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Problem Statement

R
Optimization on Manifolds with Structure: — .
ol — 1 A
min F(x) = f(x) + g(x),

@ M is a Riemannian manifold;
@ f is continuously differentiable and may be nonconvex; and

@ g is continuous, but may be not differentiable.
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Problem Statement

Optimization on Manifolds with Structure: 7 .. 3 -

min F(x) = f(x) + g(x), ’

xeM

@ M is a Riemannian manifold;
@ f is continuously differentiable and may be nonconvex; and

@ g is continuous, but may be not differentiable.

Applications: sparse PCA [ZHTO06], discriminative k-means [YZW08],
texture and imaging inpainting [LRZM12], co-sparse factor
regression [MDC17], and low-rank sparse coding [ZGL"13].
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A Euclidean Proximal Gradient Method

Optimization with Structure: M =R"

min F(x) = £(x) + g(x), (1)

1
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A Euclidean Proximal Gradient Method

Optimization with Structure: M =R"

min F(x) = £(x) + g(x), (1)

A proximal gradient method?:

initial iterate:xg,

di = arg minpers (VF(x), p) + 5||pl|2 + g(xx + p), (Proximal mapping)
Xer1 = Xk + d. (Update iterates)

1The update rule: x;. 1 = arg min (Vf(xx),x — xx) + éHX — xk||2 + g(x).
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A Euclidean Proximal Gradient Method

Optimization with Structure: M =R"

min F(x) = £(x) + g(x), (1)

A proximal gradient method?:

initial iterate:xg,

di = arg minpers (VF(x), p) + 5||pl|2 + g(xx + p), (Proximal mapping)
X1 = Xk + di. (Update iterates)

@ g = 0: reduce to steepest descent method;

1The update rule: x;.1 = arg min (Vf(xx),x — xx) + éHX — xk||2 + g(x).
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A Euclidean Proximal Gradient Method

Optimization with Structure: M =R"

min F(x) = £(x) + g(x), (1)

A proximal gradient method?:

initial iterate:xg,

di = arg minpers (VF(x), p) + 5||pl|2 + g(xx + p), (Proximal mapping)
X1 = Xk + di. (Update iterates)

@ g = 0: reduce to steepest descent method;
@ L: greater than the Lipschitz constant of Vf;

@ Proximal mapping: easy to compute;

1The update rule: x;.1 = arg min (Vf(xx),x — xx) + éHX — xk||2 + g(x).
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A Euclidean Proximal Gradient Method

Optimization with Structure: M =R"

min F(x) = £(x) + g(x), (1)

A proximal gradient method?:
initial iterate:xg,
di = arg minpers (VF(x), p) + 5||pl|2 + g(xx + p), (Proximal mapping)
Xer1 = Xk + d. (Update iterates)

@ g = 0: reduce to steepest descent method;
@ L: greater than the Lipschitz constant of Vf;
@ Proximal mapping: easy to compute;

@ Any limit point is a critical point;
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Optimization with Structure: M =R"

min F(x) = £(x) + g(x), (1)

A proximal gradient method?:

initial iterate:xg,
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X1 = Xk + di. (Update iterates)

@ g = 0: reduce to steepest descent method;

@ L: greater than the Lipschitz constant of Vf;

@ Proximal mapping: easy to compute;

@ Any limit point is a critical point;

@ O(1/k) sublinear convergence rate for convex f and g;
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A Euclidean Proximal Gradient Method

Optimization with Structure: M =R"

min F(x) = £(x) + g(x), (1)

A proximal gradient method?:

initial iterate:xg,

{ di = arg minpers (VF(x), p) + 5||pl|2 + g(xx + p), (Proximal mapping)
Xer1 = Xk + d. (Update iterates)
@ g = 0: reduce to steepest descent method;
L: greater than the Lipschitz constant of Vf;
Proximal mapping: easy to compute;
Any limit point is a critical point;

O(1/k) sublinear convergence rate for convex f and g;

Local convergence rate by KL property;

1The update rule: x;.1 = arg min (Vf(xx),x — xx) + éHX — xk||2 + g(x).



