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Machine Learning (Empirical risk minimization):

min
x∈Rn

1
n

n∑
i=1

fi (x , zi )

• Parameter x ;
• Data D = {z1, . . . , zn};
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Machine Learning (Empirical risk minimization):

min
x∈Rn

1
n

n∑
i=1

fi (x , zi )

• Parameter x ;
• Data D = {z1, . . . , zn};

Federated Learning:
• Privacy
• Computation ability

Applications:
• Healthcare
• Smart Home
• Financial Services
• Transportation



Federated Learning

Federated Learning on Riemannian Manifolds with Differential Privacy 4

Federated Learning Optimization:

min
x∈Rn

f (x) =
N∑

i=1

pi fi (x) =
N∑

i=1

pi

 1
Ni

Ni∑
j=1

fi (x , zi,j )

 , with pi =
Ni

n
, (1.1)

• N is the number of agents;
• n =

∑N
i=1 Ni ;

• fi is the local objective of agent i ;
• Di = {zi,1, . . . , zi,Ni } is the local data held by agent i with |Di | = Ni .
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Federated Learning Optimization:
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Riemannian Federated Learning considers (1.1) with x in a manifold M

Applications:
• Matrix completion
• Principal component analysis
• Online learning
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Federated Learning

Euclidean version:

Algorithm: A representative federated averaging algorithm [McM+17]

1. for t = 0, 1, . . . ,T − 1 do
2. The server uniformly selects a subset St of S agents at random;
3. The server upload global parameter x (t) to all agents in St , i.e., x (t)

j ← x (t);
4. for j ∈ St in parallel do
5. Agent j updates a local parameter x (t+1)

j by K -step SGD with xt being
initial iterate;

6. Sent x (t+1)
j to the server;

7. end for
8. Server aggregates the received local parameters {x (t+1)

j }j∈St by averaging

x (t+1) ←
∑
j∈St

Nj∑
j∈St

Nj
x (t+1)

j ;

9. end for

• Sever: Steps 2, 3, and 8;
• Agents: Steps 5 and 6;

Federated Learning on Riemannian Manifolds with Differential Privacy 5

minxj∈Rn
1
Ni

∑Ni
i=1 fi (x , zi,j )

[McM+17] B. McMahan, E. Moore, D. Ramage, B. A. y Arcas. Communication-Efficient Learning of Deep Networks
from Decentralized Data. Proceedings of Machine Learning Research, 54, P.1273-1282, 2017.
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Federated Learning

Euclidean to Riemannian:

Algorithm: A Riemannian federated learning algorithm [LM23]

1. for t = 0, 1, . . . ,T − 1 do
2. The server uniformly selects a subset St of S agents at random;
3. The server upload global parameter x (t) to all agents in St , i.e., x (t)

j ← x (t);
4. for j ∈ St in parallel do
5. Agent j updates a local parameter x (t+1)

j by K -step Riemannian SGD with x (t)

being initial iterate;
6. Sent x (t+1)

j to the server;
7. end for
8. Server aggregates the received local parameters {x (t+1)

j }j∈St by averaging

x (t+1) ← ave(x (t+1)
j | j ∈ Sj );

9. end for

• Agents: Riemannian SGD [Bon13]
• Sever: Aggregation

How to aggregates {x (t+1)
j }j∈St on a manifold?

Federated Learning on Riemannian Manifolds with Differential Privacy 6

minxj∈M
1
Ni

∑Ni
i=1 fi (x , zi,j )

[LM23] J. Li and S. Ma. Federated learning on Riemannian manifolds. Applied Set-Valued Analysis and Optimization,
5(2), 2023. (Local training uses RSVRG)
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Federated Learning

Euclidean to Riemannian (Aggregation):

• Naive generalization:
x (t+1) ←

∑
j∈St

Nj∑
j∈St

Nj
x (t+1)

j 6=⇒ Riemannian setting

• An alternative approach:

x (t+1) ←
∑
j∈St

Nj∑
j∈St

Nj
x (t+1)

j ⇐⇒ x (t+1) = arg min
x

∑
j∈Sj

Nj∑
j∈St

Nj
‖x − x (t+1)

j ‖2
F

⇐⇒ x (t+1) = arg min
x

∑
j∈Sj

Nj∑
j∈St

Nj
dist2(x , x (t+1)

j ) =⇒ Riemannian setting;

