
FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

OPTIMIZATION ALGORITHMS ON RIEMANNIAN MANIFOLDS WITH APPLICATIONS

By

WEN HUANG

A Dissertation submitted to the
Department of Mathematics
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Degree Awarded:
Fall Semester, 2013

Wen Huang defended this dissertation on November 5th, 2013.
The members of the supervisory committee were:

Kyle A. Gallivan

Professor Co-Directing Dissertation

Pierre-Antoine Absil

Professor Co-Directing Dissertation

Dennis Duke

University Representative

Giray Okten

Committee Member

Eric P. Klassen

Committee Member

The Graduate School has verified and approved the above-named committee members, and
certifies that the dissertation has been approved in accordance with university requirements.

ii

This work is dedicated to my parents and my family, for their constant encouragement.

iii

ACKNOWLEDGMENTS

Thank my advisor, my co-advisor, my committee members, my parents, my sister, my friends...

iv

TABLE OF CONTENTS

List of Tables . x

List of Figures . xii

List of Algorithms . xiv

Abstract . xv

1 INTRODUCTION 1

1.1 The Problem of Optimization on a Manifold . 2
1.2 Basic Principles . 3

1.2.1 Unconstrained Optimization on a Constrained Space 3
1.2.2 Tangent Space . 4
1.2.3 Riemannian Metric . 5
1.2.4 Affine Connections, Geodesics, Exponential Mapping and Parallel Translation 6
1.2.5 Gradient and Hessian . 8
1.2.6 Retraction and Vector Transport . 9
1.2.7 Coordinate Expressions . 10

1.3 Historical Context . 11
1.4 Research Overview and Dissertation Statement . 12

2 QUASI-NEWTON PREPARATION: SECANT CONDITIONS 15

2.1 Secant Condition on a Euclidean Space . 15
2.2 A Secant Condition on a Riemannian Manifold . 17
2.3 Retraction, Vector Transport and a Secant Condition 20

3 A RIEMANNIAN TRUST REGION WITH SYMMETRIC RANK-ONE UP-

DATE METHOD 22

3.1 Introduction . 22
3.2 The Riemannian SR1 Trust Region Method . 23
3.3 Convergence Analysis of RTR-SR1 . 25

3.3.1 Notation and Standing Assumptions . 25
3.3.2 Global Convergence Analysis . 26
3.3.3 More Notation and Standing Assumptions . 27
3.3.4 Local Convergence Analysis . 27

3.4 Limited Memory Version of RTR-SR1 . 48

4 A BROYDEN FAMILY OF QUASI-NEWTON METHOD 51

4.1 Introduction . 51
4.2 RBroyden Family of Methods . 52
4.3 Global Convergence Analysis . 56

4.3.1 Basic Assumptions and Definitions . 56
4.3.2 Preliminary Lemmas . 59

v

4.3.3 Main Convergence Result . 69
4.4 Constructing Isometric Vector Transport or Retraction 70

4.4.1 Method 1 of Constructing an Isometric Vector Transport 70
4.4.2 Method 2 of Constructing an Isometric Vector Transport 73
4.4.3 Constructing a Retraction . 74

4.5 Limited-memory RBFGS . 76
4.6 Ring and Wirth’s RBFGS Update Formula . 78
4.7 Property of RBroyden Family Method . 79

5 RIEMANNIAN DENNIS-MORÉ CONDITIONS 82

5.1 Introduction . 82
5.2 Riemannian Dennis-Moré Conditions . 83

5.2.1 Riemannian Dennis-Moré Conditions for a Vector Field 83
5.2.2 Riemannian Dennis-Moré Condition for a Real-valued Function 87

6 CONVERGENCE RATE ANALYSIS OF THE RIEMANNIAN BROYDEN

FAMILY METHOD 93

6.1 Introduction . 93
6.2 The RBroyden Family Convergence Rate Analysis 94

6.2.1 R-Linear Convergence Analysis . 94
6.2.2 Superlinear Convergence Analysis . 103

7 OPTIMIZING PARTLY SMOOTH FUNCTIONS ON A RIEMANNIAN MAN-

IFOLD 114

7.1 Introduction . 114
7.2 Gradient Sampling Algorithm on a Riemannian Manifold 117
7.3 Modifications for RBFGS Algorithms . 117

7.3.1 Line Search Algorithm for Partly Smooth Function 119
7.3.2 Stopping Criterion of RBroyden Family Algorithms for a Partly Smooth

Function . 120

8 RIEMANNIAN OPTIMIZATION AND CONSTRAINED OPTIMIZATIONS

ON EUCLIDEAN SPACE 122

8.1 Introduction . 122
8.2 Constrained Optimization . 123

8.2.1 Feasible Direction Methods . 123
8.2.2 Barrier Methods . 124
8.2.3 Penalty Methods . 125

8.3 Riemannian Optimization . 127
8.4 Comparison of Riemannian Optimization and Gradient Projection Methods 128

8.4.1 Nonlinear Inequalities and Equalities Constraints 129
8.4.2 Convex Set Constraints . 131
8.4.3 Bounds Constraints . 135

vi

9 GENERAL IMPLEMENTATION TECHNIQUES 138

9.1 Introduction . 138
9.2 A Manifold in R

n . 139
9.2.1 Basic Properties of the Metric as a Matrix . 139
9.2.2 Operations Using n Dimensional Representation 141
9.2.3 Construction of Isometric Vector Transports 143

9.3 Quotient Manifold of a Manifold in R
n . 148

9.3.1 General Discussion . 148
9.3.2 Operations Using n Dimensional Representation 153
9.3.3 Construction of Isometric Vector Transports 154

9.4 Product of Manifolds . 159
9.4.1 General Discussion . 159
9.4.2 Construction of Isometric Vector Transports 160

9.5 The Intrinsic Dimensional Approach . 160
9.5.1 General Discussion . 160
9.5.2 Computational Benefits . 161

10 IMPLEMENTATION FOR SOME MANIFOLDS 162

10.1 Introduction . 162
10.2 The Stiefel Manifold as an Embedded Submanifold 162

10.2.1 Retractions . 163
10.2.2 Vector Transports . 163
10.2.3 Pairs of Retraction and Isometric Vector Transport Satisfying Locking Con-

dition . 166
10.2.4 Cotangent Vector Required by Ring and Wirth’s RBFGS 168

10.3 The Stiefel Manifold as a Quotient Manifold . 171
10.3.1 Retractions . 172
10.3.2 Vector Transports . 172
10.3.3 Cotangent Vector Required by Ring and Wirth’s RBFGS 174

10.4 The Sphere . 176
10.4.1 Retractions . 177
10.4.2 Vector Transports . 177

10.5 The Orthogonal Group . 178
10.5.1 Retractions . 179
10.5.2 Vector Transports . 179

10.6 The Grassmann Manifold . 180
10.6.1 Retractions . 181
10.6.2 Vector Transports . 183
10.6.3 Pairs of Retraction and Isometric Vector Transport Satisfying Locking Con-

dition . 187
10.6.4 Cotangent Vector Required by Ring and Wirth’s RBFGS 188

10.7 Complexity . 188

vii

11 EXPERIMENTS 190

11.1 Introduction . 190
11.2 Test Problems . 190

11.2.1 Brockett Cost Function Minimization on the Stiefel Manifold 191
11.2.2 Rayleigh Quotient Minimization on the Grassmann Manifold 191
11.2.3 Lipschitz Minmax Problem on the Sphere . 192
11.2.4 Non-Lipschitz Minmax Problem on the Sphere 192

11.3 Notation, Algorithm Parameters and Test Data Parameters 193
11.4 Results and Conclusions . 195

11.4.1 Performance for Different φ in the RBroyden Family 195
11.4.2 Retractions and Vector Transports for RBFGS 196
11.4.3 Comparison of RBFGS and Ring and Wirth’s Algorithm 199
11.4.4 Comparison of LRBFGS and RBFGS . 202
11.4.5 Locking Condition and Isometry of Vector Transport in RBFGS 204
11.4.6 Retractions and Vector Transports for RTR-SR1 207
11.4.7 Comparison of LRTR-SR1 and RTR-SR1 . 208
11.4.8 Convergence Rate Comparison . 210
11.4.9 A Large Scale Problem . 212
11.4.10Comparison of the Stiefel Manifold and the Grassmann Manifold 214
11.4.11Comparison of RGS and RSD for Smooth Functions 216
11.4.12Comparison of RGS and RBFGS for Partly Smooth Functions Defined on a

Riemannian Manifold . 219

12 SOFT DIMENSIONREDUCTION FOR INDEPENDENTCOMPONENTANAL-

YSIS AND SYNCHRONIZATION OF ROTATION PROBLEM 222

12.1 Soft Dimension Reduction for Independent Component Analysis 222
12.1.1 Introduction . 222
12.1.2 Problem Statement . 222
12.1.3 Implementations and Results . 223

12.2 Synchronization of Rotation Problem . 224
12.2.1 Introduction . 224
12.2.2 Problem Statement . 224
12.2.3 Implementation and Results . 228

13 RIEMANNIAN OPTIMIZATION FOR ELASTIC SHAPE ANALYSIS 233

13.1 Introduction . 233
13.2 Riemannian Framework and Problem Statement . 233

13.2.1 Curve Representation . 233
13.2.2 Open Curves in R

n . 235
13.2.3 Closed Curves in R

n . 236
13.3 The Coordinate Relaxation Method . 237

13.3.1 The Basic Ingredients . 238
13.3.2 Coordinate Relaxation Difficulties . 240

13.4 A Riemannian Optimization Method . 242
13.4.1 Cost Function . 244

viii

13.4.2 The Riemannian Manifold . 246
13.5 Implementation Comments . 250

13.5.1 Representation and Cost Function . 250
13.5.2 Diffeomorphism Considerations . 250
13.5.3 Escaping Local Minima . 252

13.6 Experiments . 253
13.6.1 Overview of Experiments . 253
13.6.2 Examples of Coordinate Relaxation Difficulties 254
13.6.3 The Preferred Riemannian Quasi-Newton Algorithm 257
13.6.4 Performance Comparison for Flavia and MPEG-7 Datasets 259

13.7 Conclusion . 263

14 SECANT-BASED NONLINEAR DIMENSION REDUCTION 264

14.1 Introduction . 264
14.2 Problem Statement . 264
14.3 Properties of the Cost Functions and Discretization 267
14.4 Experiments . 268
14.5 Conclusion . 277

15 CONCLUSIONS AND FURTHER RESEARCH 278

Bibliography . 283

Biographical Sketch . 291

ix

LIST OF TABLES

7.1 Glossary of Notation . 115

10.1 Complexity of some steps of full version and limited-memory version. – means this
step is not explicit. 189

10.2 Complexity of some steps of RGS. 189

11.1 Notation for reporting the experimental results. 194

11.2 Comparison of RBroyden family for φ̃D
k and several constant φ̃k. The subscript −k

indicates a scale of 10−k. 197

11.3 Notations of retractions and vector transports. 198

11.4 Comparison of retraction and vector transports for RBFGS. The subscript −k indi-
cates a scale of 10−k. 200

11.5 Comparison of RBFGS and RW. RW1 and RW2 denote RW with retractions (10.2.16)
and (10.2.3) respectively. The subscript −k indicates a scale of 10−k. 202

11.6 Comparison of LRBFGS and RBFGS. The subscript −k indicates a scale of 10−k. . . 204

11.7 The numbers of successful runs of RBFGS with different retractions and vector trans-
ports, where ”a successful run” mean reaching the required accuracy. 206

11.8 Notations of retractions and vector transports. 207

11.9 Comparison of retraction and vector transports for RTR-SR1. The subscript −k
indicates a scale of 10−k. 208

11.10 Comparison of RTR-SR1 and LRTR-SR1. The subscript −k indicates a scale of 10−k. 210

11.11 Comparison of RTR-Newton, RBFGS, RTR-SR1, RSD and RTR-SD. The subscript
−k indicates a scale of 10−k. 212

11.12 LRBFGS, LRTR-SR1 and RCG for large scale problems. The subscript −k indicates
a scale of 10−k. 214

11.13 Comparison of the embedded Stiefel manifold(ES), the quotient Stiefel manifold(QS)
and the Grassmann manifold(GR) for the Rayleigh quotient problem using RBFGS
and RTR-SR1. The retractions used are (10.2.16), (10.3.4), (10.6.19) for ES, QS
and GR respectively. The vector transports are by parallelization. The subscript −k
indicates a scale of 10−k. 217

x

11.14 Comparison of the embedded Stiefel manifold(ES), the quotient Stiefel manifold(QS)
and the Grassmann manifold(GR) for the Rayleigh quotient problem using RBFGS
and RTR-SR1. The retractions and vector transports are exponential mapping and
parallel translation. The subscript −k indicates a scale of 10−k. 217

11.15 Comparison of RSD and RGS with multiple initial sampling radii. The subscript −k
indicates a scale of 10−k. 219

11.16 Comparison of RGS and RBFGS for a partly smooth Lipschitz continuous function. . 220

11.17 Comparison of RGS and RBFGS for a partly smooth non-Lipschitz continuous func-
tion. ”lsf” means line search fails. 221

12.1 Comparison of RTR-Newton and Riemannian quasi-Newton algorithms for the joint
diagonalization problem: n = 12, p = 4, ǫC = 0.1 . 225

12.2 Comparison of RTR-Newton and Riemannian quasi-Newton algorithms for the syn-
chronization of rotation problem with q = 1/N . 229

12.3 Comparison of RTR-Newton and Riemannian quasi-Newton algorithms for the syn-
chronization of rotation problem with q = 0.5. 231

13.1 The variations of the cost function values in Algorithm 10 256

13.2 Comparison of Riemannian Methods for representative sets from the Flavia and MPEG-
7 datasets: average time per pair (tave) in seconds and average cost function per pair
(Lave). 258

13.3 The average computation time and 1NN of LRBFGS and CR1 with break points
chosen to be every 2, 4, 8 and 16 points. 263

14.1 Comparison of RTR-Newton, Riemannian quasi-Newton algorithms and RCG for s-
mooth cost function F̃ ([U]). F̃ ([U∗]) = 1.355322. 272

14.2 Comparison of RBFGS and RGS for partly smooth cost function φ̃([U]). φ̃([U∗]) =
2.006318e-001 . 272

14.3 The cost function values at the optimizers from 5 initial conditions for the different
methods. The 2-dimensional projections of the optimizers are shown in Figure 14.5
at the indices given. 274

14.4 The results of algorithms using 20 initial points in Z. NNIP denotes the number of
non-invertible projections. NIP denotes the number of invertible projections, NDP
denotes the number of times the desired global optimizer was found and AT denotes
the average computational time of the 20 initial conditions(second). 274

xi

LIST OF FIGURES

8.1 Since a retraction only requires local information, Rx(0) = x and d
dtRx(tη)|t=0 = η,

there are many retractions for a given manifold. Above figure shows 3 retractions R1,
R2 and R3 as examples. 131

11.1 Comparison of RBroyden family for φ̃D
k and several constant φ̃k. 197

11.2 Comparison of retraction and vector transports for RBFGS. The top figure corre-
sponds to (p, n) = (4, 12) and the bottom figure corresponds to (p, n) = (8, 12). 201

11.3 Comparison of RBFGS and RW for (p, n) = (12, 12). RW1 and RW2 denote RW with
retractions (10.2.16) and (10.2.3) respectively. The top figure is the results of iter
versus |gradf | and the bottom one is the results of time versus |gradf |. 203

11.4 Comparison of RBFGS and LRBFGS. The top figure is the results of iter versus
|gradf | and the bottom one is the results of time versus |gradf |. 205

11.5 Comparison of retraction and vector transports for RTR-SR1. The top figure corre-
sponds to (p, n) = (4, 12) and the bottom figure corresponds to (p, n) = (8, 12). 209

11.6 Comparison of RTR-SR1 and LRTR-SR1. The top figure is the results of iter versus
|gradf | and the bottom one is the results of time versus |gradf |. 211

11.7 Comparison of RTR-Newton, RBFGS, RTR-SR1, RSD and RTR-SD. The top figure
is the results of iter versus |gradf | and the bottom one is the results of time versus
|gradf |. 213

11.8 Comparison of LRBFGS, LRTR-SR1 and RCG for the Brockett cost function with
(p, n) = (3, 1000). The top figure is the results of iter versus |gradf | and the bottom
one is the results of time versus |gradf |. 215

11.9 Comparison of the embedded Stiefel manifold(ES), the quotient Stiefel manifold(QS)
and the Grassmann manifold(GR) for the Rayleigh quotient problem using RBFGS
and RTR-SR1. The retractions used in the top figure are (10.2.16), (10.3.4), (10.6.19)
for ES, QS and GR respectively. The vector transports are by parallelization. The
retractions and vector transports used in the bottom figure are exponential mapping
and parallel translation. 218

11.10 Comparison of RSD and RGS with multiple initial sampling radii. 220

12.1 Comparison of RTR-Newton and Riemannian quasi-Newton algorithms for the joint
diagonalization problem: n = 12, p = 4, N = 256, ǫC = 0.1 226

12.2 Comparison of RTR-Newton and Riemannian quasi-Newton algorithms for the syn-
chronization of rotation problem with q = 1/N,N = 32. 230

xii

12.3 Comparison of RTR-Newton and Riemannian quasi-Newton algorithms for the syn-
chronization of rotation problem with q = 0.5, N = 32. 232

13.1 Choosing initial m for Riemannian quasi-Newton algorithms 253

13.2 Samples of leaves from Flavia leaf dataset. One sample per species is illustrated. . . . 254

13.3 Samples of curves from MPEG-7 dataset. One sample per cluster is illustrated. 255

13.4 Two shapes from the MPEG-7 dataset. 255

13.5 The variance of curve β2 during the iteration in Algorithm 9. 256

13.6 Results for LRBFGS and CR1. 257

13.7 Comparison of complexities of CR1 and LRBFGS. 259

13.8 Histograms of ratios of the CR1 cost function value to the LRBFGS cost function
value (C/L) for MPEG-7 and Flavia datasets. N/i, i = 2, 4, 8, 16 denote the number
of break points in CR1. Bins are (0, 0.1), . . . , (0.9, 1.0), . . . , (3.9, 4.0). 261

13.9 Histograms of computation times of LRBFGS and CR1 for MPEG-7 and Flavia datasets.262

13.10 Histograms of computation times of LRBFGS and computation times per initial con-
dition (PIC) of LRBFGS for MPEG-7 and Flavia datasets. 262

14.1 The example P = G(S1). 269

14.2 The top two figures show the contours of φ̂[U∗](η) and the bottom two figures are the

contours of F̂[U∗](η). 270

14.3 The left figure is the projection of [U∗] onto 2-dimensional space π[U∗]P and the matrix
on the right is the desired optimizer. The optimal projection π[U∗] projects P onto
the X-Y plane [BK00]. 271

14.4 The initial points Ui 6∈ Z, i = 1, . . . 5 in the contour graphs of φ̂[U∗](η) and F̂[U∗](η). . . 273

14.5 2-dimensional projections of optimizers from 5 initial conditions and 8 algorithms for
both smooth and partly smooth cost functions. 275

xiii

LIST OF ALGORITHMS

1 Riemannian trust region with symmetric rank-one update (RTR-SR1) 24
2 Limited-memory RTR-SR1 (LRTR-SR1) . 50
3 RBroyden family method . 53
4 LRBFGS . 77
5 The gradient sampling algorithm on R

n . 116
6 The gradient sampling algorithm on d-dimensional Riemannian manifold 118
7 Inexact line search for partly smooth function . 120
8 Coordinate Relaxation Algorithm for Ho(O, γ) . 238
9 Coordinate Relaxation Algorithm 1 for Hc(O, γ) . 242
10 Coordinate Relaxation Algorithm 2 for Hc(O, γ) . 243
11 Conjugate gradient for minimizing F (Y) on the Grassmann manifold 268

xiv

ABSTRACT

This dissertation generalizes three well-known unconstrained optimization approaches for R
n to

solve optimization problems with constraints that can be viewed as a d-dimensional Riemannian

manifold to obtain the Riemannian Broyden family of methods, the Riemannian symmetric rank-

one trust region method, and Riemannian gradient sampling method. The generalization relies

on basic differential geometric concepts, such as tangent spaces, Riemannian metrics, and the

Riemannian gradient, as well as on the more recent notions of (first-order) retraction and vector

transport. The effectiveness of the methods and techniques for their efficient implementation are

derived and evaluated. Basic experiments and applications are used to illustrate the value of the

proposed methods.

Both the Riemannian symmetric rank-one trust region method and the RBroyden family of

methods are generalized from Euclidean quasi-Newton optimization methods, in which a Hessian

approximation exploits the well-known secant condition. The generalization of the secant condition

and the associated update formulas that define quasi-Newton methods to the Riemannian setting

is a key result of this dissertation.

The dissertation also contains convergence theory for these methods. The Riemannian symmet-

ric rank-one trust region method is shown to converge globally to a stationary point and d+1-step

q-superlinearly to a minimizer of the objective function. The RBroyden family of methods is shown

to converge globally and q-superlinearly to a minimizer of a retraction-convex objective function. A

condition, called the locking condition, on vector transport and retraction that guarantees conver-

gence for the RBroyden family method and facilitates efficient computation is derived and analyzed.

The Dennis Moré sufficient and necessary conditions for superlinear convergence, can be generalized

to the Riemannian setting in multiple ways. This dissertation generalizes them in a novel manner

that is applicable to both Riemannian optimization problems and root finding for a vector field on

a Riemannian manifold.

The convergence analyses of Riemannian symmetric rank-one trust region method and RBroy-

den family methods assume a smooth objective function. For partly smooth Lipschitz continuous

objective functions, a variation of one of the RBroyden family methods, RBFGS, is shown to be

work well empirically. In addition, the Riemannian gradient sampling method is shown to work

xv

well empirically for both a Lipschitz continuous and a non-Lipschitz continuous objective function

associated with the important application nonlinear dimension reduction.

Efficient and effective implementations for a manifold in R
n, a quotient manifold of total man-

ifold in R
n and a product of manifolds, are presented. Results include efficient representations

and operations of elements in a manifold, tangent vectors, linear operators, retractions and vector

transports. Novel techniques for constructing and computing multiple kinds of vector transports

are derived. In addition, the implementation details of all required objects for optimization on four

manifolds, the Stiefel manifold, the sphere, the orthogonal group and the Grassmann manifold, are

presented.

Basic numerical experiments for the Brockett cost function on the Stiefel manifold, the Rayleigh

quotient on the Grassmann manifold and the minmax problem on the sphere (Lipschitz and non-

Lipschitz forms), are used to illustrate the performance of the proposed methods and compare

with existing optimization methods on manifolds. Three applications, Riemannian optimization

for elastic shape analysis, a joint diagonalization problem for independent component analysis

and a synchronization of rotation problem, that have smooth cost functions are used to show the

advantages of the proposed methods. A secant-based nonlinear dimension reduction problem with

a partly smooth function is used to show the advantages of the Riemannian gradient sampling

method.

xvi

CHAPTER 1

INTRODUCTION

The dissertation investigates quasi-Newton optimization algorithms on a Riemannian manifold,

optimization algorithms for partly smooth functions on a Riemannian manifold, and their analysis,

implementation and evaluation. This is achieved by identifying key components of Riemannian

optimization algorithms, analyzing the theoretical properties that influence the convergence of the

associated algorithms, developing novel algorithms and implementations that are significantly more

efficient than simple generalizations from R
n while achieving rigorously guaranteed convergence and

applying them to a set of important problems.

The dissertation is organized as follows. In Chapter 1, an overview of the optimization problem

on a Riemannian manifold is given followed by basic concepts of manifolds, a brief history of

research on methods for optimization on manifolds and a summary of the basic principles on which

the associated algorithms are built. The chapter ends with an overview of the research and the

dissertation statement of the dissertation. In preparation for Chapters 3 and 4, Chapter 2 presents

the fundamental concept, the secant condition, and methods of generalizing it to a Riemannian

manifold. Chapter 3 presents the details of combining a trust region strategy with the Symmetric

Rank-1 update algorithm and its theoretical analysis. In Chapters 4, 5 and 6, the Broyden family

of algorithms combined with line search is defined and analyzed. The algorithm family and basic

convergence analysis are given in Chapter 4; Necessary and sufficient conditions for superlinear

convergence of quasi-Newton methods and inexact Newton methods, including Riemannian versions

of Dennis Moré conditions, are proven in Chapter 5; and an analysis of the rate of convergence

is presented in Chapter 6. Chapter 7 discusses a Riemannian gradient sampling algorithm used

for the optimization of partly smooth functions. The relationship between methods for Euclidean

constrained optimization and the methods derived in this dissertation for the optimization on

a submanifold of the Euclidean space is discussed in Chapter 8. The crucial issue of efficient

implementation of Riemannian optimization algorithms and their key primitives is discussed in

Chapters 9 and 10. This includes a specific discussion of four manifolds: the Stiefel manifold,

1

the sphere, the orthogonal group and the Grassmann manifold. Basic experimental comparisons

of the performance of the algorithms proposed in this dissertation are presented in Chapter 11.

Chapters 12 and 13 demonstrate the effectiveness the proposed algorithms for three applications

with smooth cost functions: soft independent component analysis, synchronization of rotations and

shape analysis using the elastic metric of Srivastava et al. [SKJJ11]. Chapter 14 considers an

application with a smooth and a partly smooth cost function: secant-based nonlinear dimension

reduction. Finally, conclusions are drawn and future work suggested in Chapter 15.

1.1 The Problem of Optimization on a Manifold

Optimization on Riemannian manifolds or Riemannian optimization considers finding an opti-

mum of a real-valued function f defined on a Riemannian manifold, i.e.,

min f(x), subject to x ∈ M, (1.1.1)

whereM is a Riemannian manifold. Roughly speaking, a manifold is a set endowed with coordinate

patches that overlap smoothly.

One possible method to do optimization on manifold is to read the objective function f from

coordinate patches. In this case, the problem becomes a classical optimization problem defined on

an open subset of Rd, where d is the dimension of the manifold. However, there are several reasons

not to do this. First, the coordinate patches may not be available explicitly. Second, even if they

exist, for each patch, we have to solve a constrained optimization for the subset of Rd which is not

cheap. Third, when and how to change from one coordinate patch to another coordinate patch is

problematic. What is more, some useful properties of the manifold may not be used by this idea.

If the manifold M is a subset of Rn, then the problem (1.1.1) can be viewed as a Euclidean

constrained optimization problem. The comparison of the Euclidean constrained optimization

and Riemannian optimization with manifold in R
n is discussed in Chapter 8. The advantages of

Riemannian optimization with manifold in R
n are:

1. All the iterates are on the manifold, i.e., they satisfy the constraints; this property allows us

to stop the iteration early.

2. Optimization on manifold algorithms have the convergence properties of unconstrained opti-

mization algorithms since these algorithms is to solve an unconstrained optimization over a

constrained set.

2

3. There is no need to consider Lagrange multipliers or penalty functions.

4. Riemannian optimization is also a way of avoiding the Maratos effect.

If the objective function f has some continuous invariance properties, then optimization on

manifold provides an approach to eliminate the invariance. There are several reasons to do this:

efficiency; consistency; applicability of certain convergence results; avoidance of failure in certain

algorithms, e.g., Newton’s method, that do not behave satisfactorily in case of degeneracy.

The problem of minimizing a smooth objective function f on a Riemannian manifold has been

a topic of much interest over the past few years due to several important applications. Recently

considered applications include matrix completion problems [BA11, MMS11, Van12, DKM12], truss

optimization [RW12], finite-element discretization of Cosserat rods [San10], matrix mean compu-

tation [BI13, ATV13], image and video-based recognition [TVSC11], electrostatics and electronic

structure calculation [WY12], finance and chemistry [Bor12], multilinear algebra [SL10, IAVD11],

low-rank learning [MMBS11, BA11], and blind source separation [KS12, SAGQ12]. Research ef-

forts to develop and analyze optimization methods on manifolds can be traced back to the work

of Luenberger [Lue72]. They include, among others, steepest-descent methods [Lue72], conjugate

gradients [Smi94], Newton’s method [Smi94, ADM02], and trust region methods [ABG07, BAG08];

see also [AMS08] for an overview.

1.2 Basic Principles

1.2.1 Unconstrained Optimization on a Constrained Space

To define a manifold, let us first define a chart and atlas. Consider a set M. A one-to-one

mapping φ from U ⊂ M to an open subset of Rd is called a d-dimensional chart of the setM. If

a collection of charts (Uα, φα) satisfies the following, then we call this collection an atlas:

1.
⋃

α =M.

2. For any α, β with Uα
⋂Uβ 6= 0, the sets φα(Uα

⋂Uβ) and φβ(Uα
⋂Uβ) are open sets in Rd

and the change of coordinates

φβ ◦ φ−1α : Rd → R
d

is smooth. (We say that the elements of an atlas overlap smoothly.)

3

Two atlases A1 and A2 are equivalent if A1 ∪ A2 is still an atlas. A (d-dimensional) manifold is

a couple (M,A+), where A+ is a maximal atlas of M into R
d, such that the topology induced

by A+ is Hausdorff and second-countable. Hausdorff means every single point is a closed set and

second-countable means there is a countable collection of open sets that generates all open sets by

union. For example, a sphere is a manifold.

Optimization on manifolds can be thought of as unconstrained optimization on a constrained

space. The ideas of algorithms for unconstrained optimization on an Euclidean space can be

used for optimization on a manifold if many definitions are reconsidered. This reconsideration is

crucial because the ideas are not extended simply from Euclidean space. For instance, addition

and subtraction of two points on Euclidean space exist but do not exist for two points on manifold

in general. In order to extend well-known optimization methods in Euclidean space to manifold,

e.g., steepest descent, Newton method, trust regions and quasi-Newton, we must give specific

generalizations of certain Euclidean definitions. We briefly discuss them in the following sections.

The presentation follows [AMS08].

1.2.2 Tangent Space

In order to apply optimization algorithms based on line search, we must consider a direction on

a manifold. Consider a smooth mapping, γ : R → M, that satisfies γ(0) = x. Let us attempt to

define the direction at x along γ. Similar to Euclidean space, the first idea that comes to mind is

γ′(0) = lim
h→0

γ(h) − γ(0)

h
.

Unfortunately, the subtraction of two points, γ(τ + h), γ(τ), may not be defined on a manifold. A

solution to this problem is to consider a smooth function f :M→ R. We then have

(f ◦ γ)′(0) = lim
h→0

f(γ(h))− f(γ(0))

h
,

which is well-defined. We can define γ̇(0) as a mapping from Fx(M), the set of all smooth real-

valued functions on a neighborhood of x

γ̇(0)f = (f ◦ γ)′(0),

This mapping is the direction at x along γ and it is also called a tangent vector to the curve γ at

t = 0. The formal definition of tangent vectors follows.

4

Definition 1.2.1 (tangent vector). A tangent vector ξx to a manifoldM at a point x is a mapping

from Fx(M) to R such that there exists a curve γ on M with γ(0) = x, satisfying

ξxf = γ̇(0)f =
df(γ(t))

dt
|t=0

for all f ∈ Fx(M). The curve γ is said to realize the tangent vector ξx. The point x is called the

root of the tangent vector ξx.

The set of all tangent vectors at x is called the tangent space of x and the union of all tangent

spaces is called the tangent bundle of the manifold, TM. This is a very important definition. It

generalizes the idea of direction in a Euclidean space. Furthermore, the tangent space is a linear

space, i.e., closed under linear combination, with the same dimension as the manifold, in which

many basic operations are well-defined. So, instead of working on manifold, we work on a tangent

space. However, eventually, we need to go back to the manifold and a operation called retraction

is needed. This is discussed later.

1.2.3 Riemannian Metric

The tangent space at a point on the manifold provides us with a vector space of tangent vectors

that give an idea of direction on the manifold. A Riemannian metric allows us to compute angle

and length of directions (tangent vectors). A Riemannian metric g is defined on each tangent space

of x as an inner product gx : TxM× TxM → R. We use the following to denote Riemannian

metric

gx(η, ξ) = 〈η, ξ〉x,

where η, ξ ∈ TxM and the x is dropped when context permits. A notation, flat ♭, is also used in

the later sections. ξ♭ denotes a function from TxM to R, which is ξ♭η = g(ξ, η) for all η ∈ TxM.

A Riemannian manifold is the combination (M, g).

We can get the length of a curve on Riemannian manifold by the norm induced by this inner

product.

d(x, y) = inf
γ
{
∫ 1

0
‖γ̇(t)‖gγ(t)dt},

where γ is a curve onM with γ(0) = x and γ(1) = y.

5

Once distance is defined, we can define the idea of a neighborhood of a point, which is denoted

by Bδ(x) and defined

Bδ(x) = {y ∈M : d(x, y) < δ}.

This idea of neighborhoods is used to define local minimizers for a function defined on a manifold.

Given a function f :M→ R, a point x∗ is a strict local minimizer if there exists some δ > 0 such

that

f(x) < f(y) for all y ∈ Bδ(x).

1.2.4 Affine Connections, Geodesics, Exponential Mapping and Parallel

Translation

Let γ(t) be a curve on a Riemannian manifold. γ̇(t) is defined to show the direction along

the curve. Using the Riemannian metric, the length of γ̇(t) shows the speed of change on the

curve. However, an analogy to a second derivative is required to define acceleration and, thereby,

to generalize the Euclidean notion of a straight line between two points as being the one with

zero acceleration. Likewise, the ’straight line’ on a Riemannian manifold, called a geodesic, is a

curve γ(t) that has zero acceleration. To define acceleration, we need a differentiation operator

applicable to tangent vectors in different tangent spaces since γ̇(t) is a vector field along the curve.

On Riemannian manifolds, differential operators are called affine connections.

Let X (M) be the set of all smooth vector fields on M. An affine connection ∇ is a mapping

from X (M)×X (M) to X (M). This is a differential operator and is required to satisfy the following

properties. For a, b ∈ R, η, ξ, ζ ∈ X (M) and for any x ∈ M, f, g ∈ Fx(M):

1. ∇fη+gζξ = f∇ηξ + g∇ζξ : F(M)-linearity in the first argument;

2. ∇η(aξ + bζ) = a∇ηξ + b∇ηζ: R-linearity in the second argument; and

3. ∇η(fξ) = (ηf)ξ + f∇ηξ: Product rule/Leibniz’s law.

At a point x onM, the connection maps tangent vectors (η, ξ) ∈ TxM×TxM to a tangent vector

∇ηξ ∈ TxM. The result ∇ηξ is a covariant derivative of ξ with respect to η. For a general manifold

M, there is an infinite number of affine connections. For a Riemannian manifold (M, g), one of

the affine connections, called Riemannian connection or Levi-Civita connection, uniquely satisfies

the following two additional conditions:

6

1. (∇ηξ −∇ξη)f = η(ξf)− ξ(ηf): symmetry; and

2. ζ〈η, ξ〉 = 〈∇ζη, ξ〉 + 〈η,∇ζξ〉 (compatibility with the Riemannian metric).

The geodesic defined by an affine connection is a curve that satisfies

∇γ̇(t)γ̇(t) :=
D2

dt2
γ(t) :=

D

dt
γ̇(t) = 0.

A consequence of the compatibility with the Riemannian metric is that when the affine connection

is the Riemannian connection, one of the geodesics between two points on the manifold (there may

be many) is also a minimal length curve. This is consistent with the straight line in Euclidean

space. In this dissertation, only the Riemannian connection is considered.

Given a point x ∈ M and a tangent vector η ∈ TxM, there is a unique geodesic γ(t;x, η)

satisfying γ(0) = x and γ̇(0) = ξ. In addition, this geodesic satisfies the homogeneity property,

γ(t;x, aη) = γ(at;x, η). The mapping is called the exponential mapping at x and is denoted

Expx : TxM→M : η → Expx η = γ(1;x, η)

Exponential mapping provides a method to relate a tangent vector of x to an element in the

neighborhood of x. When performing optimization algorithm, e.g. line-search-based or trust-region-

based, exponential mapping allows us to move in the tangent space and then map the resulting

tangent vector back to the manifold in a neighborhood of x.

Given that a series of tangent spaces, each defined by a point in the sequence produced by the

optimization algorithm, are encountered while solving a problem, we may also need to compare

or combine multiple direction vectors. As a result, they must be placed in a common frame of

reference, i.e., they must be “transported” to a common tangent space. Since affine connection

gives the idea of differentiation for tangent vectors in different tangent spaces, we can use it to

define a vector transport: parallel translation.

A vector field ξ on a curve γ satisfying D
dtξ = ∇γ̇ξ = 0 is called parallel. Given a ∈ R in the

domain of γ and ξγ(a) ∈ Tγ(a)M, there is a unique parallel vector field ξ on γ such that ξ(a) = ξγ(a).

The operator P b←a
γ sending ξ(a) to ξ(b) is called parallel translation along γ. In other words, we

have
D

dt
(P t←a

γ (a)) = 0.

When ∇ is the Riemannian connection, the parallel translation is an isometry.

7

1.2.5 Gradient and Hessian

The gradient of a function shows the steepest ascent direction and is very useful for optimization

in a Euclidean space. Since the gradient is a direction on a manifold, it should be a tangent vector.

For a function f defined on a Riemannian manifold (M, g), the Riemannian gradient of f at x,

grad f , is the unique tangent vector such that

〈grad f(x), η〉x = D f(x)[η],∀η ∈ TxM.

This definition is consistent with the Euclidean gradient since for a function h defined on R
n, the

directional directive along v is

lim
ǫ→0

h(x+ ǫv)− h(x)

ǫ
= gradh(x)T v = 〈gradh(x), v〉2.

The Hessian is required in second-order optimization algorithms, such as Newton’s Method. The

Hessian of Euclidean function is the second derivative of the objective function. It contains the

information of differentiating the gradient along some direction. For h defined on R
n, the gradient

is grad h(x) = {∂ih(x)} and the Hessian is Hessh(x) = {∂ijh(x)}. Considering the derivative of

gradh(x) along direction v gives

lim
ǫ→0

gradh(x+ ǫv)− gradh(x)

ǫ
= Hess h(x)v.

This idea is used to define the Riemannian Hessian.

The Riemannian Hessian of f at x is the linear mapping from TxM to TxM defined by

Hess f(x)[η] = ∇η grad f(x),

for all η ∈ TxM. From the symmetric property of the Riemannian connection, we know the

Hessian is a self-adjoint(symmetric) operator with respect to Riemannian metric, i.e.

〈Hess f(x)[η], ξ〉x = 〈η,Hess f(x)[ξ]〉x,

for all η, ξ ∈ TxM.

8

1.2.6 Retraction and Vector Transport

In general, we work on the tangent space, either performing linear search or building a local

model, to find a reasonable tangent vector to define the next iterate on the manifold. Retraction

provides a method to map the tangent vector to the next iterate.

Definition 1.2.2 (retraction). A retraction on a manifold M is a smooth mapping R from the

tangent bundle TM onto M with the following properties. Let Rx denote the restriction of R to

TxM.

1. Rx(0x) = x, where 0x denotes the zero element of TxM.

2. With the canonical identification T0x TxM ⋍ TxM, Rx satisfies

DRx(0x) = idTxM,

where idTxM denotes the identity mapping on TxM.

The exponential mapping is a special retraction. When we perform line search along a direction

in the tangent space and use exponential mapping to map back to the manifold, we are actually

performing a line search along the geodesic defined by the tangent vector. This was the basic idea

used initially to define line search on a set of equality constraints in R
n by Luenberger [Lue72,

Lue73]. Retraction provides a critical alternative to the exponential mapping which can often be

too expensive to define an efficient Riemannian optimization method.

As we have seen, parallel translation provides an idea of moving tangent vectors between tangent

spaces. However, since it is based on the idea of the exponential mapping it is also often too

expensive to use in a practical method. Vector transport is an alternative built upon retraction.

Definition 1.2.3 (vector transport). Vector transport on a manifold M is a smooth mapping

TM⊕ TM→ TM : (ηx, ξx) 7→ Tηx(ξx) ∈ TM

satisfying the following properties for all x ∈M.

• (Associated retraction) There exists a retraction R, called the retraction associated with T ,
such that the following diagram commutes

(ηx, ξx) Tηx(ξx)

ηx π (Tηx(ξx))
?

-
T

?

π

-

R

9

where π (Tηx(ξx)) denotes the foot of the tangent vector Tηx(ξx).

• (Consistency) T0xξx = ξx for all ξx ∈ TxM;

• (Linearity) Tηx(aξx + bζx) = aTηx(ξx) + bTηx(ζx).

Vector transport is called isometric if it also satisfies

gR(ηx)(Tηxξx,Tηxζx) = gx(ξx, ζx). (1.2.1)

Vector transport by differentiated retraction is a vector transport given by

Tηxξx = DR(ηx)[ξx],

where R is a retraction. We use TS and TR to denote an isometric vector transport and a dif-

ferentiated retraction of R respectively. Vector transport is a very important for quasi-Newton

algorithms which make use of the information from previous iterations and approximate the action

of the Hessian. This information resides in different tangent spaces and the operator approximating

the action of the Hessian must be moved through a series of tangent spaces. Without the use of

vector transport the use of quasi-Newton algorithms on a range of manifolds would not be efficient

enough for practical use. The theoretical and practical aspects of the design and implementation

of retraction and vector transport is a key aspect of the research in this dissertation.

1.2.7 Coordinate Expressions

Coordinate expressions provide an approach to represent concepts on a manifold by concepts

in a vector space. When we analyze a problem on a manifold in this dissertation, we use a ”hat”

to denote a coordinate expression.

Let (U , ϕ) be a chart of a manifoldM and x ∈ U . x̂ ∈ Rd, the coordinates expression of x, is

defined by x̂ = ϕ(x). Ei, the i-th coordinate vector field of (U , ϕ), is defined by

(Eif)(x) := ∂i(f ◦ ϕ−1)(ϕ(x)) = D(f ◦ ϕ−1)(ϕ(x))[ei].

These coordinate vector fields are smooth and every vector field ξ on U has a decomposition

ξ =
∑

i

(ξϕi)Ei.

10

Therefore, (Ei)x, i = 1, . . . , d is a basis of TxM and the coordinate expression ξ̂x of ξx with

this basis is (ξxϕ1, . . . , ξxϕd). Since Eis are smooth vector fields on U , one can always use QR

decomposition to form a smooth orthonormal vector fields on U , i.e., (E1, . . . , Ed) = (Ẽ1, . . . , Ẽd)R,

where Ẽ1, . . . , Ẽd are orthonormal vector fields and R : U → R
d×d is a smooth function and R(x)

is an upper triangle matrix for all x ∈ U [DE99]. Thus, the coordinate expression of ξx with the

orthonormal basis can be obtained.

The coordinate expression of the metric at x is (Gx)ij = 〈Ei, Ej〉x satisfying gx(ηx, ξx) =

η̂TxGxξ̂x. Since a tangent space can be represented by R
d, a linear operator B on a tangent space

and a vector transport T admit matrix expressions B̂ and T̂ that are called coordinate expressions.

Without loss of generality, one can always choose the orthonormal vector fields Ẽ1, . . . , Ẽd. There-

fore, the matrix expression of Gx is a identity and ‖ηx‖ =
√

gx(ηx, ηx) =
√

η̂Tx η̂x = ‖η̂x‖2, where
‖ · ‖2 denotes the Euclidean norm.

1.3 Historical Context

The concept of optimizing a real-valued function on manifold dates back to the work of Luen-

berger [Lue72, Lue73] in the early 1970s, if not earlier. Luenberger mentions the idea of performing

line search along geodesics when geodesics are computationally feasible, which is definitely not al-

ways true. In general, computing the geodesics is rarely worth the effort. In most optimization on

manifolds, an approximation of geodesic is enough to guarantee the desired convergence properties.

What is more, many classical mathematical definitions in Riemannian geometry, such as geodesic,

Levi-Civita connections, parallel vector transport, can be replaced by approximations.

Only recently, about 2002, researchers started to recognize the importance for a wide class

of approximations of geodesics when optimizing on manifolds. Before then research was mostly

theoretical: the central research question was to exploit differential-geometric objects in order to

formulate optimization strategies on abstract nonlinear manifolds. The first research paper to focus

on optimization on manifolds was Gabay [Gab82] on minimizing a differentiable function over a

differential manifold in 1982 but it received only 8 citations before the year 2000. The area of

optimization on manifolds started to gain wider popularity in the 1990s, notably with the seminal

works of Helmke and Moore [HM94] and Edelman et al. [EAS98]. ISI records a total of 596 citations

for [HM94], including 52 citations over the last two years.

11

Currently, most work is on making optimization on manifolds more practical and flexible and

optimization on manifolds has become a very active area of research. The recent book [AMS08]

provides an introduction to the area, with an emphasis on the necessary background in differen-

tial geometry instrumental to algorithmic development, and on guiding the reader through the

concrete calculations that turn an abstract geometric algorithm into a numerical implementation.

In 2008, the dissertation of C. Baker developed a complete theory for a Riemannian trust region

Newton family of methods, implemented them in a numerical library, and analyzed their perfor-

mance [Bak08]. In 2011, Qi gave an approach to generalize BFGS to a Riemannian manifold and

developed the convergence analysis in her dissertation [Qi11]. Her convergence analysis restricts

the approach of BFGS on Riemannian manifold to only work for exponential mapping and par-

allel vector transport. A recent paper by Ring and Wirth [RW12] provided another approach for

BFGS on a Riemannian manifold. Instead of working on finite dimensional Riemannian manifold-

s, their approach addresses infinite dimensional Riemannian manifolds. The convergence analysis

is for both finite and infinite dimensional Riemannian manifolds with the latter depending on a

specific assumption [RW12, Corollary 13]. They do not require exponential mapping and parallel

vector transport. However, differentiated retraction is required which leads typically to excessive

computational requirements.

1.4 Research Overview and Dissertation Statement

While the RTR-Newton-CG algorithm, analyzed and implemented in a reliable library by C.

Baker [Bak08], has quadratic convergence property and has been investigated in practical situations

by others, it requires the Hessian or its action which is not always easy to compute efficiently. Thus,

an area of concentration in this dissertation is generalizing a family of quasi-Newton algorithm based

on a Riemannian secant condition to remove the explicit need for the Hessian. This has been done

in both the line search and trust region settings.

The work in this dissertation improves in several ways the earlier work on a Riemannian BFGS

line search method (RBFGS) [Qi11] and that of Ring and Wirth [RW12]. Qi’s RBFGS requires

exponential mapping and parallel vector transport whose practical computation may not be possi-

ble. So even though they are available, they are often not good choice. Ring and Wirth’s approach

requires the differentiated retraction that also may suffer from complexity problems.

12

This dissertation proposes a systematic Riemannian generalization and analysis of the Euclidean

optimization methods known as the restricted Broyden family method based on appropriately cho-

sen retraction and vector transport. This resulting Riemannian family of line search methods

subsumes the earlier RBFGS work. As part of analyzing the convergence rate of the restricted

Riemannian Broyden family methods, the well-known sufficient and necessary conditions of super-

linear convergence, Dennis Moré conditions, are generalized to the Riemannian setting for not only

problems of optimization but also finding a zero of a vector field.

The idea of quasi-Newton approximation of the Hessian or its action can also be used effectively

in a trust region setting. The restricted Broyden family in both Euclidean and Riemannian contexts

preserve the positive definiteness of Hessian approximation and concentrate on approximating the

action of the Hessian in a particular direction. As a result, they are most effective as the basis for

a line search algorithm. The Euclidean Broyden family contains an interesting member outside the

restricted set of algorithms – the Symmetric Rank-1 (SR1) method update, which does not preserve

positive definiteness, and has lost favor as a line search algorithm. However, the method’s tendency

to produce indefinite Hessian approximations is based on the fact that it approximates the Hessian

as an operator on multiple directions not just a particular line search direction. This turns out to

be very useful in constrained optimization and for the definition of a local model required in a trust

region setting.