A Euclidean Proximal Gradient Method

min,cgnxm F(x) = f(x) + g(x), with F satisfying the
Kurdyka-tojasiewicz (KL) property with exponent 6 € (0, 1]:

<'(F(y) = F(x)) dist(0,0F(y)) > 1, <(t) = _-e”.

Reference [BST14]:
@ Only one accumulation point;

o if # =1, then the proximal gradient method terminates in finite
steps;

e if # €[0.5,1), then ||xx — x.|| < Cid* for C; >0 and d € (0,1);
o if 0 € (0,0.5), then ||lxx — x,|| < Cok™2 for C, > 0;
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Diffuclities in the Riemannian setting

Euclidean proximal mapping

. L
di = arg min (Vf(x),p) + = |Ipl|% + g(x« + p)
pERNXM 2

In the Riemannian setting:
@ How to define the proximal mapping?
@ Can be solved cheaply?
@ Share the same convergence rate?
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A Riemannian Proximal Gradient Method in [CMSZ20]

Euclidean proximal mapping

. L
di =arg min (Vf(x),p) + 5llpllE + &(x + p)
pERNXM 2

A Riemannian proximal mapping [CMSZ20]

© i = argminger, at (VF(xe). ) + &lInl: + glxc +n);

@ Only works for embedded submanifold;

1[CMSZlS]: S. Chen, S. Ma, M. C. So, and T. Zhang, Proximal gradient method
for nonsmooth optimization over the Stiefel manifold. SIAM Journal on Optimization,
30(1):210-239, 2020
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A Riemannian Proximal Gradient Method in [CMSZ20]

Euclidean proximal mapping

. L
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A Riemannian proximal mapping [CMSZ20]

Q 7k = argminger, m (VF(x),n) + 5lnllE + g0« +n);

@ Only works for embedded submanifold;
@ Proximal mapping is defined in tangent space;

o Convex programming;

1[CMSZlS]: S. Chen, S. Ma, M. C. So, and T. Zhang, Proximal gradient method
for nonsmooth optimization over the Stiefel manifold. SIAM Journal on Optimization,
30(1):210-239, 2020



A Riemannian Proximal Gradient Method in [CMSZ20]

Euclidean proximal mapping

. L
di = arg_min (Vf(x),p) + 5 [P + &0xk + p)
pERNXM 2

ManPG [CMSZ20]

Q i = argminger, M (VF(x), ) + 510l + g0k +n);

@ Only works for embedded submanifold;
@ Proximal mapping is defined in tangent space;
e Convex programming;

@ Solved for the Stiefel manifold by semi-smooth Newton;
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A Riemannian Proximal Gradient Method in [CMSZ20]

Euclidean proximal mapping

. L
di =arg min (Vf(xk),p) + 5 |lplE + &(s + p)

peRnxm

ManPG [CMSZ20]

Q i = argminger, M (VF(x), ) + 510l + g0k +n);
Q@ xii1 = Ry, (akmi) with an appropriate step size ay;

@ Only works for embedded submanifold;

Proximal mapping is defined in tangent space;

°

o Convex programming;

@ Solved for the Stiefel manifold by semi-smooth Newton;
°

Convergence to a stationary point;
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A Riemannian Proximal Gradient Method in [CMSZ20]

Euclidean proximal mapping

. L
di = arg_min (Vf(x),p) + 5 [P + &0xk + p)
pERNXM 2

ManPG [CMSZ20]

Q 7k = argminger, m (VF(x),n) + 5[0l + g0« +n);
@ xk+1 = Ry (akmi) with an appropriate step size a;

@ Only works for embedded submanifold;

Proximal mapping is defined in tangent space;

Convex programming;

°

°

@ Solved for the Stiefel manifold by semi-smooth Newton;
@ Convergence to a stationary point;

°

No convergence rate results;
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A Riemannian Proximal Gradient Method in [HW21]

ManPG [CMSZ20]

L
Nk = arg nergxian (VF(a)m) + 5 lInllE + g0a +m)

Let £ (1) = (gradf (xic), m)x + 511713, + &R (m):;
Q 1k € Ty, M is a stationary point of £, (1), and £, (0) > Ck(nk);

