) = wi , and status =′ lin′ if ‖r0‖θF > κ and
status =′ sup′ otherwise;

9: end if
10: end for

An existing early termination condition
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A Riemannian proximal Newton-CG method
RPN-CG: global convergence

Assumption:

1 The function f is twice continuously differentiable with a Lipschitz
continuous gradient;

Theorem

Suppose the above Assumption holds and the parameters are
appropriately chosen. Then it holds that

lim
k→∞

‖v(xk)‖F = 0.
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A Riemannian proximal Newton-CG method
RPN-CG: local superlinear convergence

Assumption:

1 The function f is twice continuously differentiable with a Lipschitz
continuous Euclidean Hessian;

2 Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank;

3 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that for

any x = [x̄T , x̃T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0;

4 The function F is ς-geodesically strongly convex at x∗, i.e., there exists
a neighborhood Ũx∗ of x∗ in M such that

F (y) ≥ F (x∗) +
ς

2
‖Exp−1

x∗ (y)‖2
F

holds for any y ∈ Ũx∗ .
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T
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3 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that for

any x = [x̄T , x̃T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0;

4 The function F is ς-geodesically strongly convex at x∗, i.e., there exists
a neighborhood Ũx∗ of x∗ in M such that

F (y) ≥ F (x∗) +
ς

2
‖Exp−1

x∗ (y)‖2
F

holds for any y ∈ Ũx∗ .

Lemma

Suppose the last Assumption holds, that is, the function F = f + h is
ς-geodesically strongly convex at x∗. Then the linear operator Bx∗ is
positive definite on Lx∗ .
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A Riemannian proximal Newton-CG method
RPN-CG: local superlinear convergence

Assumption:

1 The function f is twice continuously differentiable with a Lipschitz
continuous Euclidean Hessian;

2 Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank;

3 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that for

any x = [x̄T , x̃T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0;

4 The function F is ς-geodesically strongly convex at x∗, i.e., there exists
a neighborhood Ũx∗ of x∗ in M such that

F (y) ≥ F (x∗) +
ς

2
‖Exp−1

x∗ (y)‖2
F

holds for any y ∈ Ũx∗ .

Theorem

Suppose the previous assumptions hold. If x is sufficiently close x∗ and the
parameters are appropriately chosen, then tCG terminates only due to the
accurate condition, i.e., ‖ri‖F ≤ ‖r0‖F min(‖r0‖θF , κ).
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A Riemannian proximal Newton-CG method
RPN-CG: local superlinear convergence

Theorem

Suppose the previous Assumptions hold and the parameters are
appropriately chosen. Then there exists a neighborhood of x∗, denoted by
V8, such that if the step size one is used, then the convergence rate is

min(1 + θ, 2), i.e., ‖Rx(d(x))− x∗‖F ≤ Cup‖x − x∗‖min(1+θ,2)
F holds for any

x ∈ V8 and a constant Cup > 0.
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RPN-CG: local superlinear convergence

Theorem
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V8, such that if the step size one is used, then the convergence rate is

min(1 + θ, 2), i.e., ‖Rx(d(x))− x∗‖F ≤ Cup‖x − x∗‖min(1+θ,2)
F holds for any

x ∈ V8 and a constant Cup > 0.

Is step size one acceptable for x sufficiently close to x∗?

That is to make objective function sufficiently descent.
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A Riemannian proximal Newton-CG method
RPN-CG: local superlinear convergence

Theorem

Suppose the previous Assumptions hold and the parameters are
appropriately chosen. Then there exists a neighborhood of x∗, denoted by
V8, such that if the step size one is used, then the convergence rate is

min(1 + θ, 2), i.e., ‖Rx(d(x))− x∗‖F ≤ Cup‖x − x∗‖min(1+θ,2)
F holds for any

x ∈ V8 and a constant Cup > 0.

Is step size one acceptable for x sufficiently close to x∗?

That is to make objective function sufficiently descent.

For smooth Riemannian optimization problem, step size one is
acceptable eventually for Riemannian Newton method;

For Euclidean nonsmooth optimization problem F = f + g , step size
one is also acceptable eventually for proximal Newton method [LSS14];
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A Riemannian proximal Newton-CG method
RPN-CG: local superlinear convergence

Example
Consider F : R2 → R : (x1, x2)T 7→ x2

1 − 3x1 + 1 + x2
2︸ ︷︷ ︸

f (x)

+ |x1|+ |x2|︸ ︷︷ ︸
g(x)

;

The unique minimizer: x∗ = (1, 0)T ;

x = (1 + ε, 0)T with |ε| being arbitrarily small;

Proximal Newton direction: u(x) = −(ε, 0)T ;

Retraction: R : TM→M : ηx 7→ x + ηx +

(
0

2ηTx ηx

)
;

R(u(x)) = (1, 2ε2)T ;

F (Rx(u(x)))− F (x) = 4ε4 + ε2 > 0;

Step size one is not acceptable for any ε > 0;

The answer is negative for nonsmooth Riemannian problems.

