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Abstract—In the framework of elastic shape analysis, a shape is
invariant to scaling, translation, rotation and reparameterization.
Since this framework does not yield a closed form geodesic
between two shapes, iterative methods are used. In particular,
path straightening methods have been proposed and used for
computing a geodesic that is invariant to curve scaling and
translation. Path straightening can then be exploited within a
coordinate-descent algorithm that computes the best rotation
and reparameterization of the end point curves. In this paper,
we propose a Riemannian quasi-Newton method to compute a
geodesic invariant to scaling, translation, rotation and reparame-
terization and show that it is more efficient than the coordinate-
descent/path-straightening approach.

I. INTRODUCTION

Shape analysis of curves is important in various area such
as computer vision, medical diagnostics, and bioinformatics.
The basic idea is to obtain a boundary curve of an object in
a 2D image or contours of a 3D object and analyse those
curves to characterize the original object. The research on
shape analysis is rich and various ideas have been proposed,
e.g., point-based methods, domain-based shape representations
and parameterized curve representations. Work on this topic
can be traced back to Kendall [8], in which the representation
of a shape uses landmarks. However, the choices of landmarks
is subjective and may significantly influence the analysis of the
original objects. For example, Figure 1 shows the geodesics
given by two different landmarks. As a matter of fact, the
represented points of the bottom figure in Figure 1 is chosen
by using the elastic shape analysis. Specifically, unlike the
landmarks approach, the elastic shape analysis also takes
reparameterization of curves into account.

geodesic without reparameterization

geodesic with reparameterization

Fig. 1. Geodesics without and with reparameterization are given by the
frameworks of landmark-based Kendall’s shape analysis [8], [2] and elastic
shape analysis [13] respectively.

Many frameworks for elastic shape analysis have been
proposed. Younes [15] first introduced a framework for general
2D curves. Younes et al. [16] studied on elastic analysis of
closed curves using complex representations of 2D coordinates
of curves. Srivastava et al. [13] further defined a novel math-
ematical framework called the square root velocity functions
(SRVFs), which include curves in Euclidean spaces of any
dimension.

Elastic shape analysis draws more and more attention due
to its superior theoretical results and effectiveness. The price
for enhanced effectiveness can be an increase in computational
cost in geodesic, mean, etc. In this paper, the SRVF framework
defined in [13] is considered. The SRVF framework converts
the complicated Riemannian metric into the standard L2 metric
and preserves the isometry of the rotation and reparameteri-
zation group actions. This allows us to define the shape space
in a relatively simple way. In [5], a closed form of distance
approximation for closed curves, which is invariant to curve
scaling and translation, is used and a Riemannian approach
is proposed to improve the efficiency and effectiveness of
removing rotation and reparameterization. In this paper, we
explore the same idea of [5] and improve the efficiency in the
computation of removing the rotation and reparameterization
without using approximation of closed curve distance. Also
unlike the approach in [5], a geodesic is obtained.

Two commonly used methods of computing the geodesic in
elastic shape space are the shooting method [10] and the path
straightening method [11] [9] [7] [13]. The path straightening
method has the advantage that all the iterates of paths connect
the two points while the shooting method does not. In this
paper, we focus on the path straightening method.

This paper is organized as follows. Section II presents the
SRVF framework. Section III gives a previous approach that
uses path straightening. Section IV defines the Riemannian
approach and red experiments are presented in Section V.

II. SRVF FRAMEWORK

A shape or curve in Rn is denoted by a parameterized
function β(t) : D→ Rn, where D is [0, 1] for open curves and
D is the unit circle S1 for closed curves. The representation
of a shape starts from its square root velocity (SRV) function,

q(t) =

{
β̇(t)√
||β̇(t)||2

, if ||β̇(t)||2 6= 0;

0, if ||β̇(t)||2 = 0.
f



where ‖·‖2 denotes the 2-norm. The curve β can be recovered
by β(t) =

∫ t
0
q(s)||q(s)||2ds if β(0) is 0. Note translation

is removed since β̇ is used. Further more, rescaling can be
removed by restricting curves to be of unit length. Since the
length of β(t) is

∫
D ‖β̇(t)‖2dt =

∫
D ‖q(t)‖

2
2dt, the resulting

space, called the preshape space ln, for open curves is defined
as

lon =

{
q ∈ L2([0, 1],Rn)|

∫ 1

0

||q(t)||22dt = 1

}
,

and for closed curves is defined as
lcn = {q ∈ L2(S1,Rn)|∫

S1
||q(t)||22dt = 1,

∫
S1
q(t)||q(t)||2dt = 0}

where
∫ 1

S q(t)||q(t)||2dt = 0 stresses the closure condition
and the super script o and c denotes open or closed curves
respectively. Statements without a superscript apply to both
open and closed curves. A more intuitive way to denote
the preshape space lcn is {q ∈ L2(S1,Rn)|

∫ 1

0
||q(t)||22dt =

1,
∫ 1

0
q(t)||q(t)||2dt = 0} and the closure condition means

the difference between β(0) and β(1) is zero since∫ 1

0
q(t)||q(t)||2dt = β(1) − β(0). It can be seen that lcn is a

submanifold of lon. The metrics of the spaces are endowed from
L2, i.e., 〈v1, v2〉L2 =

∫ 1

0
vT1 v2dt for v1, v2 ∈ L2([0, 1],Rn).