Q xkt1 = R (M),

1[HW21]: W. Huang, K. Wei, Riemannian Proximal Gradient Methods.
Mathematical Programming, Series A, doi:10.1007/s10107-021-01632-3, 2021
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ManPG [CMSZ20]

L
Nk = arg nergxian (VF(a)m) + 5 lInllE + g0a +m)

Let £, (1) = (gradf (x), m)x, + 5173, + &(Rx(n));
Q 1k € Ty, M is a stationary point of £, (1), and £, (0) > Ck(nk);
Q k1= R (k)

@ General framework for Riemannian optimization;

1[HW21]: W. Huang, K. Wei, Riemannian Proximal Gradient Methods.
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Speaker: Wen Huang An Inexact Riemannian Proximal Gradient Method



A Riemannian Proximal Gradient Method in [HW21]

ManPG [CMSZ20]

L
Nk = arg nergxian (VF(a)m) + 5 lInllE + g0a +m)

Let £ (1) = (gradf (xic), m)x + 511713, + &R (m):;
Q 1k € Ty, M is a stationary point of £, (1), and £, (0) > Ck(nk);

Q xkt1 = R (M),

o General framework for Riemannian optimization;

@ Any limit point is a critical point;

1[HW21]: W. Huang, K. Wei, Riemannian Proximal Gradient Methods.
Mathematical Programming, Series A, doi:10.1007/s10107-021-01632-3, 2021

Speaker: Wen Huang An Inexact Riemannian Proximal Gradient Method



A Riemannian Proximal Gradient Method in [HW21]

ManPG [CMSZ20]

L
Nk = arg nergxian (VF(x)m) + 5 lInllE + gCa +m)

Let £, (1) = (gradf (x), m)x, + 5103, + &(Rx(1));
Q 7k € Ty, M is a stationary point of ¢, (1), and £, (0) > Ck(nk);
Q k1= R (k)

o General framework for Riemannian optimization;
@ Any limit point is a critical point;

@ O(1/k) sublinear convergence rate for retraction-convex f and g;
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A Riemannian Proximal Gradient Method in [HW21]

ManPG [CMSZ20]

L
Nk = arg nergxian (VF(x)m) + 5 lInllE + gCa +m)

Let £ (1) = (gradf (xic), m)x + 517113, + &R (m);
Q 7k € Ty, M is a stationary point of ¢, (1), and £, (0) > Ck(nk);

Q xit1 = R (M),

o General framework for Riemannian optimization;

@ Any limit point is a critical point;

@ O(1/k) sublinear convergence rate for retraction-convex f and g;
@ Local convergence rate by Riemannian KL property;
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A Riemannian Proximal Gradient Method in [HW21]

ManPG [CMSZ20]

L
Nk = arg nergxian (VF(x)m) + 5 lInllE + gCa +m)

Let £ (1) = (gradf (xic), m)x + 517113, + &R (m);
Q 7k € Ty, M is a stationary point of ¢, (1), and £, (0) > Ck(nk);

Q xit1 = R (M),

General framework for Riemannian optimization;

Any limit point is a critical point;

O(1/k) sublinear convergence rate for retraction-convex f and g;
Local convergence rate by Riemannian KL property;

Exploring manifold structure or using semi-smooth Newton iteratively;



An inexact Riemannian Proximal Gradient Method

Both ManPG and RPG require the Riemannian proximal
mapping to be solved exactly

@ Theoretically, but not practical numerically

@ Can we relax this requirement and still preserve desired convergence
properties?

@ ManPG (no converge rate results)
o RPG (this talk)
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An Inexact Riemannian Proximal Gradient Method

Outline:
@ Algorithm statement
@ Convergence analysis on general manifolds
@ Algorithm design for the inexact Riemannian proximal mapping

@ Numerical experiments
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An Inexact Riemannian Proximal Gradient Method

Inexact RPG (IRPG)

Let £y, (1) = (gradf (xc), n)x + 5013, + &(Ra(n));
@ Find 7, € Tx M such that

7 = 1 |l < a(eks [0 M1) and £54,(0) = £y (),

where e, > 0, and g : R? — R is a continuous function;
Q Xii1 = R (nk);
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An Inexact Riemannian Proximal Gradient Method

Inexact RPG (IRPG)