• x (t+1) = arg minx
∑

j∈Sj

Nj∑
j∈St

Nj
dist2(x , x (t+1)

j ): computationally

expensive;
• One step of Riemannian gradient descent (called tangent mean) [LM23]:

x (t+1) ← Expx(t)

(∑
j∈St

Nj∑
i∈St

Ni
Exp−1

x(t) (x
(t+1)
j )

)
;

Federated Learning on Riemannian Manifolds with Differential Privacy 7
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Existing Riemannian Federated Learning:
• The reviewed Riemannian federated learning [LM23]

• Riemannian Federated Learning on Compact Submanifolds with
Heterogeneous Data [Zha+24]

- Use projection onto the manifold
- Allow multiple agents and multiple local updates

• Riemannian Federated Learning via Averaging Gradient Stream [Hua+24]
- Send tangent vectors rather than the local parameters
- Allow abstract manifold
- Allow multiple agents and multiple local updates

Propose Riemannian federated learning with differential privacy.
The later two works appear after the work in this talk.

No differential privacy is considered.

[LM23] J. Li and S. Ma. Federated Learning on Riemannian Manifolds.
[Hua+24] Z. Huang, W. Huang, P. Jawanpuria, B. Mishra. Riemannian Federated Learning via Averaging Gradient

Stream. Applied Set-Valued Analysis and Optimization, 2023.
[Zha+24] J. Zhang and J. Hu and A. M.-C. So and M. Johansson. Nonconvex Federated Learning on Compact Smooth

Submanifolds With Heterogeneous Data. arxiv:2406.08465, 2024.
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Private Federated Learning

Federated Learning:
• (Advantage) Data is stored in each agent.
• (Downside) It is possibly attacked by inference and thus agents’

information is leaked.

Encryption method:
• k -anonymity
• Secure multiparty computing
• Homomorphic encryption
• Differential privacy

Federated Learning on Riemannian Manifolds with Differential Privacy 10
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Private Federated Learning: Differential Privacy

Differential Privacy (DP): Differential Privacy offers a rigorous framework for
addressing data privacy by precisely quantifying the deviation in the output
distribution of a mechanism when a small number of input datasets are
modified.

Definition 1

Let A be a manifold-valued randomized mechanism, namely, A : Zn →M.
We say that A is (ε, δ)-differential privacy if for any two adjacent datasets
D,D′, which differ in at most one data point, and for any measurable sets
S ⊆M, it holds that

P{A(D) ⊆ S} ≤ exp(ε)P{A(D′) ⊆ S}+ δ.

Federated Learning on Riemannian Manifolds with Differential Privacy 11
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Private Federated Learning
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Algorithm: A Riemannian federated learning algorithm [LM23]

1. for t = 0, 1, . . . ,T − 1 do
2. The server uniformly selects a subset St of S agents at random;
3. The server upload global parameter x (t) to all agents in St , i.e., x (t)

j ← x (t);
4. for j ∈ St in parallel do
5. Agent j updates a local parameter x (t+1)

j by K -step Riemannian SGD with x (t)

being initial iterate;
6. Sent x (t+1)

j to the server;
7. end for
8. Server aggregates the received local parameters {x (t+1)

j }j∈St by averaging

x (t+1) ← Expx(t)

(∑
j∈St

Nj∑
i∈St

Ni
Exp−1

x(t) (x (t)
j )

)
;

9. end for

• For t-th outer iteration on j-th agent: x (t+1)
j is an output of a mechanism on

Dj = {zj,1, . . . , zj,Nj };
• For outer iterations from 0 to t : xt+1 is an output of a mechanism on D =
∪j=1,...,NDj = {z1, z2, . . . , zn};
• Differential privacy: unlikely to infer any data from x (t+1)

j or x (t);

minxj∈M
1
Ni

∑Ni
i=1 fi (x , zi,j )



Private Federated Learning

Algorithm: Riemannian federated learning with differential privacy (PriRFed)

01. for t = 0, 1, . . . ,T − 1 do
02. Sample St from [N] without replacement of size |St | = st ;
03. Broadcast the global parameter x (t) to selected agents;
04. while i ∈ St in parallel do
05. x̃ (t+1)

i ← PrivateLocalTraining(x (t),Di ,K , σi , αt );