Byrd et al. [BKS96] proved n+1-step superlinear convergence for a trust region method based

on the Euclidean SR1 update. Furthermore, the performance of trust region with SR1 update is

competitive with BFGS in their experiments. This is significant in that it removes the need for the

Hessian yet retains the use of a trust region and its constrained optimization of a local model that

often yields more robust performance than a line search method. The second part of the research in

this dissertation proposes the generalization to Riemannian manifolds and the complete theoretical

and empirical analysis of convergence of a trust region SR1 approach.

While the two activities above make a significant contribution to Riemannian optimization, the

superlinear convergence analysis of such quasi-Newton and trust region algorithms depends on a

smooth objective function. For a partly smooth objective function in a Euclidean setting, even

though a complete convergence analysis is not yet available, Lewis and Overton [LO13] provided

details experiments and showed that quasi-Newton algorithms work well and have observed linear

13

convergence. Burke, Lewis and Overton [BLO05] gave a robust gradient sampling algorithm for

partly smooth function proved its convergence, but not its rate. Since there is increasing interest

in finding optima of a partly smooth function on Riemannian manifold, the third part of the

dissertation generalizes gradient sampling to a Riemannian manifold and empirically analyze its

convergence. This includes comparisons to applying one of our Riemannian quasi-Newton methods

to the same problems.

The framework of retraction and vector transport is required in many implementation of Rie-

mannian optimization algorithms, in particular Riemannian quasi-Newton methods and Rieman-

nian gradient sampling method. The rigorous definitions of retraction and vector transport can

be found in [AMS08] and the implementation for some specific manifolds is also discussed therein.

However, there still is lack of discussions about implementation for Riemannian optimization, such

as efficient and effective implementations of tangent vectors, metrics, linear operators of a tangent

space, vector transports and so on. The fourth part of the dissertation gives a general discussion

of implementation for some manifolds that can be represented by a vector in R
n, i.e., manifolds in

R
n, quotient manifolds with total manifold in R

n and product of manifolds of the former two kinds

of manifolds. Detailed discussions of the implementation are included on four important manifolds:

the Stiefel manifold, the sphere, the orthogonal group and the Grassmann manifold.

Experiments and applications are presented in the last part of the dissertation. To better

understand the proposed algorithms, we systematically compare the performance of the proposed

algorithms for some classic and well-studied problems. In addition, four applications are also used to

show the advantages of the proposed algorithms. Among them four have smooth enough cost func-

tions: Riemannian optimization for elastic shape distance analysis, a joint diagonalization problem

for independent component analysis, nonlinear dimension reduction problem, and a synchronization

of rotations problem. and the efficiency and effectiveness of our Riemannian quasi-Newton methods

are shown in the respective chapters. In secant-based nonlinear dimension reduction problem, two

cost functions are proposed to solve a same problem – one is smooth and the other is partly smooth.

The consequences of choosing either cost function is investigated empirically. For the smooth cost

function, our Riemannian quasi-Newton methods are showed to outperform the proposed Rieman-

nian algorithm in the original paper [BK05]. The Riemannian gradient sampling algorithm also

shows encouraging performance for the partly smooth cost function.

14

CHAPTER 2

QUASI-NEWTON PREPARATION: SECANT

CONDITIONS

2.1 Secant Condition on a Euclidean Space

Newton’s method is locally quadratically convergent to any nondegenerate stationary points.

In other words, if initial iterate x0 is close enough to some stationary point x∗, then the method

xk+1 = xk − (Hess h(x))−1 gradh(x) = xk + dk

produces a sequence such that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖2 <∞.

For a minimization problem, the direction vector, dk, is controlled to be a descent direction possibly

with a scaling, i.e., αkdk, to yield, in practice quadratic convergence to a local minimizer. These

two basic ideas, descent and local superlinear convergence, can be used as the motivating properties

to derive quasi-Newton methods.

Local superlinear convergence results from approximating the effect of Hessian in a particular

direction. By Taylor’s Theorem, we have

gradh(xk+1) = gradh(xk) + Hessh(xk)(xk+1 − xk) +O(‖xk+1 − xk‖2).

Ignoring the high order term, gives

gradh(xk+1)− gradh(xk) ≈ Hess h(xk)(xk+1 − xk).

Using the equation as inspiration, we let the Hessian approximation Bk+1 satisfy

gradh(xk+1)− gradh(xk) = Bk+1(xk+1 − xk).

This equation is the Euclidean secant condition. Clearly, there are many Bk+1 in the set of matrices,

S, that satisfy the secant condition and not all Bk+1 ∈ S result in acceptable convergence. The

secant condition only restricts the action of Bk+1 in one direction and its action on the other

15

directions is free. However, these other directions are present when determining the next direction

vector dk+1 = −B−1k+1 gradh(xk) for a line search algorithm or when minimizing a local quadratic

model defined by Bk+1. Therefore the rate of convergence is not guaranteed to be superlinear, in

general, and the secant condition is not sufficient. Other conditions must be imposed and different

conditions yield different quasi-Newton methods. In the following, we summarize the derivation of

the well-known SR1 and the restricted Broyden family, see for example [NW06].

Let yk = grad h(xk+1) − gradh(xk) and sk = xk+1 − xk. The simplest symmetric condition

yields the SR1 method (symmetric rank-1 update method). Given Bk, we update it to Bk+1

by guaranteeing symmetry, using a rank-1 update, and satisfying the secant condition. These

conditions define the unique update

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)

T

(yk −Bksk)T sk
.

This method is not easy to use in a line search idea because the direction ηk+1 = B−1k+1 gradh(xk+1)

is not guaranteed to be a descent direction. It is more natural to combine SR1 with a trust region

to guarantee descent.

Another well-known approach is to impose the following conditions

min
B
‖B −Bk‖WB

s.t. B = BT , Bsk = yk,

where WB is any matrix satisfying WByk = sk and ‖A‖WB
= ‖W 1/2

B AW
1/2
B ‖F . The next Hessian

approximation, Bk+1, is the closest matrix to Bk that satisfies the secant condition. Bk+1 is

therefore obtained by making use of new information (secant condition) while preserving previous

secant conditions as much as possible (minimum change to Bk). This idea leads to the Davidon-

Fletcher-Powell (DFP) update

Bk+1 = (I − yks
T
k

yTk sk
)Bk(I −

sky
T
k

yTk sk
) +

yky
T
k

yTk sk
.

It can be shown that if sTk yk > 0 (Euclidean curvature condition) then the positive definiteness of Bk

is preserved in Bk+1 and ηTk+1 grad h(xk+1) = − gradh(xk+1)Bk+1 gradh(xk+1) < 0, guaranteeing

a descent direction.

16

Similarly, instead of preserving previous Hessian information as much as possible, we could

preserve the inverse of Hessian approximation Hk = B−1k ,

min
H
‖H −Hk‖WH

s.t. H = HT ,Hyk = sk,

where WH is any matrix satisfying WHsk = yk and ‖A‖WH
= ‖W 1/2

H AW
1/2
H ‖F . This leads to the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+

yky
T
k

yTk sk
.

As before if sTk yk > 0 then Bk+1 is positive definite and the direction ηk+1 = Bk+1 gradh(xk+1)

is a descent direction. Since DFP and BFGS produce a sequence of positive definite Hessian

approximations, they can be used in a line search algorithm, especially BFGS, since the action of

the Hessian approximation and the Hessian are, ultimately, very close along the search direction.

The restricted Broyden family is defined by taking a convex combination of BFGS and DFP

updates. It shares the property of preserving the positive definiteness of Hessian approximation.

SR1 is in the Broyden family, i.e., a linear but not convex combination of BFGS and DFP updates.

It does not, in general, preserve positive definiteness, but it provides better overall Hessian approx-

imation than members of the restricted Broyden family [BKS96], [KBS93]. As a result it is more

effective to combine SR1 with a trust region that makes use of all of the directional information

of Hessian approximation. In particular, Byrd et al. proved n + 1-step superlinear convergence

analysis of the resulting method [BKS96].

2.2 A Secant Condition on a Riemannian Manifold

Qi [Qi11] proposed a generalization of BFGS to RBFGS in her dissertation. She did not, how-

ever, consider its derivation from the point of view of rigorously defining a Riemannian form of

the secant condition and then deducing the updates to the approximation of the Hessian on the

tangent space of the current iterate. There are several possible generalizations of the Euclidean

secant condition to a Riemannian manifold. In this section, we consider first the most natural gen-

eralization that easily lends itself to parallel translation and the exponential mapping and produces

17

Qi’s RBFGS form of update. In Section 2.3, we consider other generalizations that address some

of shortcomings of the natural approach.

Consider a function f(x) defined on a manifold M. Notice the Euclidean secant condition is

from Taylor’s Theorem for the gradient. Similarly, we have Taylor’s Theorem for a vector field on

a manifold rather than for f(x) [AMS08, Lemma 7.4.7].

Theorem 2.2.1 (Taylor’s Theorem). Let x ∈ M, let V be a normal neighborhood of x, and let ζ

be a C1 tangent vector field on M. Then, for all y ∈ V,

P 0←1
γ ζy = ζx +∇ξζ +

∫ 1

0
(P 0←τ

γ ∇γ′(τ)ζ −∇ξζ)dτ,

where γ is the unique minimizing geodesic satisfying γ(0) = x and γ(1) = y, and ξ = Exp−1x y =

γ′(0).

Applying Taylor’s Theorem, we have

P 0←1
γk

grad f(xk+1) = grad f(xk) +∇ξ grad f(xk)

+

∫ 1

0
(P 0←τ

γk
∇γ′k(τ) grad f(xk)−∇ξ grad f(xk))dτ,

where γk is the unique minimizing geodesic satisfying γk(0) = xk and γk(1) = xk+1, and ξ =

Exp−1xk
xk+1 = γ′k(0). Then by ignoring the integral remainder term, we have

P 0←1
γk

grad f(xk+1)− grad f(xk) ≈ ∇ξ grad f(xk) = Hess f(xk) Exp
−1
xk

xk+1.

This is very similar to the Euclidean secant condition. However, the above is defined on Txk
M,

the desired Hessian approximation Bk+1 must be an operator on Txk+1
M. Applying parallel

translation, yields a Riemannian secant condition

grad f(xk+1)− P 1←0
γk

grad f(xk) = Bk+1(P
1←0
γk

Exp−1xk
xk+1). (2.2.1)

In the following, yk denotes grad f(xk+1) − P 1←0
γk

grad f(xk) and sk denotes P 1←0
γk

Expxk
xk+1.

Using this form of a Riemannian secant condition, we can generalize the SR1 update to a Rie-

mannian manifold. Instead of symmetry, we require Bk+1 to be self-adjoint with respect to the

Riemannian metric. We have

Bk+1 = B̃k +
(yk − B̃ksk)(yk − B̃ksk)♭

g(sk, yk − B̃ksk)
,

18

where B̃k = P 1←0
γk
BkP 0←1

γk
.

Similarly, the conditions that result in DFP and BFGS generalize to a Riemannian manifold as

DFP: min
B
‖B − B̃k‖WB

s.t. B = B∗,Bsk = yk.

BFGS: min
H
‖H − H̃k‖WH

s.t. H = H∗,Hyk = sk.

where A∗ denotes the adjoint operator of A and ‖A‖W = ‖Ŵ 1/2G1/2ÂG−1/2W 1/2‖F , G is the

matrix expression of the metric and hat denotes matrix expression for the operators A and W . We

then have the DFP and BFGS update for manifold

DFP: Bk+1 = (id−yks
♭
k

y♭ksk
)B̃k(id−

sky
♭
k

y♭ksk
) +

yky
♭
k

y♭ksk

BFGS: Bk+1 = B̃k −
B̃ksk(B̃ksk)♭

s♭kB̃ksk
+

yky
♭
k

y♭ksk
.

As in the Euclidean case, we define the Broyden family on a Riemannian manifold by taking a

combination of the Riemannian DFP and Riemannian BFGS operators defined by a φk ∈ R. The

restricted Broyden family is defined by taking a convex combination with 0 ≤ φk ≤ 1. This can be

expressed equivalently as the combination of DFP and BFGS updates below

Bk+1 = B̃k −
B̃ksk(B̃∗ksk)♭
(B̃∗ksk)♭sk

+
yky

♭
k

y♭ksk
+ φkg(sk, B̃ksk)vkv♭k,

where

vk =
yk

g(yk, sk)
− B̃ksk

g(sk, B̃ksk)
.

The Riemannian SR1 derived above is a member of the Broyden family but is not the restricted

Broyden family.

All of the quasi-Newton update formulas above are from the Riemannian secant condition

(2.2.1). The condition (2.2.1) explicitly uses the exponential mapping and parallel translation.

This is not required. Alternate forms of the secant condition that subsume (2.2.1) can be derived

by using retraction and vector transport. This is discussed in the next section.

19

2.3 Retraction, Vector Transport and a Secant Condition

Retraction and vector transport are critical to the success of Riemannian optimization algo-

rithms such as Riemannian quasi-Newton methods. Retraction is used to get the next iterate and

vector transport is use to compare tangent vectors in different tangent space and to transport

operators on one tangent space to another tangent space, e.g. B̃k = P 1←0
γk
BkP 0←1

γk
. Secant con-

dition (2.2.1), due to its origins in Taylor’s Theorem, is required to use the exponential mapping

and parallel translation. We now consider approximations of the exponential mapping and paral-

lel translation that induce a secant condition while providing sufficiently fast convergence in the

resulting algorithms.

For our purposes in optimization, the vector transport used in the secant conditions is required

to be an isometry. Experiments by Qi [Qi11] indicate that non-isometric vector transport can be

used but it is not provably convergent in general, at least thus far.

The Hessian is always a self-adjoint operator. In theory, as we show in Chapter 5, the Hessian

approximations are not required to be self-adjoint for superlinear convergence of a Riemannian op-

timization algorithm. For quasi-Newton methods, however, and in particular the updates discussed

above, the self-adjoint requirement is imposed and it makes the portions of the analysis contained

in this work tractable. Therefore, we assume B̃k is self-adjoint and require Bk+1 to be as well. From

the formula of transporting an operator

B̃k = Tηk ◦ Bk ◦ T −1ηk
,

we know an isometric vector transport T guarantees that B̃k is self-adjoint if Bk is self-adjoint.

Let TS denote the isometric vector transport. The SR1 update is given by

Bk+1 = B̃k +
(yk − B̃ksk)(yk − B̃ksk)♭

g(sk, yk − B̃ksk)
,

where B̃k = TSηBkT −1Sη
.

The first version of the BFGS method on a Riemannian manifold was given by Qi [Qi11] and,

as noted above, is based on the exponential mapping and parallel translation (an isometry) as is

Qi’s convergence analysis.

Ring and Wirth used retraction and vector transport to define their Riemannian BFGS [RW12].

Although not explicitly derived in this manner, their update follows from an alternative secant

20

condition. For a finite dimensional Riemannian manifold, instead of applying the Riemannian

Taylor’s Theorem, they considered the composition of function and retraction f ◦Rx(ηx). Since the

tangent space is a vector space, they apply the Euclidean Taylor’s Theorem to the composition on

the tangent space and derive a secant condition. In their infinite dimensional Riemannian manifold

work, they use a secant condition of the same form but do not explicitly relate it to a generalization

of Taylor’s Theorem. The drawback of this approach is that two vector transports are required: one

isometry and one derived from a differentiated retraction. As a result, the approach is quite limited

in choice of vector transport and can produce very costly basic operations. A finite dimensional

form of the secant condition of Ring and Wirth is

(grad f(xk+1)
♭TRξk

− grad f(xk)
♭)T −1Sξk

= (Bk+1TSξk
ξk)

♭.

This condition and the algorithm based upon it are compared to ours in later sections.

In this dissertation, we develop an idea that depends as little as possible on the information in

differentiated retraction. An isometric vector transport is required but interestingly is not sufficient

to preserve the positive definiteness of the Hessian approximations. For the Euclidean restricted

Broyden family, the positive definite property is guaranteed by the curvature condition sTk yk > 0.

The condition sTk yk > 0 is, in turn, guaranteed by the second Wolfe condition that is typically

imposed when choosing the step size in a Euclidean line search. However, the most natural way of

generalizing the second Wolfe condition to a Riemannian manifold does not guarantee g(sk, yk) > 0

which is also necessary and sufficient for the positive definite Hessian approximation for Riemannian

manifolds. This is discussed in detail in Chapter 4. We overcome this difficulty by imposing a novel

condition called the ’locking condition’

TSξ
ξ = βTRξ

ξ, β =
‖ξ‖
‖TRξ

ξ‖ ,

where TR is the associated differentiated retraction. In other words, we need only impose a relation-

ship between the selected retraction and vector transport, and the associated transport defined by

differentiation in a single direction. This facilitates the derivation of a potentially efficient algorithm

and its rigorous convergence analysis.

21

CHAPTER 3

A RIEMANNIAN TRUST REGION WITH

SYMMETRIC RANK-ONE UPDATE METHOD

3.1 Introduction

The trust region method is a well-known technique in optimization [CGT00] and it was ex-

tended to Riemannian manifolds in [ABG07] (or see [AMS08, Ch. 7]), and found applications, e.g.,

in [JBAS10, VV10, IAVD11, MMBS11, BA11]. Trust region methods construct a quadratic model

mk of the objective function f around the current iterate xk and produce a candidate new iterate

by (approximately) minimizing the model mk within a region where it is “trusted”. Depending

on the discrepancy between f and mk at the candidate new iterate, the size of the trust region is

updated and the candidate new iterate is accepted or rejected.

For lack of efficient techniques to produce a second-order term in mk that is inexact but nev-

ertheless guarantees superlinear convergence, the Riemannian trust region (RTR) framework loses

some of its appeal when the exact second-order term—the Hessian of f—is not available. This is

in contrast with the Euclidean case, where several strategies exist to build an inexact second-order

term that preserves superlinear convergence of the trust region method. Among these strategies,

the symmetric rank-one (SR1) update is favored in view of its simplicity and because it preserves

symmetry without unnecessarily enforcing positive definiteness; see, e.g., [NW06, §6.2] for a more

detailed discussion. The n + 1 step q-superlinear rate of convergence of the SR1 trust region

method was shown by Byrd et al. [BKS96] using a sophisticated analysis that builds on the results

in [CGT91, KBS93].

In Chapter 3, motivated by the situation described above, we introduce a generalization of

the classical (i.e., Euclidean) SR1 trust region method to the Riemannian setting (1.1.1). Besides

making use of basic Riemannian geometric concepts (tangent space, Riemannian metric, gradient),

the new method, called RTR-SR1, relies on the notions of retraction and vector transport introduced

in [ADM02, AMS08]. A detailed global and local convergence analysis is given. A limited-memory

version of RTR-SR1, referred to as LRTR-SR1, is also introduced. Numerical experiments show

22

that the RTR-SR1 method displays the expected convergence properties. When the Hessian of

f is not available, RTR-SR1 thus offers an attractive way of tackling (1.1.1) by a trust region

approach. Moreover, even when the Hessian of f is available, making use of it can be expensive

computationally, and the numerical experiments show that ignoring the Hessian information and

resorting instead to the RTR-SR1 approach can be beneficial.

Another contribution of Chapter 3 with respect to [BKS96] is an extension of the analysis to

allow for inexact solutions of the trust region subproblem—compare (3.3.3) with [BKS96, (2.4)].

This extension makes it possible to resort to inner iterations such as the Steihaug–Toint truncated

CGmethod (see [AMS08, §7.3.2] for its Riemannian extension) while staying within the assumptions

of the convergence analysis.

Chapter 3 is organized as follows. The RTR-SR1 method is stated and discussed in Section 3.2.

The convergence analysis is carried out in Section 3.3. The limited-memory version is introduced

in Section 3.4. Experiments illustrating the performance of RTR-SR1 are presented for several

application problems in the associated chapters.

3.2 The Riemannian SR1 Trust Region Method

The proposed Riemannian SR1 trust region (RTR-SR1) method is described in Algorithm 1.

Algorithm 1 can be viewed as a Riemannian version of the classical (Euclidean) SR1 trust region

method (see, e.g., [NW06, Algorithm 6.2]). It can also be viewed as an SR1 version of the Rieman-

nian trust region framework [AMS08, algorithm. 10 p. 142]. Therefore, several pieces of information

given in [AMS08, Ch. 7] remain relevant for Algorithm 1.

Within the Riemannian trust region framework, the characterizing aspect of Algorithm 1 lies

in the update mechanism for the Hessian approximation Bk. The proposed update mechanism,

based on formula (3.2.2) and on Step 6 of Algorithm 1, is a rather straightforward Riemannian

generalization of the classical SR1 update

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)

T

(yk −Bksk)T sk
.

Significantly less straightforward is the Riemannian generalization of the superlinear convergence

result in Section 3.3.4. (Observe that the local convergence result [AMS08, Theorem 7.4.11] does

not apply here because the Hessian approximation condition [AMS08, (7.36)] is not guaranteed to

hold.)

23

Algorithm 1 Riemannian trust region with symmetric rank-one update (RTR-SR1)

Input: Riemannian manifoldM with Riemannian metric g; retraction R; isometric vector trans-

port TS; differentiable real-valued objective function f on M; initial iterate x0 ∈ M; initial

Hessian approximation B0, symmetric with respect to g.

1: Choose ∆0 > 0, ν ∈ (0, 1), c ∈ (0, 0.1), τ1 ∈ (0, 1) and τ2 > 1; Set k ← 0;

2: Obtain sk ∈ Txk
M by (approximately) solving

sk = arg min
s∈Txk

M
mk(s) = arg min

s∈Txk
M

f(xk) + g(grad f(xk), s) +
1

2
g(s,Bks), s.t. ‖s‖ ≤ ∆k;

(3.2.1)

3: Set ρk ← f(xk)−f(Rxk
(sk))

mk(0)−mk(sk)
;

4: Let yk = T −1Ssk
grad f(Rxk

(sk)) − grad f(xk); If |g(sk, yk − Bksk)| < ν‖sk‖‖yk − Bksk‖, then

B̃k+1 = Bk, otherwise define the linear operator B̃k+1 : Txk
M→ Txk

M by

B̃k+1 = Bk +
(yk − Bksk)(yk − Bksk)♭

g(sk, yk − Bksk)
, (SR1); (3.2.2)

5: if ρk > c then

6: xk+1 ← Rxk
(sk); Bk+1 ← TSsk

◦ B̃k+1 ◦ T −1Ssk
;

7: else

8: xk+1 ← xk; Bk+1 ← B̃k+1;

9: end if

10: if ρk > 3
4 then

11: if ‖sk‖ ≥ 0.8∆k then

12: ∆k+1 ← τ2∆k;

13: else

14: ∆k+1 ← ∆k;

15: end if

16: else if ρk < 0.1 then

17: ∆k+1 ← τ1∆k;

18: else

19: ∆k+1 ← ∆k;

20: end if

21: k ← k + 1, goto 2 until convergence.

24

The Riemannian SR1 update uses tangent vectors at the current iterate to produce a new

Hessian approximation at the next iterate, hence the need to perform a vector transport (see

Step 6) from the current iterate to the next.

The symmetry requirement on B0 with respect to the Riemannian metric g means that

g(B0ξx0 , ηx0) = g(ξx0 ,B0ηx0)

for all ξx0 , ηx0 ∈ Tx0M. It is readily seen from (3.2.2) and Step 6 of Algorithm 1 that Bk is

symmetric for all k. Note however that Bk is, in general, not positive definite.

A possible stopping criterion for Algorithm 1 is ‖ grad f(xk)‖ < ǫ for some specified ǫ > 0.

In the spirit of [RW12, Remark 4], we point out that it is possible to formulate the SR1

update (3.2.2) in the new tangent space Txk+1
M; in the present case of SR1, the algorithm remains

equivalent since the vector transport is isometric.

Otherwise, Algorithm 1 does not call for comments other than those made in [AMS08, Ch. 7].

In particular, we point out that the meaning of “approximately” in Step 2 of Algorithm 1 depends

on the desired convergence results. It is shown in the convergence analysis (Section 3.3) that

enforcing the Cauchy decrease (3.3.2) is enough to ensure global convergence to stationary points,

but another condition such as (3.3.3) is needed to guarantee superlinear convergence. The truncated

CG method, discussed in [AMS08, §7.3.2] in the Riemannian context, is an inner iteration for Step 2

that returns an sk satisfying conditions (3.3.2) and (3.3.3).

3.3 Convergence Analysis of RTR-SR1

3.3.1 Notation and Standing Assumptions

Throughout the convergence analysis, unless otherwise specified, we let {xk}, {Bk}, {B̃k}, {sk},
{yk}, and {∆k} be infinite sequences generated by Algorithm 1, and we make use of the notation

introduced in that algorithm. We let Ω denote the sublevel set of x0, i.e.,

Ω = {x ∈ M : f(x) ≤ f(x0)}.

The global and local convergence analyses each make standing assumptions at the beginning of

their respective sections. The numbered assumptions introduced below are not standing assump-

tions and will be invoked specifically whenever needed.

25

3.3.2 Global Convergence Analysis

In some results, we will assume for the retraction R that there exists µ > 0 and δµ > 0 such

that

‖ξ‖ ≥ µ dist(x,Rx(ξ)) for all x ∈ Ω, for all ξ ∈ TxM, ‖ξ‖ ≤ δµ. (3.3.1)

This corresponds to [AMS08, (7.25)] restricted to the sublevel set Ω. Such a condition is instru-

mental in the global convergence analysis of Riemannian trust region schemes. Note that, in view

of [RW12, Lemma 6], condition (3.3.1) can be shown to hold globally under the condition that R

has equicontinuous derivatives.

The next assumption corresponds to [BKS96, (A3)].

Assumption 3.3.1. The sequence of linear operators {Bk} is bounded by a constant M such that

‖Bk‖ ≤M for all k.

We will often require that the trust region subproblem (3.2.1) is solved accurately enough that,

for some positive constants σ1 and σ2,

mk(0)−mk(sk) ≥ σ1‖ grad f(xk)‖min{∆k, σ2
‖ grad f(xk)‖
‖Bk‖

}, (3.3.2)

and that

Bksk = − grad f(xk) + δk with ‖δk‖ ≤ ‖ grad f(xk)‖1+θ, whenever ‖sk‖ ≤ 0.8∆k, (3.3.3)

where θ > 0 is a constant. These conditions are generalizations of [BKS96, (2.3–4)]. Observe that,

even if we restrict to the Euclidean case, condition (3.3.3) remains weaker than condition [BKS96,

(2.4)]. The purpose of introducing δk in (3.3.3) is to encompass stopping criteria such as [AMS08,

(7.10)] that do not require the computation of an exact solution of the trust region subproblem.

We point out in particular that (3.3.2) and (3.3.3) hold if the approximate solution of the trust

region subproblem (3.2.1) is obtained from the truncated CG method, described in [AMS08, §7.3.2]
in the Riemannian context.

We can now state and prove the main global convergence results. Point (iii) generalizes [BKS96,

Theorem 2.1] while points (i) and (ii) are based on [AMS08, §7.4.1].

Theorem 3.3.1 (convergence). (i) If f ∈ C2 is bounded below on the sublevel set Ω, Assump-

tion 3.3.1 holds, condition (3.3.2) holds, and (3.3.1) is satisfied then limk→∞ grad f(xk) = 0. (ii)

26

If f ∈ C2, M is compact, Assumption 3.3.1 holds, and (3.3.2) holds then limk→∞ grad f(xk) = 0,

{xk} has at least one limit point, and every limit point of {xk} is a stationary point of f . (iii) If

f ∈ C2, the sublevel set Ω is compact, f has a unique stationary point x∗ in Ω, Assumption 3.3.1

holds, condition (3.3.2) holds, and (3.3.1) is satisfied then {xk} converges to x∗.

Proof. (i) Observe that the proof of [AMS08, Theorem 7.4.4] still holds when condition [AMS08,

(7.25)] is weakened to its restriction (3.3.1) to Ω. Indeed, since the trust region method is a de-

scent iteration, it follows that all iterates are in Ω. The assumptions thus allow us to conclude,

by [AMS08, Theorem 7.4.4], that limk→∞ grad f(xk) = 0. (ii) It follows from [AMS08, Proposi-

tion 7.4.5] and [AMS08, Corollary 7.4.6] that all the assumptions of [AMS08, Theorem 7.4.4] hold.

Hence limk→∞ grad f(xk) = 0, and every limit point is thus a stationary point of f . Since M is

compact, {xk} is guaranteed to have at least one limit point. (iii) Again by [AMS08, Theorem 7.4.4],

we get that limk→∞ grad f(xk) = 0. Since {xk} belongs to the compact set Ω and cannot have limit

points other than x∗, it follows that {xk} converges to x∗.

3.3.3 More Notation and Standing Assumptions

For the purpose of conducting a local convergence analysis, we now assume that {xk} converges
to a point x∗. Moreover, we assume throughout that f ∈ C2.

We let Utrn be a totally retractive neighborhood of x∗, a concept inspired from the notion of

totally normal neighborhood (see [dC92, §3.3]). By this, we mean that there is δtrn > 0 such that,

for each y ∈ Utrn, we have that Ry(B(0y, δtrn)) ⊇ Utrn and Ry(·) is a diffeomorphism on B(0y, δtrn),

where B(0y, δtrn) denotes the ball of radius δtrn in TyM centered at the origin 0y. The existence

of a totally retractive neighborhood can be shown along the lines of [dC92, Theorem 3.3.7]. We

assume without loss of generality that {xk} ⊂ Utrn. Whenever we consider an inverse retraction

R−1x y, we implicitly assume that x, y ∈ Utrn.

3.3.4 Local Convergence Analysis

The purpose of this section is to obtain a superlinear convergence result for Algorithm 1, stated

in Theorem 3.3.2. The analysis can be viewed as a Riemannian generalization of the local analysis

in [BKS96, §2]. As we proceed, we will point out the main hurdles that had to be overcome in the

generalization. The analysis makes use of several preparation lemmas, independent of Algorithm 1,

27

that are of potential interest in the broader context of Riemannian optimization. These preparation

lemmas become trivial or well known in the Euclidean context.

The next assumption corresponds to a part of [BKS96, (A1)].

Assumption 3.3.2. The point x∗ is a nondegenerate local minimizer of f . In other words,

grad f(x∗) = 0 and Hess f(x∗) is positive definite.

The next assumption generalizes the assumption, contained in [BKS96, (A1)], that the Hessian

of f is Lipschitz continuous near x∗. (Recall that TS is the vector transport invoked in Algorithm 1.)

Note that the assumption holds if f ∈ C3; see Lemma 3.3.4.

Assumption 3.3.3. There exists a constant c0 such that for all x, y ∈ Utrn,

‖Hess f(y)− TSη Hess f(x)T −1Sη
‖ ≤ c0 dist(x, y),

where η = R−1x y.

The next assumption is introduced to handle the Riemannian case; in the classical Euclidean

setting, Assumption 3.3.4 follows from Assumption 3.3.3. Assumption 3.3.4 is mild since it holds

if f ∈ C3, as shown in Lemma 3.3.4.

Assumption 3.3.4. There exists a constant c0 such that for all x, y ∈ Utrn, all ξx ∈ TxM with

Rx(ξx) ∈ Utrn, and all ξy ∈ TyM with Ry(ξy) ∈ Utrn, it holds that

‖Hess f̂y(ξy)− TSη Hess f̂x(ξx)T −1Sη
‖ ≤ c0(‖ξy‖+ ‖ξx‖+ ‖η‖),

where η = R−1x (y), f̂x = f ◦Rx, and f̂y = f ◦Ry.

The next assumption corresponds to [BKS96, (A2)]. It implies that no updates of Bk are

skipped. In the Euclidean case, Khalfan et al. [KBS93] show that this is usually the case in

practice.

Assumption 3.3.5.

|g(sk, yk − Bksk)| ≥ ν‖sk‖‖yk − Bksk‖

The next assumption is introduced to handle the Riemannian case. It states that the iter-

ates eventually continuously stay in the totally retractive neighborhood Utrn (the terminology is

borrowed from [ATV13, Definition 2.8]). The assumption is needed, in particular, for Lemma 3.3.5.

28

Assumption 3.3.6. There exists N such that, for all k ≥ N and all t ∈ [0, 1], it holds that

Rxk
(tsk) ∈ Utrn.

The next lemma is proved in [GQA12, Lemma 14.1].

Lemma 3.3.1. Let M be a Riemannian manifold, let U be a compact coordinate neighborhood in

M, and let the hat denote coordinate expressions. Then there are c2 > c1 > 0 such that, for all

x, y ∈ U , we have

c1‖x̂− ŷ‖2 ≤ dist(x, y) ≤ c2‖x̂− ŷ‖2.

Lemma 3.3.2. Let M be a Riemannian manifold endowed with a retraction R and let x̄ ∈ M.

Then there exist a0 > 0, a1 > 0, and δa0,a1 > 0 such that for all x in a sufficiently small neighborhood

of x̄ and all ξ, η ∈ TxM with ‖ξ‖ ≤ δa0,a1 and ‖η‖ ≤ δa0,a1 , it holds that

a0‖ξ − η‖ ≤ dist(Rx(η), Rx(ξ)) ≤ a1‖ξ − η‖.

Proof. Since R is smooth, we can choose a neighborhood small enough such that R satisfies the

condition of [RW12, Lemma 6], and the result follows from that lemma.

The following lemma follows from Lemma 3.3.2 by taking η = 0. We state it separately for

convenience as we will frequently invoke it in the analysis.

Lemma 3.3.3. LetM be a Riemannian manifold endowed with retraction R and let x̄ ∈ M. Then

there exist a0 > 0, a1 > 0, and δa0,a1 > 0 such that for all x in a sufficiently small neighborhood of

x̄ and all ξ ∈ TxM with ‖ξ‖ ≤ δa0,a1, it holds that

a0‖ξ‖ ≤ dist(x,Rx(ξ)) ≤ a1‖ξ‖.

Lemma 3.3.4. If f ∈ C3, then Assumptions 3.3.3 and 3.3.4 hold.

Proof. First, we prove that Assumption 3.3.3 holds. Define a function h : M×M × TM →
TM, (x, y, ξy) → TSη Hess f(x)T −1Sη

ξy, where η = R−1x (y). Since f ∈ C3, we know that h(x, y, ξy)

is C1. Therefore, there exists b0 such that for all x, y ∈ Utrn, ξy ∈ TyM, ‖ξy‖ = 1,

‖h(y, y, ξy)− h(x, y, ξy)‖ ≤ b0 dist({y, y, ξy}, {x, y, ξy})

≤ b1‖{ŷ, ŷ, ξ̂y} − {x̂, ŷ, ξ̂y}‖2 (by Lemma 3.3.1)

= b1‖ŷ − x̂‖2

≤ b2 dist(y, x), (by Lemma 3.3.1)

29

where b0, b1 and b2 are some constants. So we have

b2 dist(y, x) ≥ ‖h(y, y, ξy)− h(x, y, ξy)‖

= ‖(Hess f(y)− TSη Hess f(x)T −1Sη
)[ξy]‖

Choose ξy, ‖ξy‖ = 1 such that

‖(Hess f(y)− TSη Hess f(x)T −1Sη
)[ξy]‖ = ‖(Hess f(y)− TSη Hess f(x)T −1Sη

)‖.

We obtain

‖(Hess f(y)− TSη Hess f(x)T −1Sη
)‖ ≤ b2 dist(y, x).

To prove Assumption 3.3.4, we redefine h as h(y, x, ξx) = TSη Hess f̂x(ξx)T −1Sη
. Based on the de-

scription of coordinate expressions in Section 1.2.7, we use orthonormal vector fields to obtain the

coordinate expression of h, denoted by ĥ. Therefore, the manifold norm and the Euclidean norm

of coordinate expressions are the same and we have

‖Hess f̂y(ξy)− TSη Hess f̂x(ξx)T −1Sη
‖ = ‖Hess f̂y(ξ̂y)− T̂Sη Hess f̂x(ξ̂x)T̂ −1Sη

‖2. (3.3.4)

Since f ∈ C3, we know that ĥ is also in C1. Hence there exists a constant b3 such that

‖ĥ(ŷ, ŷ, ξ̂y)− ĥ(ŷ, x̂, ξ̂x)‖2 ≤ b3‖{ŷ, ŷ, ξ̂y} − {ŷ, x̂, ξ̂x}‖2.

Therefore

‖Hess f̂y(ξ̂y)− T̂Sη Hess f̂x(ξ̂x)T̂ −1Sη
‖2 = ‖ĥ(ŷ, ŷ, ξ̂y)− ĥ(ŷ, x̂, ξ̂x)‖2

≤ b3‖{ŷ, ŷ, ξ̂y} − {ŷ, x̂, ξ̂x}‖2

≤ b4(‖ŷ − x̂‖2 + ‖ξ̂y‖2 + ‖ξ̂x‖2)

≤ b5(dist(x, y) + ‖ξ̂y‖2 + ‖ξ̂x‖2) (by Lemma 3.3.1)

≤ b6(‖η‖ + ‖ξy‖+ ‖ξx‖) (by Lemma 3.3.3)

This and (3.3.4) gives us Assumption 3.3.4.

The next lemma generalizes [BKS96, Lemma 2.2]. The key difference with the Euclidean case is

the following: in the Euclidean case, when sk is accepted, we simply have ‖sk‖ = ‖xk+1−xk‖, while
in the Riemannian generalization, we invoke Assumption 3.3.6 and Lemma 3.3.3 to deduce that

30

‖sk‖ ≤ 1
a0

dist(xk+1, xk). Note that Assumption 3.3.6 cannot be removed. To see this, consider

for example the unit sphere with the exponential mapping, where we can have xk = xk+1 with

‖sk‖ = 2π.

Lemma 3.3.5. Suppose Assumption 3.3.6 holds. Then either

∆k → 0 (3.3.5)

or there exist K > 0 and ∆ > 0 such that for all k > K

∆k = ∆. (3.3.6)

In either case sk → 0.

Proof. Let ∆ = lim inf ∆k and suppose first that ∆ > 0. From line 11 of Algorithm 1, if ∆k is

increased, then ‖sk‖ ≥ 0.8∆k and xk+1 = Rxk
sk, which implies by Lemma 3.3.3 and Assump-

tion 3.3.6 that dist(xk, xk+1) ≥ a00.8∆k. The latter inequality cannot hold for infinitely many

values of k since xk → x∗ and lim inf ∆k > 0. Hence, there exists K ≥ 0 such that ∆k is not

increased for any k ≥ K. Since ∆ > 0, this implies that ∆k ≥ ∆ for all k ≥ K. In view of the trust

region update mechanism in Algorithm 1 and since ∆ = lim inf ∆k, we also know that, for some

K1 > K, ∆K1 < 1
τ1
∆. If the trust region radius were to be decreased we would have ∆K1+1 < ∆,

which we have ruled out. Since neither increase nor decrease can occur, we must have ∆k = ∆ for

all k ≥ K1.

Suppose now that ∆ = 0. Since xk → x∗, for every ǫ > 0 there exists Kǫ ≥ 0 such that

dist(xk+1, xk) < ǫ for all k ≥ Kǫ. Since lim inf ∆k = 0, there exists j ≥ Kǫ such that ∆j < ǫ. But

since ∆k is increased only if ∆k ≤ 1
0.8‖sk‖ ≤ 1

0.8a0
dist(xk+1, xk) <

ǫ
0.8a0

, and the increase factor is

τ2, we have that ∆k < τ2ǫ
0.8a0

for all k ≥ j. Therefore (3.3.5) follows.

To show that ‖sk‖ → 0, note that if (3.3.5) is true, then clearly ‖sk‖ → 0. If (3.3.6) is true,

then for all k > K, the step sk is accepted and ‖sk‖ ≤ 1
a0

dist(xk+1, xk) (by Lemma 3.3.3), hence

‖sk‖ → 0 since {xk} converges.

Lemma 3.3.6. Let M be a Riemannian manifold endowed with two vector transports T1 and T2,
and let x̄ ∈ M. Then there exist a constant a4 and a neighborhood U of x̄ such that for all x, y ∈ U
and all ξ ∈ TyM,

‖T −11η
ξ − T −12η

ξ‖ ≤ a4‖ξ‖‖η‖,

31

where η = R−1x y.

Proof. Let T1(x̂, η̂) and T2(x̂, η̂) denote the coordinate expression of T −11η
and T −12η

, respectively.

We have

‖T −11η
ξ − T −12η

ξ‖ ≤ b0‖(T1(x̂, η̂)− T2(x̂, η̂))ξ̂‖2

≤ b0‖ξ̂‖2‖T1(x̂, η̂)− T2(x̂, η̂)‖2

≤ b1‖ξ̂‖2‖η̂‖2 (since T1(x̂, 0) = T2(x̂, 0) and both T1 and T2 are smooth)

≤ b2‖ξ‖‖η‖

for some constants b0, b1, and b2.

The next lemma is proved in [GQA12, Lemma 14.5].

Lemma 3.3.7. Let F be a C1 vector field on a Riemannian manifold M and let x̄ ∈ M be a

nondegenerate zero of F . Then there exist a neighborhood U of x̄ and a5, a6 > 0 such that for all

x ∈ U ,
a5 dist(x, x̄) ≤ ‖F (x)‖ ≤ a6 dist(x, x̄).

In the Euclidean case, the next lemma holds with ã7 = 0 and reduces to the Fundamental

Theorem of Calculus.

Lemma 3.3.8. Let F be a C1 vector field on a Riemannian manifold M, let R be a retraction on

M, and let x̄ ∈ M. Then there exist a neighborhood U of x̄ and a constant ã7 such that for all

x, y ∈ U ,
‖P 0←1

γ F (y)− F (x)− (

∫ 1

0
P 0←t
γ DF (γ(t))P t←0

γ dt)η‖ ≤ ã7‖η‖2,

where η = R−1x (y) and Pγ is the parallel translation along the curve γ given by γ(t) = Rx(tη).

Proof. Define G : [0, 1] → TxM : t 7→ G(t) = P 0←t
γ F (γ(t)). Observe that G(0) = F (x) and

G(1) = P 0←1
γ F (y). We have

G′(t) =
d

dǫ
G(t+ ǫ)|ǫ=0

= P 0←t
γ

d

dǫ
P t←t+ǫ
γ F (γ(t+ ǫ))|ǫ=0

= P 0←t
γ DF (γ(t))[

d

dǫ
γ(t+ ǫ)]|ǫ=0

= P 0←t
γ DF (γ(t))[TRtηη],

32

where we have used an expression of the covariant derivative D in terms of the parallel translation

P (see, e.g., [Cha06, theorem I.2.1]), and where TRtηη = d
dt(R(tη)). Since G(1)−G(0) =

∫ 1
0 G′(t)dt,

we obtain

‖P 0←1
γ F (y)− F (x)−

∫ 1

0
P 0←t
γ DF (γ(t))P t←0

γ ηdt‖

= ‖
∫ 1

0
P 0←t
γ DF (γ(t))(TRtηη − P t←0

γ η)dt‖

≤
∫ 1

0
‖P 0←t

γ DF (γ(t))P t←0
γ ‖‖(P 0←t

γ TRtηη − η)‖dt

≤
∫ 1

0
‖P 0←t

γ DF (γ(t))P t←0
γ ‖‖(P 0←t

γ TRtηη − T −1Rtη
TRtηη)‖dt

≤ b0‖η‖2 (by Lemma 3.3.6)

where b0 is some constant.

Lemma 3.3.9. Suppose Assumptions 3.3.2 and 3.3.3 hold. Then there exist a neighborhood U and

a constant a7 such that for all x1, x̃1, x2, and x̃2 ∈ U , we have

|g(TSζ
ξ1, y2)− g(TSζ

y1, ξ2)| ≤ a7 max{dist(x1, x∗),dist(x2, x∗),dist(x̃1, x∗),dist(x̃2, x∗)}‖ξ1‖‖ξ2‖,

where ζ = R−1x1
(x2), ξ1 = R−1x1

(x̃1), ξ2 = R−1x2
(x̃2), y1 = T −1Sξ1

grad f(x̃1) − grad f(x1), and y2 =

T −1Sξ2
grad f(x̃2)− grad f(x2).

Proof. Define ȳ1 = P 0←1
γ1 grad f(x̃1)− grad f(x1) and ȳ2 = P 0←1

γ2 grad f(x̃2)− grad f(x2), where P

is the parallel transport, γ1(t) = Rx1(tξ1), and γ2(t) = Rx2(tξ2). From Lemma 3.3.8, we have

‖ȳ1 − H̄1(x1, x̃1)ξ1‖ ≤ b0‖ξ1‖2 and ‖ȳ2 − H̄2(x2, x̃2)ξ2‖ ≤ b0‖ξ2‖2, (3.3.7)

where H̄1(x1, x̃1) =
∫ 1
0 P 0←t

γ1 Hess f(γ1(t))P
t←0
γ1 dt, H̄2(x2, x̃2) =

∫ 1
0 P 0←t

γ2 Hess f(γ2(t))P
t←0
γ2 dt, and

33

b0 is a constant. It follows that

|g(TSζ
ξ1, y2)− g(TSζ

y1, ξ2)|

≤ |g(TSζ
ξ1, ȳ2)− g(TSζ

ȳ1, ξ2)|+ |g(TSζ
ξ1, y2 − ȳ2)− g(TSζ

(y1 − ȳ1), ξ2)|

≤ |g(TSζ
ξ1, H̄2(x2, x̃2)ξ2)− g(TSζ

H̄1(x1, x̃1)ξ1, ξ2)|+ b1(‖ξ1‖+ ‖ξ2‖)‖ξ1‖‖ξ2‖ (by (3.3.7))

+ |g(TSζ
ξ1,T −1Sζ2

grad f(x̃2)− P 0←1
γ2 grad f(x̃2))|

+ |g(TSζ
(T −1Sζ1

grad f(x̃1)− P 0←1
γ1 grad f(x̃1)), ξ2)|

≤ |g(TSζ
ξ1, H̄2(x2, x̃2)ξ2)− g(TSζ

H̄1(x1, x̃1)ξ1, ξ2)|+ b1(‖ξ1‖+ ‖ξ2‖)‖ξ1‖‖ξ2‖

+ b2‖ξ1‖‖ξ2‖‖ grad f(x̃2)‖+ b3‖ξ1‖‖ξ2‖‖ grad f(x̃1)‖, (by Lemma 3.3.6) (3.3.8)

where b1, b2 and b3 are positive constants. Since average Hessian is self-adjoint, we have

|g(TSζ
ξ1, H̄2(x2, x̃2)ξ2)− g(TSζ

H̄1(x1, x̃1)ξ1, ξ2)| = |g(H̄2(x2, x̃2)TSζ
ξ1, ξ2)− g(TSζ

H̄1(x1, x̃1)ξ1, ξ2)|
(3.3.9)

By Lemma 3.3.3 and 3.3.7, we have

b2‖ξ1‖‖ξ2‖‖ grad f(x̃2)‖+ b3‖ξ1‖‖ξ2‖‖ grad f(x̃1)‖

≤ b4‖ξ1‖‖ξ2‖(dist(x1, x̃1) + dist(x2, x̃2) + dist(x̃2, x
∗) + dist(x̃1, x

∗)) (3.3.10)

where b4 is a positive constant. Applying (3.3.9) and (3.3.10) to (3.3.8) and using the triangle

inequality of distance, we have

|g(TSζ
ξ1, y2)− g(TSζ

y1, ξ2)|

≤ b5‖ξ1‖‖ξ2‖max{dist(x1, x∗),dist(x2, x∗),dist(x̃1, x∗),dist(x̃2, x∗)} (by)

+ |g(H̄2(x2, x̃2)TSζ
ξ1, ξ2)− g(TSζ

H̄1(x1, x̃1)ξ1, ξ2)| (3.3.11)

where b5 is a positive constant. Using coordinate expressions, T (x̂1, x̂2) to denote Tζ and Gx2 to

denote the matrix expression of the Riemannian metric at x2, we have

|g(H̄2(x2, x̃2)TSζ
ξ1, ξ2)− g(TSζ

H̄1(x1, x̃1)ξ1, ξ2)|

= |ξ̂T1 T (x̂1, x̂2)T ˆ̄H2(x̂2, ˆ̃x2)
TGx2 ξ̂2 − ξ̂T1

ˆ̄H1(x̂1, ˆ̃x1)
TT (x̂1, x̂2)

TGx2 ξ̂2|

≤ ‖ξ̂1‖2‖T (x̂1, x̂2)T ˆ̄H2(x̂2, ˆ̃x2)
T − ˆ̄H1(x̂1, ˆ̃x1)

TT (x̂1, x̂2)
T ‖2‖Gx2‖2‖ξ̂2‖2. (3.3.12)

34

Define a function

J(x̂1, ˆ̃x1, x̂2, ˆ̃x2) = T (x̂1, x̂2)
T ˆ̄H2(x̂2, ˆ̃x2)

T − ˆ̄H1(x̂1, ˆ̃x1)
TT (x̂1, x̂2)

T .