Let £y, (n) = (gradf(xi),m)x, + 5lnl2 + &(Re (n));
@ Find 7, € Ty M such that

||ﬁ><k - 77;” < q(5k7 Hﬁxk”) and gxk(o) > EXk(ﬁXkL

where ¢, > 0, and g : R?2 — R is a continuous function;
Q@ Xit1 = R (Mk);

Four choices of g lead to different convergence results:
1) Global g(ex, ||fix ) = ek with ex — 0;
2) Global g(ek, ||fix ) = G(||fx||) with § : R — [0, 00) a continuous
function satisfying G(0) = 0;
3) Unique g(ex, ||fx||) = €2, with ;2 ek < oo; and
4) Rate q(ex, [|fx||) = min(e2, 849 ||?) with a constant &, > 0 and
Z(;O:O g < Q.
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An Inexact Riemannian Proximal Gradient Method

Inexact RPG (IRPG)

Let £y (1) = (gradf (xi), m)x + 5lnl2, + &(Ra(n));
@ Find 7, € Ty M such that

||ﬁ><k - 77;” < q(sk’ HﬁXkH) and ZXk(o) > gxk(ﬁxk)7

where g, > 0, and g : R? — R is a continuous function;
Q Xk+1 = RXk(nk);

Not a Riemannian generalization of any of the existing
Euclidean inexact proximal gradient methods
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An Inexact Riemannian Proximal Gradient Method

Inexact proximal gradient methods in the Euclidean setting:
[Com04, FP11, SRB11, VSBV13, BPR2(]

[Com04]: Patrick L. Combettes. Solving monotone inclusions via compositions of
nonexpansive averaged operators.Optimization, 53(5-6):475-504, 2004.

[FP11]: J. M. Fadili, and G. Peyre, Total variation projection with first order schemes.
IEEE Transactions on Image Processing, 20(3), 657-669, 2001.

[SRB11]: M. Schmidt, N. Roux, and F. Bach. Convergence rates of inexact
proximal-gradient methods for convex optimization. NIPS, 2001.

[VSBV13]: S. Villa, S. Salzo, L. Baldassarre, and A. Verri. Accelerated and inexact
forward-backward algorithms. SIAM Journal on Optimization, 23(3),1607-1633, 2013
[BPR20]: S. Bonettini, M. Prato, and S. Rebegoldi. Convergence of inexact
forward—backward algorithms using the forward—backward envelope. SIAM Journal on
Optimization, 30(4), 3069-3097, 2020
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An Inexact Riemannian Proximal Gradient Method

Inexact proximal gradient methods in the Euclidean setting:
[Com04, FP11, SRB11, VSBV13, BPR2(]

o z = Prox,g(y) = argmin, ®,(x) := Ag(x) + 3[x — y|*%
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An Inexact Riemannian Proximal Gradient Method

Inexact proximal gradient methods in the Euclidean setting:
[Com04, FP11, SRB11, VSBV13, BPR2(]

o z = Prox,g(y) = argmin, ®,(x) := Ag(x) + 3[x — y|*%
@ z satisfies

(y—2)/xe (’9Eg(z) and dist(O,aEdb\(z)) =0.
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An Inexact Riemannian Proximal Gradient Method

Inexact proximal gradient methods in the Euclidean setting:
[Com04, FP11, SRB11, VSBV13, BPR2(]

o z = Prox,g(y) = argmin, ®,(x) := Ag(x) + 3[x — y|*%

@ z satisfies
(y — 2)/X € 9 g(z) and dist(0,95dy(2)) = 0.
@ Approximation 2 satisfies any one of the following conditions:

s . e Yy - E (2
®,(2) < min®y+-—, and —— Z e 02 g(2),
22X

dist(0, 9Fd,(2)) < = .