06. Send x̃ (t+1)
i to the server;

07. end while
08. Aggregate the received local parameters to produce a global

parameter x (t+1) using tangent mean;
09. end for
10. output option 1: x̃ = x (T );
11. output option 2: x̃ is uniformly sampled from {x (t)}T

t=1 at random;

• Assumption: Local training satisfies (ε, δ)-DP;

• Then the output x̃ satisfies (ε̃, δ̃)-DP;

The derivation relies on the existing properties of differential privacy

Federated Learning on Riemannian Manifolds with Differential Privacy 13
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t=1 at random;

• Assumption: Local training satisfies (ε, δ)-DP;
• Then the output x̃ satisfies (ε̃, δ̃)-DP;

The derivation relies on the existing properties of differential privacy

Federated Learning on Riemannian Manifolds with Differential Privacy 13
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Properties of differential privacy

Theorem 2 (Post-processing [DR+14, Proposition 2.1])

Suppose that A : Zn →M is a randomized algorithm that is (ε, δ)-DP. Let
P :M→M′ be an arbitrary mapping. Then P ◦ A : Zn →M′ is (ε, δ)-DP.

Theorem 3 (Sequential composition theorem [DR+14, Theorem 3.16])

Suppose that Ai : Zn →Mi is an (εi , δi )-DP algorithm for i ∈ [k ]. Then if
A[k ] : Zn →

∏k
i=1Mi is defined to be A[k ] := (A1,A2, . . . ,Ak ), then A[k ] is

(
∑k

i=1 εi ,
∑k

i=1 δi )-DP.

Theorem 4 (Advanced composition theorem [DRV10; KOV17; Whi+23])

Suppose that Ai is an (ε, δ)-DP algorithm for i ∈ [k ]. Then the adaptive
composition A[k ] of A1, . . . ,Ak , i.e., A[k ] = Ak ◦ Ak−1 ◦ · · · ◦ A1, is
(ε′, δ′ + kδ)-DP with ε′ =

√
2k log(1/δ′)ε+ kε(exp(ε)− 1) and any δ′ > 0.

Federated Learning on Riemannian Manifolds with Differential Privacy 14



Private Federated Learning

Definition 5 (Subsample)

Given a dataset D of n points, namely D = {D1,D2, . . . ,Dn} (where Di may
be a dataset), an operator Swor

ρ , called subsample, randomly chooses a
sample from the uniform distribution over all subsets of D of size m without
replacement. The ratio ρ := m/n is called the sampling rate of the operator
Swor
ρ . Formally, letting {i1, i2, . . . , im} be the sampled indices, Swor

ρ is defined by

Swor
ρ :ZN1 ×ZN2 × . . .×ZNn → ZNi1 ×ZNi2 × . . .×ZNim :

(D1,D2, . . . ,Dn) 7→ (Di1 ,Di2 , . . . ,Dim ).

Lemma 6 (Subsampling lemma)

Let Swor
ρ : ZN1 ×ZN2 × . . .×ZNn → ZNi1 ×ZNi2 × · · · × ZNim be a subsample

operator (defined by Definition 5) with sampling rate ρ = m/n and sampled
indices {i1, i2, . . . , im}. Suppose that A : ZNi1 ×ZNi2 × · · · × ZNim →M is a
mechanism obeying (ε, δ)-DP. Then
A′ := A ◦ Swor

ρ : ZN1 ×ZN2 × . . .×ZNn →M provides (ε′, δ′)-DP, where
ε′ = log(1 + ρ(exp(ε)− 1)) and δ′ ≤ ρδ.

Federated Learning on Riemannian Manifolds with Differential Privacy 15
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Definition 7 (c-stable transformation [McS09, Definition 2])

Let Z̄ := ZN1 ×ZN2 × . . .×ZNn . A transformation T : Z̄ → Z̄ is said c-stable
if for any two data sets D1,D2 ∈ Z̄, the following holds

|T (D1)⊕ T (D2)| ≤ c|D1 ⊕ D2|.

where c is a constant.

Theorem 8 (Pre-processing)

Let Z̄ := ZN1 ×ZN2 × . . .×ZNn . Suppose that A : Z̄ →M be (ε, δ)-DP, and
T : Z̄ → Z̄ be an arbitrary c-stable transformation. Then the composition
A ◦ T provides (cε, cexp((c − 1)ε)δ)-DP.