In order to remove rotation and reparameterization, we
consider the rotation group

SO(n) =
{
O ∈ Rn×n|OTO = In,det(O) = 1

}
and the reparameterization group

Γ = {γ : D→ D|γ is orientation-preserving,
smooth bijections.}.

The actions of SO(n) and Γ on the SRV of a curve β are:

SO(n)× ln → ln : (O, q)→ Oq,

ln × Γ→ ln : (q, γ)→ (q ◦ γ)
√
γ̇

where ◦ is the function composition operation. It has been
shown in [13] that the two group actions are isometric with
respect to the L2 metric. It follows that the orbit of the group
actions is defined by

[q] =
{
O(q ◦ γ)

√
γ̇|(γ,O) ∈ Γ× SO(n)

}
and the the shape space is defined as:

Ln = ln/Γ× SO(n) = {[q]|q ∈ ln},

where [q] denotes the closure of [q] with respect to L2. We
mod out by the closures of the orbits instead of the orbits
themselves because the space of diffeomorphisms is not closed
under the L2 and Palais metrics [13].

Since Ln is a quotient manifold of ln and they have the same
metric, a geodesic in Ln can be represented by any geodesic
in ln that is perpendicular to any orbit that it intersects, and
the distance between [q0] and [q1] ∈ Ln is given by

dLn
([q0], [q1]) = inf

(γ,O)∈Γ×SO(n)
dln(q0, O(q1 ◦ γ)

√
γ̇).

III. PATH STRAIGHTENING METHOD

A. Path-Straightening Method in Preshape Space lcn
The preshape space of open curves is a unit sphere and its

geodesic is well known. In this paper, we focus on computing
a geodesic of closed curves. Throughout this paper, the use of
word “geodesic” means a path with a constant velocity.

Let P denote all the curves in lcn. Let the set of paths
connecting two curves q0, q1 in lcn be

Pq1,q2 = {α : [0, 1]→ lcn|α(0) = q0, α(1) = q1}

We start off from an arbitrary path α(τ) in Pq1,q2 , and iterate
until reaching a critical point of the energy function

E : Pq1,q2 → R : α 7→ 1

2

∫ 1

0

〈α̇(τ), α̇(τ)〉 dτ.

It has been shown in [13, Lemma 4] that any critical of E is
a geodesic of lcn.

A gradient method is proposed in [13], in which the search
direction is along the negative gradient direction and a fixed
step size is used.

Consider a path β ∈P and a vector field v ∈ Tβ P . The
covariant derivative of v along β is the vector field obtained
by projecting dv

dτ (τ) onto the tangent space of Tβ(τ) l
c
n for all

τ . A vector field z ∈ Tβ P is called a covariant integral of v
along β if the covariant derivative of z is v, i.e., Dzdτ = v.

Let u denote the covariant integral of dα
dτ with zero initial

value at τ = 0. The gradient of E is given by w(τ) =
u(τ)− τ ũ(τ), where ũ is the vector field obtained by parallel
translating u(1) backwards along α, i.e., ũ(1) = u(1) and
Dũ
dτ (τ) = 0 for all τ ∈ [0, 1].

Algorithm 1 outlines the path straightening method for
computing geodesic in lcn of [13].

Algorithm 1 Path Straightening Method
Input: Two curves β0 and β1, and a step size t > 0

1: Compute the representations q0 and q1 in lcn.
2: Initialize a path α between q0 and q1 in lcn.
3: Compute the velocity vector field dα(τ)

dτ along the path α.
4: Compute the covariant integral of dα(τ)

dτ , denoted by u
5: Compute the backward parallel transport of the vector
u(1) along α, denoted by ũ

6: Compute the full gradient vector field of the energy E
along the path α, denoted by w, using w(τ) = u(τ) −
τ ũ(τ).

7: Update α along the vector field tw. If
∫ 1

0
‖w(τ)‖2L2dτ is

small, then stop. Else, goto Step 3.

The initial path α between q0 and q1 is obtained by
projecting the path αo, the geodesic between q0 and q1 in
lon, onto the lcn (see details in [13, Item 1]). This usually
offers good initial iterate and Algorithm 1 converges after
only a few iterations to reach a tight stopping criterion, e.g.,∫ 1

0
‖w(τ)‖2L2dτ ≤ 10−10.