We can see that when (x̂T1 , ˆ̃x
T
1) = (x̂T2 , ˆ̃x

T
2), J = 0. Since, in view of Assumption 3.3.3, J is Lipschitz

continuous, it follows that (3.3.12) becomes

|g(H̄2TSζ
ξ1, ξ2)− g(TSζ

H̄1ξ1, ξ2)| ≤ b6‖(x̂T1 , ˆ̃xT1)− (x̂T2 , ˆ̃x
T
2)‖2‖ξ̂1‖2‖ξ̂2‖2

≤ b7‖ξ1‖‖ξ2‖max{dist(x1, x2),dist(x̃1, x̃2)},

where b6, b7 are some constants. Combining this equation with (3.3.11), we obtain

|g(TSζ
ξ1, y2)− g(TSζ

y1, ξ2)| ≤ b8‖ξ1‖‖ξ2‖max{dist(x1, x∗),dist(x2, x∗),dist(x̃1, x∗),dist(x̃2, x∗)},

where b8 is a constant.

Lemma 3.3.10. Let M be a Riemannian manifold endowed with a vector transport T with asso-

ciated retraction R, and let x̄ ∈ M. Then there is a neighborhood U of x̄ and a8 such that for all

x, y ∈ U ,

‖ id−T −1ξ T −1η Tζ‖ ≤ a8 max(dist(x, x̄),dist(y, x̄)),

‖ id−T −1ζ TηTξ‖ ≤ a8 max(dist(x, x̄),dist(y, x̄)),

where ξ = R−1x̄ x, η = R−1x y, ζ = R−1x̄ y, and ‖ · ‖ is an induced norm.

Proof. We choose coordinate expression such that the matrix expression of the Riemannian metric

at x̄ is the identity. Let L(x, y) denote TR−1
x y. We have

‖ id−T −1ξ T −1η Tζ‖ = ‖I − L(x̄, x)−1L(x, y)−1L(x̄, y)‖.

Define a function J(x̄, ξ, ζ) = I − L(x̄, Rx̄(ξ))
−1L(Rx̄(ξ), Rx̄(ζ))

−1L(x̄, Rx̄(ζ)). Notice that J is a

smooth function and J(x̄, 0x̄, 0x̄) = 0. So

‖J(x̄, ξ, ζ)‖ = ‖J(x̄, ξ, ζ)− J(x̄, 0x̄, 0x̄)‖

= ‖Ĵ(ˆ̄x, ξ̂, ζ̂)− Ĵ(ˆ̄x, 0̂x̄, 0̂x̄)‖2

≤ b0(‖ξ̂‖2 + ‖ζ̂‖2) (smoothness of J)

≤ b1(dist(x, x̄) + dist(y, x̄)) (by Lemma 3.3.3)

≤ b2 max(dist(x, x̄),dist(y, x̄)),

35

where b0, b1 and b2 are some constants. So

‖ id−T −1ξ T −1η Tζ‖ ≤ b2 max(dist(x, x̄),dist(y, x̄)).

This concludes the first part of the proof. The second part of the result follows from a similar

argument.

The next lemma generalizes [CGT91, Lemma 1]. It is instrumental in the proof of Lemma 3.3.13

below. In the Euclidean setting, it is possible to give an expression for a9 and a10 in terms of c of

Assumption 3.3.3 and ν of Assumption 3.3.5. In the Riemannian setting, we could not obtain such

an expression, in part because the constant b2 that appears in the proof below is no longer zero.

However, the existence of a9 and a10 can still be shown, under the assumption that {xk} converges
to x∗, and this is all we need in order to carry on with Lemma 3.3.13.

Lemma 3.3.11. Suppose Assumptions 3.3.1, 3.3.2, 3.3.3, and 3.3.5 hold. Then

yj − B̃j+1sj = 0 (3.3.13)

for all j. Moreover, there exist constants a9 and a10 such that

‖yj − (Bi)jsj‖ ≤ a9a
i−j−2
10 ǫi,j‖sj‖ (3.3.14)

for all j, i ≥ j + 1, where ǫi,j = maxj≤k≤i dist(xk, x∗) and

(Bi)j = T −1Sζj,i
BiTSζj,i

with ζj,i = R−1xj
(xi).

Proof. From (3.2.2), we have

B̃j+1sj = (Bj +
(yj − Bjsj)(yj −Bjsj)♭

g(sj , yj − Bjsj)
)sj = yj .

This yields (3.3.13), as well as (3.3.14) with i = j + 1. The proof of (3.3.14) for i > j + 1 is

by induction. We choose k ≥ j + 1 and assume that (3.3.14) holds for all i = j + 1, . . . , k. Let

36

rk = yk − Bksk. We have

|g(rk,TSζj,k
sj)| = |g(yk − Bksk,TSζj,k

sj)|

≤ |g(yk,TSζj,k
sj)− g(sk,TSζj,k

yj)|+ |g(sk,TSζj,k
(yj − (Bk)jsj))|

+ |g(sk,TSζj,k
((Bk)jsj))− g(Bksk,TSζj,k

sj)|

≤ |g(yk,TSζj,k
sj)− g(sk,TSζj,k

yj)|+ ‖TSζj,k
(yj − (Bk)jsj)‖‖sk‖

+ |g(sk,BkTSζj,k
sj)− g(Bksk,TSζj,k

sj)|

≤ |g(yk,TSζj,k
sj)− g(sk,TSζj,k

yj)|+ b0a9a
k−j−2
10 ǫk,j‖sj‖‖sk‖

(Bk self-adjoint and induction assumption)

≤ b0a9a
k−j−2
10 ǫk,j‖sj‖‖sk‖+ b1ǫk+1,j‖sk‖‖sj‖, (by Lemma 3.3.9)

where b0 and b1 are some constants. It follows that

‖yj − (Bk+1)jsj‖

= ‖yj − T −1Sζj,k+1
Bk+1TSζj,k+1

sj‖

= ‖yj − T −1Sζj,k+1
TSsk
B̃k+1T −1Ssk

TSζj,k+1
sj‖

≤ ‖yj − T −1Sζj,k
B̃k+1TSζj,k

sj‖+ ‖T −1Sζj,k
B̃k+1TSζj,k

sj − T −1Sζj,k+1
TSsk
B̃k+1T −1Ssk

TSζj,k+1
sj‖

≤ ‖yj − ((Bk)j + T −1Sζj,k

(rk)(rk)
♭

g(sk, rk)
TSζj,k

)sj‖+ b2ǫk+1,j‖sj‖

(by Lemma 3.3.10, Assumption 3.3.1, and (3.2.2))

≤ ‖yj − (Bk)jsj‖+ b3
|g(rk,TSζj,k

sj)|
‖sk‖

+ b2ǫk+1,j‖sj‖ (by Assumption 3.3.5)

≤ a9a
k−j−2
10 ǫk,j‖sj‖+ b3b0a9a

k−j−2
10 ǫk,j‖sj‖+ b3b1ǫk,j‖sj‖+ b2ǫk+1,j‖sj‖

≤ (a9a
k−j−2
10 + b3b0a9a

k−j−2
10 + b3b1 + b2)ǫk+1,j‖sj‖, (note that ǫk,j ≤ ǫk+1,j)

where b2, b3 are some constant. Because b0, b1, b2 and b3 are independent of a9 and a10, we can

choose a9 and a10 large enough such that

(a9a
k−j−2
10 + b3b0a9a

k−j−2
10 + b3b1 + b2) ≤ a9a

k+1−j−2
10 .

for all j, k ≥ j + 1. Take for example, a9 > 1 and a10 > 1 + b3b0 + b3b1 + b2. Therefore

‖yj − (Bk+1)jsj‖ ≤ a9a
k+1−j−2
10 ǫk+1,j‖sj‖.

This concludes the argument by induction.

37

Lemma 3.3.12. If Assumption 3.3.3 holds then there exist a neighborhood U of x∗ and a constant

a11 such that for all x1, x2 ∈ U , it holds that

‖y − TSζ1
Hess f(x∗)T −1Sζ1

s‖ ≤ a11‖s‖max{dist(x1, x∗),dist(x2, x∗)},

where ζ1 = R−1x∗ (x1), s = R−1x1
(x2), y = T −1Ss

grad f(x2)− grad f(x1).

Proof. Define ȳ = P 0←1
γ grad f(x2)− grad f(x1), where P is the parallel transport along the curve

γ defined by γ(t) = Rx1(ts). From Lemma 3.3.8, we have

‖ȳ − H̄s‖ ≤ b0‖s‖2, (3.3.15)

where H̄ =
∫ 1
0 P 0←t

γ Hess f(γ(t))P t←0
γ dt and b0 is a constant. We then have

‖y − TSζ1
Hess f(x∗)T −1Sζ1

s‖

≤ ‖y − ȳ‖+ ‖ȳ − H̄s‖+ ‖H̄s− TSζ1
Hess f(x∗)T −1Sζ1

s‖

= ‖T −1Sζ
grad f(x2)− P 0←1

γ grad f(x2)‖+ b0‖s‖2 + ‖H̄ − TSζ1
Hess f(x∗)T −1Sζ1

‖‖s‖

≤ b1‖s‖max{dist(x1, x∗),dist(x2, x∗)}+ b0‖s‖2 (by Lemma 3.3.6)

+ (‖
∫ 1

0
P 0←t
γ Hess f(γ(t))P t←0

γ dt−Hess f(x1)‖

+ ‖Hess f(x1)− TSζ1
Hess f(x∗)T −1Sζ1

‖)‖s‖

≤ b2‖s‖max{dist(x1, x∗),dist(x2, x∗)}, (by Assumption 3.3.3)

where b1 and b2 are some constants.

With these technical lemmas in place, we now start the Riemannian generalization of the se-

quence of lemmas in [BKS96] that leads to the main result [BKS96, Theorem 2.7], generalized here

as Theorem 3.3.2. For an easier comparison with [BKS96], in the rest of the convergence analysis,

we let n (instead of d) denote the dimension of the manifoldM.

The next lemma generalizes [BKS96, Lemma 2.3], itself a slight variation of [KBS93, Lemma 3.2].

The proof of [BKS96, Lemma 2.3] involves considering the span of a few sj’s. In the Riemannian

setting, a difficulty arises from the fact that the sj’s are not in the same tangent space. We overcome

this difficulty by transporting the sj’s to Tx∗M.

38

Lemma 3.3.13. Let sk be such that Rxk
(sk) → x∗. If Assumptions 3.3.1, 3.3.2, 3.3.3, and 3.3.5

hold then there exists K ≥ 0 such that for any set of n+ 1 steps S = {skj : K ≤ k1 < . . . < kn+1},
there exists an index km with m ∈ {2, 3, . . . , n+ 1} such that

‖(Bkm −Hkm)skm‖
‖skm‖

< (a12a
kn+1−k1−2
10 + ā12)ǫ

1
n
S ,

where ǫS = max1≤j≤n+1{dist(xkj , x∗),dist(Rxkj
(skj), x

∗)}, Hkm = TSζkm
Hess f(x∗)T −1Sζkm

, ζkm =

R−1x∗ xkm , a12, ā12 are some constants, and n is the dimension of the manifold.

Proof. Given S, for j = 1, 2, . . . , n+ 1, define

Sj =

[

s̄k1
‖s̄k1‖

,
s̄k2
‖s̄k2‖

, . . . ,
s̄kj
‖s̄kj‖

]

,

where s̄ki = T −1Sζki

ski , i = 1, 2, . . . , j. The proof is organized as follows. We will first obtain in (3.3.24)

that there exists m ∈ [2, n + 1] and u ∈ R
m−1, w ∈ Tx∗M such that s̄km/‖s̄km‖ = Sm−1u − w,

Sm−1 has full column rank and is well conditioned, and ‖w‖ is small. We will also obtain in (3.3.26)

that (T −1Sζkm

BkmTSζkm
− Hess f(x∗))Sm−1 is small due to the Hessian approximating properties of

the SR1 update given in Lemma 3.3.12 above. The conclusion follows from these two results.

Let G∗ denote the matrix expression of inner product of Tx∗M and Ŝj denote the coordinate

expression of Sj , for j ∈ {1, . . . , n}. Let κj be the smallest singular value of G
1/2
∗ Ŝj and define

κn+1 = 0. We have

1 = κ1 ≥ κ2 . . . ≥ κn+1 = 0.

Let m be the smallest integer for which

κm
κm−1

< ǫ
1
n
S . (3.3.16)

Since m ≤ n+ 1 and κ1 = 1, we have

κm−1 = κ1(
κ2
κ1

) . . . (
κm−1
κm−2

) > ǫ
(m−2)/n
S > ǫ

(n−1)/n
S . (3.3.17)

Since xk → x∗ and Rxk
(sk) → x∗, we can assume that ǫS ∈ (0, (14)

n) for all k. Now, we choose

z ∈ R
m such that

‖G1/2
∗ Ŝmz‖2 = κm‖z‖2 (3.3.18)

and

z =

(

u
−1

)

,

39

where u ∈ R
m−1. (The last component of z is nonzero due to that m is the smallest such that

(3.3.16) is true.) Let w = Smz and its coordinate expression ŵ = Ŝmz. From the definition of

G
1/2
∗ Ŝm and z, we have

G
1/2
∗ Ŝm−1u−G

1/2
∗ ŵ =

G
1/2
∗ ˆ̄skm

‖G1/2
∗ ˆ̄skm‖2

, (3.3.19)

where ˆ̄skm is the coordinate expression of s̄km. Since κm−1 is the smallest singular value of

G
1/2
∗ Ŝm−1, we have that

‖u‖2 ≤
1

κm−1
‖G1/2
∗ Ŝm−1u‖2 =

1

κm−1
‖G1/2
∗ ŵ +

G
1/2
∗ ˆ̄skm

‖G1/2
∗ ˆ̄skm‖2

‖2 ≤
‖G1/2
∗ ŵ‖2 + 1

κm−1
=
‖w‖ + 1

κm−1

(3.3.20)

<
‖G1/2
∗ ŵ‖2 + 1

ǫ
(n−1)/n
S

=
‖w‖ + 1

ǫ
(n−1)/n
S

. (by (3.3.17)) (3.3.21)

Using (3.3.18) and (3.3.20), we have that

‖w‖2 = ‖G1/2
∗ ŵ‖22 = ‖G1/2

∗ Ŝmz‖22 = κ2m‖z‖22 = κ2m(1 + ‖u‖22)

≤ κ2m + (
κm
κm−1

)2(‖G1/2
∗ ŵ‖2 + 1)2 = κ2m + (

κm
κm−1

)2(‖w‖ + 1)2.

Therefore, since (3.3.16) implies that κm < ǫ
1/n
S , using (3.3.16),

‖w‖2 < ǫ
2/n
S + ǫ

2/n
S (‖w‖ + 1)2 < 4ǫ

2/n
S (‖w‖ + 1)2. (3.3.22)

This implies

‖w‖(1 − 2ǫ
1/n
S) < 2ǫ

1/n
S ,

and hence ‖w‖ < 1, since ǫS < (14)
n. Therefore, (3.3.21) and (3.3.22) imply that

‖u‖2 <
2

ǫ
(n−1)/n
S

(3.3.23)

‖w‖ < 4ǫ
1/n
S .. (3.3.24)

Equation (3.3.24) is the announced result that w is small. The bound (3.3.23) will also be invoked

below.

Now we show that ‖(T −1Sζkj

BkjTSζkj
−Hess f(x∗))Sj−1‖ is small for all j ∈ [2, n+1] (and thus in

particular for j = m). By Lemma 3.3.11, we have

‖yi − (Bkj)isi‖ ≤ a9a
kj−i−2
10 ǫkj ,i‖si‖ ≤ a9a

kn+1−k1−2
10 ǫS‖si‖, (3.3.25)

40

for all i ∈ {k1, k2, . . . , kj−1}. Therefore,

‖(T −1Sζkj

BkjTSζkj
−Hess f(x∗))

s̄i
‖s̄i‖
‖

≤ ‖
T −1Sζi

yi − T −1Sζkj

BkjTSζkj
s̄i

‖s̄i‖
‖+ ‖

T −1Sζi
yi −Hess f(x∗)s̄i

‖s̄i‖
‖

≤ ‖
T −1Sζi

yi − T −1Sζkj

BkjTSζkj
s̄i

‖s̄i‖
‖+ b1ǫS (by Lemma 3.3.12)

= ‖
T −1Sζi

(yi − TSζi
T −1Sζkj

BkjTSζkj
T −1Sζi

si)

‖s̄i‖
‖+ b1ǫS

≤ b2
‖(yi − (Bkj)isi)‖

‖si‖
+ b3ǫS (by Lemma 3.3.10 and Assumption 3.3.1)

≤ (b4a
kn+1−k1−2
10 + b3)ǫS (by (3.3.25))

where b2, b3 and b4 are some constants. Therefore, we have that for any j ∈ [2, n + 1],

‖(T −1Sζkj

BkjTSζkj
−Hess f(x∗))Sj−1‖g,2 ≤ b5ǫS, (3.3.26)

where b5 =
√
n(b4a

kn+1−k1−2
10 + b3) and ‖ · ‖g,2 is the norm induced by the Riemannian metric g and

the Euclidean norm, i.e., ‖A‖g,2 = sup ‖Av‖g/‖v‖2.
We can now conclude the proof as follows. Using (3.3.19) and (3.3.26) with j = m, (3.3.23) and

(3.3.24), we have

‖(T −1Sζkm

BkmTSζkm
−Hess f(x∗))s̄m‖

‖s̄m‖
= ‖(T −1Sζkm

BkmTSζkm
−Hess f(x∗))(Sm−1u− w)‖

≤ ‖(T −1Sζkm

BkmTSζkm
−Hess f(x∗))Sm−1‖g,e‖u‖2 + ‖(T −1Sζkm

BkmTSζkm
−Hess f(x∗))‖‖w‖

≤ b5ǫS
2

ǫ
(n−1)/n
S

+ (M +Hess f(x∗))4ǫ1/nS (by Assumption 3.3.1)

≤ (2b5 + b6)ǫ
1/n
S

where b6 is some constant. Finally,

‖(Bkm −Hkm)skm‖
‖skm‖

=
‖(Bkm − TSζkm

Hess f(x∗)T −1Sζkm

)skm‖
‖skm‖

=
‖(T −1Sζkm

BkmTSζkm
−Hess f(x∗))s̄km‖

‖s̄km‖
≤ (2b5 + b6)ǫ

1/n
S

41

completes the proof.

The next lemma generalizes [BKS96, Lemma 2.4]. Its proof is a translation of the proof

of [BKS96, Lemma 2.4], where we invoke two manifold-specific results: the equality of Hess f(x∗)

and Hess(f ◦ Rx∗)(0x∗) (which holds in view of [AMS08, Proposition 5.5.6] since x∗ is a critical

point of f), and the bound in Lemma 3.3.3 on the retraction R.

Lemma 3.3.14. Suppose that Assumptions 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.3.5 and 3.3.6 hold and the

trust region subproblem (3.2.1) is solved accurately enough for (3.3.2) to hold. Then there exists N

such that for any set of p > n consecutive steps sk+1, sk+1, . . . , sk+p with k ≥ N , there exists a set,

Gk, of at least p− n indices contained in the set {i : k + 1 ≤ i ≤ k + p} such that for all j ∈ Gk,

‖(Bj −Hj)sj‖
‖sj‖

< a13ǫ
1
n
k ,

where a13 = a12a
p−2
10 + ā12, Hj = TSζj

Hess f(x∗)T −1Sζj
, ζj = R−1x∗ xj, and

ǫk = max
k+1≤j≤k+p

{dist(xj , x∗),dist(Rxj (sj), x
∗)}.

Furthermore, for k sufficiently large, if j ∈ Gk, then

‖sj‖ < a14 dist(xj , x
∗), (3.3.27)

where a14 is a constant, and

ρj ≥ 0.75. (3.3.28)

Proof. By Lemma 3.3.5, sk → 0. Therefore, by Lemma 3.3.13, applied to the set

{sk, sk+1, . . . , sk+p}, (3.3.29)

there exists N such that for any k ≥ N there exists an index l1, with k + 1 ≤ l1 ≤ k + p satisfying

‖(Bl1 −Hl1)sl1‖
‖sl1‖

< a13ǫ
1
n
k ,

where a13 = a12a
p−2
10 + ā12. Now we can apply Lemma 3.3.13 to the set {sk, sk+1, . . . , sk+p} − sl1

to get l2. Repeating this p− n times, we get a set of p− n indices Gk = {l1, l2, . . . , lp−n} such that

if j ∈ Gk, then
‖(Bj −Hj)sj‖

‖sj‖
< a13ǫ

1
n
k . (3.3.30)

42

We show (3.3.27) next. Consider j ∈ Gk. By (3.3.30), we have

g(sj , (Hj − Bj)sj) ≤ ‖sj‖‖(Hj − Bj)sj‖ ≤ a13ǫ
1
n
k ‖sj‖2.

Therefore,

g(sj ,Bjsj) ≥ g(sj ,Hjsj)− a13ǫ
1
n
k ‖sj‖2

> b0‖sj‖2, (choosing k large enough)

where b0 is a constant and we have

0 ≤ mj(0)−mj(sj) = −g(grad f(xj), sj)−
1

2
g(sj ,Bjsj)

≤ ‖ grad f(xj)‖‖sj‖ −
1

2
b0‖sj‖2

≤ b1 dist(xj , x
∗)‖sj‖ −

1

2
b0‖sj‖2, (by Lemma 3.3.7)

where b1 is some constant. This yields (3.3.27).

Finally, we show (3.3.28). Let j ∈ Gk and define f̂x(η) = f(Rx(η)). It follows that

|f(xj)− f(Rxj(sj))− (mj(0)−mj(sj))|

= |f(xj)− f(Rxj(sj)) + g(grad f(xj), sj) +
1

2
g(sj ,Bjsj)|

= |f̂xj(0xj)− f̂xj(sj) + g(grad f(xj), sj) +
1

2
g(sj ,Bjsj)|

= |1
2
g(sj ,Bjsj)−

∫ 1

0
g(Hess f̂xj(τsj)[sj], sj)(1 − τ)dτ | (by Taylor’s theorem)

≤ |1
2
g(sj ,Bjsj)−

1

2
g(sj ,Hjsj)|+ |

1

2
g(sj ,Hjsj)−

∫ 1

0
g(Hess f̂xj(τsj)[sj], sj)(1− τ)dτ |

= |1
2
g(sj , (Bj −Hj)sj)|

+ |
∫ 1

0
(g(sj ,TSζj

Hess f(x∗)T −1Sζj
sj)− g(Hess f̂xj(τsj)[sj], sj))(1 − τ)dτ |

≤ ‖sj‖2
∫ 1

0
‖(TSζj

Hess f̂x∗(0x∗)T −1Sζj
−Hess f̂xj(τsj))‖(1 − τ)dτ (by [AMS08, proposition 5.5.6])

+
1

2
‖sj‖‖(Bj −Hj)sj‖

≤ b3‖sj‖2(dist(xj, x∗) + ‖sj‖) + b2‖sj‖2ǫ
1
n
k (by (3.3.30), Lemma 3.3.3 and Assumption 3.3.4)

≤ b4‖sj‖2ǫ
1
n
k , (by (3.3.27) and dist(xj , x

∗) is smaller than ǫ
1
n
k eventually)

43

where b2, b3 and b4 are some constants. In view of (3.3.27) and Lemma 3.3.7, we have

‖sj‖ < b5‖ grad f(xj)‖,

where b5 is some constant. Combining with ‖sj‖ ≤ ∆j, we obtain

‖sj‖2 ≤ b5‖ grad f(xj)‖min{∆j , b5‖ grad f(xj)‖}.

Noticing (3.3.2), we have

|f(xj)− f(Rxj(sj))− (mj(0)−mj(sj))| ≤ b6ǫ
1
n
k (mj(0)−mj(sj)),

where b6 is a constant. This implies (3.3.28).

The next result generalizes [BKS96, Lemma 2.5] in two ways: the Euclidean setting is extended

to the Riemannian setting, and inexact solves are allowed by the presence of δk. The main hurdle

that we had to overcome in the Riemannian generalization is that the equality dist(xk + sk, x
∗) =

‖sk − ξk‖ does not necessarily hold. As we will see, Lemma 3.3.2 comes to our rescue.

Lemma 3.3.15. Suppose Assumptions 3.3.2 and 3.3.3 hold. If the quantities

ek = dist(xk, x
∗) and

‖(Bk −Hk)sk‖
‖sk‖

are sufficiently small and if Bksk = − grad f(xk) + δk with ‖δk‖ ≤ ‖ grad f(xk)‖1+θ, then

dist(Rxk
(sk), x

∗) ≤ a15
‖(Bk −Hk)sk‖

‖sk‖
ek + a16e

1+min{θ,1}
k , (3.3.31)

h(Rxk
(sk)) ≤ a17

‖(Bk −Hk)sk‖
‖sk‖

h(xk) + a18h
1+min{θ,1}(xk), (3.3.32)

and

a19h(xk) ≤ ek ≤ a20h(xk) (3.3.33)

where a15, a16, a17 and a18 are some constants and h(x) = (f(x)− f(x∗))
1
2 .

Proof. By definition of sk, we have

sk = H−1k [(Hk − Bk)sk − grad f(xk) + δk]. (3.3.34)

44

Define ξk = R−1xk
x∗. Therefore, letting γ be the curve defined by γ(t) = Rxk

(tξk), we have

‖sk − ξk‖

= ‖H−1k [(Hk − Bk)sk − grad f(xk) + δk −Hkξk]‖

≤ b0(‖(Hk − Bk)sk‖+ ‖P 0←1
γ grad f(x∗)− grad f(xk)− (

∫ 1

0
P 0←t
γ Hess f(γ(t))P t←0

γ dt)ξk‖

+ ‖(
∫ 1

0
P 0←t
γ Hess f(γ(t))P t←0

γ dt)ξk −Hess f(xk)ξk‖+ ‖Hess f(xk)ξk −Hkξk‖+ ‖δk‖)

≤ b0(‖(Hk − Bk)sk‖+ b1‖ξk‖1+min{θ,1} (by Lemmas 3.3.7 and 3.3.8)

+ ‖(
∫ 1

0
P 0←t
γ Hess f(γ(t))P t←0

γ dt)ξk −Hess f(xk)ξk‖+ ‖Hess f(xk)−Hk‖‖ξk‖)

≤ b0‖(Hk −Bk)sk‖+ b0b1‖ξk‖1+min{θ,1} + b0b3‖ξk‖2 (by Assumption 3.3.3)

≤ b0‖(Hk −Bk)sk‖+ b4‖ξk‖1+min{θ,1} (3.3.35)

where b1, b2, b3 and b4 are some constants. From Lemma 3.3.2, we have

dist(Rxk
(sk), x

∗) = dist(Rxk
(sk), Rxk

(ξk)) ≤ b5‖sk − ξk‖, (3.3.36)

where b5 is a constant. Combining (3.3.35) and (3.3.36) and using Lemma 3.3.3, we obtain

dist(Rxk
(sk), x

∗) ≤ b0b5‖(Hk − Bk)sk‖+ b̄4b5e
1+min{θ,1}
k . (3.3.37)

From (3.3.34), for k large enough such that ‖H−1k ‖‖(Hk − Bk)sk‖ ≤ 1
2‖sk‖, we have

‖sk‖ ≤
1

2
‖sk‖+ ‖H−1k ‖(‖ grad f(xk)‖+ ‖ grad f(xk)‖1+θ).

Using Lemma 3.3.7, this yields

‖sk‖ ≤ b6 dist(xk, x
∗),

where b6 is a constant. Using the latter in (3.3.37) yields

dist(Rxk
(sk), x

∗) ≤ b0b5b6
‖(Hk − Bk)sk‖

‖sk‖
dist(xk, x

∗) + b̄4b5e
1+min{θ,1}
k ,

which shows (3.3.31).

We next show (3.3.33). Define f̂x(η) = f(Rx(η)) and let ζk = R−1x∗ xk. We have, for some

t ∈ (0, 1),

f̂x∗(ζk)− f̂x∗(0x∗) = g(grad f(x∗), ζk) + g(Hess f̂x∗(tζk)[ζk], ζk)

= g(Hess f̂x∗(tζk)[ζk], ζk),

45

where we have used (Euclidean) Taylor’s theorem to get the first equality and the fact that x∗ is a

critical point of f (Assumption 3.3.2) for the second one. Therefore, since Hess f̂x∗ = Hess f(x∗) is

positive definite (in view of [AMS08, Proposition 5.5.6] and Assumption 3.3.2), there exist b7 and

b8 such that

b7(f̂x∗(ζk)− f̂x∗(0x∗)) ≤ ‖ζk‖2 ≤ b8(f̂x∗(ζk)− f̂x∗(0x∗))

Then, using Lemma 3.3.3, we obtain that there exist b9 and b10 such that

b9(f(xk)− f(x∗)) ≤ dist(xk, x
∗)2 ≤ b10(f(xk)− f(x∗)).

In other words,

b9h
2(xk) ≤ e2k ≤ b10h

2(xk),

and we have shown (3.3.33). Combining it with (3.3.31), we get (3.3.32).

With Lemmas 3.3.14 and 3.3.15 in place, the rest of the local convergence analysis is essentially

a translation of the analysis in [BKS96]. The next lemma generalizes [BKS96, Lemma 2.6].

Lemma 3.3.16. If Assumptions 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.3.5, and 3.3.6 hold and the subproblem

is solved accurately enough for (3.3.2) and (3.3.3) to hold then,

lim
k→∞

hk
∆k

= 0,

where hk = h(xk).

Proof. Let p be the smallest integer greater than 2n+n(− ln τ1/ ln τ2), where τ1 and τ2 are defined

in Algorithm 1. Then

τn1 τ
p−2n
2 ≥ 1. (3.3.38)

Applying Lemma 3.3.14 with this value of p, there exists N such that if k ≥ N , then there exists

a set of at least p− n indices, Gk ⊂ {j : k + 1 ≤ j ≤ k + p}, such that if j ∈ Gk, then

‖(Bj −Hj)sj‖
‖sj‖

< cǫ
1
n
k (3.3.39)

ρj ≥ 0.75.

We now show that for such steps,

hj+1

∆j+1
≤ 1

τ2

hj
∆j

. (3.3.40)

46

If ‖sj‖ ≥ 0.8∆j , then since from Step 12 of Algorithm 1, ∆j+1 = τ2∆j and since {hi} is decreasing,
(3.3.40) follows. If on the other hand ‖sj‖ < 0.8∆j , then from Step 14 of Algorithm 1, we have

that ∆j+1 = ∆j. Also since the trust region is inactive, by condition (3.3.3), we have that Bjsj =
− grad f(xj) + δk, ‖δk‖ ≤ ‖ grad f(xj)‖1+θ. Therefore, in view of (3.3.32) in Lemma 3.3.15 and

of (3.3.39), if N is large enough, we have that

hj+1 ≤
1

τ2
hj .

This implies that (3.3.40) is true for all j ∈ Gj , where k ≥ N .

In addition, note that for any j, hj+1 ≤ hj and ∆j+1 ≥ τ1∆j and so

hj+1

∆j+1
≤ 1

τ1

hj
∆j

. (3.3.41)

Since (3.3.40) is true for p − n values of j ∈ Gk and (3.3.41) holds for all j, we have that for all

k ≥ N ,
hk+p

∆k+p
≤ (

1

τ1
)n(

1

τ2
)p−n

hk
∆k
≤ (

1

τ2
)n

hk
∆k

,

where the second inequality follows from (3.3.38). Therefore, starting at k = N , it follows that

hN+lp

∆N+lp
→ 0

as l→∞. Using (3.3.41) again, we complete the proof.

The next result generalizes [BKS96, Theorem 2.7].

Theorem 3.3.2. If Assumptions 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.3.5, and 3.3.6 hold and the subproblem

is solved accurately enough for (3.3.2) and (3.3.3) to hold then, the sequence {xk} generated by

Algorithm 1 is n+ 1-step q-superlinear (where n denotes the dimension of M); i.e.,

dist(xk+n+1, x
∗)

dist(xk, x∗)
→ 0.

Proof. By Lemma 3.3.14, there exists N such that if k ≥ N , then the set of steps {sk+1, . . . , sk+n+1}
contains at least one step sk+j, 1 ≤ j ≤ n+ 1, for which

‖(Bj −Hj)sj‖
‖sj‖

< a13ǫ
1
n
k .

47

By (3.3.27) in Lemma 3.3.14 and (3.3.33) in Lemma 3.3.15 (when checking the assumptions, recall

the standing assumption made in Section 3.3.3 that ek := dist(xk, x
∗)→ 0), there exists a constant

b0 such that

‖sk+j‖ < b0hk+j.

Therefore, by Lemma 3.3.16, if N is large enough and k ≥ N , then ‖sk+j‖ < 0.8∆k+j . By (3.3.3),

this implies Bk+jsk+j = − grad f(xk+j)+δk+j, with ‖δk+j‖ ≤ ‖ grad f(xk+j)‖1+θ. Thus by inequal-

ity (3.3.32) of Lemma 3.3.15, if N is large enough and k ≥ N , then

hk+j+1 = h(Rxk+j
(sk+j)) ≤ (a17a13ǫ

1
n
k + a18h

min{θ,1}
k+j)hk+j .

The first equality holds because (3.3.28) implies that the step is accepted. Since the sequence {hi}
is decreasing, this implies that

hk+n+1 ≤ (a17a13ǫ
1
n
k + a18h

min{θ,1}
k+j)hk

By (3.3.33),

ek+n+1 ≤ a20hk+n+1

≤ a20(a17a13ǫ
1
n
k + a18h

min{θ,1}
k+j)hk

≤ a20(a17a13ǫ
1
n
k + a18(

ek
a19

)min{θ,1})
ek
a19

.

This implies n+ 1-step q-superlinear convergence.

It is also possible to extend to the Riemannian setting the result [BKS96, Theorem 2.8] that

the percentage of Bk being positive semidefinite approaches 1 provided that Bk is positive semidef-

inite whenever ‖sk‖ ≤ 0.8∆k. In the proof of [BKS96, Theorem 2.8], replace Lemma 2.6 by

Lemma 3.3.16, Lemma 2.4 by Lemma 3.3.14, (2.14) by (3.3.27), and (2.9) by (3.3.33).

3.4 Limited Memory Version of RTR-SR1

In RTR-SR1 (Algorithm 1), storing Bk+1 = Tηk ◦ B̃k+1 ◦ T −1ηk
in matrix form may be inefficient

for two reasons. The first reason, which is also present in the Euclidean case, is that B̃k+1 = Bk +
(yk−Bksk)(yk−Bksk)♭

g(sk ,yk−Bksk) is a rank-one modification of Bk. The second reason, specific to the Riemannian

setting, is that when M is a low-codimension submanifold of a Euclidean space E , it may be

48

beneficial to express Tηk as the restriction to Txk
M of a low-rank modification of the identity,

e.g., (9.2.17) and (9.2.20). Instead of storing full dense matrices, it may then be beneficial to store

a few vectors that implicitly represent them. This is the purpose of the limited memory version of

RTR-SR1 presented in this section.

The proposed limited memory RTR-SR1, called LRTR-SR1, is described in Algorithm 2. It

relies on a Riemannian generalization of the compact representation of the classical (Euclidean)

SR1 matrices presented in [BNS94, §5]. We set B0 = id. At step k > 0, we first choose a basic

Hessian approximation Bk0 , which in the Riemannian setting becomes a linear transformation of

Txk
M. We advocate the choice

Bk0 = γk id,

where

γk =
g(yk−1, yk−1)
g(sk−1, yk−1)

,

which generalizes a choice usually made in the Euclidean case [NW06, (7.20)]. As in the Eu-

clidean case, we let Sk,m and Yk,m contain the (at most) m most recent corrections, which in the

Riemannian setting must be transported to Txk
M, yielding Sk,m = {s(k)k−ℓ, s

(k)
k−ℓ+1, . . . , s

(k)
k−1} and

Yk,m = {y(k)k−ℓ, y
(k)
k−ℓ+1, . . . , y

(k)
k−1}, where ℓ = min{m,k} and where s(k) denotes s transported to

Txk
M. We then have the following Riemannian generalization of the limited-memory update

based on [BNS94, (5.2)]:

Bk = Bk0 + (Yk,m − Bk0Sk,m)(Pk,m − S♭
k,mBk0Sk,m)

−1(Yk,m − Bk0Sk,m)♭, k > 0,

where Pk,m = Dk,m+Lk,m+LT
k,m, Dk,m = diag{g(sk−ℓ, yk−ℓ), g(xk−ℓ+1, yk−ℓ+1), . . . , g(sk−1, yk−1)},

and

(Lk,m)i,j =

{

g(sk−ℓ+i−1, yk−ℓ+j−1), if i > j;
0, otherwise.

Moreover, letting Qk,m denote the matrix S♭
k,mSk,m, we obtain

Bk = γk id+(Yk,m − γkSk,m)(Pk,m − γkQk,m)−1(Yk,m − γkSk,m)♭, k > 0. (3.4.1)

For all η ∈ Txk
M, Bkη can thus be obtained from (3.4.1) using Yk,m, Sk,m, Pk,m and Qk,m.

This is how Bk is defined in Algorithm 2, except that the technicality that the B update may be

skipped is also taken into account therein.

49

Algorithm 2 Limited-memory RTR-SR1 (LRTR-SR1)

Input: Riemannian manifoldM with Riemannian metric g; retraction R; isometric vector trans-

ports TS; smooth function f onM; initial iterate x0 ∈ M;

1: Choose an integer m > 0 and real numbers ∆0 > 0, ν ∈ (0, 1), c ∈ (0, 0.1), τ1 ∈ (0, 1) and

τ2 > 1; Set k ← 0, ℓ← 0, γ0 ← 1;

2: Obtain sk ∈ Txk
M by (approximately) solving

sk = min
s∈Txk

M
mk(s) = min

s∈Txk
M

f(xk) + g(grad f(xk), s) +
1

2
g(s,Bks), s.t. ‖s‖ ≤ ∆k,

where Bk is defined in accordance with (3.4.1);

3: Set ρk ← f(xk)−f(Rxk
(sk))

mk(0)−mk(sk)
;

4: Set yk ← T −1Sηk
grad f(Rxk

(sk))− grad f(xk);

5: if |g(sk, yk − Bksk)| ≥ ν‖sk‖‖yk − Bksk‖ then
6: γk+1 ← g(yk,yk)

g(sk,yk)
; Add s

(k)
k and y

(k)
k into storage; If ℓ ≥ m, then discard vector pair {s(k)k−ℓ, y

(k)
k−ℓ}

from storage, else ℓ← ℓ+1; Compute matrices Pk,m andQk,m by updating Pk−1,m andQk−1,m
if available;

7: else

8: Set γk+1 ← γk, Pk+1,m ← Pk,m, Qk+1,m ← Qk,m and {s(k)k , y
(k)
k } ←

{s(k)k−1, y
(k)
k−1}, . . . , {s

(k)
k−ℓ+1, y

(k)
k−ℓ+1} ← {s

(k)
k−ℓ, y

(k)
k−ℓ}.

9: end if

10: if ρk > c then

11: xk+1 ← Rxk
(sk); Transport s

(k)
k−ℓ+1, s

(k)
k−ℓ+2, . . . , s

(k)
k and y

(k)
k−ℓ+1, y

(k)
k−ℓ+2, . . . , y

(k)
k from Txk

M
to Txk+1

M by TS;
12: else

13: xk+1 ← xk;

14: end if

15: if ρk > 3
4 then

16: if ‖ηk‖ ≥ 0.8∆k then

17: ∆k+1 ← τ2∆k;

18: else

19: ∆k+1 ← ∆k;

20: end if

21: else if ρk < 0.1 then

22: ∆k+1 ← τ1∆k;

23: else

24: ∆k+1 ← ∆k;

25: end if

26: k ← k + 1, goto 2 until convergence.

50

CHAPTER 4

A BROYDEN FAMILY OF QUASI-NEWTON

METHOD

4.1 Introduction

In the classical Euclidean setting, the Broyden class (see, e.g., [NW06, §6.3]) is a family of

quasi-Newton methods that depend on a real parameter, φ. Its Hessian approximation update

formula is Bk+1 = (1− φk)B
BFGS
k+1 + φkB

DFP
k+1 , where BBFGS

k+1 stands for the update obtained by the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) method and BDFP
k+1 for the update of the Davidon–

Fletcher–Powell (DFP) method. Therefore, all members of the Broyden class satisfy the well-known

secant equation, central to many quasi-Newton methods. For many years, BFGS, φ = 0, was the

preferred member of the family, as it tends to perform better in numerical experiments. Analyzing

the entire Broyden class was nevertheless a topic of interest for the insight given into the properties

of quasi-Newton methods; see [BNY87] and the many references therein. Subsequently, it was

found that negative values of φ are desirable [ZT88, BLN92] and recent results reported in [LV07b]

indicate that a significant improvement can be obtained by exploiting the freedom offered by φ.

The idea of quasi-Newton methods on manifolds is not new, however, the literature of which

we are aware restricts consideration to the BFGS quasi-Newton method. Gabay [Gab82] discussed

a version using parallel translation on submanifolds of R
n. Brace and Manton [BM06] applied

a version on the Grassmann manifold to the problem of weighted low-rank approximations. Qi

[QGA10] compared the performance of different vector transports for a version of BFGS on Rie-

mannian manifolds. Savas and Lim proposed a BFGS and limited memory BFGS methods for

problems with cost functions defined on a Grassmann manifold and applied the methods to the

best multilinear rank approximation problem. Ring and Wirth [RW12] systematically analyzed a

version of BFGS on Riemannian manifolds which requires differentiated retraction. Seibert et al.

[SKH13] discussed the freedom available when generalizing BFGS to Riemannian manifolds and

analyzed one generalization of BFGS method on Riemannian manifolds that are isometric to R
n.

In view of the above considerations, generalizing the Broyden family to manifolds is an appeal-

51

ing endeavor, which we undertake in this chapter. For φ = 0 (BFGS) the proposed algorithm is

quite similar to the BFGS method of Ring and Wirth [RW12]. Notably, both methods rely on the

framework of retraction and vector transport developed in [ADM02, AMS08]. The BFGS method

of [RW12] is more general in the sense that it also considers infinite-dimensional manifolds. On the

other hand, a characteristic of our work is that we strive to resort as little as possible to the deriva-

tive of the retraction. Specifically, the definition of yk (which corresponds to the usual difference

of gradients) in [RW12] involves DfRxk
(sk), whose Riesz representation is (DRxk

(sk))
∗∇f |Rxk

(sk),

where R is the retraction and ∇ is the Levi-Civita affine connection. In contrast, our definition of

yk relies on the same isometric vector transport as the one that appears in the Hessian approxi-

mation update formula. This can be advantageous in situations where R is defined by means of a

constraint restoration procedure that does not admit a closed-form expression. It may also be the

case that the chosen R admits a closed-form expression but that its derivative is unknown to the

user. The price to pay for using the isometric vector transport in yk is satisfying a novel “locking

condition”. Fortunately, we show simple procedures that, given either an isometric vector trans-

port or a retraction, can produce a retraction or an isometric vector transport such that the pair

satisfies the locking condition. As a result, efficient and convergent algorithms can be developed.

Another contribution with respect to [RW12] is that we propose a limited-memory version of the

quasi-Newton algorithm for large-scale problems.

Chapter 4 is organized as follows. The RBroyden family of algorithms and the “locking condi-

tion” are defined in Section 4.2. A convergence analysis is presented in Section 4.3. Two methods

of constructing an isometric vector transport and a method of constructing a retraction related to

the ”locking condition” are derived in Section 4.4. The limited-memory RBFGS is described in

Section 4.5. Experiments illustrating the performance of the methods for several applications are

presented in later appropriate chapters.

4.2 RBroyden Family of Methods

The proposed RBroyden family algorithm is described in Algorithm 3 where the isometric vector

transport TS is not necessarily smooth. Instead, the required properties are TS ∈ C0 and for any

52

Algorithm 3 RBroyden family method

Input: Riemannian manifoldM with Riemannian metric g; a retraction R; isometric vector trans-

port TS, with R as associated retraction, that satisfies (4.2.6); continuously differentiable real-

valued function f onM, bounded below; initial iterate x0 ∈ M; initial Hessian approximation

B0 which is a linear transformation of the tangent space Tx0M that is symmetric positive

definite with respect to the metric g; convergence tolerance ε > 0; Wolfe condition constants

0 < c1 <
1
2 < c2 < 1;

1: k ← 0;

2: while ‖ grad f(xk)‖ > ε do

3: Obtain ηk ∈ Txk
M by solving Bkηk = − grad f(xk);

4: Set xk+1 = Rxk
(αkηk) where αk > 0 is computed from a line search procedure to satisfy the

Wolfe conditions

f(xk+1) ≤ f(xk) + c1αkg(grad f(xk), ηk), (4.2.1)

d

dt
f(R(tηk))|t=αk

≥ c2
d

dt
f(R(tηk)|t=0; (4.2.2)

5: Set xk+1 = Rxk
(αkηk);

6: Define sk = TSαkηk
αkηk and yk = β−1k grad f(xk+1) − TSαkηk

grad f(xk), where βk =
‖αkηk‖

‖TRαkηk
αkηk‖ and TR is the differentiated retraction of R.

7: Define the linear operator Bk+1 : Txk+1
M→ Txk+1

M by

Bk+1p = B̃kp−
g(sk, B̃kp)
g(sk, B̃ksk)

B̃ksk +
g(yk, p)

g(yk, sk)
yk + φkg(sk, B̃ksk)g(vk, p)vk,

for all p ∈ Txk+1
M or equivalently

Bk+1 = B̃k −
B̃ksk(B̃∗ksk)♭
(B̃∗ksk)♭sk

+
yky

♭
k

y♭ksk
+ φkg(sk, B̃ksk)vkv♭k, (4.2.3)

where

vk =
yk

g(yk, sk)
− B̃ksk

g(sk, B̃ksk)
,

φk is any number in the open interval (φc
k,∞), φc

k = 1/(1 − µk), µk =

(g(yk, B̃−1k yk)g(sk, B̃ksk))/g(yk, sk)2, B̃k = TSαkηk
◦ Bk ◦ T −1Sαkηk

, * denotes the adjoint with

respect to g 1.

8: k ← k + 1;

9: end while

53

x̄ ∈ M, there exists a neighborhood U of x̄ and a constant c0 such that for all x, y ∈ U

‖TSη − TRη‖ ≤ c0‖η‖ (4.2.4)

‖T −1Sη
− T −1Rη

‖ ≤ c0‖η‖ (4.2.5)

where η = R−1x (y). In the following analysis, we use only these two properties of isometric vector

transport.

In Algorithm 3, we require the isometric vector transport TS to satisfy the locking condition

TSξ
ξ = βTRξ

ξ, β =
‖ξ‖
‖TRξ

ξ‖ , (4.2.6)

for all ξ ∈ TxM and all x ∈ M. Practical ways of building such a TS given a retraction and

vice versa are discussed in Section 4.4. Observe that, throughout Algorithm 3, the differentiated

retraction TR only appears in the form TRξ
ξ, which is equal to d

dtR(tξ)|t=1. Hence TRαkηk
αkηk is

just the velocity vector of the line search curve α 7→ R(αηk) at time αk and we are only required to

be able to evaluate the differentiated retraction in the direction transported. The computational

efficiency that results is also discussed in Section 4.4.