< £
A
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An Inexact Riemannian Proximal Gradient Method

Inexact proximal gradient methods in the Euclidean setting:
[Com04, FP11, SRB11, VSBV13, BPR2(]

o z = Prox,g(y) = argmin, ®,(x) := Ag(x) + 3[x — y|*%

@ z satisfies
(y — 2)/X € 9 g(z) and dist(0,95dy(2)) = 0.
@ Approximation 2 satisfies any one of the following conditions:

s . e Yy - E (2
®,(2) < min®y+-—, and —— Z e 02 g(2),
22X

dist(0, DE D, (2)) < = -

<&

A

@ Algorithms based on strong convexity of the Euclidean proximal
mapping
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An Inexact Riemannian Proximal Gradient Method

Inexact proximal gradient methods in the Euclidean setting:
[Com04, FP11, SRB11, VSBV13, BPR2(]

o z = Prox,g(y) = argmin, ®,(x) := Ag(x) + 3[x — y|*%
@ z satisfies

(y — 2)/X € 9 g(z) and dist(0,95dy(2)) = 0.
@ Approximation 2 satisfies any one of the following conditions:

s . e Yy - E (2
®,(2) < min®y+-—, and —— Z e 02 g(2),
22X

dist(0, DE D, (2)) < = -

€

A

@ Algorithms based on strong convexity of the Euclidean proximal
mapping

@ Riemannian: may not be convex

£ (n) = (grad ), m)ss + 2 Il + 8 (R, (1)
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An Inexact Riemannian Proximal Gradient Method

Outline:
@ Algorithm statement
o Convergence analysis on general manifolds
@ Algorithm design for the inexact Riemannian proximal mapping

@ Numerical experiments
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Assumptions and Global Convergence Result

Assumption:

@ The function F is bounded from below and the sublevel set
Q,, = {x e M| F(x) < F(x)} is compact;

This assumption hold if, for example, F is continuous and M is compact.

min  —trace(X TATAX) + || X1,
XeSt(p,n)
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Assumptions and Global Convergence Result

Assumption:
@ The function F is bounded from below and the sublevel set
Q,, = {x e M| F(x) < F(x)} is compact;

@ The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Q,,.

Definition

A function h: M — R is called L-retraction-smooth with respect to a
retraction R in N'C M if for any x € N and any S, C Tx M such that
R.(Sx) € N, we have that

B(R.(n)) < h(x) + (gmad (x),mhs + 52,V € S,
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Assumptions and Global Convergence Result

Assumption:
@ The function F is bounded from below and the sublevel set
Q,, = {x e M| F(x) < F(x)} is compact;

@ The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Q,,.

if the following conditions hold, then f is L-retraction-smooth with respect
to the retraction R in the manifold M [BAC18, Lemma 2.7]

@ M is a compact Riemannian submanifold of a Euclidean space R";
@ the retraction R is globally defined;
e f:R" = R is L-smooth in the convex hull of M;

min  —trace(XTATAX) + || X1,
XeSt(p,n)
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Assumptions and Global Convergence Result

Assumption:
@ The function F is bounded from below and the sublevel set
Q,, = {x e M| F(x) < F(x)} is compact;

@ The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Q,,.

Theoretical results:

@ Suppose limk_oo g2k, ||fix||) = 0, then for any accumulation point x.
of {xk}, x. is a stationary point, i.e., 0 € OF(x,).
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Assumptions and Local Convergence Result

Assumption:
© Assumptions for the global convergence

@ The function F is bounded from below and the sublevel set
Qy, = {x e M| F(x) < F(x)} is compact;

@ The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Q,,.

min —trace(XTATAX) + || X||1,
XeSt(p,n)
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Assumptions and Local Convergence Result

Assumption:
© Assumptions for the global convergence
@ 1 is locally Lipschitz continuously differentiable

Definition ( [AMS08, 7.4.3])

A function f on M is Lipschitz continuously differentiable if it is
differentiable and if there exists 8y such that, for all x,y in M with
dist(x, y) < i(M), it holds that

IPY* grad f(y) — grad f(x)|lx < B1 dist(x, y),

where v is the unique minimizing geodesic with v(0) = x and (1) = y.
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Assumptions and Local Convergence Result

Assumption:
© Assumptions for the global convergence
@ 1 is locally Lipschitz continuously differentiable

If f is smooth and the manifold M is compact, then the function f is
Lipschitz continuously differentiable. [AMS08, Proposition 7.4.5 and
Corollary 7.4.6].

min  —trace(X TATAX) + || X1,
XeSt(p,n)
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Assumptions and Local Convergence Result