Difficulty comes from the nonsmoothness and the curvature.
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A Riemannian proximal Newton-CG method
RPN-CG: local superlinear convergence

Two consecutive iterations near x∗ guarantee sufficient descent.

Theorem

Suppose that the previous Assumptions hold and that there exists a
neighborhood of x∗, denoted by V9, such that for any x ∈ V9, it holds
that ‖Rx(d(x))− x∗‖F ≤ Cup‖x − x∗‖κF for a κ >

√
2 and

Rx(d(x)) ∈ V9. Then there exists a neighborhood of x∗, denoted by V10,
and a constant ρ1 > 0 such that for any x ∈ V10, it holds that

F (x++) ≤ F (x)− ρ1‖v(x)‖2
F ,

where x+ = Rx(d(x)) and x++ = Rx+ (d(x+)).

The global convergence result becomes: lim infk→∞ ‖v(xk)‖F = 0.
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A Riemannian proximal Newton-CG method

A new interpretation of RPN

Lemma

Suppose the previous Assumptions hold. Then there exists a neighborhood
of x∗, denoted by V5, such that

u(x) = argmin
u∈TxM,û=v̂(x)

Gx(u) =
1

2
〈u,Bxu〉 +∇f (x)Tu + µ‖x + u‖1 (1)

holds for any x ∈ V5.

First, find the ManPG search direction v(x);

Fixed the entries that corresponds to the zero of x + v ;

Solve (1) for u(x);

Msub: submanifold of the intersection ofM and the sparse constraints;

B
(11)
x is the Riemannian Hessian at x with respect to Msub;

u(x) is the Riemannian Newton direction on Msub;

No counterpart in the Euclidean space.
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A Riemannian proximal Newton-CG method
Numerical experiments: sparse PCA

Sparse PCA problem

min
X∈St(p,n)

− trace(XTATAX ) + µ‖X‖1,

where A ∈ Rm×n is a data matrix and
St(p, n) = {X ∈ Rn×p | XTX = Ip} is the compact Stiefel manifold.
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A Riemannian proximal Newton-CG method
Numerical experiments: sparse PCA

Table: An average result of 20 random runs for random data. Multiple values of n,
p, and µ are used. The subscript k indicates a scale of 10k .

(n, p, µ) Algo iter Fval ‖v(xk)‖F time sparsity
(400, 8, 0.8) ManPG 3416.15 −2.161 3.66−9 2.69 0.63
(400, 8, 0.8) ManPG-Ada 1281.55 −2.161 1.06−10 1.21 0.63
(400, 8, 0.8) ManPQN 1260.40 −2.161 9.83−11 0.72 0.63
(400, 8, 0.8) RPN-CG 204.85 −2.161 1.16−11 0.37 0.63
(800, 8, 0.8) ManPG 4232.80 −5.921 1.84−7 3.56 0.48
(800, 8, 0.8) ManPG-Ada 1867.05 −5.921 2.57−10 1.80 0.48
(800, 8, 0.8) ManPQN 1883.80 −5.921 1.22−10 1.43 0.48
(800, 8, 0.8) RPN-CG 215.05 −5.921 1.07−11 0.60 0.48
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A Riemannian proximal Newton-CG method
Numerical experiments: sparse PCA

Table: An average result of 20 random runs for random data. Multiple values of n,
p, and µ are used. The subscript k indicates a scale of 10k .

(n, p, µ) Algo iter Fval ‖v(xk)‖F time sparsity
(400, 8, 0.8) ManPG 3416.15 −2.161 3.66−9 2.69 0.63
(400, 8, 0.8) ManPG-Ada 1281.55 −2.161 1.06−10 1.21 0.63
(400, 8, 0.8) ManPQN 1260.40 −2.161 9.83−11 0.72 0.63
(400, 8, 0.8) RPN-CG 204.85 −2.161 1.16−11 0.37 0.63
(800, 8, 0.8) ManPG 4232.80 −5.921 1.84−7 3.56 0.48
(800, 8, 0.8) ManPG-Ada 1867.05 −5.921 2.57−10 1.80 0.48
(800, 8, 0.8) ManPQN 1883.80 −5.921 1.22−10 1.43 0.48
(800, 8, 0.8) RPN-CG 215.05 −5.921 1.07−11 0.60 0.48

Proximal gradient on Stiefel manifold: ManPG, ManPG-Ada [CMSZ20];

Proximal quasi-Newton on Stiefel manifold: ManPQN [WY23];

The proposed method: RPN-CG;
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A Riemannian proximal Newton-CG method
Numerical experiments: sparse PCA

Table: An average result of 20 random runs for random data. Multiple values of n,
p, and µ are used. The subscript k indicates a scale of 10k .