Federated Learning on Riemannian Manifolds with Differential Privacy 16



Private Federated Learning

Theorem 9 (Privacy guarantee of PriRFed)

If the privately local training satisfies (ε, δ)-DP for agent i ∈ [N], then PriRFed

obeys (ε′, δ′)-DP with ε′ = min(T ε̃,
√

2T ln(1/δ̂)ε̃+ T ε̃(exp(ε̃)− 1)) and

δ′ = δ̂ + T δ̃ for any δ̂ ∈ (0, 1), where ε̃ = log(1 + ρ(exp(sε)− 1)), δ̃ = ρsδ,
St ⊆ [N] with st = s ≤ N, and ρ = s/N is the sampling rate.

Differences to existing Riemannian algorithms with DP in [Han+24; Upt+23]:
• Not federated learning framework/no aggregation;
• Guarantee DP in any communication between agents and the server;

Federated Learning on Riemannian Manifolds with Differential Privacy 17
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Federated Learning on Riemannian Manifolds with Differential Privacy 18

How to make the local training algorithm satisfy (ε, δ)-DP?

Add noise to the local training algorithm.

Gaussian Mechanism:
• In Euclidean setting:

• Given a function H : Zn → Rm, the Gaussian mechanism associated with H is
given by H(D) = H(D) + ε, where ε is a Gaussian noise.

• Letting ∆H = supD∼D′ ‖H(D)− H(D′)‖2 be the sensitivity of H, if
σ2 ≥ 2 log(1.25/δ)∆2

H/ε
2, then H obeys (ε, δ)-DP.

• In Riemannian setting:
• Given any x ∈M, for a function H : Zn → TxM, the Gaussian mechanism

associated with f is given by H(D) = H(D) + ε, where ε is a tangent Gaussian
noise;

• Letting ∆H = supD∼D′ ‖H(D)− H(D′)‖x be the sensitivity of H, if
σ2 ≥ 2 log(1.25/δ)∆2

H/ε
2, then H obeys (ε, δ)-DP.
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Algorithm: A Riemannian SGD Algorithm with DP (DP-RSGD) [Han+24]

01. Set x (t)
i,0 ← x (t);

02. for k = 0, 1, . . . ,K − 1 do
03. Select Bk ⊆ [Ni ] of size bi , where the samples are randomly selected

uniformly without replacement;
04. Set η(t)

k ←
(

1
bi

∑
p∈Bk

clipτ (gradfi,p(x (t)
i,k ))

)
+ ε

(t)
i,k , where

clipτ (·) : TxM→ TxM : v 7→ min{τ/‖v‖x , 1} and ε(t)
i,k ∼ Nx(t)

i,k
(0, σ2

i ) ;

05. Update x (t)
i,k+1 ← Exp

x(t)
i,k

(−αη(t)
k );

06. end for
07. output option 1: x̃ (t+1)

i ← x (t)
i,K if Option 1 is chosen in PriRFed;

08. output option 2: x̃ (t+1)
i as uniformly selected from {x (t)

i,k }
K
k=0 otherwise;

• Add tangent Gaussian noise ε(t)
i,k to the stochastic gradient direction;

• If σ2
i = oi

K log(1/δ)τ2

N2
i ε

2 , then DP-RSGD satisfies (ε, δ)-DP.

[Han+24] A. Han, B. Mishra, P. Jawanpuria, J, Gao. Differentially private Riemannian optimization. Machine Learning,
113, P.1133–1161, 2024.
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Algorithm: A Riemannian SVRG Algorithm with DP (DP-RSVRG) [Upt+23]

01. Set x̃ (t)
i,0 ← x (t)

02. for k = 0, 1, . . . ,K − 1 do
03. x (t)

k+1,0 ← x̃ (t)
i,k and g(t)

k+1 ←
1
Ni

∑Ni
j=1 clipτ (gradfi,j (x̃ (t)

i,k ));
04. for j = 0, 1, . . . ,m − 1 do
05. Randomly pick lj ∈ [Ni ] and ε(t)

k+1,j ∼ Nx(t)
k+1,j

(0, σ2
i );

06. η
(t)
k+1,j ← clipτ (gradfi,lj (x (t)

k+1,j ))− Γ
x(t)

k+1,j

x̃(t)
i,k

(clipτ (gradfi,lj (x̃ (t)
i,k )− g(t)

k+1)) + ε
(t)
k+1,j ;

