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Riemannian Optimization

Problem: Given f (x) :M→ R, solve

min
x∈M

f (x)

where M is a Riemannian manifold.

M

R
f
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Examples of Manifolds

Sphere Ellipsoid

Stiefel manifold: St(p, n) = {X ∈ Rn×p|XTX = Ip}
Grassmann manifold: Set of all p-dimensional subspaces of Rn

Set of fixed rank m-by-n matrices

And many more

Wen Huang Riemannian Optimization
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Riemannian Manifolds

Roughly, a Riemannian manifold M is a smooth set with a
smoothly-varying inner product on the tangent spaces.

M

x

ξ

η

R

〈η, ξ〉x
TxM
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Applications

Four applications are used to demonstrate the importances of the
Riemannian optimization:

Independent component analysis [CS93]

Matrix completion problem [Van13]

Elastic shape analysis of curves [SKJJ11, HGSA15]

Wen Huang Riemannian Optimization
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Application: Independent Component Analysis

People 1

People p

People 2

Microphone 1

Microphone n

Microphone 2

s(t) ∈ Rp

IC 1

IC p

IC 2

x(t) ∈ Rn

Cocktail party problem

ICA

Observed signal is x(t) = As(t)

One approach:

Assumption: E{s(t)s(t + τ)} is diagonal for all τ
Cτ (x) := E{x(t)x(x + τ)T} = AE{s(t)s(t + τ)T}AT

Wen Huang Riemannian Optimization
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Application: Independent Component Analysis

Minimize joint diagonalization cost function on the Stiefel manifold
[TI06]:

f : St(p, n)→ R : V 7→
N∑
i=1

‖V TCiV − diag(V TCiV )‖2
F .

C1, . . . ,CN are covariance matrices and
St(p, n) = {X ∈ Rn×p|XTX = Ip}.

Wen Huang Riemannian Optimization
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Application: Matrix Completion Problem

Matrix completion problem

User 1

User 2

User m

Movie 1 Movie 2 Movie n

Rate matrix M

1

53

4

4

5 3

15

2

The matrix M is sparse

The goal: complete the matrix M
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Application: Matrix Completion Problem

movies meta-user meta-movie
a11 a14

a24

a33

a41

a52 a53

 =


b11 b12

b21 b22

b31 b32

b41 b42

b51 b52


(

c11 c12 c13 c14

c21 c22 c23 c24

)

Minimize the cost function

f : Rm×n
r → R : X 7→ f (X ) = ‖PΩM − PΩX‖2

F .

Rm×n
r is the set of m-by-n matrices with rank r . It is known to be a

Riemannian manifold.
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Application: Elastic Shape Analysis of Curves

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

Classification
[LKS+12, HGSA15]

Face recognition
[DBS+13]
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Application: Elastic Shape Analysis of Curves

Elastic shape analysis invariants:

Rescaling

Translation

Rotation

Reparametrization

The shape space is a quotient space

Figure: All are the same shape.
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Application: Elastic Shape Analysis of Curves

shape 1 shape 2

q1

q̃2

q2

[q1] [q2]

Optimization problem minq2∈[q2] dist(q1, q2) is defined on a
Riemannian manifold

Computation of a geodesic between two shapes

Computation of Karcher mean of a population of shapes

Wen Huang Riemannian Optimization
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More Applications

Role model extraction [MHB+16]

Computations on SPD matrices [YHAG17]

Phase retrieval problem [HGZ17]

Blind deconvolution [HH17]

Synchronization of rotations [Hua13]

Computations on low-rank tensor

Low-rank approximate solution for Lyapunov equation

Wen Huang Riemannian Optimization
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Iterations on the Manifold

Consider the following generic update for an iterative Euclidean
optimization algorithm:

xk+1 = xk + ∆xk = xk + αksk .

This iteration is implemented in numerous ways, e.g.:

Steepest descent: xk+1 = xk − αk∇f (xk)

Newton’s method: xk+1 = xk −
[
∇2f (xk)

]−1∇f (xk)

Trust region method: ∆xk is set by optimizing a local model.