(n, p, µ) Algo iter Fval ‖v(xk)‖F time sparsity
(400, 8, 0.8) ManPG 3416.15 −2.161 3.66−9 2.69 0.63
(400, 8, 0.8) ManPG-Ada 1281.55 −2.161 1.06−10 1.21 0.63
(400, 8, 0.8) ManPQN 1260.40 −2.161 9.83−11 0.72 0.63
(400, 8, 0.8) RPN-CG 204.85 −2.161 1.16−11 0.37 0.63
(800, 8, 0.8) ManPG 4232.80 −5.921 1.84−7 3.56 0.48
(800, 8, 0.8) ManPG-Ada 1867.05 −5.921 2.57−10 1.80 0.48
(800, 8, 0.8) ManPQN 1883.80 −5.921 1.22−10 1.43 0.48
(800, 8, 0.8) RPN-CG 215.05 −5.921 1.07−11 0.60 0.48

Stop criterion: iter≥ 5000 or ‖v(x)‖F ≤ 10−10;

The entries of A are drawn from the standard normal distribution;

Runs that converges to the same minimizer are reported;

Support estimation: (x + v(x))i nonzero and |(x)i | ≥ ‖v(x)‖F ;
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A Riemannian proximal Newton-CG method
Numerical experiments: sparse PCA

Table: An average result of 20 random runs for random data. Multiple values of n,
p, and µ are used. The subscript k indicates a scale of 10k .

(n, p, µ) Algo iter Fval ‖v(xk)‖F time sparsity
(400, 8, 0.8) ManPG 3416.15 −2.161 3.66−9 2.69 0.63
(400, 8, 0.8) ManPG-Ada 1281.55 −2.161 1.06−10 1.21 0.63
(400, 8, 0.8) ManPQN 1260.40 −2.161 9.83−11 0.72 0.63
(400, 8, 0.8) RPN-CG 204.85 −2.161 1.16−11 0.37 0.63
(800, 8, 0.8) ManPG 4232.80 −5.921 1.84−7 3.56 0.48
(800, 8, 0.8) ManPG-Ada 1867.05 −5.921 2.57−10 1.80 0.48
(800, 8, 0.8) ManPQN 1883.80 −5.921 1.22−10 1.43 0.48
(800, 8, 0.8) RPN-CG 215.05 −5.921 1.07−11 0.60 0.48

RPN-CG always stops due to ‖v‖F ≤ 10−10

and is the most efficient one.
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A Riemannian proximal Newton-CG method
Numerical experiments: sparse PCA
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Figure: Sparse PCA: plots of ‖v(xk)‖ versus iterations and CPU times
respectively.
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Numerical Experiments
Compressed modes

The compressed modes (CM) problem aims to seek sparse solution of the
independent-particle Schrödinger equation. It can be formulated as

min
X∈St(p,n)

trace(XTHX ) + µ‖X‖1,

where H ∈ Rn×n denotes the discretized Schrödinger operator.
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A Riemannian proximal Newton-CG method
Numerical experiments: compressed modes

Table: An average result of 50 random runs for random data. Multiple values of n,
p, and µ are used. The subscript k indicates a scale of 10k .

(n, p, µ) Algo iter Fval ‖v(xk)‖F time sparsity
(256, 4, 0.1) ManPG 3000.00 2.49 4.03−5 0.75 0.85
(256, 4, 0.1) ManPG-Ada 3000.00 2.49 9.49−5 0.88 0.85
(256, 4, 0.1) ManPQN 3000.00 2.49 9.06−6 1.22 0.84
(256, 4, 0.1) RPN-CG 92.54 2.49 2.66−9 0.20 0.86
(512, 4, 0.1) ManPG 3000.00 3.29 3.83−5 0.76 0.86
(512, 4, 0.1) ManPG-Ada 3000.00 3.29 1.16−4 0.88 0.86
(512, 4, 0.1) ManPQN 3000.00 3.30 1.44−6 2.98 0.86
(512, 4, 0.1) RPN-CG 147.40 3.29 2.29−9 0.48 0.88

Stop criterion: iter≥ 3000 or ‖v(x)‖F ≤ 10−8;

Different runs may converge to different points;
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A Riemannian proximal Newton-CG method
Numerical experiments: compressed modes

Table: An average result of 50 random runs for random data. Multiple values of n,
p, and µ are used. The subscript k indicates a scale of 10k .