07. x (t)
k+1,j+1 ← Exp

x(t)
k+1,j

(−αtη
(t)
k+1,j );

08. end for
09. x̃ (t)

i,k+1 ← x (t)
k+1,m;

10. end for
11. output option 1: x̃ (t+1)

i ← x (t)
K ,m;

12. output option 2: x̃ (t+1)
i is uniformly randomly selected from {{x (t)

k+1,j}
m−1
j=0 }

K−1
k=0 ;

• Add tangent Gaussian noise ε(t)
i,k to the stochastic gradient direction;

• If σ2
i = õi

mK log(1/δ)τ2

N2
i ε

2 , then DP-RSVRG satisfies (ε, δ)-DP.
[Upt+23] A. Utpala, A. Han, P. Jawanpuria, B. Mishra. Improved Differentially Private Riemannian Optimization: Fast

Sampling and Variance Reduction. Transactions on Machine Learning Research, ISSN:2835–8856, 2023.
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PriRFed with DP-RSGD
Assumptions:
• The function fij is geodesic Lf -Lipschitz continuous for any i, j ;
• The function fij is geodesically Lg-smooth, i.e., Lipschitz continuous

Riemannian gradient for any i, j ;



Convergence Analysis

Federated Learning on Riemannian Manifolds with Differential Privacy 22

PriRFed with DP-RSGD
Assumptions:
• The function fij is geodesic Lf -Lipschitz continuous for any i, j ;
• The function fij is geodesically Lg-smooth, i.e., Lipschitz continuous

Riemannian gradient for any i, j ;

Definition 10 (Geodesic Lipschitz continuity)

A function f :M→ R is called geodesically Lf -Lipschitz continuous if for any
x , y ∈M, there exists Lf ≥ 0 such that |f (x)− f (y)| ≤ Lf dist(x , y).

Definition 11 (Geodesic smoothness [ZS16])

A differentiable function f :M→ R is call geodesically Lg-smooth if its gradient
is Lg-Lipschitz continuous, that is, ‖gradf (x)− Γx

y (gradf (y))‖x ≤ Lgdist(x , y).
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PriRFed with DP-RSGD
Assumptions:
• The function fij is geodesic Lf -Lipschitz continuous for any i, j ;
• The function fij is geodesically Lg-smooth, i.e., Lipschitz continuous

Riemannian gradient for any i, j ;

Theorem 10 (Nonconvex, K = 1, fixed step size)

Consider PriRFed-DP-RSGD with Option 1. Set st = N, K = 1, bi = Ni , and
αt = α ≤ 1/Lg . It holds that

min0≤t≤T E[‖gradf (x (t))‖2] ≤ 2
Tα (f (x (0))− f (x∗)) +

dLgα

(
∑N

i=1 Ni )
2

∑N
i=1 N2

i σ
2
i ,

where the expectation is taken over ε(t)
i,0, and x∗ = arg minx∈M f (x).

Theorem 11 (Nonconvex, K = 1, decaying step sizes)

Same parameters except that the step sizes {αt}T−1
t=0 satisfies

limT→∞
∑T−1

t=0 αt =∞, limT→∞
∑T−1

t=0 α2
t <∞, and Lgαt ≤ 2δ,

for a constant δ ∈ (0, 1). It holds that lim infT→∞ E
[
‖gradf (x (t))‖2

]
= 0.
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for a constant δ ∈ (0, 1). It holds that lim infT→∞ E
[
‖gradf (x (t))‖2

]
= 0.

The noise does not influence the convergences for decaying step sizes.
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2
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where the expectation is taken over ε(t)
i,0, and x∗ = arg minx∈M f (x).

Theorem 11 (Nonconvex, K = 1, decaying step sizes)

Same parameters except that the step sizes {αt}T−1
t=0 satisfies

limT→∞
∑T−1

t=0 αt =∞, limT→∞
∑T−1

t=0 α2
t <∞, and Lgαt ≤ 2δ,

for a constant δ ∈ (0, 1). It holds that lim infT→∞ E
[
‖gradf (x (t))‖2

]
= 0.