Riemannian Manifolds Provide

Riemannian concepts describing
directions and movement on the
manifold

Riemannian analogues for gradient
and Hessian

xk xk + dk

Wen Huang Riemannian Optimization
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Riemannian gradient and Riemannian Hessian

Definition

The Riemannian gradient of f at x is the unique tangent vector in TxM
satisfying ∀η ∈ TxM, the directional derivative

D f (x)[η] = 〈grad f (x), η〉

and grad f (x) is the direction of steepest ascent.

Definition

The Riemannian Hessian of f at x is a symmetric linear operator from
TxM to TxM defined as

Hess f (x) : TxM → TxM : η → ∇η grad f ,

where ∇ is the affine connection.

Wen Huang Riemannian Optimization
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Retractions

Euclidean Riemannian
xk+1 = xk + αkdk xk+1 = Rxk (αkηk)

Definition

A retraction is a mapping R from TM to M
satisfying the following:

R is continuously differentiable

Rx(0) = x

DRx(0)[η] = η

maps tangent vectors back to the manifold

defines curves in a direction

η

x Rx(tη)

TxM
x

η

Rx(η)

M
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Categories of Riemannian optimization methods

Retraction-based: local information only

Line search-based: use local tangent vector and Rx(tη) to define line

Steepest decent

Newton

Local model-based: series of flat space problems

Riemannian trust region Newton (RTR)

Riemannian adaptive cubic overestimation (RACO)

Wen Huang Riemannian Optimization
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Categories of Riemannian optimization methods

Retraction and transport-based: information from multiple tangent spaces

Nonlinear conjugate gradient: multiple tangent vectors

Quasi-Newton e.g. Riemannian BFGS: transport operators between
tangent spaces

Additional element required for optimizing a cost function (M, g):

formulas for combining information from multiple tangent spaces.

Wen Huang Riemannian Optimization
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Vector Transports

Vector Transport

Vector transport: Transport a tangent
vector from one tangent space to
another

Tηx ξx , denotes transport of ξx to
tangent space of Rx(ηx). R is a
retraction associated with T

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx

Figure: Vector transport.
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Comparison with Constrained Optimization

All iterates on the manifold

Convergence properties of unconstrained optimization algorithms

No need to consider Lagrange multipliers or penalty functions

Exploit the structure of the constrained set

M

Wen Huang Riemannian Optimization
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Retraction/Transport-based Riemannian Optimization

Benefits

Increased generality does not compromise the important theory

Less expensive than or similar to previous approaches

May provide theory to explain behavior of algorithms specifically
developed for a particular application – or closely related ones

Possible Problems

May be inefficient compared to algorithms that exploit application
details

Wen Huang Riemannian Optimization
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Some History of Optimization On Manifolds (I)

Luenberger (1973), Introduction to linear and nonlinear programming.
Luenberger mentions the idea of performing line search along geodesics,
“which we would use if it were computationally feasible (which it
definitely is not)”. Rosen (1961) essentially anticipated this but was not
explicit in his Gradient Projection Algorithm.

Gabay (1982), Minimizing a differentiable function over a differential
manifold. Steepest descent along geodesics; Newton’s method along
geodesics; Quasi-Newton methods along geodesics. On Riemannian
submanifolds of Rn.

Smith (1993-94), Optimization techniques on Riemannian manifolds.
Levi-Civita connection ∇; Riemannian exponential mapping; parallel
translation.

Wen Huang Riemannian Optimization
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Some History of Optimization On Manifolds (II)

The “pragmatic era” begins:

Manton (2002), Optimization algorithms exploiting unitary constraints
“The present paper breaks with tradition by not moving along
geodesics”. The geodesic update Expx η is replaced by a projective
update π(x + η), the projection of the point x + η onto the manifold.

Adler, Dedieu, Shub, et al. (2002), Newton’s method on Riemannian
manifolds and a geometric model for the human spine. The exponential
update is relaxed to the general notion of retraction. The geodesic can
be replaced by any (smoothly prescribed) curve tangent to the search
direction.

Wen Huang Riemannian Optimization
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Some History of Optimization On Manifolds (III)

Theory, efficiency, and library design improve dramatically:

Absil, Baker, Gallivan (2004-07), Theory and implementations of
Riemannian Trust Region method. Retraction-based approach. Matrix
manifold problems, software repository:
http://www.math.fsu.edu/~cbaker/GenRTR

Anasazi Eigenproblem package in Trilinos Library at Sandia National
Laboratory

Ring and With (2012), combination of differentiated retraction and
isometric vector transport for convergence analysis of RBFGS

Absil, Gallivan, Huang (2009-2017), Complete theory of Riemannian
Quasi-Newton and related transport/retraction conditions, Riemannian
SR1 with trust-region, RBFGS on partly smooth problems, A C++
library: http://www.math.fsu.edu/~whuang2/ROPTLIB

Wen Huang Riemannian Optimization
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Some History of Optimization On Manifolds (IV)

Absil, Mahony, Sepulchre (2007) Nonlinear conjugate gradient using
retractions.