(n, p, µ) Algo iter Fval ‖v(xk)‖F time sparsity
(256, 4, 0.1) ManPG 3000.00 2.49 4.03−5 0.75 0.85
(256, 4, 0.1) ManPG-Ada 3000.00 2.49 9.49−5 0.88 0.85
(256, 4, 0.1) ManPQN 3000.00 2.49 9.06−6 1.22 0.84
(256, 4, 0.1) RPN-CG 92.54 2.49 2.66−9 0.20 0.86
(512, 4, 0.1) ManPG 3000.00 3.29 3.83−5 0.76 0.86
(512, 4, 0.1) ManPG-Ada 3000.00 3.29 1.16−4 0.88 0.86
(512, 4, 0.1) ManPQN 3000.00 3.30 1.44−6 2.98 0.86
(512, 4, 0.1) RPN-CG 147.40 3.29 2.29−9 0.48 0.88

RPN-CG always stops due to ‖v‖F ≤ 10−8

and is the most efficient one.

None of other methods find a solution with ‖v‖F ≤ 10−8.
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A Riemannian proximal Newton-CG method
Numerical experiments: compressed modes
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Figure: CM: plots of ‖v(xk)‖ versus iterations and CPU times respectively.
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Summary

Riemannian optimization;

Applications;

An example on an embedded submanifold;
An example on a quotient manifold;

Smooth optimization framework;
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A Riemannian proximal Newton-CG method;

A Riemannian proximal Newton method;
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Superlinear convergence approach;
Numerical experiments;
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Thank you

Thank you!

Speaker: Wen Huang Riemannian Optimization: A Proximal Newton-CG Method



57/59

References I

Ognjen Arandjelovic, Gregory Shakhnarovich, John Fisher, Roberto Cipolla, and Trevor Darrell.

Face recognition with image sets using manifold density divergence.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages
581–588. IEEE, 2005.

Matthias Bollh ofer, Aryan Eftekhari, Simon Scheidegger, and Olaf Schenk.

Large-scale sparse inverse covariance matrix estimation.
SIAM Journal on Scientific Computing, 41(1):A380–A401, 2019.

Shixiang Chen, Shiqian Ma, Anthony Man-Cho So, and Tong Zhang.

Proximal gradient method for nonsmooth optimization over the Stiefel manifold.
SIAM Journal on Optimization, 30(1):210–239, 2020.

Haoran Chen, Yanfeng Sun, Junbin Gao, Yongli Hu, and Baocai Yin.

Fast optimization algorithm on riemannian manifolds and its application in low-rank learning.
Neurocomputing, 291:59 – 70, 2018.

Guang Cheng, Hesamoddin Salehian, and Baba Vemuri.

Efficient recursive algorithms for computing the mean diffusion tensor and applications to DTI segmentation.
Computer Vision–ECCV 2012, pages 390–401, 2012.

H. Drira, B. Ben Amor, A. Srivastava, M. Daoudi, and R. Slama.

3D face recognition under expressions, occlusions, and pose variations.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(9):2270–2283, 2013.

P. T. Fletcher and S. Joshi.

Riemannian geometry for the statistical analysis of diffusion tensor data.
Signal Processing, 87(2):250–262, 2007.

W. Huang, K. A. Gallivan, Anuj Srivastava, and P.-A. Absil.

Riemannian optimization for registration of curves in elastic shape analysis.
Journal of Mathematical Imaging and Vision, 54(3):320–343, 2015.
DOI:10.1007/s10851-015-0606-8.

Speaker: Wen Huang Riemannian Optimization: A Proximal Newton-CG Method



58/59

References II

Wen Huang, Meng Wei, Kyle A. Gallivan, and Paul Van Dooren.

A Riemannian Optimization Approach to Clustering Problems, 2022.

Zhiwu Huang, Ruiping Wang, Shiguang Shan, and Xilin Chen.

Face recognition on large-scale video in the wild with hybrid Euclidean-and-Riemannian metric learning.
Pattern Recognition, 48(10):3113–3124, 2015.

H. Laga, S. Kurtek, A. Srivastava, M. Golzarian, and S. J. Miklavcic.

A Riemannian elastic metric for shape-based plant leaf classification.
2012 International Conference on Digital Image Computing Techniques and Applications (DICTA), pages 1–7, December 2012.
doi:10.1109/DICTA.2012.6411702.

Jason D Lee, Yuekai Sun, and Michael A Saunders.

Proximal newton-type methods for minimizing composite functions.
SIAM Journal on Optimization, 24(3):1420–1443, 2014.

Jiwen Lu, Gang Wang, and Pierre Moulin.

Image set classification using holistic multiple order statistics features and localized multi-kernel metric learning.
In Proceedings of the IEEE International Conference on Computer Vision, pages 329–336, 2013.
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