Decaying step sizes: not a generalization of any Riemannian FL result.
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PriRFed with DP-RSGD
Assumptions:
• The function fij is geodesic Lf -Lipschitz continuous for any i, j ;
• The function fij is geodesically Lg-smooth;
• Manifold is complete;
• All iterates stay in a compact subsetW ⊂M and the sectional curvature in
W is bounded in [κmin, κmax];
• The function fi is geodesically convex inW for any i ;
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PriRFed with DP-RSGD
Assumptions:
• The function fij is geodesic Lf -Lipschitz continuous for any i, j ;
• The function fij is geodesically Lg-smooth;
• Manifold is complete;
• All iterates stay in a compact subsetW ⊂M and the sectional curvature in
W is bounded in [κmin, κmax];
• The function fi is geodesically convex inW for any i ;

Definition 12 (Geodesic convexity [ZS16])

A functionM→ R is called geodesically convex onW if for any x , y ∈ W, a
geodesic γ : [0, 1]→M satisfying γ(0) = x , γ(1) = y , and
γ(t) ∈ W, ∀t ∈ [0, 1], it holds that f (γ(t)) ≤ (1− t)f (x) + tf (y).
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PriRFed with DP-RSGD
Assumptions:
• The function fij is geodesic Lf -Lipschitz continuous for any i, j ;
• The function fij is geodesically Lg-smooth;
• Manifold is complete;
• All iterates stay in a compact subsetW ⊂M and the sectional curvature in
W is bounded in [κmin, κmax];
• The function fi is geodesically convex inW for any i ;

Theorem 12 (Convex, K = 1)

Consider PriRFed-DP-RSGD with Option 1. Set st = N, K = 1, bi = Ni , and
αt = α ≤ 1/(2Lg). It holds that

E[f (x (T ))− f (x∗)] ≤ ζdist2(x(0),x∗)
2α(ζ+T−1)

+ T (6ζ+T−1)d
16Lg (ζ+T−1)(

∑N
i=1 Ni )

2

∑N
i=1 N2

i σ
2
i ,

where the expectation is taken over ε(t)
i,0, x∗ = arg minx∈M f (x), and ζ depends

on κmin.

• An optimal value of T ;
• Consistent with [LM23, Theorem 9] if non-DP (different algorithm though);
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PriRFed with DP-RSGD
Assumptions:
• The function fij is geodesic Lf -Lipschitz continuous for any i, j ;
• The function fij is geodesically Lg-smooth;
• The function fi is geodesically convex inW for any i ;
• f satisfies the Riemannian Polyak-Lojasiewicz (RPL) condition with a

positive constant µ;
• For any i and x ∈M, ‖gradfi (x)− gradf (x)‖2 ≤ vi and E[vi ] = v .



Convergence Analysis

Federated Learning on Riemannian Manifolds with Differential Privacy 24

PriRFed with DP-RSGD
Assumptions:
• The function fij is geodesic Lf -Lipschitz continuous for any i, j ;
• The function fij is geodesically Lg-smooth;
• The function fi is geodesically convex inW for any i ;
• f satisfies the Riemannian Polyak-Lojasiewicz (RPL) condition with a

positive constant µ;
• For any i and x ∈M, ‖gradfi (x)− gradf (x)‖2 ≤ vi and E[vi ] = v .

Definition 13 (Riemannian Polyak-Lojasiewicz condition)

A functionM→ R satisfies the Riemannian Polyak-Lojasiewicz (RPL) condition
with a positive constant µ if f (x)− f (x∗) ≤ 1

2µ‖gradf (x)‖2, where x∗ is a global
minimizer of f .
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PriRFed with DP-RSGD
Assumptions:
• The function fij is geodesic Lf -Lipschitz continuous for any i, j ;
• The function fij is geodesically Lg-smooth;
• The function fi is geodesically convex inW for any i ;
• f satisfies the Riemannian Polyak-Lojasiewicz (RPL) condition with a

positive constant µ;
• For any i and x ∈M, ‖gradfi (x)− gradf (x)‖2 ≤ vi and E[vi ] = v .

Theorem 13 (Convex and RPL, K = 1)

Consider PriRFed-DP-RSGD with Option 1. Set Ni = Nj (∀ i, j ∈ [N]),
st = S ≤ N, K = 1, and bi = Ni . Then it holds that

E[f (x (T ))]− f (x∗) ≤ PT (f (x (0))− f (x∗)) + (1− PT )

(
κ0

∑
i∈S σ

2
i

S2 + κ1
N−S

S(N−1)

)
,

where P = (1− 2µα + µα2Lg), κ0 =
Lgαd

2µ(2−Lgα)
, and κ1 = vκ0 =

Lgαdv
2µ(2−Lgα)

.