Ring and With (2012), Global convergence analysis for Fletcher-Reeves
Riemannian nonlinear CG method with the strong wolfe conditions under
a strong assumption.

Sato, Iwai (2013-2015), Global convergence analysis for Fletcher-Reeves
type Riemannian nonlinear CG method with the strong wolfe conditions
under a mild assumption; and global convergence for Dai-Yuan type
Riemannian nonlinear CG method with the weak wolfe conditions under
mild assumptions.

Zhu (2017), Global convergence for Riemannian version of Dai’s
nonmonotone nonlinear CG method.

Wen Huang Riemannian Optimization
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Some History of Optimization On Manifolds (V)

Bonnabel (2011), Riemannian stochastic gradient descent method.

Sato, Kasai, Mishra(2017), Riemannian stochastic gradient descent
method using variance reduction or quasi-Newton.

Becigneul, Ganea(2018), Riemannian versions of ADAM, ADAGRAD,
and AMSGRAD for geodesically convex functions.

Zhang, Sra(2016-2018), Riemannian first-order methods for geodesically
convex optimization.

Liu, Boumal(2019), Riemannian optimization with constraints.

Wen Huang Riemannian Optimization
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Some History of Optimization On Manifolds (VI)

Hosseini, Grohs, Huang, Uschmajew, Boumal, (2015-2016),
Lipschitz-continuous functions on Riemannian manifolds

Zhang, Sra(2016-2018), Riemannian first-order methods for geodesically
convex optimization.

Bento, Ferreira, Melo(2017), Riemannian proximal point method for
geodesically convex optimization.

Chen, Ma, So, Zhang(2018), Riemannian proximal gradient method.

Many people Application interests start to increase noticeably

Wen Huang Riemannian Optimization
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Riemannian Optimization Libraries

Riemannian optimization libraries for general problems:

Boumal, Mishra, Absil, Sepulchre(2014)
Manopt (Matlab library)

Townsend, Koep, Weichwald (2016)
Pymanopt (Python version of manopt)

Huang, Absil, Gallivan, Hand (2018)
ROPTLIB (C++ library, interfaces to Matlab and Julia)

Martin, Raim, Huang, Adragni(2018)
ManifoldOptim (R wrapper of ROPTLIB)

Meghwanshi, Jawanpuria, Kunchukuttan, Kasai, Mishra (2018)
McTorch (Riemannian optimization for deep learning)

Wen Huang Riemannian Optimization
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[Blind deconvolution]

Blind deconvolution is to recover two unknown signals from their
convolution.
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[Blind deconvolution (Discretized version)]

Blind deconvolution is to recover two unknown signals w ∈ CL and
x ∈ CL from their convolution y = w ∗ x ∈ CL.

We only consider circular convolution:
y1

y2

y3

...
yL

 =


w1 wL wL−1 . . . w2

w2 w1 wL . . . w3

w3 w2 w1 . . . w4

...
...

...
. . .

...
wL wL−1 wL−2 . . . w1




x1

x2

x3

...
xL


Let y = Fy, w = Fw, and x = Fx, where F is the DFT matrix;

y = w � x , where � is the Hadamard product, i.e., yi = wixi .

Equivalent question: Given y , find w and x .

Wen Huang Riemannian Optimization



31/44

Riemannian Optimization
Blind deconvolution

Summary

Problem Statement

Problem: Given y ∈ CL, find w , x ∈ CL so that y = w � x .