The isometry condition (1.2.1) and the locking condition (4.2.6) are imposed on TS notably

because, as shown in Lemma 4.2.1, they ensure that the second Wolfe condition (4.2.2) implies

g(sk, yk) > 0. Much as in the Euclidean case, it is essential that g(sk, yk) > 0, otherwise the secant

condition Bk+1sk = yk cannot hold with Bk+1 positive definite, whereas positive definiteness of the

Bk’s is key to guarantee that the search directions ηk are descent directions. It is possible to state

Algorithm 3 without imposing the isometry and locking conditions, but then it becomes an open

question whether the main convergence results would still hold. Clearly, some intermediate results

would fail to hold and, assuming that the main results still hold, a completely different approach

would probably be required to prove them.

When φ = 0, the updating formula (4.2.3) reduces to the Riemannian BFGS formula of [QGA10].

However, a crucial difference between Algorithm 3 and the Riemannian BFGS of [QGA10] lies in

the definition of yk. Its definition in [QGA10] corresponds to setting βk to 1 instead of ‖αkηk‖
‖TRαkηk

αkηk‖ .

Our choice of βk allows for a convergence analysis under more general assumptions than those of

the convergence analysis of Qi [Qi11]. Indeed, the convergence analysis of the Riemannian BFGS

of [QGA10], found in [Qi11], assumes that retraction R is set to the exponential mapping and

54

that vector transport TS is set to the parallel translation. These specific choices remain legitimate

in Algorithm 3, hence the convergence analysis given here subsumes the one in [Qi11]; however,

several other choices become possible, as discussed in more detail in Section 4.4.

Lemma 4.2.1 proves that Algorithm 3 is well-defined for φk ∈ (φc
k,∞).

Lemma 4.2.1. Algorithm 3 constructs infinite sequences {xk}, {Bk}, {B̃k}, {αk}, {sk}, and {yk},
unless the stopping criterion in Step 2 is satisfied at some iteration. For all k, the Hessian approx-

imation Bk is symmetric positive definite with respect to metric g, ηk 6= 0, and

g(sk, yk) ≥ (c2 − 1)αkg(grad f(xk), ηk). (4.2.7)

Proof. We first show that (4.2.7) holds when all the involved quantities exist and ηk 6= 0. Define

m̃k(t) = f(Rxk
(tηk/‖ηk‖)). We have

g(sk, yk) = g(TSαkηk
αkηk, β

−1
k grad f(xk+1)− TSαkηk

grad f(xk))

= g(TSαkηk
αkηk, β

−1
k grad f(xk+1))− g(TSαkηk

αkηk,TSαkηk
grad f(xk))

= g(β−1k TSαkηk
αkηk, grad f(xk+1))− g(αkηk, grad f(xk)) (by isometry)

= g(TRαkηk
αkηk, grad f(xk+1))− g(αkηk, grad f(xk)) (by (4.2.6))

= αk‖ηk‖
(

dm̃k(αk‖ηk‖)
dt

− dm̃k(0)

dt

)

. (4.2.8)

Note that guaranteeing (4.2.8), which will be used frequently, is the key reason for imposing the

locking condition (4.2.6). From the second Wolfe condition (4.2.2), we have

dm̃k(αk‖ηk‖)
dt

≥ c2
dm̃k(0)

dt
. (4.2.9)

Therefore,

dm̃k(αk‖ηk‖)
dt

− dm̃k(0)

dt
≥ (c2 − 1)

dm̃k(0)

dt
= (c2 − 1)

1

‖ηk‖
g(grad f(xk), ηk). (4.2.10)

The claim (4.2.7) follows from (4.2.8) and (4.2.10).

When Bk is symmetric positive definite, ηk is a descent direction. Observe that the function

α 7→ f(R(αηk)) remains a continuously differentiable function from R to R which is bounded below.

Therefore, the classical result in [NW06, Lemma 3.1] guarantees the existence of a step size,αk,

that satisfies the Wolfe conditions.

55

The claims are proved by induction. They hold for k = 0 in view of the assumptions on B0 of

Step 3 and of the results above. Assume now that the claims hold for some k. From (4.2.7), we

have

g(sk, yk) ≥ (1− c2)αkg(grad f(xk),−ηk) = (1− c2)αkg(grad f(xk),B−1k grad f(xk)) > 0.

Recall that, in the Euclidean case, sTk yk > 0 is a necessary and sufficient condition for the exis-

tence of a positive-definite secant update (see [DS83, Lemma 9.2.1]), and that BFGS is such an

update [DS83, (9.2.10)]. From the generalization of these results to the Riemannian case (see [Qi11,

Lemmas 2.4.1 and 2.4.2]), it follows that Bk+1 is symmetric positive definite when φk ≡ 0.

Consider the function h(φk) : R → R
d which gives the eigenvalues of Bk+1. Since Bk+1 is

symmetric positive definite when φk ≡ 0, we know all entries of h(0) are greater than 0. By

calculations similar to those for the Euclidean case ([BLN92]), we have

det(Bk+1) = det(Bk)
g(yk, sk)

g(sk,Bksk)
(1 + φk(uk − 1)).

So det(Bk+1) = 0 if and only if φk = φc
k < 0. In other words, h(φk) has one or more 0 entries if and

only if φk = φc
k. In addition, since all entries of h(0) are greater than 0 and h(φk) is a continuous

function, we have that all entries of h(φk) are greater than 0 if and only if φk > φc
k. Therefore, the

operator Bk+1 is positive definite when φk > φc
k. The symmetry of Bk+1 is easily verified.

4.3 Global Convergence Analysis

In this section, global convergence is proven under a generalized convexity assumption and for

φk ∈ [0, 1− δ], where δ is any number in (0, 1]. The behavior of the Riemannian Broyden methods

with φk not necessarily in this interval is explored in the experiments. Note the result derived in

this section also guarantees local convergence to an isolated local minimizer.

4.3.1 Basic Assumptions and Definitions

Throughout the convergence analysis, {xk}, {Bk}, {B̃k}, {αk}, {sk}, {yk}, and {ηk}, are infinite
sequences generated by Algorithm 3, Ω denotes the sublevel set {x : f(x) ≤ f(x0)}, and x∗ is a

local minimizer of f in the level set Ω. The existence of such an x∗ is guaranteed if Ω is compact,

which happens, in particular, whenever the manifoldM is compact.

56

The convergence analysis depends on the property of (strong) retraction-convexity formalized

in Definition 4.3.1 and the following two additional assumptions.

Definition 4.3.1. For a function f : M → R : x 7→ f(x) on a Riemannian manifold M with

retraction R define m̃x,η(t) = f(Rx(tη)) for x ∈ M and η ∈ TxM. The function f is retraction-

convex with respect to the retraction R in a set S if for all x ∈ S, all η ∈ TxM and ‖η‖ = 1,

m̃x,η(t) is convex for all t which satisfies Rx(tη) ∈ S. Moreover, f is strongly retraction-convex in

S if m̃x,η(t) is strongly convex for all x ∈ S and all ‖η‖ = 1 such that Rx(η) ∈ S.

Assumption 4.3.1. The objective function f is twice continuously differentiable.

Assumption 4.3.2. There exist r > 0 and ρ > 0 such that, for each y ∈ Rx∗(B(0x∗ , r)) =: Ω̃, we

have Ry(B(0y, ρ)) ⊃ Ω̃ and Ry(·) is a diffeomorphism on B(0y, ρ). The iterates xk stay continuously

in Ω̃, meaning that Rxk
(tηk) ∈ Ω̃ for all t ∈ [0, αk]. Moreover, f is strongly retraction-convex with

respect to the retraction R in the closure of Ω̃.

Lemma 4.3.1. If Assumption 4.3.1 holds, then f is retraction-convex with respect to the exponen-

tial mapping in an open set S if and only if Hess f(x) is positive definite for all x ∈ S. Moreover,

f is strongly retraction-convex with respect to the exponential mapping in an open set S if and only

if there exists a constant a0 > 0 such that Hess f(x)− a0 id is positive definite for all x ∈ S.

Proof. First, suppose f is retraction-convex with respect to the exponential mapping in a set S.
Therefore,

d2m̃x,η(0)
dt2

≥ 0 and since
d2m̃x,η(0)

dt2
= g(Hess f(x)η, η), we have that

g(Hess f(x)η, η) ≥ 0,

for all η ∈ TxM. Thus Hess f(x) is positive definite.

Second, suppose f is strongly retraction-convex with respect to the exponential mapping in a

set S. By the same idea, we have
d2m̃x,η(0)

dt2
− a0 ≥ 0.

Since by definition we have g((Hess f(x) − a0 id)η, η) = g(Hess f(x)η, η) − a0 and when using the

exponential mapping
d2m̃x,η(0)

dt2
= g(Hess f(x)η, η) it follows that

g((Hess f(x)− a0 id)η, η) ≥ 0

57

and Hess f(x)− a0 id is positive definite.

Conversely, suppose Hess f(x) is positive definite for all x ∈ S. Note that for the exponential

mapping, we have

Expx(tη) = Expy(P
1←0
γ ((t− t0)η)),

where x ∈ M, η ∈ TxM, y = Expx(t0η), γ is the geodesic from x to y such that γ(0) = x and

γ(1) = y, and P 1←0
γ µ denotes parallel translation of µ ∈ TxM along the geodesic. The curve on

the manifold defined by

m̃x,η(t) = f(Expx(tη)) = f(Expy(P
1←0
γ ((t− t0)η))) = m̃y,P 1←0

γ (η)(t− t0)

satisfies

d2m̃x,η(t)

dt2
|t=t0 =

d2m̃y,P 1←0
γ (η)(t)

dt2
|t=0 = g(Hess f(y)P 1←0

γ (η), P 1←0
γ (η)) ≥ 0.

Since t0 can be arbitrary such that Rx(t0η) ∈ S, the proof of retraction-convexity is complete.

Furthermore, if Hess f(x)− a0 id is positive definite for all x ∈ S, then

d2m̃x,η(t)

dt2
|t=t0 − a0 =

d2m̃y,P 1←0
γ (η)(t)

dt2
|t=0 − a0 = g((Hess f(y)− a0 id)P

1←0
γ (η), P 1←0

γ (η)) ≥ 0

completing the proof for strong retraction-convexity.

Lemma 4.3.2. Suppose Assumption 4.3.1 holds and Hess f(x∗) is positive definite. Define m̃x,η(t) =

f(Rx(tη)), where ‖η‖ = 1. Then there exists a neighbor N of x∗ and two constants 0 < a0 < a1

such that

a0 ≤
d2m̃x,η

dt2
(t) ≤ a1,

for all x ∈ N and t which satisfies Rx(tη) ∈ N .

Proof. First, the left inequality is proved. Define u(x̂, ξ̂x) = f̂(Rx̂(ξ̂x)) where the coordinate ex-

pressions are chosen by using orthonormal vector fields. Therefore, the matrix expression Gx of the

metric at x is identity. Since x∗ is a critical point, the Euclidean Hess2 u(x̂
∗, 0) is equivalent to the

Riemannian Hess f(x∗) that is assumed to be positive definite, where Hess2 u(x̂, ξ̂) denotes the Hes-

sian respect to the second variable. In addition, f is assumed to be twice continuously differentiable,

therefore, Hess2 u(x̂, ξ̂x) is continuous and there exists a neighborhood N̂ ×V̂ of (x̂∗, 0) such that the

smallest eigenvalue of Hess2 u(x̂, η̂x) is uniformly greater than some positive number a0. By Lemmas

58

3.3.1 and 3.3.3, N̂ can be made small enough so that ζ̂ ∈ V̂ where ζ = R−1x1
(x2) for any x̂1, x̂2 ∈ N̂ .

Let N denote the non-coordinate expression of N̂ and let m̃x,η(t) denote f(Rx(tη)) = u(x̂, tη̂). By

computing the second derivative for m̃x,η(t) and noticing ‖η̂‖2 = ‖G1/2
x η̂‖2 = ‖η‖ = 1, we have

d2m̃x,η

dt2
(t) =

d2u(x̂, tη̂)

dt2
(t) = η̂T Hess2 u(x̂, tη̂)η̂ ≥ a0,

for all t such that Rx(tη) ∈ N .

To prove the right inequality, we note that N̂ can be chosen to be bounded and then N is also

bounded. Therefore, the closure of N , N̄ , is compact and the largest eigenvalue of Hess2 u(x̂, ξ̂) for

all x ∈ N̄ and Rx(ξ) ∈ N̄ is bounded by a number a1. Thus,

d2m̃x,η

dt2
(t) = η̂T Hess2 u(x̂, tη̂)η̂ ≤ a1,

for all t such that Rx(tη) ∈ N .

4.3.2 Preliminary Lemmas

The lemmas in this section provide the results needed to show global convergence stated in

Theorem 4.3.1. The strategy generalizes that for the Euclidean case in [BNY87]. Where appro-

priate, comments are included indicating important adaptations of the reasoning to Riemannian

manifolds. The two main difficulties are the lack of Taylor’s Theorem for a function defined on a

Riemannian manifold and the use in some Euclidean proofs of an average Hessian on a straight line

that generalizes only to lines defined by the exponential mapping and parallel translation and not

to lines defined by retractions and vector transports.

The first result, Lemma 4.3.3, is used to prove Lemma 4.3.5.

Lemma 4.3.3. If Assumptions 4.3.1 and 4.3.2 hold then

1

2
a0‖sk‖2 ≤ (c1 − 1)αkg(grad f(xk), ηk). (4.3.1)

Proof. In Euclidean space, Taylor’s Theorem is used to characterize a function around a point.

However, there is no Taylor’s Theorem for a function f on Riemannian manifold due to the lack of

addition. This difficulty is overcome by defining a function on a curve on the manifold and applying

Taylor’s Theorem. Define m̃k(t) = f(Rxk
(tηk/‖ηk‖)). Since f ∈ C2 is strongly retraction-convex

on a compact set, there exist constants 0 < a0 < a1 such that

a0 ≤
d2m̃x,η(t)

dt2
≤ a1.

59

From Taylor’s theorem, we know

f(xk+1)− f(xk) = m̃k(αk‖ηk‖)− m̃k(0) =
dm̃k(0)

dt
αk‖ηk‖+

1

2

d2m̃k(p)

dt2
(αk‖ηk‖)2

= g(grad f(xk), αkηk) +
1

2

d2m̃k(p)

dt2
(αk‖ηk‖)2

≥ g(grad f(xk), αkηk) +
1

2
a0(αk‖ηk‖)2, (4.3.2)

where 0 ≤ p ≤ αk‖ηk‖. Using (4.3.2), the first Wolfe condition (4.2.1) and that ‖sk‖ = αk‖ηk‖, we
obtain

(c1 − 1)g(grad f(xk), αkηk) ≥
1

2
a0‖sk‖2

completing the proof.

Lemma 4.3.4 generalizes [BNY87, (2.4)].

Lemma 4.3.4. If Assumptions 4.3.1 and 4.3.2 hold then there exists two constants 0 < a0 ≤ a1

such that

a0g(sk, sk) ≤ g(sk, yk) ≤ a1g(sk, sk), (4.3.3)

for all k.

Proof. In the Euclidean case of [BNY87, (2.4)], the proof follows easily from the convexity of the

cost function and the resulting positive definiteness of the Hessian over the entire relevant set. The

Euclidean proof exploits the relationship yk = Ḡksk, where Ḡk is the average Hessian and that Ḡk

must be positive definite to bound the inner product sTk yk using the largest and smallest eigenvalues

that can in turn be bounded on the relevant set. We do not have this property on a Riemannian

manifold but the locking condition, retraction-convexity and replacing the average Hessian with a

quantity derived from a function defined on a curve on the manifold allows the generalization.

Define m̃k(t) = f(Rxk
(tηk/‖ηk‖)). Using the locking condition (4.2.8) and Taylor’s Theorem

yields

g(sk, yk) = αk‖ηk‖(
dm̃(αk‖ηk‖)

dt
− dm̃(0)

dt
) = αk‖ηk‖

∫ αk‖ηk‖

0

d2m̃

dt2
(s)ds

and since g(sk, sk) = α2
k‖ηk‖2, we have

g(sk, yk)

g(sk, sk)
=

1

αk‖ηk‖

∫ αk‖ηk‖

0

d2m̃

dt2
(s)ds.

60

By Assumption 4.3.2, it follows that

a0 ≤
g(sk, yk)

g(sk, sk)
≤ a1.

Lemma 4.3.5 generalizes [BNY87, Lemma 2.1].

Lemma 4.3.5. Suppose Assumptions 4.3.1 and 4.3.2 hold. Then there exist two constants 0 <

a2 < a3 such that

a2‖ grad f(xk)‖ cos θk ≤ ‖sk‖ ≤ a3‖ grad f(xk)‖ cos θk, (4.3.4)

for all k, where cos θk = −g(grad f(xk),ηk)
‖ grad f(xk)‖‖ηk‖ .

Proof. Define m̃k(t) = f(Rxk
(tηk/‖ηk‖)). By (4.2.7) of Lemma 4.2.1, we have

g(sk, yk) ≥ αk(c2 − 1)g(grad f(xk), ηk) = αk(1− c2)‖ grad f(xk)‖‖ηk‖ cos θk.

Using (4.3.3) and noticing ‖αkηk‖ = ‖sk‖, we know

‖sk‖ ≥ a2‖ grad f(xk)‖ cos θk

where a2 = (1− c2)/a1 proving the left inequality.

By (4.3.1) of Lemma 4.3.3, we have

(c1 − 1)g(grad f(xk), αkηk) ≥
1

2
a0‖sk‖2.

Noting that ‖sk‖ = αk‖ηk‖ and by the definition of cos θk, we have

‖sk‖ ≤ a3‖ grad f(xk)‖ cos θk,

where a3 = 2(1− c1)/a0.

Lemma 4.3.6 is needed to prove Lemmas 4.3.7 and 4.3.10. Lemma 4.3.6 gives a Lipschitz-like

relationship between two related vector transports applied to the same tangent vector.

Lemma 4.3.6. Let M be a Riemannian manifold endowed with two vector transports T1 ∈ C0

and T2 ∈ C∞ where T1 satisfies (4.2.4) and (4.2.5) and both transports are associated with a same

61

retraction R. Then for any x̄ ∈ M there exists a constant a4 > 0 and a neighborhood of x̄, U , such
that for all x, y ∈ U

‖T1ηξ − T2ηξ‖ ≤ a4‖ξ‖‖η‖,

where η = R−1x y and ξ ∈ Tx.

Proof. LR(x̂, η̂) and L2(x̂, η̂) denote coordinate form of TRη and T2η respectively. We have

‖T1ηξ − T2ηξ‖ = ‖T1ηξ − TRηξ + TRηξ − T2ηξ‖

≤ b0‖η‖‖ξ‖ + ‖TRηξ − T2ηξ‖

≤ b0‖η‖‖ξ‖ + b1‖(LR(x̂, η̂)− L2(x̂, η̂))ξ̂‖2

≤ b0‖η‖‖ξ‖ + b1‖ξ̂‖2‖LR(x̂, η̂)− L2(x̂, η̂)‖2

≤ b0‖η‖‖ξ‖ + b2‖ξ̂‖2‖η̂‖2 (since LR(x̂, 0) = L2(x̂, 0))

= b3‖ξ‖‖η‖

where b0, b1, b2, b3 are positive constants.

Lemma 4.3.7 is a consequence of Lemma 4.3.6.

Lemma 4.3.7. LetM be a Riemannian manifold endowed with a retraction R whose differentiated

retraction is denoted TR. Let x̄ ∈ M. Then there is a neighborhood U of x̄ and constant ã4 > 0

such that for all x, y ∈ U , any ξ ∈ TxM with ‖ξ‖ = 1, the effect of the differentiated retraction is

bounded with

|‖TRηξ‖ − 1| ≤ ã4‖η‖,

where η = R−1x y.

Proof. Applying Lemma 4.3.6 with T1 = TR and T2 be isometric, we have

‖TRηξ − T2ηξ‖ ≤ b0‖ξ‖‖η‖,

where b0 is a positive constant. Noticing ‖ξ‖ = 1 and ‖ · ‖ is the induced norm, we have

b0‖η‖ ≥ ‖TRηξ − T2ηξ‖ ≥ ‖TRηξ‖ − ‖T2ηξ‖ = ‖TRηξ‖ − 1.

Similarly, we have

b0‖η‖ ≥ ‖T2ηξ − TRηξ‖ ≥ ‖T2ηξ‖ − ‖TRηξ‖ = 1− ‖TRηξ‖.

to complete the proof.

62

Lemma 4.3.8 generalizes [BNY87, (2.13)] and implies a generalization of the Zoutendijk Con-

dition [NW06, Theorem 3.2], i.e., if cos θk does not approach 0, then according to this lemma, the

algorithm is convergent.

Lemma 4.3.8. Suppose Assumptions 4.3.1 and 4.3.2 hold. Then there exists a constant a5 > 0

such that for all k

f(xk+1)− f(x∗) ≤ (1− a5 cos
2 θk)(f(xk)− f(x∗)),

where cos θk = −g(grad f(xk),ηk)
‖ grad f(xk)‖‖ηk‖ .

Proof. The original proof in [BNY87, (2.13)] uses the average Hessian. As when proving Lemma

4.3.3, this is replaced by considering a function defined on a curve on the manifold. Let zk =

‖R−1x∗ xk‖ and ζk = (R−1x∗ xk)/zk. Define mk(t) = f(Rx∗(tζk)). From Taylor’s Theorem, we have

mk(0)−mk(zk) =
dmk(zk)

dt
(0− zk) +

1

2

d2mk(p)

dt2
(0− zk)

2, (4.3.5)

where p is some number between 0 and zk. Notice that x
∗ is the minimizer, so mk(0)−mk(zk) ≤ 0.

According to Assumption 4.3.2, we have

dmk(zk)

dt
≥ 1

2
a0zk. (4.3.6)

Still using (4.3.5) and noticing that d2mk(p)
dt2 (0− zk)

2 ≥ 0, we have

f(xk)− f(x∗) ≤ dmk(zk)

dt
zk. (4.3.7)

Combining (4.3.6) and (4.3.7) and noticing that dmk(zk)
dt = g(grad f(xk),TRzkζk

ζk), we have

f(xk)− f(x∗) ≤ 2

a0
g2(grad f(xk),TRzkζk

ζk).

and

f(xk)− f(x∗) ≤ 2

a0
‖ grad f(xk)‖2‖TRzkζk

ζk‖2

≤ b0‖ grad f(xk)‖2, (by Lemma 4.3.7) (4.3.8)

where b0 is a positive constant. Using (4.3.4), the first Wolfe condition (4.2.1) and the definition

of cos θk, we obtain

f(xk+1)− f(xk) ≤ −b1‖ grad f(xk)‖2 cos2 θk,

63

where b1 is some positive constant. Using (4.3.8), we obtain

f(xk+1)− f(x∗) ≤ (1− a5 cos
2 θk)(f(xk)− f(x∗)).

where a5 = b1/b0 is a positive constant.

Lemma 4.3.9 generalizes [BNY87, Lemma 2.2].

Lemma 4.3.9. Suppose Assumptions 4.3.1 and 4.3.2 hold. Then there exist two constants 0 <

a6 < a7 such that

a6
g(sk, B̃ksk)
‖sk‖2

≤ αk ≤ a7
g(sk, B̃ksk)
‖sk‖2

, (4.3.9)

for all k.

Proof. Note that this proof does not depend on the use of the average Hessian as in original proof

of [BNY87, Lemma 2.2] since Lemma 4.3.3 is applied. We have

(1− c2)g(sk, B̃ksk) = (1− c2)g(αkηk, αkBkηk)

= (1− c2)g(αkηk, αkBkηk)

= (1− c2)g(αkηk, αkBkηk)

= (c2 − 1)α2
kg(ηk, grad f(xk))

≤ αkg(sk, yk) (by (4.2.7) of Lemma 4.2.1)

≤ αka1‖sk‖2 (by (4.3.3)).

Therefore,

αk ≥ a6
g(sk, B̃ksk)
‖sk‖2

,

where a6 = (1− c2)/a1 giving the left inequality.

By (4.3.1) of Lemma 4.3.3 and since ‖sk‖ = αk‖ηk‖, we have

(c1 − 1)αkg(grad f(xk), ηk) ≥
1

2
a0‖sk‖2.

By Step 3 of Algorithm 3,

(c1 − 1)αkg(grad f(xk), ηk) = (1− c1)g(Bkηk, αkηk)

=
1− c1
αk

g(sk, B̃ksk).

64

Therefore,

αk ≤ a7
g(sk, B̃ksk)
‖sk‖2

,

where a7 = (1− c1)/a0 giving the right inequality.

Lemma 4.3.10 generalizes [BNY87, Lemma 3.1, Equation (3.3)].

Lemma 4.3.10. Suppose Assumption 4.3.1 holds. Then, for all k there exists a constant a9 > 0

such that

g(yk, yk) ≤ a9g(sk, yk). (4.3.10)

Proof. Define yPk = grad f(xk+1) − P 1←0
γk

grad f(xk), where P is parallel translation and γk(t) =

Rxk
(tαkηk), i.e., the retraction line from xk to xk+1. From Lemma 3.3.8, we have

‖P 0←1
γk

yPk − H̄kαkηk‖ ≤ b0‖αkηk‖2 = b0‖sk‖2,

where H̄k =
∫ 1
0 P 0←t

γk
Hess f(γk(t))P

t←0
γk

dt and b0 > 0. It follows that

‖yk‖ ≤ ‖yk − yPk ‖+ ‖yPk ‖ = ‖yk − yPk ‖+ ‖P 0←1
γk

yPk ‖

= ‖yk − yPk ‖+ ‖P 0←1
γk

yPk − H̄kαkηk‖+ ‖H̄kαkηk‖

= ‖ grad f(xk+1)/βk − TSαkηk
grad f(xk)− grad f(xk+1) + P 1←0

γk
grad f(xk)‖

+ ‖H̄kαkηk‖+ b0‖sk‖2

≤ ‖ grad f(xk+1)/βk − grad f(xk+1)‖+ ‖P 1←0
γk

grad f(xk)− TSαkηk
grad f(xk)‖

+ ‖H̄kαkηk‖+ b0‖sk‖2

≤ b1‖sk‖, (by the continuity of Hessian and Lemmas 4.3.6 and 4.3.7)

where b1 > 0. Therefore,

g(yk, yk)

g(sk, yk)
≤ g(yk, yk)

a0g(sk, sk)
(by Lemma 4.3.4)

≤ b21
a0

giving the desired result.

Lemma 4.3.11 generalizes [BNY87, Lemma 3.1] and as with the earlier lemmas the proof does

not use an average Hessian.

65

Lemma 4.3.11. Suppose Assumptions 4.3.1 and 4.3.2 hold. Then there exist constants a10 >

0, a11 > 0, a12 > 0 such that

g(sk, B̃ksk)
g(sk, yk)

≤ a10αk (4.3.11)

‖B̃ksk‖2
g(sk, B̃ksk)

≥ a11
αk

cos2 θk
(4.3.12)

|g(yk, B̃ksk)|
g(yk, sk)

≤ a12
αk

cos θk
(4.3.13)

for all k.

Proof. By (4.2.7) of Lemma 4.2.1, we have

g(sk, yk) ≥ (c2 − 1)g(grad f(xk), αkηk).

So by the Step 3 of Algorithm 3, we obtain

g(sk, yk) ≥
(1− c2)

αk
g(sk, B̃sk)

and therefore
g(sk, B̃ksk)
g(sk, yk)

≤ a10αk,

where a10 = 1/(1 − c2) proving (4.3.11).

Inequality (4.3.12) follows from

‖B̃ksk‖2
g(sk, B̃ksk)

=
α2
k‖ grad f(xk)‖2

αk‖sk‖‖ grad f(xk)‖ cos θk
(by Step 3 of Algorithm 3 and the definition of cos θk)

=
αk‖ grad f(xk)‖
‖sk‖ cos θk

≥ a11
αk

cos2 θk
, (by (4.3.4))

where a11 > 0.

Finally, inequality (4.3.13) follows from

|g(yk, B̃ksk)|
g(sk, yk)

≤ αk‖yk‖‖ grad f(xk)‖
g(sk, yk)

(by Step 3 of Algorithm 3)

≤ a
1/2
9 αk‖ grad f(xk)‖

g1/2(sk, yk)
(by (4.3.10))

≤ a
1/2
9 αk‖ grad f(xk)‖

a
1/2
0 ‖sk‖

(by (4.3.3))

≤ a12
αk

cos θk
, (by (4.3.4))

66

where a12 is a positive constant.

Lemma 4.3.12 generalizes [BNY87, Lemma 3.2].

Lemma 4.3.12. Suppose Assumptions 4.3.1 and 4.3.2 hold. φk ∈ [0, 1]. Then there exists a

constant a13 > 0 such that
k
∏

j=1

αj ≥ ak13, (4.3.14)

for all k ≥ 1.

Proof. The major difference between the Euclidean and Riemannian proofs is that in the Rieman-

nian case, we have two operators Bk and B̃k as opposed to a single operator in the Euclidean case.

Once we have proven that they have the same trace and determinant, the proof unfolds similarly

to the Euclidean proof. The details are given for the reader’s convenience.

Use hat to denote the coordinates expression of the operators Bk and B̃k in Algorithm 3 and

consider trace(B̂) and det(B̂). Since they are independent of basis, we know they are well defined.

Since TS is an isometric vector transport, we have that TSαkηk
is invertible for all k, and thus

trace(ˆ̃Bk) = trace(T̂Sαkηk
B̂kT̂ −1Sαkηk

) = trace(B̂k),

det(ˆ̃Bk) = det(T̂Sαkηk
B̂kT̂ −1Sαkηk

) = det(B̂k).

From the update formula of Bk in Algorithm 3, the trace of update formula is

trace(B̂k+1) = trace(B̂k) +
‖yk‖2

g(yk, sk)
+ φk

‖yk‖2
g(yk, sk)

g(sk, B̃ksk)
g(yk, sk)

− (1− φk)
‖B̃ksk‖2

g(sk, B̃ksk)
− 2φk

g(yk, B̃ksk)
g(yk, sk)

. (4.3.15)

Recall that φkg(sk, B̃ksk) ≥ 0. If we choose a particular basis such that the expression of the

metric is the identity, then the Broyden update equation (4.2.3) is exactly the classical Broyden

update equation, except that Bk is replaced by ˆ̃Bk, and by [BNY87, (3.9)] we have

det(B̂k+1) ≥ det(B̂k)
g(yk, sk)

g(sk, B̃ksk)
. (4.3.16)

Since det and g(·, ·) are independent of the basis, it follows that (4.3.16) holds regardless of the
chosen basis. Using (4.3.10), (4.3.11), (4.3.12) and (4.3.13) for (4.3.15), we obtain

trace(B̂k+1) ≤ trace(B̂k) + a9 + φka9a10αk −
a11(1− φk)αk

cos2 θk
+

2φka12αk

cos θk
(4.3.17)

67

Notice that

αk

cos θk
=

αk‖ grad f(xk)‖‖ηk‖
−g(grad f(xk), ηk)

=
αk‖B̃ksk‖‖sk‖
g(sk, B̃ksk)

=
‖B̃ksk‖
‖sk‖

αk‖sk‖2
g(sk, B̃ksk)

≤ a7
‖B̃ksk‖
‖sk‖

(by (4.3.9)). (4.3.18)

Since the fourth term in (4.3.17) is always negative and cos θk ≤ 1, (4.3.18) and (4.3.17) imply that

trace(B̂k+1) ≤ trace(B̂k) + a9 + (φka9a10 + 2φka12a7)
‖B̃ksk‖
‖sk‖

.

Consider ‖B̂k‖g, where ‖ · ‖g denotes the induce norm from the vector norm of ‖u‖g =
√
uTGu.

It follows that

‖B̃ksk‖
‖sk‖

≤ ‖B̃k‖ = ‖Bk‖ = ‖B̂k‖g =
‖B̂kv‖g
‖v‖g

(there exists a v such that this equality holds)

=

√

vT B̂Tk GkB̂kv
vTGkv

=

√

vTGkB̂kB̂kv
vTGkv

(since Bk is self-adjoint, then B̂Tk Gk = GkB̂k)

=

√

ṽTG
1/2
k B̂kG

−1/2
k G

1/2
k B̂kG

−1/2
k ṽ

ṽT ṽ
=

√

ṽTG
−1/2
k GkB̂kG−1/2k G

1/2
k B̂kG

−1/2
k ṽ

ṽT ṽ

=

√

ṽTG
−1/2
k B̂Tk G

1/2
k G

1/2
k B̂kG

−1/2
k ṽ

ṽT ṽ
=

√

ṽTMTMṽ

ṽT ṽ

≤ ‖M‖2 ≤ trace(M) = trace(B̂k)

where Gk is the matrix expression of inner product of Txk
M, ṽ = G

1/2
k v, M = G

1/2
k B̂Tk G

−1/2
k .

Therefore,

trace(B̂k+1) ≤ a9 + (1 + φka9a10 + 2φka12a7) trace(B̂k).

This inequality implies that there exists constant b0 > 0 such that

trace(B̂k+1) ≤ bk0 . (4.3.19)

Using (4.3.11) and (4.3.16), we have

det(B̂k+1) ≥ det(B̂k)
1

a10αk
≥ det(B̂1)

k
∏

j=1

1

a10αj
. (4.3.20)

68

From the geometric/arithmetic mean inequality2 applied to the eigenvalues of B̂k+1, we know

det(B̂k+1) ≤ (
trace(B̂k+1)

d
)d,

where d is the dimension of manifoldM. Therefore, by (4.3.19) and (4.3.20),

k
∏

j=1

1

a10αj
≤ 1

det(B̂1)
(
trace(B̂k+1)

d
)d ≤ 1

det(B̂1)dd
(bd0)

k.

Thus there exists a constant a13 > 0 such that

k
∏

j=1

αj ≥ ak13,

for all k ≥ 1.

4.3.3 Main Convergence Result

With the preliminary lemmas in place, the main convergence result can be stated and proven

in a manner that closely follows the Euclidean proof of [BNY87, Theorem 3.1].

Theorem 4.3.1. Suppose Assumptions 4.3.1 and 4.3.2 hold and φk ∈ [0, 1− δ]. Then the sequence

{xk} generated by Algorithm 3 converges to a minimizer x∗ of f .

Proof. Inequality (4.3.17) can be written as

trace(B̂k+1) ≤ trace(B̂k) + a9 + tkαk, (4.3.21)

where

tk = φka9a10 −
a11(1− φk)

cos2 θk
+

2φka12
cos θk

.

The proof is by contradiction. Assume cos θk → 0, then tk → −∞. So there exists a constant

K0 > 0 such that tk < −2a9/a13 for all k ≥ K0. Using (4.3.21) and that B̂k+1 is positive definite,

we have

0 < trace(B̂k+1) ≤ trace(B̂K0) + a9(k + 1−K0) +

k
∑

j=K0

tkαk

< trace(B̂K0) + a9(k + 1−K0)−
2a9
a13

k
∑

j=K0

αk. (4.3.22)

2For xi ≥ 0, (
∏d

i=1 xi)
1/d ≤

∑d
i=1 xi/d.

69

Applying the geometric/arithmetic mean inequality to (4.3.14), we get

k
∑

j=1

αj ≥ ka13

and therefore
k
∑

j=K0

αj ≥ ka13 −
K0
∑

j=1

αj . (4.3.23)

Plugging (4.3.23) into (4.3.22), we obtain

0 < trace(B̂K0) + a9(k + 1−K0)−
2a9
a13

ka13 +
2a9
a13

K0−1
∑

j=1

αk

= trace(B̂K0) + a9(1− k −K0) +
2a9
a13

K0−1
∑

j=1

αk.

For large enough k, the right-hand side of the inequality is negative, which contradicts the assump-

tion that cos θk → 0. Therefore there exists a constant δ and a subsequence such that cos θkj > δ > 0

for all j, i.e., there is a subsequence that does not converge to 0. Applying Lemma 4.3.8 completes

the proof.

4.4 Constructing Isometric Vector Transport or Retraction

In order to apply an algorithm in the RBroyden family method, we must specify a retraction

R, an isometric vector transport TS and β that satisfy (4.2.6). Exponential mapping and parallel

translation satisfy condition (4.2.6) with β = 1. However, for some manifolds, we do not have

the analytical form of exponential mapping and parallel translation. Even if a form is known

its evaluation may be unacceptably expensive. Two methods of constructing an isometric vector

given a retraction and a method for constructing a retraction for any isometric vector transport

are discussed in this section. In practice, the choice of the pair must also consider if an efficient

implementation is possible.

4.4.1 Method 1 of Constructing an Isometric Vector Transport

Given a retraction R, if an associated isometric vector transport,TI, for which there is an efficient

implementation, is known then TI can be modified so that it satisfies condition (4.2.6). Consider

x ∈ M, η ∈ TxM, y = Rx(η) and define the tangent vectors ξ1 = TIηη and ξ2 = βTRηη with

70

the normalizing scalar β = ‖η‖
‖TRηη‖

. We need Py, a linear isometric operator on TyM, such that

ξ2 = Pyξ1. Given Py, the operator

TS = PyTI. (4.4.1)

clearly satisfies condition (4.2.6). The natural idea is to use a Householder reflector, i.e.,

Py = id−2νν♭

ν♭ν
,

where ν = ξ1 − ξ2. Unfortunately, TS defined with a Householder reflector for Py does not satisfy

the consistency condition of vector transport.

Py can be defined by using two Householder reflectors. Let ω ∈ TyM, ‖ω‖ = ‖ξ1‖ = ‖ξ2‖, be
some tangent vector and define

Py = (id−2ν2ν
♭
2

ν♭2ν2
)(id−2ν1ν

♭
1

ν♭1ν1
),

where ν1 = ξ1 − ω and ν2 = ω − ξ2. ω could be any tangent vector in TyM which satisfies

‖ω‖ = ‖ξ1‖ = ‖ξ2‖. If ω = −ξ1 or −ξ2 then Py is the well-known direct rotation from ξ1 to ξ2

in the inner product that defines the ♭. The use negative sign avoids numerical cancelation as ξ1

approaches ξ2, i.e., near convergence.

Since Py approaches id when x approaches y, it is easy to check that TS satisfies consistency

condition of vector transport. Recall, that we have relaxed the definition of vector transport for

TS by requiring conditions (4.2.4) and (4.2.5) rather than smoothness. This is verified in Theorem

4.4.1.

Theorem 4.4.1. The isometry

TS = (id−2ν2ν
♭
2

ν♭2ν2
)(id−2ν1ν

♭
1

ν♭1ν1
)TI, (4.4.2)

where ν1 = ξ1 − ω and ν2 = ω − ξ2 and ω, ξ1 and ξ2 are as defined above, satisfies (4.2.4) and

(4.2.5). Specifically, for any x̄ ∈ M, there exists a neighborhood of x̄, U , a constant c0 such that

for all x, y ∈ U

‖TSη − TRη‖ ≤ c0‖η‖

‖T −1Sη
− T −1Rη

‖ ≤ c0‖η‖

where η = R−1x (y).

71

Proof. By Lemma 4.3.7 there exists a constant b0 > 0 such that

| 1

β(η)
− 1| ≤ b0‖η‖. (4.4.3)

Since β(η) = ‖η‖
‖TRηη‖

=
‖T −1

Rη
TRηη‖

‖TRηη‖
and T −1Rη

is a smooth function, by using the same idea as Lemma

4.3.7, there exists a constant b1 > 0 such that

|β(η)− 1| ≤ b1‖η‖. (4.4.4)

Also, since

ξ2 = β(η)TRηT −1Iη
ξ1

ξ1 =
1

β(η)
TIηT −1Rη

ξ2,

we have

ξ2 − ξ1 = (β(η)TRηT −1Iη
− id)ξ1

ξ1 − ξ2 = (
1

β(η)
TIηT −1Rη

− id)ξ2.

Since TR, T −1R , TI and T −1I are all C1, by (4.4.3), (4.4.4), and the definitions of ν1 and ν2, we have

‖ν2 + ν1‖ ≤ b2‖η‖‖ν1‖ (4.4.5)

‖ν2 + ν1‖ ≤ b2‖η‖‖ν2‖ (4.4.6)

Consider the difference of TS and TI ,

‖TSη − TIη‖

= ‖(4ν2ν
♭
2ν1ν

♭
1

ν♭2ν2ν
♭
1ν1
− 2ν2ν

♭
2

ν♭2ν2
− 2ν1ν

♭
1

ν♭1ν1
)TIη‖

≤ b3(‖
2ν2ν

♭
2ν1ν

♭
1 − 2ν2ν

♭
2ν

♭
1ν1

ν♭2ν2ν
♭
1ν1

‖+ ‖2ν2ν
♭
2ν1ν

♭
1 − 2ν1ν

♭
1ν

♭
2ν2

ν♭2ν2ν
♭
1ν1

‖) (by Lemma 4.3.7)

= b3(‖
2‖ν2‖‖(ν2ν♭1 − ν1ν

♭
2)ν1‖

ν♭2ν2ν
♭
1ν1

‖+ ‖2‖ν1‖‖(ν2ν
♭
1 − ν1ν

♭
2)ν2‖

ν♭2ν2ν
♭
1ν1

‖) (since ‖ · ‖ is an induced norm)

≤ 2b3(
‖ν1‖‖(ν2ν♭1 + ν2ν

♭
2 − ν2ν

♭
2 − ν1ν

♭
2)‖‖ν2‖

ν♭2ν2ν
♭
1ν1

+
‖ν1‖‖(ν2ν♭1 + ν2ν

♭
2 − ν2ν

♭
2 − ν1ν

♭
2)‖‖ν2‖

ν♭2ν2ν
♭
1ν1

)

≤ 2b3(
‖ν1‖(‖ν2ν♭1 + ν2ν

♭
2‖+ ‖ν2ν♭2 + ν1ν

♭
2‖)‖ν2‖

‖ν1‖2‖ν2‖2
+
‖ν1‖(‖ν2ν♭1 + ν2ν

♭
2‖+ ‖ν2ν♭2 + ν1ν

♭
2‖)‖ν2‖

‖ν1‖2‖ν2‖2
)

= 2b3(
‖ν1‖(‖ν2‖‖ν1 + ν2‖+ ‖ν2‖‖ν2 + ν1‖)‖ν2‖

‖ν1‖2‖ν2‖2
+
‖ν1‖(‖ν2‖‖ν1 + ν2‖+ ‖ν2‖‖ν2 + ν1‖)‖ν2‖

‖ν1‖2‖ν2‖2
)

≤ b4‖η‖ (by (4.4.5) and (4.4.6))

72

where b3 and b4 are positive constants. Finally, we have

‖TSη − TRη‖ ≤ ‖TSη − TIη‖+ ‖TIη − TRη‖

≤ b4‖η‖ + b5‖η‖ (by Lemma 4.3.6)

proving the first inequality. The second inequality follows from a similar argument.

4.4.2 Method 2 of Constructing an Isometric Vector Transport

Method 1 modifies a given isometric vector transport. In this section, a method is presented

to construct directly an isometric vector transport that satisfies the condition (4.2.6). Method 2

requires a function that constructs an orthonormal basis of TxM. Let d denote the dimension of

manifoldM and let the function giving a basis of TxM be B : x → B(x). For our earlier results

that relax the smoothness requirement on vector transport, B need only be C1.

Consider x ∈ M, η, ξ ∈ TxM, y = Rx(η), B1 = B(x) and B2 = B(y). Then the isometric

vector transport we want can be written as

TSηξ = B2TB
♭
1ξ, (4.4.7)

where T is an orthogonal matrix constructed so that TS satisfies the desired condition.

Since B1 and B2 are bases, we know

η = B1c1, βTRηη = B2c2,

where c1, c2 ∈ R
d contain the coordinate of η and βTRηη relative to the basis formed by the columns

of B1, B2. By (4.2.6): βTRηη = TSηη, we have

B2c2 = B2TB
♭
1B1c1,

which is

c2 = Tc1. (4.4.8)

For any orthogonal matrix T satisfying (4.4.8), TS defined by (4.4.7) satisfies condition (4.2.6).

Using the same idea as Method 1, we obtain the desired isometric vector transport

TSηξ = B2(I −
2v2v

T
2

vT2 v2
)(I − 2v1v

T
1

vT1 v1
)B♭

1ξ, (4.4.9)

73

where v1 = B♭
1η − w, v2 = w − βB♭

2TRηη. w can be any vector such that ‖w‖ = ‖c1‖ = ‖c2‖ and
choosing w = −c1 or −c2 yields a direct rotation.

The problem therefore becomes how to build the function B. Absil et al. [AMS08, p. 37] give

an approach based on (U , ϕ), a chart of the manifold M that yields a smooth B. Ei, the i-th

coordinate vector field of (U , ϕ)on U defined by

(Eif)(x) := ∂i(f ◦ ϕ−1)(ϕ(x)) = D(f ◦ ϕ−1)(ϕ(x))[ei].

These coordinate vector fields are smooth and every vector field ξ admits the decomposition

ξ =
∑

i

(ξϕi)Ei

on U . The function

B̃ : x→ B̃(x) = {E2, E2, . . . , Ed}

is a smooth function that builds basis on U . Finally, any orthogonalization method, such as Gram-

Schmidt algorithm or a QR decomposition, can be used to get an orthonormal basis giving the

function

B : x→ B(x) = B̃(x)Q(x),

where Q(x) is a upper triangle matrix with positive diagonal terms.

4.4.3 Constructing a Retraction

In this section, it is assumed that an efficient isometric vector transport is given. This vector

transport may have been derived from a particular choice of associated retraction but that combi-

nation may not satisfy condition (4.2.6). However, a vector transport may be associated with more

than one retraction and we propose a method to construct a retraction so that the combination

satisfies condition (4.2.6).

Given TS consider the differential equation

d

dt
Rx(tη) = TStηη, (4.4.10)

Rx(0) = x.

The solution Rx(tη) is a retraction such that its differentiated retraction satisfies the locking con-

dition with TS. This is easily seen by letting η be an arbitrary vector in TxM. By definition we

74

have
d

dt
Rx(tη)|t=τ0 =

d

dτ
Rx(τ0η + τη))|τ=0.

The right side is by definition vector transport of η by differentiated retraction and we therefore

have
d

dτ
Rx(τ0η + τη))|τ=0 = TRτ0η

η.

The locking condition (4.2.6) of differentiated retraction and TS is

TRτ0η
η = TSτ0η

η

which is the same as (4.4.10) with β ≡ 1.

For an embedded manifold, d
dtRx(tη) ∈ R

n is the vector whose components are the derivatives

of the coefficient of Rx(tη) with respect to some chosen basis of Rn. In this case, the retraction

R can be obtained by solving the differential equation (4.4.10). Note that η and x are given and

fixed, TStηη is then a function of Rx(tη) and therefore it can be rewritten as F (Rx(tη)).

If F (Rx(tη)) is a linear function, then there exists a constant matrix M such that F (Rx(tη)) =

MRx(tη). Thus, (4.4.10) becomes

d

dt
Rx(tη) = MRx(tη), (4.4.11)

Rx(0) = x,

which has a closed solution Rx(tη) = exp(tM)x. An isometric vector transport that satisfies (4.4.11)

exists for many manifolds. For example, isometric vector transport by parallelization (9.2.19)

TSηξ = B2B
♭
1ξ, (4.4.12)

is such a choice for the compact Stiefel manifold, where η, ξ, B1 and B2 are the same as those

in (4.4.7). Note that the corresponding matrix M for this choice has substantial structure that

can results in the retraction and transport having computational complexity similar to those based

on orthogonal factorization. This choice is also easily adapted to the Grassmann manifold when

it is represented as a submanifold of the compact Stiefel. For quotient manifolds constructing a

retraction must carefully consider the representation and horizontal distribution used. Since our

experiments are on an embedded manifold we discuss quotient manifold no further here.