Assumption:
© Assumptions for the global convergence
@ 1 is locally Lipschitz continuously differentiable
© F is locally Lipschitz continuous with respect to the retraction R

Definition

A function h: M — R is called locally Lipschitz continuous with respect to
a retraction R if for any compact subset N of M, there exists a constant
Ly, such that for any x € N and &, 7nx € Tx M satisfying R(¢x) € N and
R.(nx) € N, it holds that |ho R(&) — ho R(nx)| < La||&x — nxll-
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Assumptions and Local Convergence Result

Assumption:
© Assumptions for the global convergence
@ 1 is locally Lipschitz continuously differentiable

© F is locally Lipschitz continuous with respect to the retraction R

If the manifold M is an embedded submanifold and function F is locally
Lipschitz in the embedding space, then the function is locally Lipschitz
continuous with respect to any global defined retraction R.

min  —trace(X TATAX) + || X1,
XeSt(p,n)

Speaker: Wen Huang An Inexact Riemannian Proximal Gradient Method



Assumptions and Local Convergence Result

Assumption:
© Assumptions for the global convergence
@ 1 is locally Lipschitz continuously differentiable
© F is locally Lipschitz continuous with respect to the retraction R

@ F satisfies the Riemannian KL property

Definition ( [BdCNO11])

A continuous function f : M — R is said to have the Riemannian KL property at x € M if and only
if there exists € € (0, oo], a neighborhood U C M of x, and a continuous concave function
s :[0,e] — [0, c0) such that

@ ¢(0)=0,cis C' on (0,€), and ¢’ > 0 on (0,7),
@ For every y € U with f(x) < f(y) < f(x) + €, we have

'(f(y) — £(x)) dist(0, 8f (y)) > 1,

where dist(0, 8f(y)) = inf{||v||, : v € Of(y)} and O denotes the Riemannian generalized
subdifferential. The function ¢ is called the desingularising function.
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Assumptions and Local Convergence Result

Assumption:
© Assumptions for the global convergence
@ 1 is locally Lipschitz continuously differentiable
© F is locally Lipschitz continuous with respect to the retraction R

@ F satisfies the Riemannian KL property

Theoretical results:

o If ||l — s || < ef for 307 gex < oo and g > 0, then it holds that
o0
Z diSt(Xk, Xk+1) < 0.
k=0

Therefore, there exists only a unique accumulation point.
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Assumptions and Local Convergence Result

Assumption:
© Assumptions for the global convergence
@ 1 is locally Lipschitz continuously differentiable

© F is locally Lipschitz continuous with respect to the retraction R
@ F satisfies the Riemannian KL property

Theoretical results:

o If ||, —n% || < min (5,2(, 2%||ﬁxk|\2) for D)0y ek < 00 and g, > 0,
and if the desingularising function has the form ¢(t) = %te for C>0
and 6 € (0, 1] for all x € Q,,, then

e if 6 =1, then the Riemannian proximal gradient method terminates in
finite steps;

o if § €[0.5,1), then ||xk — x.|| < Gid* for G > 0 and d € (0,1);
-1
e if 8 € (0,0.5), then ||xk — x«|| < Gk1=20 for C, > 0;
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Algorithms for the Riemannian Proximal Mapping

Outline:
@ Algorithm statement
@ Convergence analysis on general manifolds
@ Algorithm design for the inexact Riemannian proximal mapping

@ Numerical experiments
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Algorithms for the Riemannian Proximal Mapping

Assumptions:
@ The manifold M has a linear ambient space

@ The function g is convex and Lipschitz continuous, where the
convexity and Lipschitz continuity are in the Euclidean sense.
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Algorithms for the Riemannian Proximal Mapping
Global convergence

ManPG [CMSZ20]

. L
= arg min (VF(xi).m) + §||n||;2: + g(xk + 1)

Xk

IRPG

Let £y, (n) = (gradf (xk), m)x, + 5l + &(Rx (n));
@ Find 7, € Ty M such that

1 = M I < a(es ([ [1) and £ (0) = £y, (e

where g, > 0, and g : R2 — R is a continuous function;

ManPG can be viewed as an IRPG.
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Algorithms for the Riemannian Proximal Mapping
Global convergence

ManPG [CMSZ20]

L
Mk — argnefgxian (VF(x),m) + §||n||,2: +g(xx +n)

Above problem can be rewritten as

1
argBmm (&, m) + ﬂ”ﬁ”%*‘g(x“‘”)

X

where B/ n = ({b1,n), (b2,n), ..., {bm,n))T, and {by,..., by} forms an
orthonormal basis of N, M.
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Algorithms for the Riemannian Proximal Mapping
Global convergence

The Lagrangian function:

L(n,N) = (&) + 2%<77,n> +g(X+n)—(NBln).