An ill-posed problem. Infinite solutions exist;

Assumption: w and x are in known subspaces, i.e., w = Bh and
x = Cm, B ∈ CL×K and C ∈ CL×N ;

Reasonable in various applications;

Leads to mathematical rigor; (L/(K + N) reasonably large)

Problem under the assumption

Given y ∈ CL, B ∈ CL×K and C ∈ CL×N , find h ∈ CK and m ∈ CN so
that

y = Bh � Cm = diag(Bhm∗C∗).
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Related work

Ahmed et al. [ARR14]1

Convex problem:

min
X∈CK×N

‖X‖n, s. t. y = diag(BXC∗),

where ‖ · ‖n denotes the nuclear norm, and X = hm∗;

(Theoretical result): the unique minimizer
high probability

============= the true
solution;

The convex problem is expensive to solve;

1A. Ahmed, B. Recht, and J. Romberg, Blind deconvolution using convex
programming, IEEE Transactions on Information Theory, 60:1711-1732, 2014

Wen Huang Riemannian Optimization

Find h,m, s. t. y = diag(Bhm∗C∗);
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Related work

Li et al. [LLSW18]2

Nonconvex problem3:

min
(h,m)∈CK×CN

‖y − diag(Bhm∗C∗)‖2
2;

(Theoretical result):

A good initialization

(Wirtinger flow method + a good initialization)
high probability

============⇒
the true solution;

Lower successful recovery probability than alternating minimization
algorithm empirically.

2X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex
optimization, preprint arXiv:1606.04933, 2016

3The penalty in the cost function is not added for simplicity
Wen Huang Riemannian Optimization

Find h,m, s. t. y = diag(Bhm∗C∗);
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Manifold Approach

The problem is defined on the set of rank-one matrices (denoted by
CK×N

1 ), neither CK×N nor CK × CN ; Why not work on the manifold
directly?

A representative Riemannian method: Riemannian steepest descent
method (RSD)

A good initialization

(RSD + the good initialization)
high probability

============⇒ the true solution;

The Riemannian Hessian at the true solution is well-conditioned;

Wen Huang Riemannian Optimization
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Efficiency

Table: Comparisons of efficiency

L = 400,K = N = 50 L = 600,K = N = 50
Algorithms [LLSW18] [LWB18] R-SD [LLSW18] [LWB18] R-SD
nBh/nCm 351 718 208 162 294 122
nFFT 870 1436 518 401 588 303
RMSE 2.22−8 3.67−8 2.20−8 1.48−8 2.34−8 1.42−8

An average of 100 random runs

nBh/nCm: the numbers of Bh and Cm multiplication operations respectively

nFFT: the number of Fourier transform

RMSE: the relative error
‖hm∗−h]m

∗
] ‖F

‖h]‖2‖m]‖2

[LLSW18]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933,
2016

[LWB18]: K. Lee et. al., Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization
preprint arXiv:1312.0525, 2013
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Probability of successful recovery

Success if
‖hm∗−h]m∗] ‖F
‖h]‖2‖m]‖2

≤ 10−2

1 1.5 2 2.5

L/(K+N)

0

0.2

0.4

0.6

0.8

1

P
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b.
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c.
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Transition curve

[LLSW16]
[LWB13]
R-SD

Figure: Empirical phase transition curves for 1000 random runs.

[LLSW18]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933,
2016

[LWB18]: K. Lee et. al., Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization
preprint arXiv:1312.0525, 2013
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Image deblurring

Original image [WBX+07]: 1024-by-1024 pixels

Motion blurring kernel (Matlab: fspecial(’motion’, 50, 45))

Wen Huang Riemannian Optimization
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Image deblurring

What subspaces are the two unknown signals in?

Image is approximately sparse in the Haar
wavelet basis

Use the blurred image to learn the dominated
basis: C.

Support of the blurring kernel is learned from
the blurred image

Suppose the support of the blurring kernel is
known: B.

L = 1048576,K = 109,
N = 5000, 20000, 80000
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Image deblurring

Initial guess (N=5000) Initial guess (N=20000) Initial guess (N=80000)

Reconstructed image (N=5000) Reconstructed image (N=20000) Reconstructed image (N=80000)

Figure: Initial guess by running power method for 50 iterations and the
reconstructed image for N = 5000, 20000, and 80000. Computational time: 2-3
mins.
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Summary

Introduced the framework of Riemannian optimization

Used applications to show the importance of Riemannian
optimization

Introduced the blind deconvolution problem

Showed the performance of the Riemannian steepest descent
method in this application

Wen Huang Riemannian Optimization



41/44

Riemannian Optimization
Blind deconvolution

Summary

Thank you

Thank you!
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