75

4.5 Limited-memory RBFGS

In the form of RBroyden family methods discussed above explicit representations are needed

for the operators Bk, B̃k, TSαkηk
, and T −1Sαkηk

. These may not be available. Furthermore, even if

explicit expressions are known, applying them may be unacceptably expensive computationally,

e.g., the matrix multiplication required in the update of Bk. Generalizations of the Euclidean

limited-memory BFGS method can solve this problem for RBFGS. The idea of limited-memory

RBFGS (LRBFGS) is to store some number of the most recent sk and yk and to transport those

vectors to the new tangent space rather than the entire matrix Hk.

For RBFGS, the inverse update formula is

Hk+1 = V♭kH̃kVk + ρksks
♭
k,

where

ρk =
1

g(yk, sk)
and Vk = id−ρkyks♭k.

If the m+ 1 most recent sk and yk are stored then we have

Hk+1 = Ṽ♭kṼ♭k−1 · · · Ṽ♭k−mH̃0
k+1Ṽk−m · · · Ṽk−1Ṽk

+ ρk−mṼ♭kṼ♭k−1 · · · Ṽ♭k−m+1s
(k+1)
k−m s

(k+1)
k−m

♭
Ṽk−m+1 · · · Ṽk−1Ṽk

+ · · ·

+ ρks
(k+1)
k s

(k+1)
k ,

where Ṽi = id−ρiy(k+1)
i s

(k+1)
i

♭
and H̃0

k+1 is the initial Hessian approximation for step k + 1. Note

that H̃0
k+1 is not necessarily H̃k−m. It can be any positive definite self-adjoint operator. Similar to

the Euclidean case, we use

H0
k+1 =

g(sk, yk)

g(yk, yk)
id . (4.5.1)

It is easily seen that ηk+2 = −Hk+1 grad f(xk+1) which yields the Step 3 to Step 12 of Algorithm

4 and the explicit form of TS is not required.

The following is a limited-memory algorithm based on this idea.

Note Step 17 of Algorithm 4. The vector s
(k+1)
k−m is obtained by transporting s

(k−m+1)
k−m m times.

If the vector transport is insensitive to finite precision then the approach is acceptable. Otherwise,

s
(k+1)
k−m may be not in Txk+1

M. Care must be taken to avoid this situation. One possibility is to

76

Algorithm 4 LRBFGS

Input: Riemannian manifoldM with Riemannian metric g; a retraction R; isometric vector trans-

port TS that satisfies (4.2.6); smooth function f onM; initial iterate x0 ∈M; an integer m > 0.

1: k = 0, ε > 0, 0 < c1 < c2 < 1, γ0 = 1, l = 0.

2: H0
k = γk id. Obtain ηk ∈ Txk

M by the following algorithm:

3: q ← grad f(xk)

4: for i = k − 1, k − 2, . . . , l do

5: ξ ← ρig(s
(k)
i , q);

6: q ← q − ξiy
(k)
i ;

7: end for

8: r ←H0
kq;

9: for i = l, l + 1, . . . , k − 1 do

10: ω ← ρig(y
(k)
i , r);

11: r ← r + s
(k)
i (ξi − ω);

12: end for

13: set ηk = −r;
14: find αk that satisfies Wolfe conditions

f(xk+1) ≤ f(xk) + c1αkg(grad f(xk), ηk)

d

dt
f(Rx(tηk))|t=αk

≥ c2
d

dt
f(Rx(tηk)|t=0

15: Set xk+1 = Rxk
(αkηk). If ‖ grad f(xk+1)‖ > ε, then break.

16: Define ρk = 1/g(sk, yk), s
(k+1)
k = TSαkηk

αkηk and y
(k+1)
k = grad f(xk+1)/βk−TSαkηk

grad f(xk),

ρk = 1/g(s
(k+1)
k , y

(k+1)
k) and γk+1 = g(s

(k+1)
k , y

(k+1)
k)/‖y(k+1)

k ‖2, where βk = ‖αkηk‖
‖TRαkηk

αkηk‖ .

17: Let l = max{k − m, 0}. Add s
(k+1)
k , y

(k+1)
k and ρk into storage and if k > m, then

discard vector pair {s(k)l−1, y
(k)
l−1} and scaler ρl−1 from storage; Transport s

(k)
l , s

(k)
l+1, . . . , s

(k)
k−1

and y
(k)
l , y

(k)
l+1, . . . , y

(k)
k−1 from Txk

M to Txk+1
M by TS, then get s

(k+1)
l , s

(k+1)
l+1 , . . . , s

(k+1)
k−1 and

y
(k+1)
l , y

(k+1)
l+1 , . . . , y

(k+1)
k−1 .

18: k = k + 1, goto 2.

77

project s
(k+1)
i , y

(k+1)
i , i = l, l + 1, . . . , k − 1 to tangent space Txk+1

M after every transport. The

other possibility is to store xl+1, xl+2, . . . , xk, s
(l+1)
l , s

(l+2)
l+1 , . . . , s

(k+1)
k and y

(l+1)
l , y

(l+2)
l+1 , . . . , y

(k+1)
k

and transport s
(i+1)
i , y

(i+1)
i from Txi+1M to Txk+1

M during Steps 3 to 12.

4.6 Ring and Wirth’s RBFGS Update Formula

In Ring and Wirth’s RBFGS [RW12] for infinite dimensional Riemannian manifolds, the direc-

tion vector ηk is chosen to define a function on Txk
M that satisfies the equation

Bk(ηk, ξ) = D fRxk
(0)[ξ] = g(grad f(xk), ξ)

for all ξ ∈ Txk
M.

Ring and Wirth’s update is

Bk+1(TSαkηk
ζ,TSαkηk

ξ) = Bk(ζ, ξ)−
Bk(sk, ζ)Bk(sk, ξ)
Bk(sk, sk)

+
yk(ζ)yk(ξ)

yk(sk)
,

where sk = R−1xk
(xk+1) ∈ Txk

M and yk = D fRxk
(sk) − D fRxk

(0) is a cotangent vector of at xk,

i.e., D fRxk
(sk)[ξ] = g(grad f(Rxk

(sk)),TRsk
ξ) for all ξ ∈ Txk

M. If the dimension of the manifold

is finite then using coordinates yields the following form of the update to the matrix that defines

the bilinear function

T̂ T
Sαkηk

B̂k+1T̂Sαkηk
= B̂k −

B̂kŝkŝTk B̂k
ŝTk B̂kŝk

+
ŷkŷ

T
k

ŷTk ŝk
, (4.6.1)

where ŷk satisfies yk(η) = ŷTk η̂ for all η ∈ Txk
M and Bk(ζ, ξ) = ζ̂T B̂k ξ̂ for all ζ, ξ ∈ Txk

M. In

contrast, the bilinear function defined by our methods is g(ζ,Bkξ) = ζ̂TGkB̂k ξ̂ where Gk is the

matrix expression of the metric in Txk
M. Note that B̂k in Ring and Wirth’s update plays the

same role as GkB̂k in our RBFGS. Ring and Wirth’s expressions absorb the matrix Gk, implicit

in the definition of their inner product, into the definitions of B̂k and yk. Therefore, their RBFGS

update and our RBFGS update forms are the same. The difference between the algorithms is the

definitions of sk and yk.

Ring and Wirth do not derive an inverse Hessian approximation for their RBFGS. However, the

following coordinate expression of the inverse Hessian approximation update can be derived from

(4.6.1)

T̂ −1Sαkηk
Ĥk+1(T̂ T

Sαkηk
)−1 = (I − ŝkŷ

T
k

ŷTk ŝk
)Ĥk(I −

ŷkŝ
T
k

ŷTk ŝk
) +

ŝkŝ
T
k

ŷTk ŝk
. (4.6.2)

Finite dimensional versions of Ring and Wirth’s RBFGS based on these two updates are easily

implemented. Our experiments include the more efficient inverse Hessian approximation form.

78

4.7 Property of RBroyden Family Method

The Euclidean Broyden family algorithms with different φk are equivalent if the line search

algorithm is exact [NW06]. However, Riemannian Broyden family does not have this property in

general. The next theorem shows that the property holds if and only if βk ≡ 1.

Theorem 4.7.1. If the line search is exact and a same local minimizer is chosen when search

directions are the same, same B0 and x0 is used, x0 or x1 is not a local minimizer, TSαkηk
grad f(xk)

is not equal to grad f(xk+1), then all methods in RBroyden family method with φk ≥ φc
k generate

the same sequence of iterates if and only if βk ≡ 1.

Proof. Without losing generality, we analyze the update formula Hk = B−1k rather than Bk. The

update formula is

Hk+1 = H̃k −
H̃kyk(H̃∗kyk)♭
(H̃∗kyk)♭yk

+
sks

♭
k

s♭kyk
+ φ̃kg(yk, H̃kyk)uku

♭
k, (4.7.1)

where H̃k = TSαkηk
◦ Hk ◦ T −1Sαkηk

,

uk =
sk

g(sk, yk)
− H̃kyk

g(yk, H̃kyk)
, (4.7.2)

φ̃k is an arbitrary number greater than φ̃c
k where φ̃c

k = 1/(1 − νk), and

νk = (g(yk, H̃kyk)g(sk, H̃−1k sk))/g(yk, sk)
2.

If the line search is exact, we have that

d

dt
f(Rx(tηk))|t=αk

= 0,

which is

g(grad f(xk+1), sk) = 0. (4.7.3)

Use gk+1 to denote g(grad f(xk+1), H̃k grad f(xk+1)) and hk to denote g(grad f(xk),Hk grad f(xk)).

Noticing that

yk = grad f(xk+1)/βk − TSαkηk
grad f(xk) (4.7.4)

sk = −αkH̃kTSαkηk
grad f(xk), (4.7.5)

79

we have

g(grad f(xk+1), H̃kTSαkηk
grad f(xk)) = 0 (4.7.6)

g(sk, yk) = αkhk (4.7.7)

g(H̃kyk, yk) = gk+1/β
2 + hk. (4.7.8)

Using (4.7.1), we have

−ηk+1 = Hk+1 grad f(xk+1)

= H̃k grad f(xk+1)−
H̃kykg(H̃kyk, grad f(xk+1))

g(H̃kyk, yk)
+

skg(sk, grad f(xk+1))

g(sk, yk)

+ φ̃kg(yk, H̃kyk)ukg(uk, grad f(xk+1))

Using (4.7.3), (4.7.2), (4.7.5), (4.7.7) and (4.7.4), we obtain

−ηk+1 = H̃k grad f(xk+1)−
H̃kykgk+1

g(H̃kyk, yk)

+ φ̃kg(yk, H̃kyk)g(uk, grad f(xk+1))[
−αkH̃kTSαkηk

grad f(xk)

αkhk

−
H̃k(grad f(xk+1)/βk − TSαkηk

grad f(xk))

g(yk, H̃kyk)
]

Using (4.7.8) and (4.7.4), we obtain

−ηk+1 =
gk+1/β

2
k − gk+1/βk + hk

g(H̃kyk, yk)
H̃k grad f(xk+1) +

gk+1

g(H̃kyk, yk)
H̃kTSαkηk

grad f(xk)

− φ̃kg(yk, H̃kyk)g(uk, grad f(xk+1))[
H̃kTSαkηk

grad f(xk)

hk

+
H̃k(grad f(xk+1)/βk − TSαkηk

grad f(xk))

g(yk, H̃kyk)
]

Finally, we use (4.7.8) and obtain,

−ηk+1 =
1

g(H̃kyk, yk)
(gk+1H̃kTSαkηk

grad f(xk) + (gk+1/β
2
k − gk+1/βk + hk)H̃k grad f(xk+1))

(4.7.9)

− φ̃k
g(uk, grad f(xk+1))

β2
khk

(gk+1H̃kTSαkηk
grad f(xk) + βkhkH̃k grad f(xk+1)). (4.7.10)

We can see that once βk 6= 1, the vectors in parenthesis of (4.7.9) and (4.7.10) are different since

(gk+1/β
2
k−gk+1/βk+hk) = βkhk requires gk+1/β

2
k+hk = 0. However, gk+1/β

2
k+hk = g(H̃kyk, yk) 6=

80

0 if the iterates do not terminate. Once φ̃k changes, the direction ηk+1 changes. Therefore, iterates

change for different φ̃k.

Once βk ≡ 1, the vectors in parenthesis of (4.7.9) and (4.7.10) are the same. The different φ̃k

only make the length of ηk+1 different and the direction are the same. Since the same minimizer

is used by assumption, the identical iterates are obtained for all RBroyden family methods with

φ̃k ≥ φ̃c
k.

81

CHAPTER 5

RIEMANNIAN DENNIS-MORÉ CONDITIONS

5.1 Introduction

Superlinear convergence analyses of Euclidean quasi-Newton methods for the problems of finding

zeros of a vector field and optimizing a cost function are based on versions of the well-known Dennis-

Moré condition [DM74, DM77, DS83]. The relevant two Euclidean forms of Dennis-Moré condition

are given in Theorems 5.1.1 and 5.1.2.

Theorem 5.1.1 (Euclidean Dennis-Moré Condition 1 (EDM1) [DM74, Theorem 2.2]). Let F :

R
n → R

n be continuously differentiable in the open, convex set D in R
n, and assume that for some

x̄ in D, F ′(x̄) is nonsingular. Let {Bk} be a sequence of nonsingular matrices and suppose that for

some x0 in D the sequence {xk} where

xk+1 = xk −B−1k F (xk)

remains in D and converges to x̄. Then {xk} converges q-superlinearly to x̄ and F (x̄) = 0 if and

only if

lim
k→∞

‖(Bk − F ′(x̄))sk‖
‖sk‖

= 0.

where sk = xk+1 − xk.

Theorem 5.1.2 (Euclidean Dennis Moré Condition 2 (EDM2) [DM77, Theorem 6.4]). Let f :

R
n → R be twice continuously differentiable in an open set D and consider the iteration xk+1 =

xk + αkpk, where pk is a descent direction and αk satisfies the Wolfe conditions. If the sequence

{xk} converges to a point x̄ such that Hess f(x̄) is positive definite, and if the search direction

satisfies

lim
k→∞

‖ grad f(xk) + Hess f(xk)pk‖
‖pk‖

= 0,

then there is an index k0 ≥ 0 such that αk = 1 is admissible for k ≥ k0. Moreover, grad f(x̄) = 0

and if αk = 1 for all k ≥ k0, then {xk} converges superlinearly to x̄.

82

EDM1 is a necessary and sufficient condition for superlinear convergence of a sequence of a

particular form to a zero of a vector field 1. EDM2 is the corresponding form for optimizing a

real-valued function on a Euclidean space 2.

Both of these Euclidean conditions have been generalized. Gallivan et. al. [GQA12] generalize

EDM1 to a Riemannian manifold. In fact, their requirement of F ∈ C2 can be relaxed to F ∈ C1.

Ring and Wirth [RW12] prove a Riemannian version of EDM2 by considering the lifted function

f̂x(η) = f(Rx(η)) where R is a retraction and η ∈ TxM.

In this chapter, a Riemannian version of EDM1 that subsumes the version in [GQA12] is derived.

The generalization of Euclidean Hessian to a Riemannian manifold is not unique and the choice

made determines the Riemannian version of EDM2. One possibility is to use the Euclidean Hessian

of the lifted function, Hess f̂x(η), as Ring and Wirth used. The more rigorous and more natural

possibility used here is the uniquely defined Riemannian Hessian, Hess f(x) discussed in Chapter 1

for which, in general, Hess f̂xk
(0) 6= Hess f(x). In Chapter 6, our Riemannian version of EDM2

is used to prove the superlinear convergence of the RBroyden family method for optimization of

Chapter 4.

Chapter 5 is organized as follows. Section 5.2.1 derives a Riemannian Dennis-Moré condition

for finding the zeros of a vector field, Theorem 5.2.2, and associated Riemannian and Euclidean

results. Section 5.2.2 derives a Riemannian Dennis-Moré condition for optimization, Theorem 5.2.4.

5.2 Riemannian Dennis-Moré Conditions

5.2.1 Riemannian Dennis-Moré Conditions for a Vector Field

For completeness, we state the Riemannian Dennis Moré condition given by Gallivan et al.

[GQA12]. Note that the generalizations of Bk and F ′(x̄) on a Riemannian manifold are linear

operators on tangent spaces and vector transport is required to move tangent vectors into the same

tangent space when comparing or performing linear combination.

1The proof of EDM1 in [DM74] was incorrect. The authors fixed the problem in [DM77] by requiring the vector
field satisfy F ∈ C1. The proof in [DS83, Theorem 8.2.4] requires F to be Lipschitz continuously differentiable, i.e.,
F ∈ C1 and the derivative is Lipschitz continuous. This is not necessary since [DS83, Eq. 8.2.18] in the proof can be
replaced by o(‖ek‖+ ‖ek+1‖), which does not require Lipschitz continuously differentiable, and the proof still holds.

2The statement of [DM77, Theorem 6.4] is not complete since it does not mention choosing αk = 1 when k ≥ k0.
The statement of [NW99, Theorem 3.5] requires f ∈ C3 which is too strong. In addition, grad f(x∗) = 0 is given as
an assumption, but it should be a consequence. The first problem is fixed in [NW06, Theorem 3.6] but the second
remains. [DS83, Theorem 6.3.4] requires Hess f to be Lipschitz continuous. Requiring f ∈ C2 is enough, which is the
original condition given in [DM77, Theorem 6.4].

83

Theorem 5.2.1 (Riemannian Dennis Moré Condition 1 (RDM1) [GQA12, Theorem 14.1]). Let

M be a Riemannian manifold endowed with a C2 vector transport T and an associated retraction

R. Let F be a C2 tangent vector field onM. Also letM be endowed with an affine connection ∇.
Let DF (x) denote the linear transformation of TxM defined by DF (x)[ξx] = ∇ξxF for all tangent

vector ξx to M at x. Let {Bk} be a sequence of nonsingular linear transformations of Txk
M,

where k = 0, 1, . . . , xk+1 = Rxk
(ηk), and ηk = −B−1k F (xk). Assume that DF (x̄) is nonsingular,

xk 6= x̄,∀k, and limk→∞ xk = x̄. Then {xk} converges superlinearly to x̄ and F (x̄) = 0 if and only

if

lim
k→∞

‖[Bk − TξkDF (x̄)T −1ξk
]ηk‖

‖ηk‖
= 0, (5.2.1)

where ξk ∈ Tx̄M is defined by ξk = R−1x̄ (xk), i.e. Rx̄(ξk) = xk.

Our main Riemannian result for vector fields is given in Theorem 5.2.2.

Theorem 5.2.2 (Riemannian Dennis-Moré Condition 2 (RDM2)). LetM be a Riemannian man-

ifold endowed with a vector transport T and an associated retraction R. Let F be a C1 tangent

vector field on M. Also let M be endowed with an affine connection ∇. Let DF (x) denote the

linear transformation of TxM defined by DF (x)[ξx] = ∇ξxF for all tangent vector ξx to M at x.

Let {ηk ∈ Txk
M} be a sequence of nonzero tangent vectors and xk+1 = Rxk

(ηk). Assume that

DF (x̄) is nonsingular, xk 6= x̄,∀k, and limk→∞ xk = x̄. Then {xk} converges superlinearly to x̄

and F (x̄) = 0 if and only if

lim
k→∞

‖F (xk) + TξkDF (x̄)T −1ξk
ηk‖

‖ηk‖
= 0, (5.2.2)

where ξk ∈ Tx̄M is defined by ξk = R−1x̄ (xk), i.e. Rx̄(ξk) = xk.

Proof. The proof essentially follows the proof in [GQA12, Theorem 14.1]. We simplify the proce-

dures of getting (5.2.8) and (5.2.10).

Assume first that (5.2.2) holds. We first show that limk→∞
‖T −1

ηk
F (xk+1)‖
‖ηk‖ = 0, and then we show

that this implies superlinear convergence of the sequence {xk}. Adding and subtracting terms to

T −1Rηk
F (xk+1) yields

T −1ηk
F (xk+1) =(F (xk) + TξkDF (x̄)T −1ξk

ηk)− (−T −1ηk
F (xk+1) + F (xk) + D̃F (xk)ηk)

− (TξkD̃F (x̄)T −1ξk
− D̃F (xk))ηk − Tξk(DF (x̄)− D̃F (x̄))T −1ξk

ηk, (5.2.3)

84

where D̃F (x) denotes the derivative at 0x of the function TxM→ TxM : ζ → T −1ζ F (Rx(ζ)). By

Taylor’s Theorem, we have

lim
k→∞

‖(−T −1ηk
F (xk+1) + F (xk) + D̃F (xk)ηk)‖

‖ηk‖
= 0. (5.2.4)

Because F is C1, we have

lim
k→∞

‖(Tξk D̃F (x̄)T −1ξk
− D̃F (xk))ηk‖

‖ηk‖
= 0. (5.2.5)

Since limk→∞ xk = x̄, we have limk→∞ ‖ηk‖ = 0 by Lemma 3.3.3 and thus

lim
k→∞

‖TξkDF (x̄)T −1ξk
ηk‖ = 0.

From (5.2.2), we know limk→∞ ‖F (xk)‖ = 0. So F (x̄) = 0. Since F (x̄) = 0, we have that

D̃F (x̄) = DF (x̄), (by [AMS08, Page 96]), hence

lim
k→∞

‖Tξk(DF (x̄)− D̃F (x̄))T −1ξk
ηk‖

‖ηk‖
= 0. (5.2.6)

Applying (5.2.4), (5.2.5), (5.2.6) and (5.2.2) to (5.2.3) yields

lim
k→∞

‖T −1ηk
F (xk+1)‖
‖ηk‖

= 0 (5.2.7)

and it follows that

‖T −1ηk
F (xk+1)‖ = ‖T −1ηk

F (xk+1)‖ − ‖F (xk+1)‖+ ‖F (xk+1)‖

≥ ‖F (xk+1)‖ −
∣

∣‖T −1ηk
F (xk+1)‖ − ‖F (xk+1)‖

∣

∣

≥ ‖F (xk+1)‖(1 − b0 dist(xk, xk+1)) (by [GQA12, Lemma 14.3])

≥ b1‖ξk+1‖(1− b0 dist(xk, xk+1)), (by Lemmas 3.3.7 and 3.3.3) (5.2.8)

where b0, b1 are some positive constants. We also have, by Lemma 3.3.3

b2‖ηk‖ ≤ dist(xk, xk+1) ≤ dist(xk, x̄) + dist(xk+1, x̄) ≤ b3(‖ξk‖+ ‖ξk+1‖)

‖ηk‖ ≤
b3
b2
(‖ξk‖+ ‖ξk+1‖),

where b2 and b3 are positive constants. Therefore, we obtain

0 = lim
k→∞

‖T −1ηk
F (xk+1)‖
‖ηk‖

≥ lim
k→∞

b1‖ξk+1‖
‖ηk‖

(1− b0 dist(xk, xk+1))

≥ lim
k→∞

b1‖ξk+1‖
2‖ηk‖

≥ lim
k→∞

b1‖ξk+1‖
2b3/b2(‖ξk‖+ ‖ξk+1‖)

= lim
k→∞

b1‖ξk+1‖/‖ξk‖
2b3/b2(1 + ‖ξk+1‖/‖ξk‖)

. (5.2.9)

85

Thus, we have

lim
k→∞

‖ξk+1‖
‖ξk‖

= 0,

which implies the superlinear convergence.

Conversely, assume that {xk} converges superlinearly to x̄ and F (x̄) = 0. By using (5.2.3),

(5.2.4), (5.2.5) and (5.2.6), we need only to show that

lim
k→∞

‖T −1ηk
F (xk+1)‖
‖ηk‖

= 0.

Noting that

‖ηk‖ ≥
1

b2
dist(xk, xk+1) ≥

1

b2
(dist(xk, x̄)− dist(xk+1, x̄)) ≥

b3
b2
(‖ξk‖ − ‖ξk+1‖)

‖ηk‖ ≥
1

b2
dist(xk, xk+1) ≥

1

b2
(dist(xk+1, x̄)− dist(xk, x̄)) ≥

b3
b2
(‖ξk+1‖ − ‖ξk‖),

we have

‖ηk‖ ≥
b3
b2
|‖ξk+1‖ − ‖ξk‖| .

It follows

‖T −1ηk
F (xk+1)‖ = ‖T −1ηk

F (xk+1)‖ − ‖F (xk+1)‖+ ‖F (xk+1)‖

≤ ‖F (xk+1)‖+
∣

∣‖T −1ηk
F (xk+1)‖ − ‖F (xk+1)‖

∣

∣

≤ ‖F (xk+1)‖(1 + b4 dist(xk, xk+1)) (by [GQA12, Lemma 14.3])

≤ b5‖ξk+1‖(1 + b4 dist(xk, xk+1)), (by Lemmas 3.3.7 and Lemma 3.3.3) (5.2.10)

where b4 and b5 are some constants. We obtain

lim
k→∞

‖T −1ηk
F (xk+1)‖
‖ηk‖

≤ lim
k→∞

b5‖ξk+1‖(1 + b4 dist(xk, xk+1))
b3
b2
|‖ξk‖ − ‖ξk+1‖|

≤ lim
k→∞

2b5‖ξk+1‖
b3
b2
(‖ξk‖ − ‖ξk+1‖)

≤ lim
k→∞

2b5b2
b3

‖ξk+1‖/‖ξk‖
1− ‖ξk+1‖/‖ξk‖

= 0

completing the proof.

When F (xk) = −Bkηk, e.g., for a quasi-Newton method, RDM2 implies RDM1 but is, in fact,

more general since only F ∈ C1 is assumed. If RDM2 is placed in a Euclidean setting the Dennis-

Moré condition given in Theorem 5.2.3 results.

86

Theorem 5.2.3 (Euclidean Dennis Moré Condition 3 (EDM3)). Let F : Rn → R
n be continuously

differentiable in the open, convex set D in R
n, and assume that for some x̄ in D, and F ′(x̄) is

nonsingular. Suppose that for some x0 in D the sequence {xk} where

xk+1 = xk + sk

remains in D and converges to x̄. Then {xk} converges q-superlinearly to x̄ and F (x̄) = 0 if and

only if

lim
k→∞

‖F (xk) + F ′(x̄)sk‖
‖sk‖

= 0.

If sk in Theorem 5.2.3 is chosen to be −B−1k F (xk), Theorem 5.2.3 reduces to Theorem 5.1.1.

Also note that since F ∈ C1, F ′(x̄) can be replaced by F ′(xk) by the triangle inequality of the

norm to give an inexact Newton result for zeros of a Euclidean vector field. Finally, since F is a

C1 vector field and T is smooth, a similar Riemannian generalization for inexact Newton for zeros

of a vector field given in the following corollary of Theorem 5.2.3 follows.

Corollary 5.2.1 (Riemannian Dennis-Moré Condition 3 (RDM3)). LetM be a Riemannian man-

ifold endowed with a retraction R. Let F be a C1 tangent vector field on M. Also let M be

endowed with an affine connection ∇. Let DF (x) denote the linear transformation of TxM defined

by DF (x)[ξx] = ∇ξxF for all tangent vector ξx to M at x. Let {ηk ∈ Txk
M} be a sequence of

nonzero tangent vectors and xk+1 = Rxk
(ηk). Assume that DF (x̄) is nonsingular, xk 6= x̄,∀k, and

limk→∞ xk = x̄. Then {xk} converges superlinearly to x̄ and F (x̄) = 0 if and only if

lim
k→∞

‖F (xk) + DF (xk)ηk‖
‖ηk‖

= 0,

where ξk ∈ Tx̄M is defined by ξk = R−1x̄ (xk), i.e. Rx̄(ξk) = xk.

5.2.2 Riemannian Dennis-Moré Condition for a Real-valued Function

Our work needs a generalization of Lipschitz continuously differentiable on a manifold. Absil

et. al. provides two generalizations, i.e., [AMS08, Definitions 7.4.1 and 7.4.3]. [AMS08, Definition

7.4.1] defines radially Lipschitz continuously differentiable for a function on the tangent bundle of

a manifold. [AMS08, Definition 7.4.3] defines Lipschitz continuously differentiable for a function

on a manifold. The latter relies on the exponential mapping and parallel translation. We propose

Definition 5.2.1 which is more general than [AMS08, Definition 7.4.3] in the sense that an arbitrary

pair of a retraction and a vector transport is used.

87

Definition 5.2.1 (Lipschitz continuously differentiable with respect to a vector transport). Let

M be a Riemannian manifold endowed with a vector transport T and an associated retraction R.

A function f :M→ R is Lipschitz continuously differentiable with respect to T in U ⊂ M if it is

differentiable and if there exists a number κ > 0 such that, for all x, y ∈ U , it holds that

‖ grad f(y)− Tξ grad f(x)‖ ≤ κ‖ξ‖,

where ξ = R−1x y.

Lemma 5.2.1 shows that a twice continuously differentiable function is Lipschitz continuously

differentiable with respect to a given vector transport locally. This property is similar to the

Euclidean definition.

Lemma 5.2.1. If a function f : M → R is twice continuously differentiable, then for x̄ ∈ M,

and for any given vector transport T , there exists a neighborhood of x̄, U , such that f is Lipschitz

continuously differentiable with respect to T in U .

Proof. Choose U to be small enough such that U is a subset of a totally retractive neighborhood

of x̄. Therefore, for any x, y ∈ U , R−1x y is well-defined.

Define zP = grad f(y)−P 1←0
γ grad f(x), where P is parallel translation and γ(t) = Rx(tξ), i.e.,

the retraction line from x to y. From Lemma 3.3.8, we have

‖P 0←1
γ zP − H̄ξ‖ ≤ b0‖ξ‖2,

which yields

‖zP‖ ≤ ‖H̄ξ‖+ b0‖ξ‖2,

where H̄ =
∫ 1
0 P 0←t

γ Hess f(γ(t))P t←0
γ dt and b0 is a positive constant. It follows that

‖ grad f(y)− Tξ grad f(x)‖ = ‖zP + P 1←0
γ grad f(x)− Tξ grad f(x)‖

≤ ‖zP‖+ ‖P 1←0
γ grad f(x)− Tξ grad f(x)‖

≤ ‖H̄ξ‖+ b0‖ξ‖2 + b1‖ξ‖‖ grad f(x)‖ (by Lemma 4.3.6)

≤ b2‖ξ‖+ b0‖ξ‖2 + b1b3‖ξ‖ (since H̄ and ‖ grad f(x)‖ is bounded)

which completes the proof.

88

Lemma 5.2.2 is needed for the proof of Theorem 5.2.4.

Lemma 5.2.2. Let M be a Riemannian manifold endowed with an isometric vector transport TS
and an associated retraction R. Assume that TS ∈ C0 satisfies (4.2.4) and (4.2.5) and, along

with TR, the differentiated retraction of R, satisfies the locking condition (4.2.6). If a function

f : M → R is generalized Lipschitz continuously differentiable in U , then there exists a number

κ1 > 0 such that, for all x, y ∈ U , it holds that

‖β−1 grad f(y)− TSξ
grad f(x)‖ ≤ κ1‖ξ‖,

where ξ = R−1x y and β = ‖ξ‖
‖TRξ

ξ‖ .

Proof. We have

‖β−1 grad f(y)− TSξ
grad f(x)‖ ≤ ‖β−1 grad f(y)− grad f(y)‖+ ‖ grad f(y)− TRξ

grad f(x)‖

+ ‖TRξ
grad f(x)− TSξ

grad f(x)‖

≤ b0‖ξ‖‖ grad f(y)‖ (by Lemma 4.3.7)

+ b1‖ξ‖ (since TR is a regular vector transport)

+ b2‖ξ‖‖ grad f(x)‖ (by (4.2.4))

≤ b3‖ξ‖ (since grad f(x) is bounded)

where b0, b1, b2 and b3 are positive constants.

The main result can now be stated and proven.

Theorem 5.2.4 (Riemannian Dennis Moré Condition 4 (RDM4)). LetM be a Riemannian mani-

fold endowed with a retraction R. Let f :M→ R be twice continuously differentiable and consider

the iteration xk+1 = Rxk
(αkηk), ηk ∈ Txk

M, where ηk is a descent direction and αk satisfies the

Wolfe conditions (4.2.1) and (4.2.2). Assume the sequence {xk} converges to a point x̄ such that

Hess f(x̄) is positive definite. If the search direction satisfies

lim
k→∞

‖ grad f(xk) + Hess f(xk)ηk‖
‖ηk‖

= 0, (5.2.11)

then there is an index k0 ≥ 0 such that αk = 1 is admissible for k ≥ k0. Moreover, grad f(x̄) = 0

and if αk = 1 for all k ≥ k0, then {xk} converges superlinearly to x̄.

89

Proof. The proof is generalized from [DS83, Theorem 6.3.3 and Theorem 6.3.4]. Lemmas 5.2.1 and

5.2.2 show that if f is C2, then it is Lipschitz continuously differentiable with respect to a given

vector transport. This property reduces to well-known fact in the Euclidean setting.

First, we show limk→∞(g(grad f(xk), ηk))/(‖ηk‖) = 0. Applying the first Wolfe condition

(4.2.1), we have

−∞ < f(xj)− f(x0) =

j−1
∑

k=0

(f(xk+1)− f(xk)) ≤ c1

j−1
∑

k=0

g(grad f(xk), αkηk) < 0,

which yields

−
∞
∑

k=0

g(grad f(xk), αkηk) <∞. (5.2.12)

By results in Chapter 4, there exists an isometric vector transport TS ∈ C0 associated with R that

satisfies (4.2.4) and (4.2.5) and along with TR, the differentiated retraction, satisfies the locking

condition (4.2.6). Define sk = TSαkηk
αkηk and yk = β−1k grad f(xk+1) − TSαkηk

grad f(xk), where

βk = ‖αkηk‖
‖TRαkηk

αkηk‖ . From the second Wolfe condition (4.2.2) and (4.2.8), we have

(c2 − 1)αkg(grad f(xk), ηk) ≤ g(sk, yk)

and combining with the Cauchy Schwarz inequality, it follows that

(c2 − 1)αkg(grad f(xk), ηk) ≤ ‖sk‖‖yk‖. (5.2.13)

By Lemmas 5.2.1 and 5.2.2, we have ‖yk‖ ≤ b0‖sk‖, where b0 is a positive constant. Plugging it

into (5.2.13), we have

(c2 − 1)αkg(grad f(xk), ηk) ≤ b0‖sk‖2.

From (5.2.12) and above inequality, we have

0 = lim
k→∞

g(grad f(xk), αkηk) ≤ lim
k→∞

c2 − 1

b0
(
g(grad f(xk), αkηk)

‖sk‖
)2 ≤ 0.

Since ‖sk‖ = ‖αkηk‖, we have

lim
k→∞

g(grad f(xk), ηk)

‖ηk‖
= 0,

which is desired result.

The next step is to show ‖ηk‖ → 0. We have

−g(grad f(xk), ηk)

‖ηk‖
=

g(ηk,Hess f(xk)ηk)

‖ηk‖
− g(ηk, grad f(xk) + Hess f(xk)ηk)

‖ηk‖
.

90

Let µ−1 = ‖Hess f(x̄)−1‖. When xk close to x̄ enough, we have µ−1/2 ≤ ‖Hess f(xk)−1‖ ≤ 2µ−1.

Using (5.2.11) and k large enough,

− g(grad f(xk), ηk)

‖ηk‖
≥ (

1

2
µ− ‖ grad f(xk) + Hess f(xk)ηk‖

‖ηk‖
)‖ηk‖ ≥

1

4
µ‖ηk‖, (5.2.14)

which implies ‖ηk‖ → 0.

Now, we can show the main results of the theorem. Consider the lifting function. f̂k denotes

f ◦Rxk
and f̂∗ denotes f ◦Rx̄. By Taylor’s Theorem, we have

f̂k(ηk)− f̂k(0) = g(grad f(xk), ηk) +
1

2
g(ηk,Hess f̂k(pk)[ηk])

where pk = tηk, for some t ∈ [0, 1]. Let ξk denote R−1xk
x̄. It follows that

f̂k(ηk)− f̂k(0)−
1

2
g(grad f(xk), ηk)

=
1

2
g(grad f(xk), ηk) +

1

2
g(ηk,Hess f̂k(pk)[ηk])

=
1

2
g(grad f(xk) + Hess f(xk)ηk, ηk)

+
1

2
g((TSξk

Hess f(x̄)T −1Sξk
−Hess f(xk))[ηk], ηk)

+
1

2
g((Hess f̂k(pk)− TSξk

Hess f̂∗(0)T −1Sξk
)[ηk], ηk) (by [AMS08, Proposition 5.5.6])

≤ 1

2
(
‖ grad f(xk) + Hess f(xk)ηk‖

‖ηk‖
+ o1(‖ξk‖) + o1(‖ηk‖) + o1(‖ξk‖))‖ηk‖2, (5.2.15)

where o1(t) denotes o(1) with respect to t, i.e., limt→0 o1(t) = 0. Since Hess f(x) and Hess f̂x(ηx)

are continuous, (5.2.15) holds. Choosing k0 large enough so that for all k ≥ k0, (5.2.14) and

‖ grad f(xk) + Hess f(xk)ηk‖
‖ηk‖

+ o1(‖ξk‖) + o1(‖ηk‖) + o1(‖ξk‖) ≤
1

4
µmin(c2, 1− 2c1) (5.2.16)

hold and using (5.2.15), we have

f(Rxk
(ηk))− f(xk) = f̂k(ηk)− f̂k(0)

≤ 1

2
g(grad f(xk), ηk) +

1

8
µ(1− 2c1)‖ηk‖2 (by (5.2.16))

≤ 1

2
(1− (1− 2c1))g(grad f(xk), ηk) (by (5.2.14))

= c1g(grad f(xk), ηk),

91

which means αk = 1 satisfies (4.2.1). Similarly, we have

d

dt
f(Rxk

(tηk))|t=1

=
d

dt
f̂k(tηk)|t=1

=
d

dt
f̂k(tηk)|t=0 + g(ηk,Hess f̂k(aηk))[ηk]) where a ∈ [0, 1]

= g(grad f(xk), ηk) + g(ηk,Hess f̂k(aηk)[ηk])

≤ (
‖ grad f(xk) + Hess f(xk)ηk‖

‖ηk‖
+ o1(‖ξk‖) + o1(‖ηk‖) + o1(‖ξk‖))‖ηk‖2 (similar to (5.2.15))

≤ µc2
4
‖ηk‖2 (by (5.2.16))

≤ −c2g(grad f(xk), ηk) (by (5.2.14))

= −c2
d

dt
f(Rxk

(tηk))|t=0.

Therefore, αk = 1 satisfies the Wolfe conditions eventually. Superlinear convergence can be obtained

by applying Corollary 5.2.1 with F taken to be grad f .

92

CHAPTER 6

CONVERGENCE RATE ANALYSIS OF THE

RIEMANNIAN BROYDEN FAMILY METHOD

6.1 Introduction

In the Euclidean setting, the history of the investigation of quasi-Newton method is rich and

there are many important papers such as Dennis and Moré [DM74] [DM77], Stoer [Sto75], Powell

[Pow76] [Pow86], Schnabel [Sch78], Ritter [Rit79] [Rit81], Stachursky [Sta81], Griewank and Toint

[GT82], Byrd, Nocedal and Yuan [BNY87] and Byrd, Liu and Nocedal [BLN92]. However, in the

Riemannian setting, the literature on convergence analysis of quasi-Newton methods is still limited.

Riemannian quasi-Newton methods have been used for various applications (see Chapter 4) without

systematic convergence analysis. There are two recent attempts to provide a complete analysis of

the convergence of Riemannian quasi-Newton methods. Qi [Qi11] analyzes the convergence of

RBFGS with exponential mapping and parallel translation and Ring and Wirth [RW12] provide

convergence analysis for their particular version of RBFGS.

Since the global convergence is shown in Chapter 4, the analyses in this chapter assume the

iteration is converging to an isolated minimizer x∗. Additional assumptions need only hold in a

neighborhood of x∗, denoted by S. The following notation is added to that of Chapter 4:

ǫk = max(dist(xk+1, x
∗),dist(xk, x

∗)), H∗ = Hess f(x∗), ζk = R−1x∗ xk,

Hk = TSζk
H∗T −1Sζk

, s̄k = H
1/2
k+1sk, ȳk = H

−1/2
k+1 yk,

B̄k = H
−1/2
k BkH−1/2k , Ck = H

−1/2
k+1 B̃kH

−1/2
k+1 , cos θ̄k =

g(s̄k, Cks̄k)
‖s̄k‖‖Ck s̄k‖

,

where H
1/2
k denotes a linear operator on Txk

M that satisfies H
1/2
k H

1/2
k = Hk and is self-adjoint.

The existent of H
1/2
k follows by Lemma 6.2.3.

This chapter contains two main results on the rate of convergence of Algorithm 3. In Section

6.2.1, it is shown to be R-linear convergent. Using this result and a slightly strengthened assumption

on the continuity of the Hessian, superlinear convergence is shown in Section 6.2.2.

93

6.2 The RBroyden Family Convergence Rate Analysis

6.2.1 R-Linear Convergence Analysis

Since we consider a general retraction, a generalization of the Euclidean triangle inequality in

S must be assumed. As shown in Lemma 6.2.1, choosing the exponential mapping for R implies

Assumption 6.2.1.

Assumption 6.2.1. There is a constant c3 such that for all x, y ∈ S,

max
t∈[0,1]

dist(Rx(tη), x
∗) ≤ c3 max(dist(x, x∗),dist(y, x∗)),

where η = R−1x y.

Lemma 6.2.1. Let U be an open set of a Riemannian manifold M such that for any p, q ∈ U ,
there exists a unique minimum geodesic γ from p to q and γ ⊂ U . If x, y and z are U , then the

inequality

max
t∈[0,1]

dist(Expx(tη), z) ≤ 2max(dist(x, z),dist(y, z))

holds, where η = Exp−1x y.

Proof. Let p(t) denote Expx(tη). Since the distance function satisfies the triangle inequality, we

have

dist(p(t), z) ≤ dist(p(t), x) + dist(x, z)

dist(p(t), z) ≤ dist(p(t), y) + dist(y, z).

By adding above inequalities, we have

dist(p(t), z) ≤ 1

2
(dist(p(t), x) + dist(x, z) + dist(p(t), y) + dist(y, z))

=
1

2
(dist(x, y) + dist(x, z) + dist(y, z)) (since p(t) is on the shortest geodesic.)

≤ 1

2
(dist(x, z) + dist(z, y) + dist(x, z) + dist(y, z))

= dist(x, z) + dist(y, z)

≤ 2max(dist(x, z),dist(y, z))

94

The R-linear convergence analysis in the Euclidean case, given in [BNY87, §4], relies on the

change of variables from x to x∗ + (Hess f(x∗))1/2(x − x∗). Such a change of variables is not

legitimate when the Euclidean space is replaced by a general Riemannian manifold. For this and

other reasons, notably the presence of B̃k rather than Bk in the Broyden update equation (4.2.3),

the generalization of the analysis in [BNY87, §4] to the Riemannian case requires considerably

more effort than a mere “mutatis mutandis” modification. The differences are highlighted in the

following proofs.

Lemma 6.2.2 generalizes [BNY87, (4.3)].

Lemma 6.2.2. If Assumptions 4.3.1 and 6.2.1 hold, then equation

‖yk −Hk+1sk‖ = ‖sk‖o1(ǫk)

holds, where o1(t) denotes o(1) with respect to t, i.e., limt→0 o1(t) = 0.

Proof. Define yPk = grad f(xk+1) − P 1←0
γk

grad f(xk), where P is parallel transport and γk is the

retraction line from xk to xk+1. From Lemma 3.3.8, we have

‖P 0←1
γk

yPk − H̄kαkηk‖ ≤ b0‖αkηk‖2 = b0‖sk‖2,

where H̄k =
∫ 1
0 P 0←t

γk
Hess f(γk(t))P

t←0
γk

dt and b0 is a positive constant. It follows that

‖yk −Hk+1sk‖

≤ ‖yk − yPk ‖+ ‖P 0←1
γk

yPk − H̄kαkηk‖+ ‖P 1←0
γk

H̄kP
0←1
γk

P 1←0
γk

αkηk −Hk+1TSαkηk
αkηk‖

≤ ‖ grad f(xk+1)/βk − grad f(xk+1)‖+ ‖P 1←0
γk

grad f(xk)− TSαkηk
grad f(xk)‖

+ b0‖sk‖2 + ‖P 1←0
γk

H̄kP
0←1
γk

P 1←0
γk

αkηk − P 1←0
γk

H̄kP
0←1
γk
TSαkηk

αkηk‖

+ ‖P 1←0
γk

H̄kP
0←1
γk
TSαkηk

αkηk −Hk+1TSαkηk
αkηk‖

= ‖ grad f(xk+1)‖|1/βk − 1| (using Lemmas 3.3.7 and 4.3.7)

+ ‖P 1←0
γk

grad f(xk)− TSαkηk
grad f(xk)‖ (using Lemmas 3.3.7 and 4.3.6)

+ b0‖sk‖2 + ‖H̄k‖‖P 1←0
γk

αkηk − TSαkηk
αkηk‖ (using Lemma 4.3.6)

+ ‖P 1←0
γk

H̄kP
0←1
γk
−Hk+1‖‖sk‖ (using Assumption 6.2.1)

≤ b1ǫk‖sk‖+ b2ǫk‖sk‖+ b3ǫk‖sk‖+ o1(ǫk)‖sk‖ (6.2.1)

= o1(ǫk)‖sk‖

95

where b1, b2, b3 are positive constants. Therefore, we have

‖yk −Hk+1sk‖ = ‖sk‖o1(ǫk),

If a matrix B is symmetric positive definite for Euclidean metric, then it is easily seen that there

exists a symmetric positive definite matrix B1/2 such that B = B1/2B1/2. Lemma 6.2.3 shows that

this property holds as well for an arbitrary metric. This property allows a decomposition of the

Hessian at x∗, i.e., H∗ = H
1/2
∗ H

1/2
∗ , H

1/2
∗ is self-adjoint.

Lemma 6.2.3. Let 〈u, v〉 = uTGv be an inner product of Rd, where G is a symmetric positive

definite matrix. If B is positive definite and self-adjoint with respect to this inner product, in other

words,

〈Bu, v〉 = 〈u,Bv〉 and 〈Bu, u〉 > 0

for all u, v, then there exists a matrix A such that B = AA and A is self-adjoint.

Proof. Let P = GB. Since B is positive definite and self-adjoint with respect to the inner product,

P is a symmetric positive definite matrix. Therefore, there exists a matrix L such that LTL = P .

Because G is a symmetric positive definite matrix, there exists a symmetric matrix G1/2 such that

G1/2G1/2 = G. Let U and V be from singular value decomposition: LG−1/2 = USV T . We will

show that

A = G−1/2V UTL.

First, we have

AA = G−1/2V UTLG−1/2V UTL = G−1/2V UTUSV TV UTL = G−1/2V SUTL

= G−1/2G−1/2LTL = G−1P = B.

In order to show A is self-adjoint, we only need to show GA is symmetric. Noticing that UTL =

SV TG1/2, we have

GA−ATG = G1/2V UTL− LTUV TG1/2 = G1/2V SV TG1/2 −G1/2V SV TG1/2 = 0.

96

Lemma 6.2.4 generalizes [BNY87, Lemma 4.1].

Lemma 6.2.4. Suppose Assumptions 4.3.1, 4.3.2 and 6.2.1 hold. For any 0 < ǫ ≤ 1, there is a

neighborhood N(x∗) of x∗ such that if xk and xk+1 generated by Algorithm 3 are in N(x∗), then

g(ȳk, ȳk)

g(ȳk, s̄k)

g(s̄k, Cks̄k)
g(ȳk, s̄k)

− 2
g(ȳk, Cks̄k)
g(ȳk, s̄k)

≤ a14ǫαk

cos θ̄k
,

where a14 is a positive constant.