• An optimal value of T ;
• The second term 6= 0 even if σi = 0 (non-DP);
• Consistent with the Euclidean FL in [Wei+22];
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PriRFed with DP-RSGD
Assumptions:
• The function fij is geodesic Lf -Lipschitz continuous for any i, j ;
• The function fij is geodesically Lg-smooth;
• Manifold is complete;
• All iterates stay in a compact subsetW ⊂M and the sectional curvature in
W is bounded in [κmin, κmax];

Theorem 14 (Nonconvex, K > 1)

Consider PriRFed-DP-RSGD and Option 2. Set st = 1, K > 1,
αt = α < (β

1
K−1 − 1)/β with β > 1 being a free constant. It holds that

E[‖gradf (x̃)‖2] ≤ f (x (0))− f (x∗)
KT δmin

+ q0q,

where δmin = α(1− (1+αβ)K−1

β
), q0 =

αβ(Lg +2(1+αβ)K−1ζ)

2(β−(1+αβ)K−1)
, q = L2

f + dσ2, and
σ = maxi=1,2,...,N σi .

Allow multiple inner iteration, i.e., K > 1, but only one agent is used, i.e., st = 1;
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PriRFed with DP-RSVRG
Assumptions:
• The function fij is geodesic Lf -Lipschitz continuous for any i, j ;
• The function fij is geodesically Lg-smooth;
• Manifold is complete;
• All iterates stay in a compact subsetW ⊂M and the sectional curvature in
W is bounded in [κmin, κmax];

Theorem 15 (Nonconvex, K > 1,m > 1)

Consider PriRFed-DP-RSVRG with Option 2. Set st = 1, K > 1,
m = b10N/(3ζ1/2)c > 1, and αt = α ≤ 1/(10LgN2/3ζ1/2). It holds that

E[‖gradf (x̃)‖2] ≤ c Lgζ
1/2

N1/3KT
[f (x (0))− f (x∗)] + dσ2

100ζ1/2

(
1

N2/3 + 1
N

)
,

where c > 10N/(3m) is constant, σ = maxi=1,2,...,N σi , and ζ depends on κmin.



Convergence Analysis

Difficulty in convergence analysis: Control the noise propagation on manifolds
• Existing result: FL-DP on linear spaces, FL on manifolds, or DP on

manifolds;
• Consider the distortion caused by linearity of manifolds, involving

curvature;

A summary
• Consider “nonconvex”, “convex”, “RPL” scenarios;

• Some consistent with existing Riemannian FL in [LM23];

• Some consistent with Euclidean FL-DP in [Wei+22];

• Not guarantee convergence for all parameter settings;

• Importantly, st > 1 and K > 1 not considered;
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Principal Eigenvector over Sphere Manifold

min
x∈Sd

f (x) := −
N∑

i=1

pi

 1
Ni

Ni∑
j=1

xT (zi,jzT
i,j )x

 , (4.1)

where Sd = {x ∈ Rd+1 : ‖x‖2 = 1}, pi = Ni∑N
i=1 Ni

, and Di = {zi,1, . . . , zi,Ni }

with zi,j ∈ Rd+1.
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Principal Eigenvector over Sphere Manifold

min
x∈Sd

f (x) := −
N∑

i=1

pi

 1
Ni

Ni∑
j=1

xT (zi,jzT
i,j )x


Synthetic data:
• construct a (d + 1)× (d + 1) diagonal matrix

Σi = diag{1, 1− 1.1ν, . . . , 1− 1.4ν, |y1|/(d + 1), |y2|/(d + 1), . . . } where
ν is the eigengap and y1, y2, . . . are drawn from the standard Gaussian
distribution;
• construct Zi = Ui ΣiVi where Ui ,Vi of size Ni × (d + 1) and

(d + 1)× (d + 1) are random column orthonormal matrices

MNIST:
• 60,000 hand-written images of size 28× 28 (in the case,

d + 1 = 282 = 784);
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Principal Eigenvector over Sphere Manifold
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Synthetic data: An average result of 10 random runs (d = 24)
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(a) N = 16,Ni = 70, DP-RSGD
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(c) N = 16,Ni = 100, DP-RSVRG