B. Removing Orientations and Reparameterizations

In order to obtain a geodesic in shape space Ln, we need to
minimize the cost function H(O, γ) = dlcn(q0, O(q1 ◦ γ)

√
γ̇)

over the product of manifolds SO(n) and Γ. The algorithm in
[13] solves this optimization by alternately optimizing between
SO(n) and Γ. This requires the computation of the gradient
with respect to O and γ.

To this end, consider the cost function dlcn(q0, q̃1) with
respect to q̃1. Let α denote the geodesic between q0 and
q̃1 in lcn. It can be shown that the gradient of dlcn(q0, q̃1) is
η = α̇(1)/‖α̇(1)‖. It follows that the gradient with respect to
O is

gradOH(O, γ) = PO

(∫
D
η
√
γ̇(q2 ◦ γ)T ds

)
(III.1)

where PO(M) = (M −OMTO)/2.
Note that Γ is an infinite dimensional manifold. The gradient
with respect to γ is approximated by

gradγ H(O, γ) ≈
k∑
i

bi DH(O, γ)[bi], (III.2)

where {bi}∞i=1 is a basis of the tangent space of γ, the tangent
space of γ is Tγ Γ = L2(S1,R), k is the number of the
elements in the basis and DH(O, γ)[bi] denotes the directional
derivative of H(O, γ) along direction bi. It can be shown that

DH(O, γ)[bi] =

〈
η,O

(√
γ̇q̇1(γ)bi +

1

2
√
γ̇
ḃiq1(γ)

)〉
L2

.

The suggested basis {bi} is an orthonormal basis of the tangent
space of γ under the Palais metric 〈v1, v2〉P = v1(0)v2(0) +∫ 1

0
v̇1(τ)v̇2(τ)dτ , i.e.,

{1, sin(nt)

nπ
,

cos(nt)− 1

nπ
, n = 1, 2, . . .}. (III.3)

The algorithm for removing rotation and reparameterization
is stated in Algorithm 2.

Algorithm 2 Removing rotation and reparameterization
Input: Two curves β0 and β1, and step sizes t1, t2 > 0

1: Set β̃1 to be β1, O0 = I , γ0 = γid, and k = 0.
2: Compute the representations q0 of β0 and q1 of β̃1.
3: Compute the geodesic α between q0 and q1 in lcn using

Algorithm 1.
4: Update the rotation by Ok+1 =
Ok exp(t1 gradI H(I, γid)), where gradI H(I, γid)
is (III.1).

5: Update the reparameterization by γk+1 = γk ◦ (γid +
t2 gradγid H(I, γid)), where gradγid H(I, γid) is (III.2).
Note that t2 should be small enough such that γk+1 is
nondecreasing.

6: Update β̃1 ← Ok+1β1 ◦ γk+1 and set q1 to be the SRVF
of β̃1

7: If some stopping criterion is satisfied, then stop. Else, k ←
k + 1 and goto Step 2.

Note that in [13] the substitution of l =
√
γ̇ is used in H . It

follows that the cost function is defined on SO(n) and the first
quadrant of the unit sphere L = {l ∈ L2([0, 1],R)|‖l‖L2=1}.
Note that using the basis (III.3) essentially yields the same
method in [13, Section 4.4] without the extra substitution step.

IV. A RIEMANNIAN APPROACH

The path straightening method in the shape space can
be characterized as a steepest descent method with a fixed
step size. It is well-known that the steepest descent method
may have slow convergence, see e.g., [12]. In this paper, we
apply a faster algorithm, a limited-memory version of Rie-
mannian BFGS (Broyden-Fletcher-Goldfarb-Shanno) method
(LRBFGS), which is introduced in [4] and shown to outper-
form many other state-of-the-art Riemannian algorithms for
many large-scale problems, e.g., [12], [5], [6].

Since it is observed that Algorithm 2 dominates the com-
putational time in the sense that it needs a large number of
iterations, we only use LRBFGS to improve the performance
of removing rotation and reparameterization.

For the closed curves, the reparameterization group Γ can
be characterized as

Γc = [0, 1]× Γo

and its action is therefore lcn × Γc → lcn : ((q,m), γ)) →
(q(t+m mod 1) ◦γ mod 1))

√
γ̇, where Γo is the reparam-

eterization group for open curves, i.e.,

Γo =
{
γ : [0, 1]→ [0, 1]|γ is a diffeomorphism

}
.