Proof. From Lemma 6.2.2, we know that

‖ȳk − s̄k‖ = o1(ǫk)‖s̄k‖, (6.2.2)

Therefore, we have

‖ȳk‖ = (1 + o1(ǫk))‖s̄k‖. (6.2.3)

By squaring (6.2.2) and using (6.2.3), we have

(1 + o1(ǫk))
2‖s̄k‖2 − 2g(ȳk, s̄k) + ‖s̄k‖2 = ‖ȳk‖2 − 2g(ȳk, s̄k) + ‖s̄k‖2 = (o1(ǫk))

2‖s̄k‖2,

and therefore

g(ȳk, s̄k) = (1 + o1(ǫk))‖s̄k‖2. (6.2.4)

Thus, we know
g(ȳk, s̄k)

‖s̄k‖2
= 1 + o1(ǫk) (6.2.5)

Combining (6.2.3) and (6.2.5), we obtain

‖ȳk‖2
g(ȳk, s̄k)

= 1 + o1(ǫk). (6.2.6)

Let N(x̄) be sufficiently small, meaning take ǫk small enough so that

g(ȳk, ȳk)

g(ȳk, s̄k)
≤ 1 + ǫ and

‖ȳk − s̄k‖
‖s̄k‖

≤ ǫ (6.2.7)

97

Observe that Ck is positive definite, given the positive-definiteness of B̃k. It follows that

g(ȳk, ȳk)

g(ȳk, s̄k)

g(s̄k, Cks̄k)
g(ȳk, s̄k)

− 2
g(ȳk, Cks̄k)
g(ȳk, s̄k)

= (
g(ȳk, ȳk)

g(ȳk, s̄k)
− 2)

g(s̄k, Cks̄k)
g(ȳk, s̄k)

− 2
g(ȳk − s̄k, Cks̄k)

g(ȳk, s̄k)

≤ (ǫ− 1)
g(s̄k, Cks̄k)
g(ȳk, s̄k)

+
2ǫ‖s̄k‖‖Ck s̄k‖

a0‖s̄k‖2
(by (6.2.7) and Lemma 4.3.4)

≤ 2ǫ‖Cks̄k‖
a0‖s̄k‖

(since ǫ ≤ 1, Ck is positive definite and g(s̄k, ȳk) = g(sk, yk) > 0)

≤ 2‖H−1/2∗ ‖ǫαk‖ grad f(xk)‖
a0‖s̄k‖

(by definitions of Ck and s̄k)

=
a14ǫαk

cos θ̄k
, (by Lemma 4.3.5)

where a14 = 2‖H−1/2∗ ‖/(a0a2).

Lemma 6.2.5 proves the same results as Lemma 3.3.10 but does not require the vector transport

to be smooth.

Lemma 6.2.5. The isometric vector transport TS ∈ C0 and TS satisfies (4.2.4) and (4.2.5). Let

x̄ ∈ M. Then there is a neighborhood U of x̄ and ã14 such that for all x, y ∈ U ,

‖ id−T −1Sξ
T −1Sη
TSζ
‖ ≤ ã14 max(dist(x, x̄),dist(y, x̄)),

‖ id−T −1Sζ
TSηTSξ

‖ ≤ ã14 max(dist(x, x̄),dist(y, x̄)),

where ξ = R−1x̄ x, η = R−1x y and ζ = R−1x̄ y.

Proof. By applying Lemma 3.3.10 for the differentiated retraction TR, we obtain

‖ id−T −1Rξ
T −1Rη
TRζ
‖ ≤ b0 max(dist(x, x̄),dist(y, x̄)).

where b0 is a positive constant. It follows that

‖ id−T −1Sξ
T −1Sη
TSζ
‖

≤ ‖ id−T −1Rξ
T −1Rη
TRζ
‖+ ‖T −1Rξ

T −1Rη
TRζ
− T −1Sξ

T −1Rη
TRζ
‖

+ ‖T −1Sξ
T −1Rη
TRζ
− T −1Sξ

T −1Sη
TRζ
‖+ ‖T −1Sξ

T −1Sη
TRζ
− T −1Sξ

T −1Sη
TSζ
‖

≤ b0max(dist(x, x̄),dist(y, x̄)) + b1‖ξ‖+ b2‖η‖+ b3‖ζ‖ (by (4.2.4) and (4.2.5))

≤ b4max(dist(x, x̄),dist(y, x̄))

98

where b0, b1, b2, b3 and b4 are positive constants and the first inequality follows. The second is

shown by a similar argument.

In the R-linear convergence analysis, the Frobenius norm is used. However, this norm is not

independent of basis of the tangent space. Lemma 6.2.6 shows that the Frobenius norm is equivalent

to the norm induced by the Riemannian metric of the manifold in a compact set on the manifold.

Lemma 6.2.6. Let M be a Riemannian manifold endowed with a metric g. Let x̄ ∈ M and U be

a compact neighborhood of x̄. Then there exist constants M > m > 0 such that for all x ∈ U and

all linear transformations Ax of TxM, we have

m‖Ax‖ ≤ ‖Âx‖F ≤M‖Ax‖.

Moreover, if the chosen basis of TxM is orthonormal with respect to the Riemannian metric g (so

that the matrix expression of the metric at x is the identity), then the bounds hold with m = 1 and

M =
√
d.

Proof. Let Gx denote the matrix expression of inner production, i.e. g(wx, vx) = ŵT
xGxv̂x. For any

vx ∈ TxM, we have

‖Axvx‖2
‖vx‖2

=
trace(v̂Tx ÂT

xGxÂxv̂x)

trace(v̂TxGxv̂x)

=
trace(ûTxG

−T/2
x ÂT

xG
T/2
x G

1/2
x ÂxG

−1/2
x ûx)

trace(ûTx ûx)
(letting ûx = G

1/2
x v̂x)

=
‖G1/2

x ÂxG
−1/2
x ûx‖22

‖ûx‖22

On one hand, let vx satisfy ‖Axvx‖
‖vx‖ = ‖Ax‖. Using ‖Âx‖2 ≤ ‖Âx‖F ([GV96, (2.3.7)]), we have

‖Ax‖ =
‖Axvx‖
‖vx‖

=
‖G1/2

x ÂxG
−1/2
x ûx‖2

‖ûx‖2
≤ ‖G1/2

x ÂxG
−1/2
x ‖2

≤ ‖G1/2
x ‖2‖Âx‖2‖G−1/2x ‖2 ≤ ‖G1/2

x ‖2‖G−1/2x ‖2‖Âx‖F ≤
1

m
‖Âx‖F ,

where m = 1

maxx∈U (‖G1/2
x ‖2‖G−1/2

x ‖2)
. On the other hand, let ux satisfy

‖G1/2
x ÂxG

−1/2
x ûx‖2

‖ûx‖2
= ‖G1/2

x ÂxG
−1/2
x ‖2.

99

Using ‖Âx‖F ≤
√
d‖Âx‖2 ([GV96, (2.3.7)]), we have

‖Âx‖F ≤
√
d‖Âx‖2 ≤

√
d‖G−1/2x ‖2‖G1/2

x ÂxG
−1/2
x ‖2‖G1/2

x ‖2

=
√
d‖G−1/2x ‖2‖G1/2

x ‖2
‖G1/2

x ÂxG
−1/2
x ûx‖2

‖ûx‖2
=
√
d‖G−1/2x ‖2‖G1/2

x ‖2
‖Axvx‖
‖vx‖

≤
√
d‖G−1/2x ‖2‖G1/2

x ‖2‖Ax‖ ≤M‖Ax‖,

where M =
√
dmaxx∈U(‖G1/2

x ‖2‖G−1/2x ‖2).

We can now show R-linear convergence as stated in the following theorem that generalizes

[BNY87, Lemma 4.2].

Theorem 6.2.1 (R-linear convergence). Suppose Assumptions 4.3.1, 4.3.2 and 6.2.1 hold. φk ∈
[0, 1 − δ]. Then there is a constant 0 ≤ a15 < 1 such that

f(xk+1)− f(x∗) ≤ ak15(f(x1)− f(x∗)), (6.2.8)

holds for all sufficiently large k.

Proof. By pre- and post- multiplying the update formula in Algorithm 3 by H
−1/2
k+1 , we have

B̄k+1 = H
−1/2
k+1 B̃kH

−1/2
k+1 −

H
−1/2
k+1 B̃ksk(B̃∗ksk)♭H

−1/2
k+1

(B̃∗ksk)♭sk

+
H
−1/2
k+1 yky

♭
kH
−1/2
k+1

y♭ksk
+ φkg(sk, B̃ksk)H−1/2k+1 vkv

♭
kH
−1/2
k+1

= H
−1/2
k+1 B̃kH

−1/2
k+1 −

H
−1/2
k+1 B̃ksk(H

−1/2
k+1 B̃∗ksk)♭

(B̃∗ksk)♭sk

+
H
−1/2
k+1 yk(H

−1/2
k+1 yk)

♭

y♭ksk
+ φkg(sk, B̃ksk)H−1/2k+1 vkv

♭
kH
−1/2
k+1

= H
−1/2
k+1 B̃kH

−1/2
k+1 −

H
−1/2
k+1 B̃kH

−1/2
k+1 s̄k(H

−1/2
k+1 B̃∗kH

−1/2
k+1 s̄k)

♭

(H
−1/2
k+1 B̃∗kH

−1/2
k+1 s̄k)♭s̄k

+
ȳkȳ

♭
k

ȳ♭ks̄k
+ φkg(sk, B̃ksk)H−1/2k+1 vk(H

−1/2
k+1 vk)

♭

= Ck −
Cks̄k(C∗k s̄k)♭
(C∗k s̄k)♭s̄k

+
ȳkȳ

♭
k

ȳ♭ks̄k
+ φkg(s̄k, Cks̄k)v̄kv̄♭k, (6.2.9)

where

v̄k =
H
−1/2
k+1 yk

g(yk, sk)
−

H
−1/2
k+1 B̃ksk

g(sk, B̃ksk)
=

ȳk
g(ȳk, s̄k)

− Cks̄k
g(s̄k, Cks̄k)

.

100

Considering the coordinate expression and the trace of (6.2.9), we have

trace(ˆ̄Bk+1) = trace(Ĉk) +
‖ȳk‖2

g(ȳk, s̄k)
+ φk

‖ȳk‖2
g(ȳk, s̄k)

g(s̄k, Cks̄k)
g(ȳk, s̄k)

− (1− φk)
‖Cks̄k‖2

g(s̄k, Cks̄k)
− 2φk

g(ȳk, Cks̄k)
g(ȳk, s̄k)

. (6.2.10)

It follows that

trace(Ĉk)− trace(ˆ̄Bk)

= trace(Ĥ
−1/2
k+1

ˆ̃BkĤ−1/2k+1)− trace(Ĥ
−1/2
k B̂kĤ−1/2k)

= trace(T̂Sαkηk
B̂kT̂ −1Sαkηk

Ĥ−1k+1)− trace(B̂kĤ−1k)

= trace(T̂Sαkηk
B̂kT̂ −1Sαkηk

T̂Sζk+1
Ĥ−1∗ T̂ −1Sζk+1

)− trace(B̂kT̂Sζk
Ĥ−1∗ T̂ −1Sζk

)

= trace(T̂ −1Sζk+1
T̂Sαkηk

B̂kT̂ −1Sαkηk
T̂Sζk+1

Ĥ−1∗)− trace(T̂ −1Sζk
B̂kT̂Sζk

Ĥ−1∗)

= trace(T̂ −1Sζk+1
T̂Sαkηk

B̂kT̂ −1Sαkηk
T̂Sζk+1

Ĥ−1∗)− trace(T̂ −1Sζk
B̂kT̂ −1Sαkηk

T̂Sζk+1
Ĥ−1∗)

+ trace(T̂ −1Sζk
B̂kT̂ −1Sαkηk

T̂Sζk+1
Ĥ−1∗)− trace(T̂ −1Sζk

B̂kT̂Sζk
Ĥ−1∗)

≤ ‖T̂ −1Sζk+1
T̂Sαkηk

− T̂ −1Sζk
‖F ‖B̂kT̂ −1Sαkηk

T̂Sζk+1
Ĥ−1∗ ‖F + ‖T̂ −1Sαkηk

T̂Sζk+1
− T̂Sζk

‖F ‖Ĥ−1∗ T̂ −1Sζk
B̂k‖F

≤ b0(‖T̂ −1Sζk+1
T̂Sαkηk

− T̂ −1Sζk
‖‖B̂kT̂ −1Sαkηk

T̂Sζk+1
Ĥ−1∗ ‖

+ ‖T̂ −1Sαkηk
T̂Sζk+1

− T̂Sζk
‖‖Ĥ−1∗ T̂ −1Sζk

B̂k‖) (by Lemma 6.2.6)

≤ b0(‖T̂ −1Sζk+1
T̂Sαkηk

T̂Sζk
− I‖‖B̂k‖‖Ĥ−1∗ ‖+ ‖T̂ −1Sζk

T̂ −1Sαkηk
T̂Sζk+1

− I‖‖Ĥ−1∗ ‖‖B̂k‖)

≤ b1ǫk, (by Lemma 6.2.5)

where b0, b1 are positive constants and ‖ · ‖F denotes the Frobenius norm. (6.2.10) becomes

trace(ˆ̄Bk+1) ≤ trace(ˆ̄Bk) +
‖ȳk‖2

g(ȳk, s̄k)
+ φk

‖ȳk‖2
g(ȳk, s̄k)

g(s̄k, Cks̄k)
g(ȳk, s̄k)

− (1− φk)
‖Cks̄k‖2

g(s̄k, Cks̄k)
− 2φk

g(ȳk, Cks̄k)
g(ȳk, s̄k)

+ b1ǫk. (6.2.11)

Take ǫ ∈ (0, 1] and, without loss of generality (since the claim to prove is for all sufficiently large

k), assume that, for all k, xk belongs to N(x∗) defined in Lemma 6.2.4. Then, from the above

101

inequality and exploiting the fact that ǫ ≤ 1, we have

trace(ˆ̄Bk+1) ≤ trace(ˆ̄Bk) + 2 +
a14φǫαk

cos θ̄k
− (1− φk)

‖Cks̄k‖2
g(s̄k, Cks̄k)

+ b1ǫk

(by (6.2.7) with ǫ ≤ 1 and Lemma 6.2.4)

= trace(ˆ̄Bk) + 2 +
a14φǫαk

cos θ̄k
− (1− φk)

‖Cks̄k‖2
‖s̄k‖‖Cks̄k‖ cos θ̄k

+ b1ǫk

= trace(ˆ̄Bk) + 2 +
a14φǫαk

cos θ̄k
− (1− φk)

‖H−1/2k+1 B̃ksk‖
‖H1/2

k+1sk‖ cos θ̄k
+ b1ǫk

= trace(ˆ̄Bk) + 2 +
a14φǫαk

cos θ̄k
− (1− φk)

‖H1/2
k+1‖2

‖H1/2
∗ ‖2

‖H−1/2k+1 B̃ksk‖
‖H1/2

k+1sk‖ cos θ̄k
+ b1ǫk

(since ‖Hk+1‖ = ‖H∗‖)

≤ trace(ˆ̄Bk) + 2 +
a14φǫαk

cos θ̄k
− (1− φk)

1

‖H1/2
∗ ‖2

‖B̃ksk‖
‖sk‖ cos θ̄k

+ b1ǫk (6.2.12)

Since ‖·‖ is an induce norm, inequalities ‖H1/2
k+1‖‖H

−1/2
k+1 B̃ksk‖ ≥ ‖B̃ksk‖ and ‖H

1/2
k+1sk‖ ≤ ‖H

1/2
k+1‖‖sk‖

hold. Therefore, (6.2.12) holds. It follows that

trace(ˆ̄Bk) + 2 +
a14φǫαk

cos θ̄k
− (1− φk)

1

‖H1/2
∗ ‖2

‖B̃ksk‖
‖sk‖ cos θ̄k

+ b1ǫk

≤ trace(ˆ̄Bk) + 2 +
a14φǫαk

cos θ̄k
− (1 − φk)b2

αk

cos2 θk
+ b1ǫk (by Lemma 4.3.5)

≤ trace(ˆ̄Bk) + 2 + b1 +
a14φǫαk

cos θ̄k
− (1− φk)b2

αk

cos2 θk
(let ǫk ≤ 1)

where b2 is a positive constant. We have

0 < trace(ˆ̄Bk+1) ≤ trace(ˆ̄Bk) + 2 + b1 +
αk

cos2 θ̄k
(a14φkǫ cos θ̄k − (1− φk)b2). (6.2.13)

We choose ǫ small enough such that a14(1 − δ)ǫ cos θ̄k − δb2 is less than some negative number,

denoted −b3, for k > k0 by noting that a14φkǫ cos θ̄k − (1− φk)b2 ≤ a14(1− δ)ǫ cos θ̄k − δb2 < −b3.
From (6.2.13), there exists a constant b4 such that

0 < trace(ˆ̄Bk+1) ≤ trace(ˆ̄B1) + (2 + b1)k + b4 − b3

k
∑

i=1

αi

cos2 θ̄i
.

Therefore, we have
k
∑

i=1

αi

cos2 θ̄i
≤ k b5, (6.2.14)

102

for some positive constant b5. Using the relationship between the geometric and arithmetic means

and (6.2.14), we obtain
k
∏

i=1

αi

cos2 θ̄i
≤ bk5 .

From Lemma 4.3.12, we get
k
∏

i=1

cos2 θ̄i ≥ (
a13
b5

)k.

It follows that

k
∏

i=1

cos2 θi =
k
∏

i=1

cos2 θ̄i

k
∏

i=1

(
cos θi
cos θ̄i

)2 =
k
∏

i=1

cos2 θ̄i(
k
∏

i=1

‖H1/2
k+1sk‖‖H

−1/2
k+1 B̃ksk‖

‖sk‖‖B̃ksk‖
)2

=
k
∏

i=1

cos2 θ̄i(
k
∏

i=1

‖H1/2
k+1sk‖‖H

−1/2
k+1 B̃ksk‖

‖H−1/2k+1 H
1/2
k+1sk‖‖H

1/2
k+1H

−1/2
k+1 B̃ksk‖

)2 ≥ (
a13
b5

)k(
1

‖H1/2
∗ ‖‖H−1/2∗ ‖

)k = bk6 ,

where b6 = a13/(b5‖H1/2
∗ ‖‖H−1/2∗ ‖). By Lemma 4.3.8, we have

f(xk+1)− f(x∗) ≤
k
∏

i=1

(1− a5 cos
2 θi)(f(x1)− f(x∗)).

Using the relationship between the geometric and arithmetic means twice, we obtain

f(xk+1)− f(x∗) ≤ (
1

k

k
∑

i=1

(1− a5 cos
2 θi))

k(f(x1)− f(x∗))

≤ (1− a5(

k
∏

i=1

cos2 θi)
1
k)k(f(x1)− f(x∗)) = (1− a5b6)

k(f(x1)− f(x∗)),

which is

f(xk+1)− f(x∗) ≤ ak15(f(x1)− f(x∗)),

where a15 = 1− a5b6.

6.2.2 Superlinear Convergence Analysis

Assumption 6.2.2 generalizes the Euclidean property of twice Hölder continuously differentia-

bility of f at x∗ to a Riemannian manifold and it is weaker than Assumption 3.3.3. If the x in

Assumption 3.3.3 is restricted to be x∗, then Assumption 3.3.3 is Assumption 6.2.2 with p = 1.

Assumption 6.2.2. There exists a constant c4 and p such that for all y ∈ S,

‖Hess f(y)− TSη Hess f(x
∗)T −1Sη

‖ ≤ c4‖η‖p,

where η = R−1x∗ y.

103

From the R-linear convergence of Theorem 6.2.1, we obtain the following lemma that is used in

the superlinear convergence analysis.

Lemma 6.2.7. Suppose Assumptions 4.3.1, 4.3.2 and 6.2.1 hold. φk ∈ [0, 1 − δ]. The sequence

{xk} generated by Algorithm 3 converges to a minimizer x∗ of f . Then inequality

∞
∑

k=1

(dist(xk, x
∗))min(1,p) <∞

holds.

Proof. Define m̃k(t) = f(Rx∗(tζk)), where ζk = R−1x∗ (xk)/‖R−1x∗ (xk)‖. Let zk = ‖R−1x∗ (xk)‖. By

Taylor’s theorem, we have

f(xk)− f(x∗) = m̃k(zk)− m̃k(0) =
dm̃k(0)

dt
zk +

d2m̃k(p)

dt2
z2k

≥ a0z
2
k, (by Assumption 4.3.2 and x∗ is a minimizer)

≥ b0 dist(xk, x
∗)2 (by Lemma 3.3.3)

where p is some number between 0 and zk and b0 is a positive constant. According to (6.2.8), we

have

(dist(xk, x
∗))min(1,p) ≤ a

min((k−1)/2,p(k−1)/2)
15

(

f(x1)− f(x∗)
b0

)min(p,1)/2

.

Since a15 ∈ [0, 1), we know (dist(xk, x
∗))min(1,p) is less than a geometric sequence whose common

ratio is less than 1 and, therefore, the summation is finite,

∞
∑

k=1

(dist(xk, x
∗))min(1,p) <∞.

Lemma 6.2.8. Suppose Assumption 4.3.1 holds. Let x̄ ∈ M. Then there is a neighborhood U of

x̄ and a16 such that for all x, y ∈ U ,

‖H(x) − T −1Sη
H(y)TSη‖ ≤ a16 max(dist(x, x̄),dist(y, x̄)),

where H(x) = TSξ
Hess f(x̄)(TSξ

)−1, ξ = R−1x̄ x, H(y) = TSζ
Hess f(x̄)(TSζ

)−1, ζ = R−1x̄ y and

η = R−1x y.

104

Proof. We have

‖H(x)− T −1Sη
H(y)TSη‖ = ‖TSξ

Hess f(x̄)T −1Sξ
− T −1Sη

TSζ
Hess f(x̄)T −1Sζ

TSη‖

= ‖Hess f(x̄)− T −1Sξ
T −1Sη
TSζ

Hess f(x̄)T −1Sζ
TSηTSξ

‖

≤ ‖(id−T −1Sξ
T −1Sη
TSζ

)Hess f(x̄)‖

+ ‖T −1Sξ
T −1Sη
TSζ

Hess f(x̄)(id−T −1Sζ
TSηTSξ

)‖

≤ ‖Hess f(x̄)‖(‖ id−T −1Sξ
T −1Sη
TSζ
‖+ ‖ id−T −1Sζ

TSηTSξ
‖)

≤ b0 max(dist(x, x̄),dist(y, x̄)) (by Lemma 6.2.5),

where b0 is a positive constant.

Lemma 6.2.9. Suppose Assumptions 4.3.1, 4.3.2, 6.2.1 and 6.2.2 hold. Then

‖ȳk − s̄k‖ ≤ ã17ǫ
min(1,p)
k ‖s̄k‖ (6.2.15)

g(ȳk, s̄k) ≥ (1− ã18ǫ
min(1,p)
k)‖s̄k‖2, (6.2.16)

where ã17 and ã18 are positive constants.

Proof. We follow the proof of Lemma 6.2.2 modified by replacing (6.2.1) ≤ o1(ǫk)‖sk‖ by (6.2.1) ≤
b4ǫ

p
k‖sk‖ since Assumption 6.2.2 holds. Therefore, we have

‖ȳk − s̄k‖ ≤ cǫ
min(1,p)
k ‖s̄k‖, (6.2.17)

where b4 and c are some constants. It follows that

‖ȳk‖ − ‖s̄k‖ ≤ cǫ
min(1,p)
k ‖s̄k‖ and ‖s̄k‖ − ‖ȳk‖ ≤ cǫ

min(1,p)
k ‖s̄k‖,

which yields

(1− cǫ
min(1,p)
k)‖s̄k‖ ≤ ‖ȳk‖ ≤ (1 + cǫ

min(1,p)
k)‖s̄k‖. (6.2.18)

By squaring (6.2.17) and using (6.2.18), we have

(1− cǫ
min(1,p)
k)2‖s̄k‖2 − 2g(ȳk, s̄k) + ‖s̄k‖2 ≤ ‖ȳk‖2 − 2g(ȳk, s̄k) + ‖s̄k‖2 ≤ (cǫ

min(1,p)
k)2‖s̄k‖2,

and therefore

g(ȳk, s̄k) ≥ (1− cǫ
min(1,p)
k)‖s̄k‖2 (6.2.19)

completing the proof.

105

Lemma 6.2.10 generalizes [GT82, (45)]. Lemmas 6.2.10 and 6.2.11 show that all Hessian ap-

proximations, Bk, given by the RBroyden update (4.2.3) are bounded. Corollaries 6.2.1 and 6.2.2

show the key result that the condition numbers of all of the Bk are also bounded.

Lemma 6.2.10. Suppose Assumptions 4.3.1, 4.3.2, 6.2.1 and 6.2.2 hold. φk ∈ [0, 1]. Then there

exist constants a17 and a18 such that

‖B̄′k+1 − B̄k+1‖ ≤ (a17‖Ck‖+ a18)ǫ
min(1,p)
k ,

where

B̄′k+1 = Ck − (1− φk)
Cks̄k(C∗k s̄k)♭
(C∗k s̄k)♭s̄k

+ (1 + φk
(Cks̄k)♭s̄k

s̄♭ks̄k
)
s̄ks̄

♭
k

s̄♭ks̄k
− φk(

s̄k(Cks̄k)♭
s̄♭ks̄k

+
Cks̄ks̄♭k
s̄♭ks̄k

).

Proof. From (6.2.9), we have

B̄k+1 = Ck − (1− φk)
Cks̄k(C∗k s̄k)♭
(C∗k s̄k)♭s̄k

+ (1 + φk
(Cks̄k)♭s̄k

ȳ♭ks̄k
)
ȳkȳ

♭
k

ȳ♭ks̄k
− φk(

ȳk(Cks̄k)♭
ȳ♭ks̄k

+
Cks̄kȳ♭k
ȳ♭ks̄k

).

‖B̄′k+1 − B̄k+1‖ = ‖(1 + φk
(Cks̄k)♭s̄k

s̄♭ks̄k
)
s̄ks̄

♭
k

s̄♭ks̄k
− φk(

s̄k(Cks̄k)♭
s̄♭ks̄k

+
Cks̄ks̄♭k
s̄♭ks̄k

)

− ((1 + φk
(Cks̄k)♭s̄k

ȳ♭ks̄k
)
ȳkȳ

♭
k

ȳ♭ks̄k
− φk(

ȳk(Cks̄k)♭
ȳ♭ks̄k

+
Cks̄kȳ♭k
ȳ♭ks̄k

))‖

≤ ‖ s̄ks̄
♭
k

s̄♭ks̄k
− ȳkȳ

♭
k

ȳ♭ks̄k
‖ (6.2.20)

+ ‖φk
(Cks̄k)♭s̄k

s̄♭s̄k

s̄ks̄
♭
k

s̄♭s̄k
− φk

(Cks̄k)♭s̄k
ȳ♭ks̄k

ȳkȳ
♭
k

ȳ♭ks̄k
‖ (6.2.21)

+ φk‖
ȳk(Cks̄k)♭

ȳ♭ks̄k
− s̄k(Cks̄k)♭

s̄♭ks̄k
‖ (6.2.22)

+ φk‖
Cks̄kȳ♭k
ȳ♭ks̄k

− Cks̄ks̄
♭
k

s̄♭ks̄k
‖. (6.2.23)

Since ‖ · ‖ is an induced norm, we have

‖uv♭‖ = ‖u‖‖v‖. (6.2.24)

106

It follows that

(6.2.20) ≤ ‖ s̄ks̄
♭
k

s̄♭ks̄k
− ȳkȳ

♭
k

s̄♭ks̄k
‖+ ‖ ȳkȳ

♭
k

s̄♭ks̄k
− ȳkȳ

♭
k

ȳ♭ks̄k
‖

≤ ‖ s̄ks̄
♭
k

s̄♭ks̄k
− ȳks̄

♭
k

s̄♭ks̄k
‖+ ‖ ȳks̄

♭
k

s̄♭ks̄k
− ȳkȳ

♭
k

s̄♭ks̄k
‖+ | ȳ

♭
kȳk

s̄♭ks̄k
− ȳ♭kȳk

ȳ♭ks̄k
|‖ ȳkȳ

♭
k

ȳ♭kȳk
‖

= ‖(s̄k − ȳk)s̄
♭
k

s̄♭ks̄k
‖+ ‖ ȳk(s̄

♭
k − ȳ♭k)

s̄♭ks̄k
‖+ | ȳ

♭
kȳk

s̄♭ks̄k
− ȳ♭kȳk

ȳ♭ks̄k
|‖ ȳkȳ

♭
k

ȳ♭kȳk
‖

=
‖s̄k − ȳk‖‖s̄k‖
‖s̄k‖2

+
‖ȳk‖‖s̄k − ȳk‖
‖s̄k‖2

+ | ȳ
♭
kȳk

s̄♭ks̄k
− ȳ♭kȳk

ȳ♭ks̄k
| (by (6.2.24))

≤ b1ǫ
min(1,p)
k (by (6.2.15) and (6.2.16))

where b1 is some constant,

(6.2.21) ≤ ‖φk
(Cks̄k)♭s̄k

s̄♭ks̄k

s̄ks̄
♭
k

s̄♭ks̄k
− φk

(Cks̄k)♭s̄k
s̄♭ks̄k

ȳkȳ
♭
k

s̄♭ks̄k
‖+ ‖φk

(Cks̄k)♭s̄k
s̄♭ks̄k

ȳkȳ
♭
k

s̄♭ks̄k
− φk

(Cks̄k)♭s̄k
ȳ♭s̄k

ȳkȳ
♭
k

ȳ♭ks̄k
‖

≤ φk
(Cks̄k)♭s̄k

s̄♭ks̄k
(‖ s̄ks̄

♭
k

s̄♭ks̄k
− ȳks̄

♭
k

s̄♭ks̄k
‖+ ‖ ȳks̄

♭
k

s̄♭ks̄k
− ȳkȳ

♭
k

s̄♭ks̄k
‖) + φk

(Cks̄k)♭s̄k
s̄♭ks̄k

| ȳ
♭
kȳk

s̄♭ks̄k
− ȳ♭kȳks̄

♭
ks̄k

(ȳ♭s̄k)2
|‖ ȳkȳ

♭
k

ȳ♭kȳk
‖

= φk
(Cks̄k)♭s̄k

s̄♭ks̄k
(‖(s̄k − ȳk)s̄

♭
k

s̄♭ks̄k
‖+ ‖ ȳk(s̄

♭
k − ȳ♭k)

s̄♭ks̄k
‖) + φk

(Cks̄k)♭s̄k
s̄♭ks̄k

| ȳ
♭
kȳk

s̄♭ks̄k
− ȳ♭kȳks̄

♭
ks̄k

(ȳ♭s̄k)2
|

= φk
(Cks̄k)♭s̄k

s̄♭ks̄k
(
‖s̄k − ȳk‖‖s̄k‖
‖s̄k‖2

+
‖ȳk‖‖s̄k − ȳk‖
‖s̄k‖2

) + φk
(Cks̄k)♭s̄k

s̄♭ks̄k
| ȳ

♭
kȳk

s̄♭ks̄k
− ȳ♭kȳks̄

♭
ks̄k

(ȳ♭s̄k)2
|

(by (6.2.24))

≤ (b2‖Ck‖+ b3)ǫ
min(1,p)
k , (by (6.2.15) and (6.2.16))

where b2, b3 are some constants,

(6.2.22) ≤ φk‖
ȳk(Cks̄k)♭

ȳ♭ks̄k
− s̄k(Cks̄k)♭

ȳ♭ks̄k
‖+ φk‖

s̄k(Cks̄k)♭
ȳ♭ks̄k

− s̄k(Cks̄k)♭
s̄♭ks̄k

‖

≤ φk
s̄♭ks̄k

ȳ♭ks̄k
‖(ȳk − s̄k)(Cks̄k)♭

s̄♭ks̄k
‖+ φk|

s̄♭ks̄k

ȳ♭ks̄k
− 1|‖ s̄k(Cks̄k)

♭

s̄♭ks̄k
‖

≤ φk(1 + b4ǫk)
‖ȳk − s̄k‖‖Ck‖‖s̄k‖

‖s̄k‖2
+ φkb5ǫk

‖s̄k‖‖Ck‖‖s̄k‖
‖s̄k‖2

(by (6.2.18), (6.2.16), (6.2.24))

≤ (b6‖Ck‖+ b7)ǫ
min(1,p)
k , (by (6.2.15) and (6.2.16))

107

where b4, b5, b6 and b7 are some constants, and

(6.2.23) ≤ φk‖
Cks̄kȳ♭k
ȳ♭ks̄k

− Cks̄ks̄
♭
k

ȳ♭ks̄k
‖+ φk‖

Cks̄ks̄♭k
ȳ♭ks̄k

− Cks̄ks̄
♭
k

s̄♭ks̄k
‖

≤ φk
s̄♭ks̄k

ȳ♭ks̄k
‖Cks̄k(ȳ

♭
k − s̄♭k)

s̄♭ks̄k
‖+ φk|

s̄♭ks̄k

ȳ♭ks̄k
− 1|‖Ck s̄ks̄

♭
k

s̄♭ks̄k
‖

≤ φk(1 + b8ǫk)
‖Ck‖‖s̄k‖‖ȳk − s̄k‖

‖s̄k‖2
+ φkb9ǫk

‖Ck‖‖s̄k‖‖s̄k‖
‖s̄k‖2

(by (6.2.18), (6.2.16), (6.2.24))

≤ (b10‖Ck‖+ b11)ǫ
min(1,p)
k , (by (6.2.15) and (6.2.16))

where b8, b9, b10 and b11 are some constants. Combining the above inequalities, we have

‖B̄′k+1 − B̄k+1‖ ≤ ((b2 + b6 + b10)‖Ck‖+ b1 + b3 + b7 + b11)ǫ
min(1,p)
k .

Lemma 6.2.11. Suppose Assumptions 4.3.1, 4.3.2, 6.2.1 and 6.2.2 hold. φk ∈ [0, 1− δ]. Then the

sequence {B̄k} = H
−1/2
k BkH−1/2k from the Algorithm 3 is bounded, i.e., there exists a constant a19

such that

‖B̄k‖ ≤ a19, (6.2.25)

for all k.

Proof. For each tangent space TxM we consider a basis that is orthonormal with respect to the

Riemannian metric g, with x = x∗, x0, x1, . . ., and we let a hat denote expressions in these bases.

Consequently, for all k, the matrix expression of the inner product gxk
is the identity; in other

words, g(u, v) = ûT v̂ for all u, v ∈ TkM. Using the notation of Lemma 6.2.10 and by the same

calculation as (47) in the paper of Griewank and Toint (1982), we get

‖ ˆ̄B′k+1 − I‖2F − ‖Ĉk − I‖2F = −(1− φk)((1 −
ˆ̄sTk ĈkĈk ˆ̄sk
ˆ̄sTk Ĉk ˆ̄sk

)2 + 2[
ˆ̄sTk ĈkĈkĈk ˆ̄sk

ˆ̄sTk Ĉk ˆ̄sk
− (

ˆ̄sTk ĈkĈk ˆ̄sk
ˆ̄sTk Ĉk ˆ̄sk

)2])

− φk((1−
ˆ̄sTk Ĉk ˆ̄sk
ˆ̄sTk ˆ̄sk

)2 + 2φk[
ˆ̄sTk ĈkĈk ˆ̄sk

ˆ̄sTk ˆ̄sk
− (

ˆ̄sTk Ĉk ˆ̄sk
ˆ̄sTk ˆ̄sk

)2])

− φk(1− φk)[(
ˆ̄sTk ĈkĈk ˆ̄sk
ˆ̄sTk Ĉk ˆ̄sk

)2 − (
ˆ̄sTk Ĉk ˆ̄sk
ˆ̄sTk ˆ̄sk

)2]. (6.2.26)

By the Cauchy Schwarz inequality, the terms in brackets are non-negative. We have

‖ ˆ̄B′k+1 − I‖F ≤ ‖Ĉk − I‖F . (6.2.27)

108

From Lemma 6.2.6 and Lemma 6.2.10, we know there exist two constants b0 and b1 such that

‖ ˆ̄B′k+1 − ˆ̄Bk+1‖F ≤ (b0‖Ĉk − I‖F + b1)ǫ
min(1,p)
k . (6.2.28)

Combining (6.2.27) and (6.2.28), we obtain

‖ ˆ̄Bk+1 − I‖F ≤ ‖ ˆ̄Bk+1 − ˆ̄B′k+1‖F + ‖ ˆ̄B′k+1 − I‖F

≤ (1 + b0ǫ
min(1,p)
k)‖Ĉk − I‖F + b1ǫ

min(1,p)
k

(6.2.29)

Since

‖Ĉk − I‖F = ‖T̂Sζk+1
Ĥ
−1/2
∗ T̂ −1Sζk+1

T̂Sαkηk
B̂kT̂ −1Sαkηk

T̂Sζk+1
Ĥ
−1/2
∗ T̂ −1Sζk+1

− I‖F

= ‖Ĥ−1/2∗ T̂ −1Sζk+1
T̂Sαkηk

B̂kT̂ −1Sαkηk
T̂Sζk+1

Ĥ
−1/2
∗ − I‖F (6.2.30)

≤ ‖Ĥ−1/2∗ T̂ −1Sζk+1
T̂Sαkηk

B̂kT̂ −1Sαkηk
T̂Sζk+1

Ĥ
−1/2
∗ − Ĥ

−1/2
∗ T̂ −1Sζk+1

T̂Sαkηk
B̂kT̂Sζk

Ĥ
−1/2
∗ ‖F

+ ‖Ĥ−1/2∗ T̂ −1Sζk+1
T̂Sαkηk

B̂kT̂Sζk
Ĥ
−1/2
∗ − Ĥ

−1/2
∗ T̂ −1Sζk

B̂kT̂Sζk
Ĥ
−1/2
∗ ‖F

+ ‖Ĥ−1/2∗ T̂ −1Sζk
B̂kT̂Sζk

Ĥ
−1/2
∗ − I‖F

= ‖Ĥ−1/2∗ T̂ −1Sζk+1
T̂Sαkηk

B̂k(T̂ −1Sαkηk
T̂Sζk+1

− T̂Sζk
)Ĥ
−1/2
∗ ‖F

+ ‖Ĥ−1/2∗ (T̂ −1Sζk+1
T̂Sαkηk

− T̂Sζk
)B̂kT̂Sζk

Ĥ
−1/2
∗ − I‖F

+ ‖Ĥ−1/2∗ T̂Sζk
B̂kT̂Sζk

Ĥ
−1/2
∗ − I‖F

≤ b2‖H−1/2∗ T −1Sζk+1
TSαkηk

Bk(T −1Sαkηk
TSζk+1

− TSζk
)H
−1/2
∗ ‖ (by Lemma 6.2.6)

+ b2‖H−1/2∗ (T −1Sζk+1
TSαkηk

− TSζk
)BkTSζk

H
−1/2
∗ ‖ (by Lemma 6.2.6)

+ ‖ ˆ̄Bk − I‖F (6.2.31)

≤ b2‖H−1/2∗ ‖‖Bk‖‖T −1Sζk
T −1Sαkηk

TSζk+1
− I‖‖H−1/2∗ ‖ (6.2.32)

+ b2‖H−1/2∗ ‖‖T −1Sζk
T −1Sζk+1

TSαkηk
− I‖‖Bk‖‖H−1/2∗ ‖ (6.2.33)

+ ‖ ˆ̄Bk − I‖F

≤ b3‖Bk‖‖T −1Sζk
T −1Sαkηk

TSζk+1
− I‖+ ‖ ˆ̄Bk − I‖F

≤ b4(‖Bk − I‖F + ‖I‖F)ǫk + ‖ ˆ̄Bk − I‖F (by Lemmas 6.2.6 and 6.2.5)

= (1 + b4ǫk)‖ ˆ̄Bk − I‖F + b4‖I‖F ǫk (6.2.34)

we have

‖ ˆ̄Bk+1 − I‖F ≤ (1 + b5ǫ
min(1,p)
k)‖ ˆ̄Bk − I‖F + b6ǫ

min(1,p)
k , (6.2.35)

109

where b0, b1, b2, b3, b4, b5 and b6 are positive constants. Since TS is isometric and Gk+1 = Gk =

G∗ = I, T̂S is orthonormal matrix. Therefore, (6.2.30) and (6.2.31) hold. Since norm is invariant

under isometric vector transport, (6.2.32) and (6.2.33) hold. Using inequality (6.2.35) repeatedly,

we have

‖ ˆ̄Bk+1 − I‖F ≤ ‖ ˆ̄B1 − I‖F
k
∏

i=1

(1 + b5ǫ
min(1,p)
i) + b6

k
∑

i=1

k
∏

j=i+1

(1 + b5ǫ
min(1,p)
j)ǫ

min(1,p)
i . (6.2.36)

By the relationship between the geometric and arithmetic means and since, by Lemma 6.2.7,
∑∞

i=1 ǫ
min(1,p)
i ≤ ∞, , we obtain

k
∏

i=1

(1 + b5ǫi) ≤ (

∑k
i=1(1 + b5ǫ

min(1,p)
i)

k
)k = (1 + b5

∑k
i=1 ǫ

min(1,p)
i

k
)k < b7

for some positive constant b7. Using this equation for (6.2.36), we know

‖ ˆ̄Bk+1 − I‖F ≤ b7‖ ˆ̄B1 − I‖F + b6b7

k
∑

i=1

ǫ
min(1,p)
i ≤ b8,

where b8 is a positive constant. Therefore, using the first inequality of Lemma 6.2.6, we have

‖B̄k+1‖ ≤ ‖ ˆ̄Bk+1‖F ≤ ‖ ˆ̄Bk+1 − I‖F + ‖I‖F < b9.

where b9 is a positive constant.

Corollary 6.2.1. Suppose Assumptions 4.3.1, 4.3.2, 6.2.1 and 6.2.2 hold. φk ∈ [0, 1 − δ]. Then

Ck = H
−1/2
k+1 B̃kH

−1/2
k+1 , Bk are uniformly bounded.

Proof. The corollary follows immediately from Lemma 6.2.11 and that x∗ is nondegenerate.

Corollary 6.2.2 generalizes a part of [GT82, Proposition 4].

Corollary 6.2.2. Suppose Assumptions 4.3.1, 4.3.2, 6.2.1 and 6.2.2 hold. φk ∈ [0, 1 − δ]. Then

the condition number of B̄k, Ck for all k in the sequence are uniformly bounded.

Proof. The update formula (4.2.3) of Bk corresponds to an update of its inverse Hk = B−1k ,

Hk+1 = H̃k −
H̃kyk(H̃∗kyk)♭
(H̃∗kyk)♭yk

+
sks

♭
k

s♭kyk
+ φ̃kg(yk, H̃kyk)uku

♭
k,

where

uk =
sk

g(sk, yk)
− H̃kyk

g(yk, H̃kyk)
,

110

and

φ̃k =
(1− φk)g

2(yk, sk)

(1− φk)g2(yk, sk) + φkg(yk, H̃kyk)g(sk, B̃ksk)
∈ (0, 1]. (6.2.37)

xk, sk, yk generated byHk’s formula with the Step 3 in Algorithm 3 replaced by ηk = −Hk grad f(xk)

are the same as those generated by Bk’s formula. Therefore, the statements of Lemma 6.2.9 still

hold. The proof of 6.2.10 requires the coefficient of combination φk ∈ [0, 1] which also holds for φ̃k.

Therefore, we can use the same idea to obtain a similar result. Note that the reason that Lemma

6.2.11 requires φk ∈ [0, 1 − δ] is because of the requirement that
∑∞

i=1 ǫ
min(1,p)
i ≤ ∞. Even though

φ̃k is not in [0, 1−δ],
∑∞

i=1 ǫ
min(1,p)
i ≤ ∞ still holds since the sequence xk generated by Hk’s formula

is the same as those generated by Bk’s formula. Therefore, using the same idea as Lemma 6.2.11,

we obtain B̄−1k is bounded. Since x∗ is nondegenerate, we obtain C−1k is also uniformly bounded.

Thus, their condition numbers are uniformly bounded.

The main convergence result, Theorem 6.2.2, that generalizes a part of [GT82, Proposition 4]

can now be proven.

Theorem 6.2.2 (Superlinear Convergence). Suppose Assumptions 4.3.1, 4.3.2, 6.2.1 and 6.2.2

hold. φk ∈ [0, 1 − δ] and αk = 1 whenever it satisfies Wolfe conditions (4.2.1) and (4.2.2). Then

xk converges to x∗ superlinearly.

Proof. For each tangent space TxM we consider a basis that is orthonormal with respect to the

Riemannian metric g, with x = x∗, x0, x1, . . ., and we let a hat denote expressions in these bases.

Consequently, for all k, the matrix expression of the inner product gxk
is the identity; in other

words, g(u, v) = ûT v̂ for all u, v ∈ TkM. We have

‖Ĉk − I‖2F − ‖ ˆ̄B′k+1 − I‖2F
≤ ‖Ĉk − I‖2F + ‖ ˆ̄Bk+1 − ˆ̄B′k+1‖2F − ‖ ˆ̄Bk+1 − I‖2F + 2‖ ˆ̄Bk+1 − ˆ̄B′k+1‖F ‖ ˆ̄B′k+1 − I‖F

≤ ‖Ĉk − I‖2F − ‖ ˆ̄Bk+1 − I‖2F + b1ǫ
min(1,p)
k (6.2.38)

(by Lemmas 6.2.10, 6.2.11 and Corollary 6.2.1)

≤ ‖Ĉk − I‖2F − ‖ ˆ̄Bk − I‖2F + ‖ ˆ̄Bk − I‖2F − ‖ ˆ̄Bk+1 − I‖2F + b1ǫ
min(1,p)
k

≤ ‖ ˆ̄Bk − I‖2F − ‖ ˆ̄Bk+1 − I‖2F + b2ǫ
min(1,p)
k (by (6.2.34), Lemmas 6.2.11, 6.2.6) (6.2.39)

111

where b1, b2 are positive constants. It follows that
∞
∑

k=1

(‖Ĉk − I‖2F − ‖ ˆ̄B′k+1 − I‖2F) ≤
∞
∑

k=1

(‖ ˆ̄Bk − I‖2F − ‖ ˆ̄Bk+1 − I‖2F) + b2

∞
∑

k=1

ǫ
min(1,p)
k

= ‖ ˆ̄B1 − I‖2F + b2

∞
∑

k=1

ǫ
min(1,p)
k ≤ ∞. (by Lemma 6.2.7)

Hence, we have

lim
k→∞

‖Ĉk − I‖2F − ‖ ˆ̄B′k+1 − I‖2F = 0.

Noting (6.2.26), if φ 6= 1, we have

lim
k→∞

ˆ̄sT ĈkĈkĈk ˆ̄s
ˆ̄sT Ĉk ˆ̄s

= 0, lim
k→∞

ˆ̄sT ĈkĈk ˆ̄s
ˆ̄sT Ĉk ˆ̄s

= 0. (6.2.40)

Using (6.2.40), we obtain

lim
k→∞

‖(Ĉk)1/2(Ĉk − I)ˆ̄s‖F
‖(Ĉk)1/2 ˆ̄s‖F

= 0.

Since Lemma 6.2.6 holds, we have

lim
k→∞

‖(Ĉk)1/2(Ĉk − I)ˆ̄s‖
‖(Ĉk)1/2 ˆ̄s‖

= 0.

Since condition number of Ck are uniformly bounded (Corollary 6.2.2), we get

lim
k→∞

‖(Ĉk − I)ˆ̄s‖
‖ˆ̄s‖ = 0.

Since

‖H1/2
∗ ‖2

‖(Ck − I)s̄k‖
‖s̄k‖

= ‖H1/2
k+1‖2

‖(H−1/2k+1 B̃kH
−1/2
k+1 − I)H

1/2
k+1sk‖

‖H1/2
k+1sk‖

≥ ‖(B̃k −Hk+1)sk‖
‖sk‖

,

we have

lim
k→∞

‖(B̃k −Hk+1)sk‖
‖sk‖

= 0. (6.2.41)

Let s̃k = αkηk = T −1Sαkηk
sk. It follows that

‖(Bk −Hk)ηk‖
‖ηk‖

=
‖(Bk −Hk)s̃k‖

‖s̃k‖
=
‖(BkT −1Sαkηk

−HkT −1Sαkηk
)sk‖

‖sk‖

=
‖(TSαkηk

BkT −1Sαkηk
− TSαkηk

HkT −1Sαkηk
)sk‖

‖sk‖

=
‖(B̃k −Hk+1 +Hk+1 − TSαkηk

HkT −1Sαkηk
)sk‖

‖sk‖

≤ ‖(B̃k −Hk+1)sk‖
‖sk‖

+
‖(Hk+1 − TSαkηk

HkT −1Sαkηk
)sk‖

‖sk‖
→ 0. (by (6.2.41) and Lemma 6.2.8)

112

What is more, from the Assumption 6.2.2 and Bkηk = − grad f(xk), we know

lim
k→∞

‖ grad f(xk) + Hess f(xk)ηk‖
‖ηk‖

= 0.