• The smaller ε is, the larger the σi is;
• Left column: st = N, K = 1, , bi = Ni and αt = 1/(2Lg);
• Middle column: st = 1, K = 5, bi = Ni/2, and αt = 1.0;

• Right column: st = 1, K = 2, m = b10N/3c, and αt = 1/(10N2/3Lg);
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Synthetic data: An average result of 10 random runs (d = 24)

0 100 200 300

iteration

-5.5

-5

-4.5

-4

-3.5

-3

c
o

s
t

10
-3

294 296 298 300

-5.78

-5.76

-5.74

-5.72

-5.7

10
-3

0 100 200 300 400 500

iteration

-5

-4.5

-4

-3.5

-3

c
o

s
t

10
-3

0 100 200 300 400 500

iteration

-3.5

-3

-2.5

-2

c
o

s
t

10
-3

0 100 200 300

iteration

10
-4

10
-3

n
o

rm
 o

f 
g

ra
d

ie
n

t

(a) N = 16,Ni = 70, DP-RSGD

0 100 200 300 400 500

iteration

2

2.5

3

n
o

rm
 o

f 
g

ra
d

ie
n

t
10

-3

(b) N = 16,Ni = 70, DP-RSGD

0 100 200 300 400 500

iteration

1.4

1.6

1.8

2

2.2

n
o

rm
 o

f 
g

ra
d

ie
n

t

10
-3

(c) N = 16,Ni = 100, DP-RSVRG

Large noise slows down the convergence speed and
increases the noise floor.



Principal Eigenvector over Sphere Manifold

Federated Learning on Riemannian Manifolds with Differential Privacy 32

MNIST: An average result of 10 random runs (d = 783)
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(e) N = 60,Ni = 1000
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(f) N = 80,Ni = 750
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(g) N = 100,Ni = 600

• ε = 0.15, δ = 10−4, st = 1, K = 3, bi = Ni/2, and αt = 0.1;
• DP-SVRG: m = b10N/3c;



Hyperbolic Structured Prediction

h(x) := arg min
x∈Hd

f (x) =
N∑

i=1

pi

Ni∑
j=1

1
Ni
αi,j (w)dist2(x , yi,j ), (4.2)

where features w = {wi,j} with wi,j ∈ Rr and hyperbolic embeddings yi,j ∈ Hd are
given,
• αi (w) = (αi,1(w), . . . , αi,Ni (w))T ∈ RNi ;

• αi (w) = (Ki + γI)−1Ki,w with a given γ > 0;

• Ki ∈ RNi×Ni and (Ki )l,j = k(wi,l ,wi,j );

• Ki,w ∈ RNi and (Ki,w )j = k(wi,j ,w);

• The kernel function k(w ,w ′) = exp(−‖w − w ′‖2
2/(2v̄)2).

• Hyperbolic manifold Hd := {x ∈ Rd+1 : 〈x , x〉L = −1} with
〈x , y〉L = xT y − 2x1y1 (Riemannian metric);

• The exponential map: Expx (v) = cosh(‖v‖L)x + v sinh(‖v‖L)
‖v‖L

;

• The logarithm map Exp−1
x (y) =

cosh−1(−〈x,y〉L)

sinh(cosh−1(−〈x,y〉L))
(y + 〈x , y〉L x);

• The distance function dist(x , y) = cosh−1(−〈x , y〉L).
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Hyperbolic Structured Prediction

Mammals Substree of WordNet

• Mammals Substree are embedded on H2;
• Transitive closure containing n = 1180 nodes and 6540 edges;
• The feature are stemmed from Laplacian eigenmap to dimension r = 3;
• The word "primate" as the test sample;
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Hyperbolic Structured Prediction
Plot in Poincaré ball model
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(j) Full embeddings

(k) Partial embedding



Summary

• Introduced the federated learning;
• Introduced the differential privacy;
• Proposed a Riemannian federated learning framework with differential

privacy guaranteed (PriRFed);
• Convergence analysis for two instances of PriRFed, i.e., with DP-RSGD

and DP-RSVRG;
• Numerical experiments verify the performance;

For more details, see
Zhenwei Huang, Wen Huang, Pratik Jawanpuria, and Bamdev Mishra. Federated
learning on Riemannian manifolds with differential privacy. arXiv:2404.10029, 2024.
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Thank you

Thank you for your attention!
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