Therefore

f 0,L(n,N)=0 n = Prox,g (x — u(éx — BeN)) — x

where Prox .z (z) = argmin, cgoxr 3||v — z||% + pg(v).
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Algorithms for the Riemannian Proximal Mapping
Global convergence

Semi-smooth Newton method finds the A such that

V(A) = B)Z_(PI‘OXMg (x — u(é&x — B«N)) —x) =0

Ny = Prox,g (x — p(&x — BLN)) — x
@ V is not differentiable everywhere but semi-smooth for g(-) = || - ||1;
@ Semi-smooth Newton:

Q Ju(Ak)[d] = —V(Ak), where Jy is the generalized Jacobian of W;
Q Nit1 = NA¢ + di
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Algorithms for the Riemannian Proximal Mapping
Global convergence

Semi-smooth Newton method finds the A such that

V(A) = Bl (Prox,, (x — (& — BxN)) — x) ~ 0

@ V is not differentiable everywhere but semi-smooth for g(-) = || - ||1;
@ Semi-smooth Newton:

Q Ju(Ak)[d] = —V(Ak), where Jy is the generalized Jacobian of W;

Q N1 =N+ di

@ Solving the equation inexactly
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Algorithms for the Riemannian Proximal Mapping
Global convergence

If W(A) = e,

o 1, = Prox,g (x — u(&x — B<A)) — x is not even in the tangent space
T, M in this case

o Use )y := V(A) = Pp, m(Prox,g (x — pu(x — Bx\)) — x) instead
@ How small does ¢ need to be?

Speaker: Wen Huang An Inexact Riemannian Proximal Gradient Method



Algorithms for the Riemannian Proximal Mapping
Global convergence

If W(A) = e,

o 1, = Prox,g (x — u(&x — B<A)) — x is not even in the tangent space
T, M in this case

o Use )y := V(A) = Pp, m(Prox,g (x — pu(x — Bx\)) — x) instead
@ How small does ¢ need to be?

[l < min(6(¥(A)),0.5),

with ¢(0) = 0 and ¢ is nondecreasing.
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Algorithms for the Riemannian Proximal Mapping
Global convergence

The function q is:

ek 1Mx 1) =

4l gtp — 4L§%§ 49
AX + —_— AX 2+~7min AX ,05
I \/ R P+ gy min(@(10.1),05)

2Lg%2
[ — 2Lg%2

@ ManPG can be viewed as an inexact RPG for sufficiently large L;
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Algorithms for the Riemannian Proximal Mapping
Global convergence

The function q is:

q(ew [1x ) =

2Lg%2 4Lg%2 — 4L§%§ 499 .
= AX + —_——— AX 2+~7m|n /\X 705
L_2Lg%2||nk|| \/ (= 2L, ) 17l ol (6(19 1)), 0.5)

@ ManPG can be viewed as an inexact RPG for sufficiently large L;

@ This g may not guarantee local convergence results;

Speaker: Wen Huang An Inexact Riemannian Proximal Gradient Method



Algorithms for the Riemannian Proximal Mapping
Global convergence

The function q is:

gl 1x 1) =
21,50 4] 4300 — 412 %2 49 ) .
i |+ 2 1 2 + ————— min(¢(]|7i]I), 0.5)
[ - 250 (L —2Lg)? L—2Lg50

@ ManPG can be viewed as an inexact RPG for sufficiently large L;
@ This g may not guarantee local convergence results;

@ Improving accuracy is needed;
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Algorithms for the Riemannian Proximal Mapping

Local convergence

= arg_min, 6(0) 1= (VFG), e+ 5 0l + g(R(n)