Using the Riemannian Dennis-Moré Condition in Theorem 5.2.4 completes the proof.

113

CHAPTER 7

OPTIMIZING PARTLY SMOOTH FUNCTIONS ON

A RIEMANNIAN MANIFOLD

7.1 Introduction

There are applications of interest for which the cost function f is continuously differentiable on

much of the domain of the problem but is not differentiable at one or more of the minimizers. For

example, in the important application area of computational geometry, the bounding box problem

[BA10], and in nonlinear dimension reduction for data analysis and representation, the secant-based

projection approach uses such a cost function [BK05]. Clarke generalized the gradient for a class

of such functions, specifically for Lipschitz continuous functions on an open set, i.e., no boundary,

in [Cla90]. The generalized directional derivative of a Lipschitz continuous function f : Rn → R

evaluated at x in the direction v is given by

f o(x; v) = lim supy→x,λ↓0
f(y + λv)− f(y)

λ

and the generalized gradient of f at x is the set

∂f(x) = {η ∈ R
n : f o(x; v) ≥ 〈v, η〉 for all v in R

n}.

This generalized gradient reduces to a single vector, the standard gradient, when f is differentiable

at x and to the subdifferential if f is convex but not differentiable at x (since a convex function on

an open convex set is locally Lipschitz continuous [RV74]).

For partly smooth functions, the norm of the gradient cannot be used to specify a stationary

point. Clarke defines a generalization of a stationary point to be x∗ where f o(x∗; v) ≥ 0 for all

v ∈ R
n, i.e., there is no descent direction in which to move with a positive step size. We will refer

to x∗ as a Clarke stationary point. This definition is equivalent to 0 ∈ ∂f(x∗).

Bundle algorithms for nonsmooth locally Lipschitz problems are discussed in Kiwiel’s book

[Kiw85]. They are reasonably efficient and effective for convex nonsmooth problems but become

significantly more complicated for nonconvex nonsmooth problems (see [BLO05] for a discussion).

114

As an alternative to bundle algorithms for nonconvex nonsmooth problems, Burke, Lewis and

Overton [BLO05] develop the gradient sampling algorithm (GS), given in Algorithm 5 using the

notation of Table 7.1, which make uses of the gradients of points in the neighborhood of current

iterate and avoids computing any element of the generalized gradient. A convergence analysis is

also given when the cost function is locally Lipschitz and has bounded level sets, but not necessarily

convex. Their numerical results also show that GS algorithm works well even for functions that are

not Lipschitz.

Quasi-Newton methods have been proposed to optimize a nonconvex nonsmooth functions but

the research is still limited. Lewis and Overton [LO13] give a good overview and demonstrate

empirically that BFGS works very well for functions that are locally Lipschitz continuous with

bounded level sets. They do not give a convergence analysis. So far, most of the quasi-Newton work

has considered the Broyden family of methods, especially BFGS. The trust region with symmetric

rank-1 update has not been considered for nonsmooth optimization. Limited-memory BFGS works

well in practice in some cases [ZZA+00, Ska10]. However, negative comments on its behavior can

be found in [Haa04, YVGS08].

Table 7.1: Glossary of Notation

k: Iteration counter. µ: Sampling radius reduction factor.

xk: Current iterate. θ: Optimality tolerance reduction factor.

γ: Backtracking reduction factor. m: Sample size.

L: {x|f(x) ≤ f(x̃)}. D: Points of differentiability.

ukj: Unit ball samples. xkj: Sampling points.

c1: Armijo parameter. gk: Shortest approximate subgradient.

ǫk: Sampling radius. dk: Search direction.

νk: Optimality tolerance. tk: Step length.

Optimization algorithms for problems with a partly smooth function in the Euclidean setting

are the subject of current research while problems on Riemannian manifolds have received little

consideration. RTR-SR1 does not work well for nonsmooth functions and it can stagnate in a

neighborhood where the cost function nonsmooth. The limited-memory BFGS has difficulty in the

Euclidean nonsmooth case, so we do not expect it will work well for Riemannian problems without

more careful consideration of its Euclidean behavior. In this chapter we consider RBFGS and

Riemannian GS (RGS) since their Euclidean versions of them not only work well for nonsmooth

115

Algorithm 5 The gradient sampling algorithm on R
n

Input: x0 ∈ L
⋂

D, γ ∈ (0, 1), c1 ∈ (0, 1), ǫ0 > 0, ν0 ≥ 0, µ ∈ (0, 1], θ ∈ (0, 1], k = 0, and

m ∈ {n + 1, n+ 2, . . .}.
Output: Sequence of iterates xk.

1: Let uk1, . . . , ukm be sampled independently and uniformly from B, where B = {x|‖x‖ ≤ 1} is
the closed unit ball and ‖ · ‖ is the 2-norm. And set

xk0 = xk and xkj = xk + ǫkukj , j = 1, . . . ,m.

If for some j = 1, . . . ,m, the point xkj /∈ D, then STOP; otherwise, set

Gk = conv{grad f(xk0), grad f(xk1), . . . , grad f(xkm)},

and go to Step 2.

2: Let gk ∈ Gk solve the quadratic program ming∈Gk
‖g‖2, i.e.,

‖gk‖ = dist(0|Gk) and gk ∈ Gk.

If νk = ‖gk‖ = 0, STOP. If ‖gk‖ ≤ νk, set tk = 0, νk+1 = θνk, and ǫk+1 = µǫk and go to Step

4; otherwise, set νk+1 = νk, ǫk+1 = ǫk, and dk = −gk/‖gk‖, and go to Step 3.

3: Set

tk = max γs subject to s ∈ {0, 1, . . .} and f(xk + γsdk) < f(xk)− c1γ
s‖gk‖

and go to Step 4.

4: If xk + tkdk ∈ D, set xk+1 = xk + tkdk, k = k + 1, and go to Step 1. If xk + tkdk /∈ D, let x̂k

be any point in xk + ǫkB satisfying x̂k + tkdk ∈ D and

f(x̂k + tkdk) < f(xk)− c1tk‖gk‖,

(such an x̂k exists due to the continuity of f). Then set xk+1 = xk + tkdk, k = k + 1 and go to

Step 1.

116

functions but also do not require convexity.

From the per iteration complexity point of view, RBFGS has an advantage over RGS. An

expensive quadratic programming computation, is required in each iteration of RGS while RBFGS

requires it only when close to convergence (see Section 7.3.2). Additionally, RGS, in general,

requires many more gradient evaluations and vector transports in each iteration than RBFGS. We

therefore do not expect RGS to be faster than RBFGS in most cases. However, there are two

main reasons that we consider RGS. First, GS works well even for functions that are not Lipschitz

continuous (see Section 11.4.12 for RGS). Second, it has complete Euclidean convergence analysis

while BFGS does not.

In this chapter we define the Riemannian algorithms RGS and RBFGS for nonsmooth functions

on a manifold. We investigate empirically their behavior in Chapter 11. A convergence theory is

not developed here but is considered in other current research and it appears very likely that a

complete theory is possible for RGS while the likelihood for RBFGS is less clear at present.

7.2 Gradient Sampling Algorithm on a Riemannian Manifold

The proposed generalization of the gradient sampling algorithm to Riemannian manifolds is

given in Algorithm 6. There are two obvious differences from the Euclidean version. First, the

Riemannian version uses retraction and, second, a vector transport is required in Step 1.

The convergence analysis of GS on a Euclidean space has been given by Burke, Lewis and

Overton [BLO05]. They proved that when the sampling radius ǫk = ǫ is fixed and the optimality

tolerance νk is 0, iterates eventually stay in a neighborhood of a local minimum and the size of the

neighborhood is dependent on ǫ. In addition, if ǫk and νk are not fixed, in other words, ǫk > 0,

νk > 0, µ ∈ (0, 1) and θ ∈ (0, 1), and iterates {xk} converge to some point x̄, then with probability

1, x̄ is a Clarke stationary point for f .

7.3 Modifications for RBFGS Algorithms

Significant modifications are required to adapt RBFGS for partly smooth functions. The two

most important are a modification to the line search algorithm to determine a step size and a

modification to the stopping criterion.

117

Algorithm 6 The gradient sampling algorithm on d-dimensional Riemannian manifold

Input: x0 ∈ L
⋂

D, γ ∈ (0, 1), c1 ∈ (0, 1), ǫ0 > 0, ν0 ≥ 0, τν ∈ (0, 1), µ ∈ (0, 1], θ ∈ (0, 1], k = 0,

and m ∈ {d+ 1, d + 2, . . .}.
Output: Sequence of iterates xk.

1: Let uk1, . . . , ukm be sampled independently and uniformly from Bk, where Bk = {v|v ∈
Txk
M, ‖v‖ ≤ 1} is the closed unit ball of tangent space of xk and ‖ · ‖ is the induced norm.

And set

xk0 = xk and xkj = Rxk
(ǫkukj), j = 1, . . . ,m.

If for some j = 1, . . . ,m, the point xkj /∈ D, then STOP; otherwise, compute

grad(f(x)) for x = xkj, j = 0, . . . ,m.

and use a vector transport to transport the gradients to Txk
M. Denote the transported

gradients as

ηkj ∈ Txk(M), j = 0, . . . ,m.

set

Gk = conv{ηkj, j = 0, . . . ,m},

and go to Step 2.

2: Let gk ∈ Gk solve the quadratic programming problem ming∈Gk
‖g‖2, i.e.,

‖gk‖ = dist(0|Gk) and gk ∈ Gk.

If ‖gk‖ = 0 and νk < τν, STOP. If ‖gk‖ ≤ νk, set tk = 0, νk+1 = θνk, and ǫk+1 = µǫk and go to

Step 4; otherwise, set νk+1 = νk, ǫk+1 = ǫk, and dk = −gk/‖gk‖, and go to Step 3.

3: Set

tk = max γs subject to s ∈ {0, 1, . . .} and f(Rxk
(γsdk)) < f(xk)− c1γ

s‖gk‖

and go to Step 4.

4: If Rxk
(tkdk) ∈ D, set xk+1 = Rxk

(tkdk), k = k+1, and go to Step 1. If Rxk
(tkdk) /∈ D, perturb

tk and get t̂k satisfying Rxk
(t̂kdk) ∈ D and

f(Rxk
(t̂kdk)) < f(xk)− c1t̂k‖gk‖,

(such an t̂k exists due to the continuity of f and R). Set xk+1 = Rxk
(t̂kdk), k = k + 1 and go

to Step 1.

118

7.3.1 Line Search Algorithm for Partly Smooth Function

Lewis and Overton [LO13] provide an inexact line search algorithm for nonsmooth function

optimization in a Euclidean space. They prove that the algorithm always gives a step size that

satisfies the Wolfe conditions under some reasonable assumptions. Since the line search algorithm

on a Riemannian manifold also deals with a function on R, the conclusion of the Euclidean set-

ting guaranteeing the existence of a step size satisfying the conditions is extended to Riemannian

manifolds naturally.

The line search objective function, h(t) = f(Rx(tη))− f(x), is a partly smooth function defined

on R. In order to obtain the desired result, we make the following assumption which is the same

as [LO13, Assumption 4.1].

Assumption 7.3.1. The function h : R+ → R is absolutely continuous on every bounded interval,

and bounded below. Furthermore, it satisfies

h(0) = 0 and s = lim sup
t↓0

h(t)

t
< 0.

If f is differentiable at x, Assumption 7.3.1 is not required and s is g(grad f(x), η).

The Wolfe conditions for a partly smooth function on R are

A(t) :h(t) < c1st,

W (t) :h is differentiable at t with h′(t) > c2s,

where 0 < c1 < c2 < 1. Notice that since the second condition requires that the selected step size

t is such that h(t) is differentiable, f is differentiable at each iterate Rx(tη). The Wolfe conditions

for the line search here can be shown to be the same as the Wolfe conditions (4.2.1) and (4.2.2)

derived earlier for Riemannian quasi-Newton line search methods such the Riemannian Broyden

family. The Algorithm 7 is the inexact line search algorithm that determine the step size under the

assumption

lim
t↑t̄

h′(t) exists in[−∞,+∞] for all t̄ > 0.

119

Algorithm 7 Inexact line search for partly smooth function
1: α← 0

2: β ← +∞
3: t← 1

4: loop

5: if A(t) fails then

6: β ← t

7: else if W (t) fails then

8: α← t

9: else

10: break

11: end if

12: if β < +∞ then

13: t← (α+ β)/2

14: else

15: t← 2α

16: end if

17: end loop

7.3.2 Stopping Criterion of RBroyden Family Algorithms for a Partly Smooth

Function

Since the function is partly smooth, we cannot expect the norms of gradients go to zero. We need

a method to check whether a subsequence of the iterates defines a suitably small region containing

a Clarke stationarity point. There is a Euclidean space method in [LO13, Section 6.3]. Let J be

a positive integer which is greater than the dimension of the Euclidean space and let τx and τd be

two small positive user-specified tolerances. Define j0 = 1 and G0 = {grad f0} and, for k = 1, 2, . . .

define

jk = 1, Gk = {grad fk} if ‖xk − xk−1‖ > τx,

jk = jk−1 + 1, Gk = {grad fk−jk+1, . . . , grad fk} if ‖xk − xk−1‖ ≤ τx, and jk−1 < J

jk = J,Gk = {grad fk−J+1, . . . , grad fk} if ‖xk − xk−1‖ ≤ τx, and jk−1 < J.

By construction, Gk is a set of jk ≤ J gradients evaluated at points near xk. The smallest vector

in the convex hull of the set,

dk = argmin{‖d‖ : d ∈ convGk},

120

is obtained by solving a convex quadratic program in jk variables. If dk = 0 or ‖dk‖ is sufficiently

small then a Clarke stationary point is in a region defined by the iterates with gradients in Gk. If

both τx and τd are small then this region is also small and xk is near the Clarke stationary point.

We can generalize this idea to a Riemannian manifold. The only difference, the definition of

Gk, is described here. Define j0 = 1 and G0 = {grad f0} and, for k = 1, 2, . . . and define

jk = 1, Gk = {grad fk} if dist(xk, xk−1) > τx,

jk = jk−1 + 1, Gk = {grad f (k)
k−jk+1, . . . , grad f

(k)
k−1, grad f

(k)
k } if dist(xk, xk−1) ≤ τx, and jk−1 < J

jk = J,Gk = {grad f (k)
k−J+1, . . . , grad f

(k)
k−1, grad f

(k)
k } if dist(xk, xk−1) ≤ τx, and jk−1 < J.

where grad f
(j)
i = TR−1

xi
(xj)

grad f(xi). Note that this definition, as given, requires the repeated

transport of the gradients in the set Gk for each new xk+1. The complexity implications of this

depend upon considerations of the possibility of an intrinsic approach for vector transport and

representation of tangent vectors in a set of related tangent spaces (see Chapter 9).

121

CHAPTER 8

RIEMANNIAN OPTIMIZATION AND

CONSTRAINED OPTIMIZATIONS ON

EUCLIDEAN SPACE

8.1 Introduction

Constrained optimization considers a problem of the type

min f(x), subject to x ∈ X ⊆ R
n, (8.1.1)

while Riemannian optimization considers

min f(x), subject to x ∈ M, (8.1.2)

where X is compact, M is a Riemannian manifold and R
n denotes an n-dimensional vector space

with the metric unspecified. E
n denotes n-dimensional Euclidean space, i.e., n dimension vector

space with the standard Euclidean metric. The domains of (8.1.1) and (8.1.2) are different and,

very importantly, neither domain subsumes the other. Riemannian optimization is more general

in the sense that constrained optimization requires the domain to be a subset of Rn, and in some

cases, such as standard nonlinear programming, the domain is characterized by specific algebraic

equality and inequality constraints, while the domain of Riemannian optimization may not be a

subset of Rn. It is allowed to be a more abstract structure, e.g., a quotient or infinite dimensional

space, and even when it is a subset of Rn the choice of representation of local tangent spaces can

be chosen to algorithmic advantage. Conversely, constrained optimization is more general in the

sense that the subset X may be not a Riemannian manifold.

In this chapter, we compare the concepts and objects involved in constrained optimization on R
n

with the closest form of Riemannian optimization, i.e., whenM is a submanifold of Rn. The chapter

is organized as follows. Section 8.2 briefly summarizes the ideas of constrained optimization on E
n.

Section 8.3 shows possibilities of converting a constrained optimization problem into a Riemannian

optimization problem. Finally, Section 8.4 compares variants of the gradient projection method

with Riemannian optimization methods.

122

8.2 Constrained Optimization

Constrained optimization has rich history and the discussion can be found in [Kel99, Ber03,

NW06] and the references therein. There are many methods, i.e., feasible direction methods,

gradient projection methods, penalty methods, barrier methods and dual approaches. To compare

with Riemannian optimization, we briefly introduce the ideas of feasible direction methods, penalty

methods and barrier methods in this section. Gradient projection methods have some features that

are close in spirit to some Riemannian optimization algorithms and are discussed in Section 8.4.

Dual approaches involve identifying a dual problem for the primal problem and solving the dual or

both in an effective manner. These are not directly related to the Riemannian algorithms of this

dissertation and we therefore defer discussions of potential relationships to later work.

8.2.1 Feasible Direction Methods

A vector x ∈ R
n is called feasible if it is in the set X . A direction d of x is called feasible if

{x+αd, α ∈ [0, t]} ⊆ X for some t > 0. Note that the feasible direction may not exist for arbitrary

constraints, e.g., X = {x ∈ R
n|xTx = 1}. Therefore, feasible direction methods are not applicable

to all problems. The analysis in [Ber03] requires the constrained set X to be convex to guarantee

that a feasible direction exists. The discussion in this section follows the requirement of convexity

of X .
A feasible direction method starts with forming a feasible iterate x0 and generates a sequence

of iterates {xk} by
xk+1 = xk + αkdk,

where dk is a feasible descent direction of xk and αk is a step size. The descent direction can be

characterized by

grad f(xk)dk < 0.

where grad f(xk) is the gradient with respect to the Euclidean metric.

A sequence of directions {dk} is called gradient related, if for any subsequence {xk}|k∈K that

converges to a nonstationary point, the corresponding subsequence {dk}|k∈K is bounded and satisfies

lim
k→∞

sup
k∈K

grad f(xk)
Tdk < 0.

123

Given a direction dk the step size αk is determined by the line search algorithm associated with the

particular method. Bertsekas [Ber03, page 217] uses the limited minimization rule or the Armijo

rule as the line search algorithm.

Definition 8.2.1 (Limited minimization rule). The step size αk is chosen so that

f(xk + αkdk) = min
α∈[0,1]

f(xk + αdk).

Definition 8.2.2 (Armijo rule). Fixed scalars β ∈ (0, 1) and σ ∈ (0, 1) are chosen, and we set

αk = βmk , where mk is the first nonnegative integer m for which

f(xk)− f(xk + βmdk) ≥ −σβm grad f(xk)
Tdk.

Proposition 2.2.1 [Ber03] shows that if the sequence of directions {dk} is gradient related and

αk is chosen by the limited minimization rule or the Armijo rule, then every limit point of {xk}
generated by a feasible direction method is a stationary point.

8.2.2 Barrier Methods

A point x of a set S ⊂ R
n is called an interior point of S is there exists an open set U of Rn

such that x ∈ U and U ⊂ S. Suppose the feasible set X is X1∩X2. Let X o
2 denote the set of interior

points of X2. Given any x ∈ X2 and any δ > 0, if there exists a x̃ ∈ X o
2 such that ‖x̃−x‖2 < δ, then

barrier methods can be used. In barrier methods, a function called ”barrier function” is defined to

force each iterate in the interior point set of X2. A barrier function B(x) is defined over X o such

that it is continuous and approaches infinity when x goes to X2 \ X o
2 . Barrier methods generate a

sequence {xk} by
xk = arg min

x∈X1

f(x) + ǫkB(x), (8.2.1)

where ǫk is a given parameter and satisfies ǫk+1 < ǫk, ǫ → 0. We can see by adding the barrier

function, the constraints x ∈ X2 is removed. If X2 is the feasible set X , the problem (8.1.1) becomes

a sequence of unconstrained optimization problems. In the more typical case, the use of the barrier

function allows the removal of the constraints from explicit consideration as iterates remain in X2.

The algorithm concentrates on enforcing explicitly the constraints enforcing membership of the

iterates in X1. Notice that since each iterate xk is an interior point of X2, barrier methods are also

called interior point methods.

124

Proposition 4.1.1 [Ber03] proves that every limit point of a sequence {xk} generated by a barrier

method is a global minimum of the constrained optimization problem (8.1.1).

If X2 is given by inequalities,

X2 = {x|gj(x) ≤ 0, j = 1, 2, . . . , r},

then there are two standard barrier functions, i.e., a logarithmic function

B(x) = −
r
∑

j=1

ln(−gj(x)),

and an inverse function

B(x) = −
r
∑

j=1

1

gj(x)
.

The logarithmic barrier function is commonly used in many algorithms (see the descriptions in

[Kar84, NW06, Ber03]).

Finding each iterate (8.2.1) requires the solution of an optimization problem. In practice, it is

not necessary to solve it exactly. In [Ber03], a strategy of solving (8.2.1) approximately is discussed

for the linear programming problem

min cTx, subject to Ax = b, x ≥ 0,

where c ∈ R
n, b ∈ R

m, A ∈ R
m×n. Instead of solving (8.2.1) exactly, some method is applied for a

few iterations, e.g., a Newton method with one iteration.

8.2.3 Penalty Methods

Contrary to barrier methods which force each iterate into an interior point set, penalty methods

allow iterates to be outside the feasible set X . Penalty methods consider a sequence of problems

and find {xk} by
xk = arg min

x∈Rn
f(x) + ckP (x),

where ck is a given positive parameter and satisfies ck+1 > ck, ck →∞, P (x) is a penalty function

that is continuous, and satisfies the condition that P (x) ≥ 0 and P (x) = 0 if and only if x ∈ X .
(Note that xk is a global minimum of the problem at step k.) Similar to barrier methods, penalty

methods turn a constrained optimization problem to a sequence of unconstrained optimization

problems.

125

There is no convergence proof for general penalty methods. However, the convergence analysis

can be shown under some conditions. Suppose X is given by equalities, the functions in the

equalities are differentiable and f(x) is C1, then the problem (8.1.1) becomes

min f(x), subject to h(x) = 0, (8.2.2)

where h(x) : Rn → R
m and h(x) ∈ C1. Theorem 17.1 in [NW06] proves that for the problem (8.2.2)

if the penalty function P (x) is chosen to be ‖h(x)‖22, then every limit point of the sequence {xk} is
a global minimum of the problem (8.1.1).

If the penalty function P (x) is chosen such that it is possible to solve (8.1.1) with one single

unconstrained optimization problem, then P (x) is called an exact penalty function. For the e-

quality constrained problem (8.2.2), Bertsekas [Ber03] discusses two exact penalty functions, i.e., a

nondifferentiable penalty function

P (x) = max
i=1,...,m

|hi(x)|,

and a differentiable penalty function

P (x, λ) = λTh(x) +
1

2
‖W (x) gradx L(x, λ)‖22 +

c

2
‖h(x)‖22,

where L(x, λ) = f(x) + λTh(x), λ ∈ R
m, c is a positive parameter and W (x) is any continuously

differentiable m× n matrix such that the m×m matrix W (x) gradh(x) is nonsingular for all x.

Even though the choices of penalty functions above are based on equality constraints, they are

applicable also to a constraints that contains inequalities. Consider the problem

min f(x), subject to h(x) = 0, and g(x) ≤ 0,

where g(x) : Rn → R
r. It can be converted to an equality constrained problem by adding new

variables,

min f(x), subject to h(x) = 0, and gi(x) + z2i = 0, i = 1, . . . , r.

A popular variation of a penalty method, that can also be viewed as a dual algorithm, is the

augmented Lagrangian method where for problem (8.2.2), the iterates {xk} are generated by

xk = argmin
x∈X

f(x) + λT
k h(x) +

ck
2
‖h(x)‖22,

where λk ∈ R
m. Proposition 4.2.1 in [Ber03] proves that for the augmented Lagrangian method if

λk are bounded, then every limit point of the sequence {xk} is a global minimum of the problem

(8.1.1).

126

8.3 Riemannian Optimization

Riemannian optimization problems of the type considered in this chapter and Euclidean opti-

mization problems have the similarity that in both cases the cost function is independent of the

feasible set and the metric of the space. They have the obvious main difference that in the former

case the feasible set is a submanifold of Rn while in the latter it is merely a subset of Rn. However,

there is a key difference that can be exploited to algorithm and computational advantage in the

Riemannian case. The Euclidean metric is global in that it does not depend on the particular

elements of the space at which it is evaluated while the Riemannian metric varies with the element

of the manifold that determines the tangent space in which the metric is to be evaluated. The

flexibility of the metric is often a key computational and analytical aspect of efficiency.

Clearly, not all feasible sets in R
n are manifolds. Nevertheless, it is possible to change non-

Riemannian manifold constraints into a Riemannian manifold constraint by substitution. Example

8.3.1 is a method to check whether an equality constrained set is a Riemannian manifold. It is a

direct consequence of Proposition 3.3.4 in [AMS08]. Example 8.3.2 shows an idea to turn a non-

Riemannian set into a Riemannian manifold. Example 8.3.3 illustrates a possible approach to turn

an inequality constrained set to be a Riemannian unconstrained set.

Example 8.3.1. A nonempty feasible set defined by equality constraints

X = {x|h(x) = 0, h(x) : Rn → R
m, h(x) ∈ C∞}

is a Riemannian manifold with the endowed metric from the Euclidean space if the Jacobian matrix

of h(x) has a constant rank for all x ∈ h−1(0).

Example 8.3.2. A feasible set that is a simplex is specified by

X = {x = (x1, x2 . . . , xn)
T |x ≥ 0,

n
∑

i=1

xi = r},

where r is a positive constant. However, it is not a differentiable manifold. By substitution y2i =

xi, i = 1, . . . , n, we have

Y = {y = (y1, y2, . . . , yn)
T |‖y‖22 = r},

which is a sphere.

127

Example 8.3.3. A feasible set defined by the upper half plane is

X = {(x, y) ∈ R
2|y ≥ 0}.

It is a compact set with an inequality constraint. Using the same idea as barrier methods, we

consider the interior points of X ,

X o = {(x, y) ∈ R
2|y > 0}.

It can be shown that by imposing a metric

〈(u1, v1), (u2, v2)〉(x,y) =
u1u2 + v1v2

y2
,

X o is a hyperbolic manifold, where (x, y) ∈ X o and (u1, v1), (u2, v2) ∈ T(x,y) X o.

It should also be noted that once the manifold is specified the flexibility of the metric that

varies with the point on the manifold is accompanied by the freedom to specify the algebraic

characterization of the local tangent space, e.g., the basis used, and the characterization of the

manifold elements themselves. The approach is not restricted to the particular algebraic constraints

given by the problem only the associated geometry.

8.4 Comparison of Riemannian Optimization and Gradient

Projection Methods

Gradient projection methods project a proposed iterate x̃k+1 = xk + αkdk onto the feasible set

X , which does not require a feasible direction or modify the cost function or change the domain.

Therefore, the features of gradient projection methods are close to those of Riemannian optimization

and we compare them in this section. Feasible direction methods require that search directions are

feasible while Riemannian optimization does not. Both barrier methods and penalty methods add

extra terms to the objective function and change the feasible set while Riemannian optimization

does not change the cost function and the domain. Therefore, we do not explicitly compare these

three kinds of methods with the Riemannian optimizations since they are significantly different.

However, some ideas from feasible direction, barrier and penalty methods appear occasionally and

naturally in the discussion of gradient projection methods and these are mentioned in this section.

128

Three frameworks of gradient projection methods are considered. The first, discussed in [LY08,

Chapter 12], is for problems with domains given by nonlinear inequalities and equalities constraints,

i.e., X = {x ∈ R
n|h(x) = 0, g(x) ≤ 0} where h(x) : Rn → R

m, g(x) : Rn → R
r and g(x), h(x) ∈ C3.

The second is for problems with convex domains and is discussed in [Ber03, Chapter 2]. The

third is discussed in [Kel99, Chapter 5] and is for bounds constrained problems with feasible set

X = {x ∈ R
n|Li ≤ (x)i ≤ Ui}.

8.4.1 Nonlinear Inequalities and Equalities Constraints

The framework of the gradient projection method generalizes the steepest descent method of

unconstrained optimization problems to constrained optimization problems. Luenberger and Ye

[LY08] contains a recent presentation of Luenberger’s 1972 approach to nonlinear inequalities and

equalities constraints. The basic idea is given in the following. Given a feasible iterate xk, the

active constraints can be found and we use h̃(x) = 0 ∈ R
m̃ to denote the constraints, where the

active constraints are the constraints given by equations and m ≤ m̃ ≤ m+ r. A search direction

dk is obtained by projecting the negative gradient onto the subspace of Rn tangent to the surface

h̃(x) = 0 at xk. The search direction is not necessarily a feasible direction and a method of pulling

the proposed iterate x̃k+1 = xk + αkdk onto the surface is required.

The basic idea of the gradient projection method for nonlinear inequalities and equalities con-

straints is similar to the Riemannian steepest descent method for a submanifold of En. If h̃(x) = 0

defines a Riemannian manifoldMk in R
n and the metric of the manifold is endowed from E

n, then

the subspace of Rn tangent to the surface h̃(x) = 0 at xk is Txk
Mk and the Riemannian gradient of

the cost function f for the manifoldMk is Pk grad f(xk), where Pk is the projection onto Txk
Mk.

Therefore, a search direction of a Riemannian steepest descent, a negative Riemannian gradient

−Pk grad f(xk), is identical to the search direction dk used in the gradient projection method. A

method of pulling a proposed iterate onto the surface h̃(x) = 0 plays a same role as a retraction.

Luenberger and Ye [LY08] point out two difficulties of the gradient projection method for

nonlinear inequalities and equalities constraints. The first problem is related to the variations

of active constraints when a proposed iterate is returned to the feasible set. Suppose a gradient

projection method has a proposed iterate x̃k+1 = xk − αkPk grad f(xk) that does not necessarily

satisfy the active constraints {x ∈ R
n|h̃(x) = 0}. Some method is required to pull the x̃k+1 back to

satisfying active constraints. However, even though the new point satisfies h̃(x) = 0, it may not be

129

in the feasible set X = {x ∈ R
n|h(x) = 0, g(x) ≤ 0} since the active constraints may have changed

and more care must be taken to handle the problem.

The second problem discussed by Luenberger and Ye concerns returning to the feasible set from

points outside the set. They give a method of returning to the set that finds a feasible point xk+1

such that x̃k+1− xx+1 is perpendicular to the subspace tangent to the surface h̃(x) = 0 at xk. The

xk+1 may not always exist but it does when the step size αk is sufficiently small. Therefore, it

follows that

xk+1 = x̃k+1 + Jh̃(xk)v,

for some vector v in R
m̃, which yields

0 = h(xk+1) = h(x̃k+1 + Jh̃(xk)v).

By linearizing the equation at xk, we have

0 = h(x̃k+1 + Jh̃(xk)v) ≃ h(x̃k+1) + Jh̃(xk)Jh̃(xk)
T v.

The approximation is accurate when ‖v‖2 and ‖x̃k+1 − xk‖ are small. Now, we obtain the first

order approximation

v = −(Jh̃(x)Jh̃(x)T)−1h(x̃k+1),

xk+1 = x̃k+1 − Jh̃(xk)(Jh̃(x)Jh̃(x)
T)−1h(x̃k+1).

In the Riemannian setting, the first problem does not exist since there is no variation of active

constraints. The second problem also does not exist for Riemannian optimization since the function,

called retraction, of pulling a proposed iterate back to the feasible set is defined in a different way.

A retraction R for a submanifoldM of En is defined to satisfy

(i) Rx(0) = x for all x ∈ M,

(ii) dRx(tη)
dt = η, for all x ∈ M and all η ∈ TxM.

The properties are sufficient to guarantee many convergence results. For a given Riemannian

manifold, there are more than one retraction (Figure 8.1) and the method given by Luenberger

and Ye is a particular retraction. This flexibility of retraction allows us to choose an efficient and

effective one to improve the performance.

130

x

R2x(η)

R3x(η)

η

R1x(η)

X

Figure 8.1: Since a retraction only requires local information, Rx(0) = x and
d
dtRx(tη)|t=0 = η, there are many retractions for a given manifold. Above figure shows 3
retractions R1, R2 and R3 as examples.

When Luenberger and Ye analyze the convergence rate of the gradient projection method, they

consider a problem that has only equalities constraints

X = {x ∈ R
n|h(x) = 0, Jacobian of h(x) has a constant rank.}

which is a manifold. When defining a geodesic on X , they use the metric from the embedding

space, the Euclidean space En. The ”line” in the line search algorithm is the geodesic, which means

the method of returning to the feasible set is the exponential mapping. We can conclude that the

algorithm Luenberger and Ye analyze in their framework of the gradient projection method is the

Riemannian steepest descent algorithm with a retraction chosen to be the exponential mapping.

In fact, this approach is the work that motivated the notion of making Riemannian optimization

efficient by finding a replacement for the generically costly exponential mapping.

8.4.2 Convex Set Constraints

The gradient projection method based on Bertsekas [Ber03] generates a sequence of iterates

{xk} by
xk+1 = xk + αk(x̄k − xk), (8.4.1)

where

x̄k = [xk − sk grad f(xk)]
+,

αk ∈ (0, 1], sk is a positive number and [x]+ denotes argminz∈X ‖z − x‖2. Convexity guarantees

the uniqueness of [x]+ for all x ∈ R
n. In practice, finding argminz∈X ‖z − x‖2 may be expensive

and therefore X usually has a relatively simple structure such that finding [x]+ is cheap.

131

Either αk or sk can be viewed as a step size in the update (8.4.1). If sk is some fixed number

and αk is set to be a step size, then the gradient projection method is a feasible direction method

with feasible direction dk = x̄k − xk. Note that if X is not convex, then x̄k − xk may be not a

feasible direction. If αk is 1 and sk is taken to be a step size, then the update of the gradient

projection method is

xk+1 = [xk − sk grad f(xk)]
+. (8.4.2)

This update is working on the projection arc and is similar to Riemannian optimization since a

feasible direction is not required.

The convergence analysis of the gradient projection method is given in [Ber03]. We consider

three line search algorithms used by Bertsekas [Ber03, page 230].

Definition 8.4.1 (Limited minimization rule). sk is chosen to be a constant s and αk is chosen

so that

f(xk + αk(x̄k − xk)) = min
αk∈[0,1]

f(xk + α(x̄k − xk)).

Definition 8.4.2 (Armijo rule along the feasible direction). sk is chosen to be a constant s. Fixed

scalars β ∈ (0, 1) and σ ∈ (0, 1) are chosen, and then αk = βmk , where mk is the first nonnegative

integer m for which

f(xk)− f(xk + βm(x̄k − xk)) ≥ −σβm grad f(xk)
T (x̄k − xk).

Definition 8.4.3 (Armijo rule along the projection arc). αk is fixed to be a unity, αk ≡ 1. Fixed

scalars s̄ > 0, β ∈ (0, 1) and σ ∈ (0, 1) are chosen, and we set sk = βmk s̄, where mk is the first

nonnegative integer m for which

f(xk)− f([xk − βms̄ grad f(xk)]
+) ≥ σ grad f(xk)

T (xk − [xk − βms̄ grad f(xk)]
+).

Proposition 2.3.1 in [Ber03] shows that if the step sizes αk are chosen by the limited minimization

rule or by the Armijo rule along the feasible direction, then every limit point of {xk} is stationary.
Proposition 2.3.2 in [Ber03] proves that if the gradient of f is Lipschitz continuous, i.e., ‖ grad f(x)−
grad f(y)‖ ≤ L‖x−y‖,∀x, y ∈ X , αk is 1, sk is a constant s and 0 < s < 2/L, then every limit point

of {xk} is stationary. Proposition 2.3.3 in [Ber03] proves that if sk is taken to be a constant, then

the Armijo rule along the projection arc line search algorithm stops in finite steps. Furthermore, if

132

the Armijo rule along the projection arc is applied to choose sk, then every limit point of {xk} is
stationary.

The convergence rates of gradient projection methods are essentially the same as those of

unconstrained steepest descent methods. The local convergence rate depends on the eigenvalues of

the Hessian at the minimum.

The two most important algorithmic aspects that influence the performance difference between

gradient projection methods and Riemannian methods such as Riemannian steepest descent are

the geometric relationship of the direction vector used for the line search with the boundary of the

feasible set and the method of pulling back candidate iterates to the feasible set. If a subspace of

R
n tangent to a point x on the boundary of the convex feasible set X exists then the update in the

Riemannian steepest descent algorithm with line search is defined to be

xk+1 = Rxk
(xk − skPxk

grad f(xk)), (8.4.3)

where sk is a step size and Pxk
(v) is the projection that projects v on to the subspace of Rn tangent

to xk. Also, Pxk
grad f(xk) is the Riemannian gradient when the feasible set X is a submanifold of

E
n. The gradient projection method of Bertsekas projects the point xk − sk grad f(xk) (once the

step size of either αk or sk is set) to the feasible set.

While the gradient projection method does not involve a space during the line search the

candidate step sizes are applied to a particular direction vector − grad f(xk). In general this

direction vector is not tangential to the boundary of X . The update formula (8.4.3) is different

from (8.4.2) since the direction vectors − grad f(xk) and −Pxk
grad f(xk) are generically different.

The way in which the candidate iterates are pulled back to X is generically different. The

gradient projection method uses projection [·]+ which projects to the nearest boundary point while

Riemannian optimization uses one of many possible retractions from the tangent space. The pro-

jection [·]+ is a unique operation which is not always well-defined for non-convex sets. Its main

characteristic is that it finds the nearest point and the residual vector xk+1 − (xk − sk grad f(xk))

is perpendicular to an hyperplane that is tangent to the boundary of X at xk+1. The direction

vector generically is neither perpendicular to this hyperplane nor tangent to the boundary at xk.

Additionally, when the projection is well-defined, it may still be expensive. In practice, the gra-

dient projection method is usually applied to simple feasible sets, e.g., bounds constraints. As

133

discussed in Section 8.4.1, for Riemannian embedded manifolds it is usually possible to choose an

efficient and effective retraction. In practical terms, the lack of tangency in the gradient projection

method’s search direction yields a inappropriate scaling of the step size that often causes line search

procedures that require more time than the corresponding Riemannian line search procedure and

result in smaller step sizes which in turn slow convergence.

Selvan et. al. [SAGQ12] discuss the consequences of two updates (8.4.2) and (8.4.3) for the

oblique manifold when performing independent component analysis. The effects described above

were clearly observed. The search direction − grad f(xk) in the gradient projection method suf-

fers from bad performance in the sense that the movement of xk+1 may be arbitrary small even

though a step size is chosen to be infinite while the search direction −Pxk
grad f(xk) in Riemannian

optimization does not suffer from this problem since it is the scale appropriate for the constraints.

To improve the performance based on the idea of the gradient projection method, the second

order term is considered and this gives the scaled gradient projection method [Ber03]. To derive

the scaled gradient projection method, let Hk be a positive definite matrix and y is defined as

(Hk)
−1/2x. The problem (8.1.1) becomes

minhk(y) = f((Hk)−1/2y), subject to y ∈ Yk = {y|(Hk)
−1/2y ∈ X}.

Using the same update (8.4.1) for yk, we obtain

yk+1 = yk + αk(ȳk − yk), (8.4.4)

where

ȳk = [yk − sk grad f(yk)]
+, (8.4.5)

[y]+ denotes argminz∈Yk ‖z − y‖2. Given the connections between x and y

x = (Hk)
−1/2y, xk = (Hk)

−1/2yk,

x̄k = (Hk)
−1/2ȳk, gradhk(yk) = (Hk)

−1/2 grad f(xk)

(8.4.4) can be written as

xk+1 = xk + αk(x̄k − xk), (8.4.6)

where x̄k can be derived from (8.4.5) as

x̄k = argmin
x∈X

(

grad f(xk)
T (x− xk) +

1

2sk
(x− xk)Hk(x− xk)

)

. (8.4.7)

134

The update (8.4.6) defines the scaled gradient projection method. Hk is a second order approxi-

mation. When Hk is chosen to be Hess f(xk), (8.4.6) is a version of constrained Newton method

[Ber03]. However, if Hess f(xk) is not positive definite, the solution of (8.4.7) may not exist.

Proposition 2.3.4 [Ber03] shows that for the scaled gradient projection method, if αk is chosen

by the limited minimization rule or by the Armijo rule along the feasible direction and there exist

positive c1 and c2 such that c1‖z‖2 ≤ zTHkz ≤ c2‖z‖2, then every limit point of {xk} is stationary.
Proposition 2.3.5 [Ber03] proves that for the scaled gradient projection method, if f is C2, Hk is

chosen to be Hess f(xk), Hess f(x) is positive definite for all x ∈ X , let x∗ be a local minimum of

f over X , there exists a δ > 0 such that if ‖x0 − x∗‖ < δ, then {xk} generated by (8.4.6) with

αk = sk = 1 for all k satisfies ‖xk − x∗‖ < δ for all k and xk → x∗. Furthermore, ‖xk − x∗‖
converges to zero superlinearly.

The update (8.4.6) shows the scaled gradient projection method is a feasible direction method.

Therefore, it is not suitable for Riemannian optimization generally since a manifold is not necessarily

a convex set and a feasible direction may not exist. If αk is chosen to be 1, then the line search step

is skipped and the method turns a nonlinear constrained optimization problem to be a sequence

of constrained quadratic problems (8.4.7). This idea sounds like a trust region method but a trust

region method builds a local quadratic model while the constrained quadratic problem (8.4.7) is

not necessarily local. More work has to be done to solve the constrained quadratic problem. When

a Riemannian optimization method makes use of a second order information, the Hessian is defined

on the tangent space. However, the scaled gradient projection method considers the Hessian on

the embedding space E
n.

8.4.3 Bounds Constraints

Kelley [Kel99] discusses a gradient projection method when the feasible set is determined by

bounds constraints, i.e., X = {x ∈ R
n|Li ≤ (x)i ≤ Ui}. This feasible set is convex and the line

search algorithms of Bertsekas and their convergence analyses are applicable. However, Kelley

defines a different line search algorithm.

Definition 8.4.4 (Line search algorithm [Kel99, p. 91]). Fixed scalars β ∈ (0, 1) and σ ∈ (0, 1)

are chosen, and αk = βmk , where mk is least integer m for which

f([xk − βm grad f(xk)]
+)− f(xk) ≤

−σ
βm
‖x− [xk − βms̄ grad f(xk)]

+‖22.

135

Kelley proves the existence of a step size of the line search algorithm [Kel99, Theorem 5.4.5]

and also proves that if grad f(x) is Lipschitz continuous with Lipschitz constant L, then every

limit point of the sequence {xk} generated by the gradient projection method is a stationary point

[Kel99, Theorem 5.4.6].

For bounds constraints, Kelley discusses a variation of gradient projection methods using or

approximating second order information. The variation of the gradient projection method is called

two-metric projection method [Ber03] 1. The update is

xk+1 = [xk − skDk grad f(xk)]
+, (8.4.8)

where Dk is a symmetric positive definite not necessarily diagonal matrix.

An arbitrary positive definite symmetric Dk does not guarantee descent. Nevertheless, there is

a class of matrices for Dk such that the update (8.4.8) is descent. Let ǫ-active set Aǫ(x) at x be

{i|Li ≤ x(i) ≤ Li + ǫ or Ui − ǫ ≤ x(i) ≤ Ui}.

A symmetric matrix D ∈ R
n×n with element dij is diagonal with respect to a subset of indices

I ⊂ {1, . . . , n}, if
dij = 0,∀i ∈ I, j = 1, . . . , n, j 6= i.

It can be shown if Dk is symmetric positive definite and diagonal with respect to the indices

Aǫ(xk), then the descent direction exists unless xk is a stationary point [Kel99, Lemma 5.5.1]. The

flexibility of Dk allows it to be chosen to contain the second order information and increase the

rate of convergence as discussed below.

The projected Newton method for bounds constraints [Ber82] [Kel99, §5.5.2] uses the Hessian.

Let ǫ-inactive set Iǫ(x) be the complement of Aǫ(x). If S is a set of indices, define

(PS(x))i =

{

x(i), i ∈ S;
0, i 6∈ S.

The projected Newton method chooses

Dk = PAǫ(xk) + PIǫ(xk)Hess f(xk)PIǫ(xk) (8.4.9)

=

{

δij , if i ∈ Aǫ(xk) or j ∈ Aǫ(xk);
(Hess f(xk))ij , otherwise.

1Kelley calls this method the scaled gradient projection algorithm. However, it is not consistent with the name
used in Bertsekas’s book [Ber03]. To be consistent, we use the names in [Ber03].

136

and obtains quadratic convergence [Kel99, Theorem 5.5.3].

The projected BFGS-Armijo algorithm [Kel99, §5.5.3] uses the BFGS update to approximate

the Hessian. The Dk is given by adapting the inverse Hessian update,

Dk+1 = PAǫ(xk) +

[(

I − sky
T
k

yTk sk

)

PIǫ(xk)DkPIǫ(xk)

(

I − yks
T
k

yTk sk

)

+
sks

T
k

yTk sk

]

, (8.4.10)

where yk = PIǫ(xk)(grad f(xk+1) − grad f(xk)) and sk = PIǫ(xk)(xk+1 − xk). The method is super-

linearly convergent [Kel99, Theorem 5.5.4].

The boundaries of bounds constraints feasible set are hyperplanes and the ǫ-active set Aǫ(xk)

indicates the hyperplane to which xk is close. The hyperplane is

{x ∈ R
n|x(i) = Li if Li ≤ xk(i) ≤ Li + ǫ and x(j) = Uj if Ui − ǫ ≤ xk(j) ≤ Ui}. (8.4.11)

A hyperplane in R
n can be viewed as a Riemannian manifold with metric endowed from E

n. The

projection onto the hyperplane is [y]+ = PIǫ(xk)(y)+PAǫ(xk)(xk) and the projection onto the tangent

space is Pxk
(v) = PIǫ(xk)(v). Therefore, the Riemannian gradient at xk is PIǫ(xk)(grad f(xk)) and

the Riemannian Hessian at xk is

JPIǫ(x)(grad f(x))(xk) = PIǫ(xk)Hess f(xk)PIǫ(xk) (8.4.12)

where Jt(x) denotes the Jacobian of function t(x). We can see that the Riemannian Hessian is the

same as the second component proposed in (8.4.9). In the Riemannian setting, iterates are not

allowed to move outside the manifold, but iterates may move away from the hyperplane (8.4.11)

and still stay feasible for bound constraints. Therefore, the first component in (8.4.9) is kept which

does not use any second order information. Using the same idea, the Riemannian BFGS update

applied for the hyperplane is identical to the second component of (8.4.10).

In [Kel99, Theorem 5.5.3], Kelley shows that eventually the ǫ-active set does not change and

proves, from a Euclidean point of view, the convergence rate under this constant ǫ-active set

assumption. In fact, if the ǫ-active set does not change in the two-metric gradient projection

algorithm, the Riemannian convergence analysis directly applies. From this observation, it is clear

that these methods using first or second order information are Euclidean/Riemannian hybrids that

use the fixed global endowed Euclidean metric. The flexibility of the Riemannian approach can

subsume and improve these methods.