Further setting l =
√
γ̇, we obtain a cost function

f(O,m, l) = dlcn(q1, Olq2(

∫ t

0

l2(s)ds+m mod 1)),

(IV.1)
where (O,m, l) ∈ SO(n) × R × L. We define the
metric on the tangent space of SO(n) × R × L by
〈(U1, b1, v1), (U2, b2, v2)〉 = trace(UT1 U2)+b1b2+

∫ 1

0
v1v2ds.

The Riemannian gradient of f with respect to this metric is
given in Lemma 4.1 without proof.

Lemma 4.1: The Riemannian gradient of f(O,m, l) in
(IV.1) is

grad f(O,m, l) = (PO(A),

∫ 1

0

y′ds, Pl(x− 2yl)),

where A denotes
∫ 1

0
ηlqT2 (

∫ t
0
l2(s)ds + m mod 1)ds, x

denotes 〈η,O(q2(
∫ t

0
l2(s)ds + m mod 1))〉2, y′ denotes

〈η,O(lq′2(
∫ t

0
l2(s)ds + m mod 1))〉2, η is the same as in

(III.1) and Pl(v) = v − l 〈v,l〉L2〈l,l〉L2
.

In order to apply the LRBFGS algorithm in [4, Algorithm
2], we also need a retraction and a vector transport. The chosen
pair is the well-known exponential mapping and parallel
translation for each component (see e.g., [1]). They are given
here for completeness. The retraction is

R(O,m,l)(A, a, v) =
(
O exp(OTA),m+ a,

l cos(‖v‖L2) +
v

‖v‖L2

sin(‖v‖L2)
)
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Fig. 2. Samples of curves from the MPEG-7 dataset. One sample per cluster
is illustrated.

and the vector transport is

T(A,a,v)((B, b, w)) =
(
O exp(OTA/2)OTB exp(OTA/2),

b, w − 2〈w, l̃〉L2

||l + l̃||2L2

(l + l̃)
)

where A,B ∈ TO SO(n), a, b ∈ R, w, v ∈ Tl L and l̃ =
l cos(‖v‖L2) + v

‖v‖L2
sin(‖v‖L2).

V. EXPERIMENTS

The MPEG-7 dataset [14] is used in the experiments. It
contains 70 clusters each of which has 20 shapes, i.e., 1400
shapes in total. Figure 2 shows an example shape from each
cluster. Matlab function BWBOUNDARIES is used to extract
the boundary curves of the shapes and 100 uniformly-spaced
points are chosen to represent each shape. A path in lcn is
represented by 11 curves.

The tests are performed in Matlab R2014a on a 64 bit
Ubuntu system with 3.6GHz CPU (Intel (R) Core (TM) i7-
4790).

We compare the performance of LRBFGS and a Riemannian
steepest descent (RSD) algorithm based on the framework in
Section IV, as well as Algorithm 2 with multiple choices of
step sizes t1 and t2 over many randomly chosen pairs of curves
from the data set. The initial rotation and reparameterization
for all algorithms are given by the approach in [5]. The
average computational time and the average cost function
values (distance) after each iteration are computed and the
results are shown in Figure 3.

Since the step sizes, t1 and t2 are fixed, the choice of their
values is important in Algorithm 2. If they are taken too small
then the convergence would be slow. If taken too large then
the cost function may not decrease. It is shown in Figure 2
that the average function values with t2 = 0.002 oscillate.
This is due to the fact that for that value of t2 Algorithm 2
does not converge for some of the pairs of curves – the cost
function value oscillates and does not decrease. Note, however,
that all algorithms that converge for a particular pair of curves
converge to the same critical point. RSD and LRBFGS both
use an efficient line search algorithm to determine a step size
for each iteration that satisfies appropriate termination criteria
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Fig. 3. Comparisons of algorithms with 50 iterations. The top graph shows
the relationship between the computational time and the cost function values.
The bottom graph shows the relationship between the number of iterations and
the cost function values. The notation Alg.2:(t1, t2) denotes the step sizes in
Algorithm 2.

to guarantee convergence [3] and are therefore more robust
than Algorithm 2.

RSD and Algorithm 2 have similar performance when the
latter converges and both converge very slowly. LRBFGS
achieves a much smaller cost function value in less time
and is clearly the best algorithm among the three when the
effectiveness is taken into consideration.

VI. CONCLUSION AND FUTURE WORK

In this paper, we consider computing the geodesic in the
shape space of elastic curves. A Riemannian manifold opti-
mization approach is proposed as a replacement for the current
state-of-the-art coordinate-descent/path-straightening approach
in [13]. The Riemannian quasi-Newton method, LRBFGS, is
shown to be superior in both robustness and computational
efficiency.

In the future, we will test the quality of the distance obtained
by LRBFGS in the sense of superior clustering, classification,
and Karcher mean computations. The Riemannian approach
will be included in the C++ Riemannian optimization library
on http://www.math.fsu.edu/ROPTLIB.
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