Solving the Riemannian Proximal Mapping [HW21]

initial iterate: 9 € Ty M, o € (0,1), k =0;

Q yk = Re(mi);
@ Compute
§ =arg_min (Tg ! (grad £() + Inc), &)+ ||5\|F+g(yk+f)

@ Find @ > 0 such that £, (nx + aﬂ;:@f) < U(nk) — oa& 1%

Q k1= + 0477?:,:&??
@ If £ =0, then stop;
Q k <+ k+1 and goto Step 1;
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Algorithms for the Riemannian Proximal Mapping

Local convergence

ne=arg_min G(n) = (V70 nh+ 5 0l + (R(n)

ne'lx

Solving the Riemannian Proximal Mapping [HW21]
initial iterate: 79 € Ty M, o € (0,1), k =0;
Q yi = Re(nk);
@ Compute
* H —t 2
§k~arg min (Te, (grad f(x) + L), €)x + IISH + &y +£);

Yk

@ Find o > 0 such that £, (n + oz'ﬂ?_n:ﬁ:) < l(m) — o€ )I2
Q Miy1 = + Oﬂ};:fiﬁ;

@ If ||&; ]| is sufficiently small, then stop;

Q@ k <+ k+1 and goto Step 1;

X
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Algorithms for the Riemannian Proximal Mapping

Local convergence

Solving the Riemannian Proximal Mapping [HW21]

initial iterate: mo € T« M, o € (0,1), k =0;
Q@ vk = Re(mk);
@ Compute i
-~ . - = L2 i
givarg min (Te, (grad f(x) + L), &)« + 7 [I€llF + gy +&);

Yk
12

© Find « > 0 such that &y (nx + aﬁ;i{f) < LUy(nk) — o€
Q M1 =1+ ozTletEZ;

Q If ||&; || is sufficiently small, then stop;

@ k <+ k+1 and goto Step 1;

@ Same as the subproblem in ManPG;
@ The same inexact technique can be used;
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Algorithms for the Riemannian Proximal Mapping

Local convergence

Solving the Riemannian Proximal Mapping [HW21]

initial iterate: mo € T« M, o € (0,1), k =0;

Q@ vk = Re(mk);
@ Compute i

. . —4 ¥ L2 i
Girarg min, (T, (grad £(x) + L), O+ Zl1€llF + g0+ €):

2

© Find a > 0 such that £y (nx + aﬁ;i{f) < L(nk) — oa||&k

Q 7kt1 =Mk + ozTleiEZ;
Q If [|&X]] < ¥(ex, o, [|nk]]) is sufficiently small, then stop;
@ k <+ k+1 and goto Step 1;

Suppose an error bound property holds for ¢,(n). Then

o P =cf = |lily — |l < Cei

o & = min(&2, il I2) = 17k, — 15, | < Cmin(e2, elli )
Retraction-convexity of g implies the error bound property.
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Algorithms for the Riemannian Proximal Mapping

Outline:
@ Algorithm statement
@ Convergence analysis on general manifolds
@ Algorithm design for the inexact Riemannian proximal mapping

@ Numerical experiments
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Numerical Experiments

Sparse PCA problem

min —trace(XTATAX) 4+ A X||1,
XeSt(p,n)

where A € R™*" is a data matrix.
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Numerical Experiments

700 T T

T >* 3 T T T T
—*—IRPG-G —*—IRPG-G
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4
2 i
500
8 215 ]
400 -
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300 05 o L
o M
200 . . . . 0 i . . .
0 500 1000 1500 2000 0 500 1000 1500 2000

n n

Figure: Average of 10 random runs, p =4, m =20, A = 2;

@ IRPG-G: an inexact version of ManPG
o IRPG-U: ¢ = ei
o IRPG-L: v = min(e2, o[, ||?)
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Review the two existing Riemannian proximal gradient methods

Propose an inexact Riemannian proximal gradient methods

Convergence analysis for general manifolds

@ Semi-smooth Newton method for inexact Riemannian proximal
mapping to guarantee global convergence

@ Further improving accuracy by an iterative algorithm, accuracy is
guaranteed based on error bound property.
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Thank you!
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