137

CHAPTER 9

GENERAL IMPLEMENTATION TECHNIQUES

9.1 Introduction

A d-dimensional manifold M often has elements that can be represented by a vector in R
n.

There are some common situations where this is encountered in practice:

1. M is embedded in R
n and inherits its metric from a metric on R

n.

2. M is a subset of Rn with a metric gx on TxM that is not necessarily a restriction of a metric

on R
n nor can it necessarily be extended to be a metric on all of Rn.

3. M is a quotient of a manifold M̄, (which can be of either of the first two types).

4. M is a product of two or more manifolds (each of which can be any of the first three types).

In these cases, TxM, the tangent space of x, can be identified with a subspace of Rn with

dimension d. As a result, one key implementation choice is the use of an n-dimensional or a d-

dimensional vector to represent a tangent vector. The main difference is the need for a basis of

TxM. More specifically, if ξ ∈ TxM is a n-dimensional vector a basis is not required. The

associated computations on the tangent space typically exploit some characterization of vectors in

R
n that are tangent vectors at a point x ∈ M. If d is not significantly smaller than n the complexity

is often not that much more than working in d dimensions explicitly.

A d-dimensional representation, u, requires that u satisfies ξ = Bxu where the columns of

Bx ∈ R
n×d are a basis of TxM. Given Bx, working in d dimensions directly tends to reduce the

complexity of working with linear transformations, e.g., updating a quasi-Newton Hessian approx-

imation is inexpensive. Unfortunately, retraction requires lifting the d-dimensional representation

to an n-dimensional representation which requires extra work.

The key consideration in assessing the computational viability of using a d-dimensional repre-

sentation on a particular manifold is the cost of producing and updating Bx as the optimization

iteration proceeds. For example, if a function that builds basis is smooth (at least locally), i.e.,

138

B : x→ Bx is smooth with respect to x, then the d-dimensional representation often leads to the

most efficient implementations.

This chapter is organized as follows. Sections 9.2, 9.3 and 9.4 present the implementations

based on an n-dimensional representation for the situations 1 – 4. Section 9.5 concentrates on

the d-dimensional intrinsic representation for situation 2 since adapting to the other situations is

straightforward.

9.2 A Manifold in R
n

In this section, we consider a manifoldM⊂ R
n where the metric g ofM is not necessarily an

inherited Euclidean metric, i.e., situation 2. Implementations for situation 1 can be derived from

the results here and are presented for specific manifolds in Chapter 10.

9.2.1 Basic Properties of the Metric as a Matrix

SinceM is a subset of Rn, there exists a function B̃ :M→ R
n×d : x 7→ B̃x such that the B̃x

is a basis of TxM. From the discussion in [AMS08, page 37], we can choose B̃ to be smooth at

least locally. Suppose B̃ is smooth in a neighborhood U . Using the QR decomposition for B̃x and

noting that QR decomposition is smooth on the set of full-rank matrices, we can obtain a smooth

orthonormal basis Bx ∈ R
n×d for all x ∈ U , [DE99].

If η, ξ ∈ TxM, then there exist u, v ∈ R
d such that η = B̃xu and ξ = B̃xv. Therefore, we can

define an intrinsic inner product,

ĝ(u, v) = g(B̃xu, B̃xv) = g(η, ξ). (9.2.1)

If the matrix Ĝx ∈ R
d×d is defined such that

(Ĝx)ij = eTi Ĝxej = ĝ(ei, ej),

where ei and ej are the ith and jth canonical basis of Rd, then Ĝx is symmetric positive definite

and satisfies

ĝ(u, v) = uT Ĝxv. (9.2.2)

Ĝx is the unique R
d×d matrix expression of the metric with respect to the basis B̃x. If the s-

mooth basis B̃x is replaced by a smooth orthonormal basis Bx, then the intrinsic dimension metric

expression Ĝx is the identity, i.e., Ĝx = Id.

139

We seek a matrix Gx ∈ R
n×n such that the metric can be written

g(η, ξ) = ηTGxξ.

This can be combined with (9.2.1) and (9.2.2), to obtain

uT Ĝxv = uT B̃T
x GxB̃xv.

Noting u, v are arbitrary, we have

Ĝx = B̃T
x GxB̃x. (9.2.3)

(9.2.3) is a necessary and sufficient condition for a matrix Gx to be a matrix expression of the

metric on TxM. Rewriting (9.2.3) as a Kronecker product, we obtain

vec(Ĝx) = (B̃T
x ⊗ B̃T

x) vec(Gx), (9.2.4)

where ⊗ denotes the Kronecker product. Using a property of the Kronecker product, rank(B̃T
x ⊗

B̃T
x) = rank(B̃x)rank(B̃x), and noting B̃x is full column rank, we have B̃T

x ⊗ B̃T
x has full row rank.

In addition, B̃T
x ⊗ B̃T

x is a short fat matrix. Hence, (9.2.4) is an underdetermined system and there

are multiple solutions Gx that satisfy (9.2.3). One can choose a Gx satisfying (9.2.3) and make Gx

be a smooth function with respect to x ∈ U since Ĝx and B̃x are smooth. Moreover, there is a

unique smooth Gx such that Gx is symmetric and the columns space of Gx is TxM. To this end,

let Gx be written as

Gx = B̃xMB̃T
x , (9.2.5)

where M ∈ R
d×d. When plugging (9.2.5) into (9.2.3), we have

Ĝx = B̃T
x B̃xMB̃T

x B̃x. (9.2.6)

Since B̃T
x B̃x is full rank, (9.2.6) has a unique solution, M = (B̃T

x B̃x)
−1Ĝx(B̃

T
x B̃x)

−1. The solution

M is symmetric and nonsingular and therefore Gx is symmetric and its column space is TxM as

desired.

We must also consider the inverse of Gx in the appropriate context. If we have a basis Bx then

the rank-d form in (9.2.5) leads naturally to a simple form of the usual generalized or Moore-Penrose

inverse G†x which for (9.2.5) is given by G†x = C̃xM̃
−1C̃T

x , where B̃x = C̃xR̃x is a QR decomposition

140

and M̃ = R̃MR̃T ∈ R
d×d. This acts like the inverse when the vectors are restricted to TxM⊆ R

n

by removing all effects of the null space.

Form (9.2.5) is very special in the sense that it assumes that Gx is a rank-d matrix. However,

we are interested in using an n × n matrix Gx that satisfies the requirements of the metric g on

TxM but may have rank greater than d. We must therefore broaden the definition of the inverse

beyond G† since we must remove or ignore the effects of more than just the null space of Gx.

Let G−1x denote the matrix that satisfies

GxG
−1
x B̃x = G−1x GxB̃x = B̃x.

and therefore acts like an inverse of Gx when restricted to acting on vectors in TxM.

Similarly, let G
1/2
x denote a matrix such that

B̃T
xG

1/2
x G1/2

x B̃x = B̃T
xGxB̃x and B̃T

xG
1/2
x B̃x = B̃T

x (G
1/2
x)T B̃x, (9.2.7)

e.g., G
1/2
x = C̃xM̃

1/2C̃T
x . Let G

−1/2
x denote a matrix such that

G−1/2x G1/2
x B̃x = G1/2

x G−1/2x B̃x = B̃x, (9.2.8)

e.g., G
−1/2
x = C̃xM̃

−1/2C̃T
x .

Finally, we let
TxM===== denote two operators are equivalent when restricted the act on TxM,

e.g., we have

GxG
−1
x

TxM===== G−1x Gx
TxM===== In,

G−1/2x G1/2
x

TxM===== G1/2
x G−1/2x

TxM===== In.

9.2.2 Operations Using n Dimensional Representation

Based on the discussion above, we have the metric defined in terms of an n-dimensional repre-

sentation

g(ηx, ξx) = ηTxGxξx, (9.2.9)

where ηx, ξx ∈ TxM are column vectors in R
n and Gx ∈ R

n×n is a matrix expression of the metric.

η♭x is ηTxGx such that η♭xξx is ηTxGxξx.

The adjoint A∗x of a linear operator Ax satisfies, abstractly, i.e., independently of representation,

g(ηx,Axξx) = g(A∗xηx, ξx),

141

which is, when using the n-dimensional representation of the tangent vectors and operators,

ηTxGxAxξx = ηTx (A∗x)TGxξx, (9.2.10)

for all ηx, ξx ∈ TxM. If A∗x = Ax, then Ax is called self-adjoint. Lemma 9.2.1 gives necessary and

sufficient conditions for Ax to be self-adjoint.

Lemma 9.2.1. A d-dimensional manifold M is a subset of Rn. Then a linear operator Ax on

TxM is self-adjoint if and only if B♭
xAxBx = BT

x GxAxBx is symmetric, where Gx ∈ R
n×n denotes

a matrix expression of the metric in TxM, Bx ∈ R
n×d denotes an orthonormal basis of TxM and

B♭
x ∈ R

d×n is the matrix BT
xGx.

Proof. First, suppose Ax is self-adjoint. For any ηx, ξx ∈ TxM, there exist d-dimensional vectors

u, v such that ηx = Bxu and ξx = Bxv. Therefore, (9.2.10) implies

uTBT
xGxAxBxv = uTBT

xAT
xGxBxv. (9.2.11)

Since (9.2.10) holds for all ηx and ξx, (9.2.11) holds for arbitrary u and v. Therefore, we obtain

BT
x GxAxBx = BT

xAT
xGxBx,

which means BT
x GxAxBx is symmetric.

Conversely, if BT
x GxAxBx = BT

xAT
xGxBx, then by reversing the steps Ax is shown to be self-

adjoint.

A vector transport, T , can be represented as an n×n matrix and we are particularly interested

in the representation of isometric vector transports. Lemma 9.2.2 gives the necessary and sufficient

conditions.

Lemma 9.2.2. A d-dimensional manifold M is a subset of R
n. Then a vector transport T ∈

R
n×n : TxM → TyM is isometric if and only if B♭

yTηxBx = BT
y GyTηxBx is an orthonormal

matrix, where Gx, Gy ∈ R
n×n denote a matrix expression of the metric in TxM,TyM respectively,

Bx, By ∈ R
n×d denote an orthonormal basis of TxM,TyM respectively.

Proof. If T is isometric, then from its definition (1.2.1), we have

ξTx T T
ηxGyTηxζx = ξTxGxζx,

142

for all ξx, ζx ∈ TxM. Noting that there exist u, v ∈ R
d such that ξx = Bxu and ζx = Bxv, we have

uTBT
x T T

ηxGyTηxBxv = uTBT
xGxBxv,

for all u, v ∈ R
d. Therefore, it follows that

BT
x T T

ηxGyTηxBx = BT
xGxBx.

Since Bx is an orthonormal basis with respect to the metric Gx, we have BT
xGxBx = B♭

xBx = Id.

Hence, we know

BT
x T T

ηxGyTηxBx = Id, (9.2.12)

which shows that TηxBx is also an orthonormal basis of TyM. Therefore, there exists an orthonor-

mal matrix O ∈ R
d×d such that TηxBx = ByO. Substituting this into (9.2.12), we have

OTBT
y GyTηxBx = Id.

Therefore, BT
y GyTηxBx = O is an orthonormal matrix.

Conversely, suppose BT
y GyTηxBx is an orthonormal matrix. Note that TηxBx ∈ TyM. There

exists a matrix O ∈ R
d×d such that TηxBx = ByO. Therefore, it follows that

BT
y GyTηxBx = BT

y GyByO. (9.2.13)

Since By is an orthonormal basis with respect to the metric Gy, we have B♭
yBy = BT

y GyBy = Id.

Therefore, by (9.2.13) and assumption, we obtain O is orthonormal. Therefore, we know

BT
x T T

ηxGyTηxBx = OTO = Id,

which is the same as (9.2.12). By reversing the previous steps, we obtain T is isometric.

9.2.3 Construction of Isometric Vector Transports

A vector transport is a map from one tangent space to another tangent space. In our framework,

it can be represented by an n by n matrix. Qi [Qi11] discussed what kinds of functions give vector

transports. She gives the following definition.

Definition 9.2.1. A subspace matching function is a smooth (partial) function

ℓ : Gr(d, n)×Gr(d, n)→ L(Rn,Rn),

where Gr(d, n) is Grassmann manifold, i.e., all d-dimensional subspaces of Rn, L(Rn,Rn) denotes

the set of all linear maps from R
n into itself, with the following conditions:

143

1. The domain of ℓ, denoted by dom(ℓ), contains a neighborhood of the diagonal ∆Gr(d,n) =

{(X ,X) : X ∈ Gr(d, n)}.

2. ℓ(X ,Y)X ⊆ Y

3. ℓ(X ,Y)X⊥ = {0}

4. (Consistency) ℓ(X ,X)|X = idX , for all X ∈ Gr(d, n).

If moreover ℓ(X ,Y)|X is an isometry for all (X ,Y) ∈ dom(ℓ), where the metric is the one induced

from the canonical metric in R
n, then we say that ℓ is isometric. We say that ℓ is isotropic if

ℓ(UX , UY) = Uℓ(X ,Y)UT

for all U ∈ On; in this case, ℓ is fully determined by specifying ℓ(col(In,d),Y) for all Y ∈ Gr(d, n).

Qi proves that T defined by Tηxξx = ℓ(TxM,TR(ηx)M)ξx is a vector transport. Both the

RBroyden family and RTR-SR1 require the vector transport to be isometric. In this section,

methods of constructing isometric vector transports whenM is a subset of Rn are discussed.

Since given two points x and y in M, two tangent spaces TxM and TyM are d-dimensional

subspaces of Rn, the first choice for the isometric vector transport T from x to y is the direct

rotation [DK70, Def. 3.1] from TxM to TyM, restricted to act on TxM. The direct rotation

exists and is unique in the acute case, i.e., when all canonical angles between the subspaces are

acute, which is assumed throughout. The acute case is guaranteed if x is sufficiently close to y.

We consider the implementation of the direct rotation vector transport for case where the

matrix Gz of gz(·, ·) is identity for z ∈ M. Let Bx and By be orthonormal bases of TxM and

TyM respectively. Hence Bx and By can be viewed as n by d matrices and BT
x Bx = BT

y By = Id.

The direct rotation vector transport from x to y is given by

T = ByU
T
b B

T
x , (9.2.14)

where BT
x By = UbPb is the unique polar decomposition; this can be deduced, e.g., from the consid-

erations in [QZL05, §2].
Since the matrix expression, Gz , of the metric gz(·, ·) is the identity when restricted to action

on TzM for z ∈ M, we can extend the Gz and define it to be In. We then can extent the

definition of a normal space for an embedded manifold (situation 1) to situation 2 considered in

144

this section, i.e., NzM at z ∈ M is defined to be {v ∈ R
n|gz(v, ηz) = vT ηz = 0, for all ηz ∈ TzM}.

If the codimension, n − d, is sufficiently smaller than the dimension, d, and if, moreover, an

orthonormal basis Nz of the normal space NzM, z ∈ M, is readily available, then the following

reformulation of (9.2.14) becomes computationally advantageous. Observe that any η ∈ TxM
can be decomposed into a component η1 in TxM∩ TyM and η2 in TxM⊖ (TxM∩ TyM) :=

TxM∩(TxM∩TyM)⊥. It can be deduced from [QZL05, §2] that the direct rotation from TxM to

TyM applied to η ∈ TxM amounts to keeping η1 invariant and applying to η2 the direct rotation

from TxM⊖ (TxM∩TyM) to TyM⊖ (TxM∩TyM). Since (TxM∩TyM)⊥ = NxM⊕NyM
and TxM = (NxM)⊥, one finds that a spanning set of their intersection TxM⊖ (TxM∩TyM)

is given by (I − NxN
T
x)
[

Nx Ny

]

, i.e., by (I − NxN
T
x)Ny. Hence, an orthonormal basis Qx of

TxM⊖ (TxM∩TyM) is obtained by orthonormalizing (I −NxN
T
x)Ny, and likewise with x and

y interchanged. Consequently, the direct rotation vector transport T (9.2.14) is equivalent to

T = (In −QxQ
T
x) +QyU

T
q Q

T
x , (9.2.15)

where QT
xQy = UqPq is the unique polar decomposition. Of course, the implementation of the

(In −QxQ
T
x) must be considered carefully from the numerical point of view, i.e., sum of products

vs product of sums, depending on how orthogonal the elements of the basis are guaranteed to be.

Lemma 9.2.3. The vector transports (9.2.14) and (9.2.15) are equivalent when BT
x By is invertible.

Proof. Suppose the dimension of TxM∩ TyM is dc. Since TxM can be decomposed into two

perpendicular spaces TxM∩ TyM and TxM⊖ (TxM∩ TyM), similarly for TyM, we know

there exist orthonormal matrices Ox and Oy such that the first dc columns of B̃x = BxOx and

B̃y = ByOy are an orthonormal basis B̃dc of TxM∩ TyM and the last d− dc columns of B̃x and

B̃y are Qx and Qy respectively.

Note the structures of B̃x and B̃y, we have

B̃T
x B̃y =

(

Idc 0
0 QT

xQy

)

.

Therefore, the polar decomposition gives

B̃T
x B̃y =

(

Idc 0
0 Uq

)(

Idc 0
0 Pq

)

145

In addition, we also have an another expression of the polar decomposition,

B̃T
x B̃y = OT

xUbPbOy = OT
xUbOyO

T
y PbOy.

B̃T
x B̃y is invertible since BT

xBy is invertible. Therefore, the polar decomposition is unique. We

obtain

OT
xUbOy =

(

Idc 0
0 Uq

)

The vector transport (9.2.14) can be formulated into

T = ByUbB
T
x = B̃yO

T
y UbOxB̃

T
x = B̃y

(

Idc 0
0 Uq

)

B̃T
x

= B̃dcB̃
T
dc +QyU

T
q Q

T
x ,

which is equivalent to (In −QxQ
T
x) +QyU

T
q Q

T
x .

Gz restricted to TzM is not always identity. If not, we can choose a smooth function G : x 7→ Gx

such that Gx satisfies (9.2.3). G1/2 : x 7→ G
1/2
x denotes a smooth function such that G1/2 satisfies

(9.2.7). G−1/2 : x 7→ G
−1/2
x denotes a smooth function such that G−1/2 satisfies (9.2.8). Let

Bx and By, be orthonormal bases of TxM and TyM respectively. Hence Bx and By satisfy

B♭
xBx = BT

xGxBx = Id and B♭
yBy = BT

y GyBy = Id. We can make substitutions B̃x = G
1/2
x Bx and

B̃y = G
1/2
y By. The direct rotation vector transport (9.2.14) is

T = B̃yU
T
b B̃

T
x ,

where B̃T
x B̃y = BT

xG
1/2
x G

1/2
y By = UbPb is the unique polar decomposition. This is a vector

transport under B̃x and B̃y. In order to make it consistent with the original basis Bx and By, we

obtain a vector transport

T = G−1/2y B̃yU
T
b B̃

T
x G

1/2
x ,

TxM===== ByU
T
b B

♭
x (9.2.16)

where BT
x G

1/2
x G

1/2
y By = UbPb is the unique polar decomposition. The operator (9.2.16) is called a

vector transport by direct rotation based on the tangent space.

As when Gz was the identity, if Gz is a symmetric positive definite matrix, then we can broaden

the definition of a normal space, i.e., NzM at z ∈ M is defined to be {v ∈ R
n|gz(v, ηz) = vTGzηz =

146

0, for all ηz ∈ TzM}. Nz is an orthonormal basis of NzM with respect to the metric defined by

Gz. Let Ñz denote G
1/2
z Nz. Note G

1/2
z in Ñzis the usual Euclidean operator definition of the

matrix square root decomposition for G, that satisfies G1/2G1/2 = G and (G1/2)T = G1/2. Ñz is an

orthonormal basis with respect to the metric defined by In. By using an idea similar to (9.2.14),

we obtain a formulation of (9.2.16)

T = G−1/2y (In −QxQ
T
x +QyU

T
q Q

T
x)G

1/2
x , (9.2.17)

where QT
xQy = UqPq is the unique polar decomposition, Qx = orth((In − ÑxÑ

T
x)Ñy), likewise Qy

with x and y interchanged and orth(A) denotes orthonormalizing A. The operator (9.2.17) is called

a vector transport by direct rotation based on normal space.

The vector transport (9.2.16) needs G
1/2
x and G

1/2
y that might be expensive. We can use an

alternative form related to (9.2.16)

T = ByU
T
b B

♭
x, (9.2.18)

where Ub is from a polar decomposition of B♭
xBy = UbPb or (B♭

yBx)
T = PbUb. We also called

(9.2.18) a vector transport by direct rotation based on tangent space. The alternative (9.2.18)

has computation advantages. In some cases, (9.2.18) is equivalent to (9.2.16), e.g., Gz = In, for

all z ∈ M. However, the vector transport (9.2.17) does not have an alternative form in general.

The idea of (9.2.17) is to keep the component in TxM∩ TyM and transport the component in

TxM to TyM isometrically. However, since Gx and Gy are different in general, the component in

TxM∩ TyM with the metric Gx does not have same length as the that with the metric Gy.

The vector transports defined by (9.2.17), (9.2.18) do not require the basis functions Bx and

Nx, respectively, to be smooth with respect to x. If smoothness is imposed, i.e., B : x → Bx and

N : x→ Nx are smooth functions to build a basis of TxM and NxM, then we have simpler forms

of isometric vector transports,

T = ByB
♭
x, (9.2.19)

T = G−1/2y (In −QxQ
T
x −QyQ

T
x)G

1/2
x , (9.2.20)

where Qx and Qy are the same as defined in (9.2.17). As with (9.2.17), (9.2.20) requires Gz to

be a symmetric positive definite matrix. The operator (9.2.19) is called a vector transport by

parallelization and (9.2.20) is called a vector transport by rigging. It is not difficult to verify

147

(9.2.19) is isometric and satisfies the conditions of definition 9.2.1. It is also easy to verify (9.2.20)

except smoothness. When x approaches to y, Nx approaches to Ny, but the matrix Qx does not

approach matrix Qy. This can be seen by considering the expressions

Qx = orth((In − ÑxÑ
T
x)Ñy) and Qy = orth((In − ÑyÑ

T
y)Ñx).

Since ÑT
x Ñy and ÑT

y Ñx both approach the identity, we have that Qy approaches −Qx. This is the

reason that −QyQ
T
x appears in (9.2.20) rather than QyQ

T
x . Even though the continuity of (9.2.20)

is shown, whether it is smooth is still an open question.

If d≪ n − d, then (9.2.18) and (9.2.19) are preferred computationally. Likewise, if d≫ n− d,

then (9.2.17) and (9.2.20) are preferred. If d is not too different from n − d, then (9.2.17) and

(9.2.20) are more expensive due to computation of ”orth”. Forms (9.2.17) and (9.2.20) potentially

suffer more from numerical errors than (9.2.18) and (9.2.19). Forms (9.2.17) and (9.2.18) do not

need the function that builds the bases to be smooth but (9.2.19) and (9.2.20) do. As a result,

(9.2.17) and (9.2.18) are more expensive.

We have considered situation 2 in detail. Note that situation 1 is a simple special case and all

of the forms above are easily adapted.

9.3 Quotient Manifold of a Manifold in R
n

9.3.1 General Discussion

A detailed discussion of quotient manifold concepts is in [AMS08]. An element x in a quotient

manifold,M, represents an equivalent class [x̄] in the total space M̄, i.e.,

[x̄] = {ȳ ∈ M̄|ȳ ∼ x̄},

where ∼ denotes an equivalence relation, i.e., a relation that is

1. reflexive: x ∼ x for all x ∈ M̄,

2. symmetric: x ∼ y if and only if y ∼ x for all x, y ∈ M̄,

3. transitive: if x ∼ y and y ∼ z then x ∼ z for all x, y, z ∈ M̄.

An alternative way to interpret an equivalent class [x̄] is to use a group G and its action on M̄.

This interpretation is used in this section.

148

Definition 9.3.1 (Group). A group G is a set having an associative binary operation, denoted by

·, such that:

1. there is an element e in G such that e · h = h · e = h for all h ∈ G,

2. for every h ∈ G, there exists a unique k such that h · k = k · h = e.

e is called the identity element of G and k is called the inverse of h, denoted by h−1.

Definition 9.3.2 (Group action). G is a group and X is a set. A group action of G on X is a

function

G× X → X , (h, x) 7→ h • x

that satisfies

1. Associativity: (h · k) • x = h • (k • x) and

2. Identity: e • x = x for all x ∈ X .

The equivalent class [x̄] therefore can be written as

[x̄] = {h • x̄|h ∈ G}

and represents the notion of invariance under the group action, i.e., two elements that are related

by an application of a group member are equivalent. The quotient space is

M = M̄/ ∼= M̄/G = {[x̄] : x̄ ∈ M̄}.

The necessary and sufficient conditions for the quotient space to be a quotient manifold, not nec-

essarily a Riemannian manifold, are given by [AMS08, Proposition 3.4.2]. If M̄ is a Riemannian

manifold and M is a manifold, then a necessary and sufficient condition for M to have a metric

endowed from M̄ is that the action of G is isometry, i.e.,

dist(x̄, ȳ) = dist(h • x̄, h • ȳ),

where h ∈ G.

The tangent space of x in a quotient manifold is an abstract concept and is difficult to work

on directly. To overcome this difficulty, first of all, the horizontal distribution, H, is defined

(see [AMS08, Section 3.5.8]). The mapping H assigns a subspace Hx̄ of Tx̄ M̄ to each element

149

x̄ ∈ [x̄] = x. The subspace Hx̄ is called the horizontal space at x̄ and satisfies Hx̄ ⊕ Vx̄ = Tx̄ M̄.

The subspace Vx̄ = Tx̄[x̄] is called the vertical space at x̄. Let π : M̄ → M : x̄ 7→ x = [x̄] denote

the canonical projection. There exists a unique vector η↑x̄ ∈ Hx̄ such that D π(x̄)[η↑x̄] = ηx and η↑x̄

is called a horizontal lift of ηx at x̄. Horizontal spaces are used instead of the tangent space when

implementing the algorithms discussed in this dissertation.

If x̄1, x̄2 are representations of a single element x ∈ M, η↑x̄1 and η↑x̄2 are horizontal lifts of

ηx ∈ TxM at x̄1 and x̄2, then the relationship between η↑x̄1 and η↑x̄2 is

D π(x̄1)[η↑x̄1] = Dπ(x̄2)[η↑x̄2]. (9.3.1)

However (9.3.1) is general but abstract and difficult to use in practice. Theorem 9.3.1 gives a

specific way to compute the relationship.

Theorem 9.3.1. G is a group and has a group action G×N → N where N ⊂ R
n. For any h ∈ G,

h : N → N : x̄ 7→ h • x̄ is a differentiable function.

(i) Suppose N is R
n. If r(t) is a smooth curve on N and r(0) = x̄, d

dtr(t)|t=0 = ξx̄, ξh•x̄ =
d
dt(h • r(t))|t=0, where h ∈ G, then

ξh•x̄ = Jh(x̄)ξx̄,

where Jh is the Jacobian of h.

(ii) Suppose N is a manifold, denoted by M̄, r(t) is a smooth curve on M̄, r(0) = x̄, and
d
dtr(t)|t=0 = ξx̄ ∈ Tx̄ M̄. Let ξh•x̄ denote the d

dt(h • r(t))|t=0, where h ∈ G. Then

ξh•x̄ ∈ Th•x̄ M̄ (9.3.2)

ξh•x̄ = Jh(x̄)ξx̄, (9.3.3)

(iii) Suppose N is a manifold, denoted by M̄, and M̄ is a Riemannian manifold with a metric g

that is not necessarily a Euclidean metric. If the action of G is isometric with respect to the

metric, then

ξx̄Gx̄ηx̄ = ξx̄Jh(x̄)
TGh•x̄Jh(x̄)ηx̄.

for all ξx̄, ηx̄ ∈ Tx̄ M̄, where Gx̄ is a matrix expression of the metric at x̄. Moreover, if Gx̄ is

symmetric positive definite in a neighborhood U of x̄, where U is an open set in R
n, and the

action of G is isometric in U , then

Gx̄ = Jh(x̄)
TGh•x̄Jh(x̄), (9.3.4)

where h • x̄ ∈ U .

150

(iv) Suppose N is a manifold, denoted by M̄, M̄ is a Riemannian manifold with a metric g which

is not necessarily a Euclidean metric, and the action of G is isometric with respect to the

metric. IfM = M̄/G is a Riemannian quotient manifold with metric endowed from M̄, then

the relationship between two horizontal lifts η↑x̄1 and η↑x̄2 of ηx at x̄1 and x̄2 is

η↑x̄2 = Jh(x̄1)η↑x̄1

where h satisfies x̄2 = h • x̄1.

Proof. (i): We have

ξh•x̄ =
d

dt
(h • r(t))|t=0 = Jh(r(0))

d

dt
r(t)|t=0 = Jh(x̄)ξx̄.

(ii): (9.3.3) is a consequence of (i). Since h is defined from M̄ to M̄, h • r(t) is also a curve on

M̄. Therefore, d
dt(h • r(t))|t=0 is a tangent vector on Th•r(0) M̄, which is ξh•x̄ ∈ Th•x̄ M̄.

(iii): Since h is isometric, we know it preserves the distance, i.e,

∫ s

0
‖ d
dt

r(t)‖dt =
∫ s

0
‖ d
dt

(h • r(t))‖dt,

where r(t) is a smooth curve on M̄. Taking the derivative with respect to s for both sides yields

‖ d
dt

r(s)‖ = ‖ d
dt
(h • r(s))‖.

Setting s = 0, we have

‖ d
dt
r(0)‖ = ‖ d

dt
(h • r(0))‖.

which is

‖ζx̄‖ = ‖ζh•x̄‖,

where ζx̄ = d
dtr(0) and ζh•x̄ = d

dt(h • r(t)). Using (ii) and noting ζx̄ can be an arbitrary tangent

vector in Tx̄ M̄, we have

‖ζx̄‖ = ‖Jh(x̄)ζx̄‖,

for all ζx̄ ∈ Tx̄ M̄. Therefore, for any ξx̄, ηx̄ ∈ Tx̄ M̄, we have

‖ξx̄ + ηx̄‖ = ‖Jh(x̄)(ξx̄ + ηx̄)‖,

which yields

g(ξx̄, ηx̄) = g(Jh(x̄)ξx̄, Jh(x̄)ηx̄). (9.3.5)

151

Using a matrix expression for the metric, we obtain

ξTx̄Gx̄ηx̄ = ξTx̄ Jh(x̄)
TGh•x̄Jh(x̄)ηx̄.

Moreover, if h is isometric in an open set of Rn and x̄ is in the open set, then we can choose r(t)

such that r(0) = x̄ and d
dtr(t)|t=0 is an arbitrary vector in R

n. Therefore, ξx̄ and ηx̄ are arbitrary

vectors in R
n. We obtain

Gx̄ = Jh(x̄)
TGh•x̄Jh(x̄).

(iv): Since η↑x̄1 is in Hx̄1 , there exists a smooth path r(t) such that r(0) = x̄1, ṙ(0) = η↑x̄1 and

g(η↑x̄1 , ξx̄1) = 0 for all ξx̄1 ∈ Tx̄1 [x̄1]. Let ζx̄2 denote d
dt(h • r(t))|t=0. By (ii), we have

ζx̄2 = Jh(x̄1)η↑x̄1 .

We next show ζx̄2 ∈ Hx̄2 and ζx̄2 is the horizontal lift of ηx at x̄2. Therefore, we can obtain

ζx̄2 = η↑x̄2 .

First, for any ξx̄1 ∈ Vx̄1 , there exists a path rv(t) ⊂ [x̄1] such that rv(0) = x̄1 and ṙv(0) = ξx̄1 .

Due to the definition of [x̄1], we know h • rv(t) is in V. Therefore, ξx̄2 , the derivative of h • rv(t) at
0, is in Vx̄2 . Since ξx̄2 can be arbitrary, we have

g(ξx̄2 , ζx̄2) = g(ξh•x̄1 , ζh•x̄1)

= g(ξx̄1 , ζx̄1) (since the inner product is preserved by (9.3.5))

= 0, (since ξx̄1 ∈ Vx̄1 and ζx̄1 ∈ Hx̄1)

for all ξx̄2 ∈ Tx̄2 V. Therefore, we obtain ζx̄2 ∈ Hx̄2 .

Second, let f be a smooth function defined on a neighborhood of [x̄1]. To show ζx̄2 is a horizontal

lift of ηx at x̄2, we need to show (9.3.1) which is equivalent to

Dπ(x̄1)[η↑x̄1]f = D π(x̄2)[ζx̄2]f.

Let f̄ denote f ◦ π. We need to show

d

dt
f̄(r(t))|t=0 =

d

dt
f̄(h • r(t))|t=0.

This holds since f̄(r(t)) = f̄(h • r(t)).

Note that the statement for the Grassmann manifold in [AMS08, Proposition 3.6.1] is a conse-

quence of (iv) of Theorem 9.3.1.

152

9.3.2 Operations Using n Dimensional Representation

In this section we consider a total space that is also a manifold M̄ ⊂ R
n. The metric of M̄ is

not necessarily a Euclidean metric. Let Gx̄ denote a matrix expression of the metric at x̄ ∈ M̄.

Since the assumptions of M̄ are identical to those in Section 9.2, the results of Section 9.2 can be

applied.

The metric is

g(ηx, ξx) = g(η↑x̄ , ξ↑x̄) = ηT↑x̄Gx̄ξ↑x̄ ,

where ηx, ξx ∈ TxM, η↑x̄ , ξ↑x̄ ∈ Hx̄ and Gx̄ ∈ R
n×n is a matrix expression of the metric at x̄. The

relationship between matrix expressions at different representations is given by (iii) of Theorem

9.3.1. η♭x at x̄ is represented by η♭↑x̄ = ηT↑x̄Gx̄ such that η♭xξx at x̄ is η♭↑x̄ξ↑x̄ = ηT↑x̄Gx̄ξ↑x̄ . Ax, a linear

operator on TxM, at x̄ is denoted by A↑x̄ . The relationship between A↑x̄ and A↑h•x̄ is

A↑h•x̄Jh(x̄)
Hx̄=== Jh(x̄)A↑x̄ . (9.3.6)

By definition, the adjoint A∗x of linear operator Ax satisfies

g(ηx,Axξx) = g(A∗xηx, ξx).

Considering the representation of x at x̄, we obtain that the adjoint linear operator A∗x at x̄ satisfies

ηT↑x̄Gx̄A↑x̄ξ↑x̄ = ηT↑x̄(A∗↑x̄)TGx̄ξ↑x̄ ,

for all η↑x̄ , ξ↑x̄ ∈ Hx̄. Similar to the proof of Lemma 9.2.1, A is self-adjoint if and only if

BT
↑x̄Gx̄A↑x̄B↑x̄ , which is B♭

↑x̄A↑x̄B↑x̄ , is a symmetric matrix, where the columns of B↑x̄ ∈ R
n×d

are horizontal lifts of columns of an orthonormal basis Bx at x̄.

Let x̄, ȳ ∈ M̄ be representations of x, y ∈ M respectively. A vector transport T from x to

y can be represented by an n by n matrix T (x̄,ȳ)
η↑x̄

such that T (x̄,ȳ)
η↑x̄

: Hx̄ → Hȳ, where η↑x̄ is the

horizontal lift of ηx at x̄ and ηx satisfies Rx(ηx) = y. Using the idea of the proof of Lemma 9.2.2,

we have that a vector transport is isometric if and only if BT
↑ȳGȳT (x̄,ȳ)

η↑x̄
B↑x̄ , which is B♭

↑ȳT
(x̄,ȳ)
η↑x̄

B↑x̄ ,

is an orthonormal matrix, where the columns of B↑x̄ and B↑ȳ are horizontal lifts of columns of

orthonormal basis Bx and By at x̄ and ȳ respectively.

153

9.3.3 Construction of Isometric Vector Transports

A vector transport of M̄ can be used to define a vector transport ofM. T̄ is a vector transport

of M̄ with an associated retraction R̄. If T̄ is to induce a vector transport of M then it must

satisfy some conditions. First, the associated retraction R̄ must satisfy

h̃ • R̄x̄(η↑x̄) = R̄h•x̄(η↑h•x̄), (9.3.7)

for all h ∈ G, all x̄ ∈ M̄ and all η↑x̄ ∈ Hx̄ where h̃ ∈ G. Equation (9.3.7) means that when different

representations and the corresponding horizontal lifts are chosen, the retracted elements must be

able to represent a single element in M. Equation (9.3.7) is a necessary and sufficient condition

for a retraction of M̄ to define a retraction ofM by

Rx(ηx) =
[

R̄x̄(η↑x̄)
]

, (9.3.8)

where x̄ is a representation of x, η↑x̄ is a horizontal lift of ηx at x̄.

Second, the vector transport T̄ must satisfy also

T̄η↑x̄ ξ↑x̄ ∈ Hȳ (9.3.9)

T̄η↑h•x̄ ξ↑h•x̄ ∈ Hh̃•ȳ (9.3.10)

T̄η↑h•x̄ ξ↑h•x̄ = Jh̃(ȳ)(T̄η↑x̄ ξ↑x̄), (9.3.11)

for all η↑x̄ , ξ↑x̄ ∈ Hx̄, all h ∈ G, where ȳ = R̄x̄(η↑x̄). Equation (9.3.11) means that when different

horizontal lifts are chosen, the transported tangent vectors of M̄ must be horizontal lifts of a single

tangent vector ofM. Equations (9.3.7), (9.3.9), (9.3.10) and (9.3.11) are necessary and sufficient

conditions for a vector transport of M̄ to define a vector transport ofM by

Tηxξx = ζy, (9.3.12)

where y = Rx(ηx), the horizontal lift of ζy ∈ TyM at R̄x̄(η↑x̄) is T̄η↑x̄ ξ↑x̄ , x̄ is a representation of

x, η↑x̄ and ξ↑x̄ are horizontal lifts of ηx and ξx at x̄.

Next, we discuss the modification of vector transports of M̄ based on the idea in Section 9.2.3

to make them define vector transports ofM. Since all the vector transports in Section 9.2.3 can be

associated with any retraction, the choice of retraction has nothing with designing vector transport.

Therefore, we assume (9.3.7) holds.

154

Let B : x̄ 7→ Bx̄ denote a function that builds an orthonormal basis of Hx̄ and let C : x̄ 7→ Cx̄

denote a smooth function that builds an orthonormal basis of Vx̄. We have the following four

isometric vector transports of M̄ from using the idea in Section 9.2.3 but restricted to the Horizontal

spaces,

T̄ = BȳU
T
b B

♭
x̄ + CȳC

♭
x̄, (9.3.13)

T̄ = G
−1/2
ȳ (In −Qx̄Q

T
x̄ +QȳU

T
q Q

T
x̄)G

1/2
x̄ + CȳC

♭
x̄, (9.3.14)

T̄ = BȳB
♭
x̄ + CȳC

♭
x̄, (9.3.15)

T̄ = G
−1/2
ȳ (In −Qx̄Q

T
x̄ −QȳQ

T
x̄)G

1/2
x̄ + CȳC

♭
x̄, (9.3.16)

where G : z̄ 7→ Gz̄ is a smooth function and in addition, Gz is symmetric positive definite for

(9.3.14) and (9.3.16), Ub is from a polar decomposition of B♭
x̄Bȳ = UbPb or (B♭

ȳBx̄)
T = PbUb,

QT
x̄Qȳ = UqPq is the unique polar decomposition, Qx̄ = orth((I − Ñx̄Ñ

T
x̄)Ñȳ), Ñx̄ = G

1/2
x̄ Nx̄ (as in

(9.2.17), G
1/2
x̄ is the usual Euclidean operator definition of the matrix square root decomposition for

Gx̄) , N : x̄ 7→ Nx̄ is a function that builds an orthonormal basis of (Hx̄)⊥ = {v ∈ R
n|vTGx̄η↑x̄ =

0 for all η↑x̄ ∈ Hx̄}, likewise Qȳ with x and y interchanged and orth(A) denotes orthonormalizing

A. Functions, N : x̄ 7→ Nx̄ and B : x̄ 7→ B↑x̄ , are not necessarily smooth for (9.3.13) and (9.3.14),

but are required to be smooth for (9.3.15) and (9.3.16).

When the actions of (9.3.13), (9.3.14), (9.3.15) and (9.3.16) are restricted on Hx̄, all of them

satisfy (9.3.9) and (9.3.10). In addition, the last term CȳC
♭
x̄ is zero. Therefore, they reduce to the

following four mappings

T̄ = BȳU
T
b B

♭
x̄, (9.3.17)

T̄ = G
−1/2
ȳ (In −Qx̄Q

T
x̄ +QȳU

T
q Q

T
x̄)G

1/2
x̄ , (9.3.18)

T̄ = BȳB
♭
x̄, (9.3.19)

T̄ = G
−1/2
ȳ (In −Qx̄Q

T
x̄ −QȳQ

T
x̄)G

1/2
x̄ . (9.3.20)

Unfortunately, the four mappings do not satisfy (9.3.11) in general. Lemma 9.3.1 provides sufficient

conditions for them to define vector transports ofM.

Lemma 9.3.1. Suppose the retractions associated with (9.3.17), (9.3.18), (9.3.19) and (9.3.20)

satisfy (9.3.7) with h̃ = h.

155

(i) If (9.3.4) holds for all h ∈ G and Jh(x̄) is independent of x̄ for all x̄ ∈ M̄ and all h ∈ G, i.e.,

Jh(x̄) = Jh(ȳ) for all x̄, ȳ ∈ M̄ and all h ∈ G, then (9.3.17) defines an vector transport ofM
by (9.3.12).

(ii) If (9.3.4) holds for all h ∈ G and G
1/2
h•x̄Jh(x̄)G

−1/2
x̄ is independent of x̄ for all x̄ ∈ M̄ and all

h ∈ G, i.e., G
1/2
h•x̄Jh(x̄)G

−1/2
x̄ = G

1/2
h•ȳJh(ȳ)G

−1/2
ȳ for all x̄, ȳ ∈ M̄ and all h ∈ G, then (9.3.18)

defines an vector transport of M by (9.3.12).

(iii) If the function B : x̄ 7→ B↑x̄ satisfies Jh(x̄)B↑x̄ = B↑h•x̄ for all x̄ ∈ M̄ and all h ∈ G, then

(9.3.19) defines an vector transport of M by (9.3.12).

(iv) If (9.3.4) holds for all h ∈ G, G
1/2
h•x̄Jh(x̄)G

−1/2
x̄ is independent of x̄ for all x̄ ∈ M̄ and all

h ∈ G, i.e., G
1/2
h•x̄Jh(x̄)G

−1/2
x̄ = G

1/2
h•ȳJh(ȳ)G

−1/2
ȳ for all x̄, ȳ ∈ M̄ and all h ∈ G and the

function N : x̄ 7→ Nx̄ satisfies Jh(x̄)Nx̄ = Nh•x̄ for all x̄ ∈ M̄ and all h ∈ G, then (9.3.20)

defines an vector transport of M by (9.3.12).

Proof. (i): Let B : x 7→ Bx be a smooth function that builds a basis of TxM. We choose B↑x̄ such

that the columns of B↑x̄ are the horizontal lifts of Bx at x̄. We consider the first choice of Ub, i.e.,

from the polar decomposition of B♭
↑x̄B↑ȳ = UbPb. The derivation of second choice of Ub is similar

and we do not include it. We have

B♭
↑h•x̄B↑h•ȳ = BT

↑h•x̄Gh•x̄B↑h•ȳ

= BT
↑x̄Jh(x̄)

TGh•x̄Jh(ȳ)B↑ȳ (by (iv) of Theorem 9.3.1)

= BT
↑x̄Jh(x̄)

TGh•x̄Jh(x̄)B↑ȳ (by assumption)

= BT
↑x̄Gx̄B↑ȳ (by assumption)

= B♭
↑x̄B↑ȳ ,

which implies that Ub from polar decomposition of B♭
↑h•x̄B↑h•ȳ is the same as Ub from polar decom-

position of B♭
↑x̄B↑ȳ . Therefore, it follows that

T̄η↑h•x̄ ξ↑h•x̄ = B↑h•ȳUbB
♭
↑h•x̄ξ↑h•x̄

= Jh(ȳ)B↑ȳUbB
T
↑x̄Jh(x̄)

TG↑h•x̄Jh(x̄)ξ↑x̄ (by (iv) of Theorem 9.3.1)

= Jh(ȳ)B↑ȳUbB
T
↑x̄Gx̄ξ↑x̄ (by (iii) of Theorem 9.3.1)

= Jh(ȳ)(T̄η↑x̄ ξ↑x̄),

156

which is the desired result. Moreover, noting that (9.3.17) is independent of the choice of the bases

of Hx̄ and Hȳ, Bx̄ need not be the horizontal lifts of Bx. The only requirement for Bx̄ is that it is

an orthonormal basis of Hx̄.

(ii): Let B : x 7→ Bx be a smooth function that builds a basis of TxM. We choose B↑x̄ such

that the columns of B↑x̄ are the horizontal lifts of Bx at x̄. Noting that (9.3.18) is equivalent to

T̄ = B↑ȳU
T
b B

♭
↑x̄ ,

where Ub is from the polar decomposition, BT
↑x̄G

1/2
x̄ G

1/2
ȳ B↑ȳ = UbPb. We have

BT
↑h•x̄G

1/2
h•x̄G

1/2
h•ȳB↑h•ȳ = BT

↑x̄Jh(x̄)
TG

1/2
h•x̄G

1/2
h•ȳJh(ȳ)B↑ȳ (by (iv) of Theorem 9.3.1)

= BT
↑x̄G

1/2
x̄ G

−1/2
x̄ Jh(x̄)

TG
1/2
h•x̄G

1/2
h•ȳJh(ȳ)G

−1/2
ȳ G

1/2
ȳ B↑ȳ

= BT
↑x̄G

1/2
x̄ G

−1/2
x̄ Jh(x̄)

TG
1/2
h•x̄G

1/2
h•x̄Jh(x̄)G

−1/2
x̄ G

1/2
ȳ B↑ȳ (by assumption)

= BT
↑x̄G

1/2
x̄ G

1/2
ȳ B↑ȳ , (by (9.3.4))

which implies that Ub from polar decomposition of BT
↑h•x̄G

1/2
h•x̄G

1/2
h•ȳB↑h•ȳ is the same as Ub from

polar decomposition of BT
↑x̄G

1/2
x̄ G

1/2
ȳ B↑ȳ . Result (ii) follows by using the idea in the proof of (i).

(iii): We have

T̄η↑h•x̄ξ↑h•x̄ = B↑h•ȳB
♭
↑h•x̄ξ↑h•x̄

= Jh(ȳ)B↑ȳB
T
x̄ Jh(x̄)

TG↑h•x̄Jh(x̄)ξx̄ (by (iv) of Theorem 9.3.1)

= Jh(ȳ)B↑ȳB
T
x̄ Gx̄ξx̄ (by (iii) of Theorem 9.3.1)

= Jh(ȳ)(T̄η↑x̄ ξ↑x̄),

which gives the desired result.

(iv): By (9.3.4), we have

Gx̄ = Jh(x̄)
TGh•x̄Jh(x̄).

It follows that

In = G
−1/2
x̄ Jh(x̄)

TG
1/2
h•x̄G

1/2
h•x̄Jh(x̄)G

−1/2
x̄

= (G
1/2
h•x̄Jh(x̄)G

−1/2
x̄)TG

1/2
h•x̄Jh(x̄)G

−1/2
x̄ ,

157

which means that G
1/2
h•x̄Jh(x̄)G

−1/2
x̄ is an orthonormal matrix for all x̄ ∈ M̄. We have

(In − Ñh•x̄Ñ
T
h•x̄)Ñh•ȳ

= (In −G
1/2
h•x̄Nh•x̄N

T
h•x̄G

1/2
h•x̄)G

1/2
h•ȳNh•ȳ

= (In −G
1/2
h•x̄Jh(x̄)Nx̄N

T
x̄ Jh(x̄)

TG
1/2
h•x̄)G

1/2
h•ȳJh(ȳ)Nȳ (by assumption)

= (In −G
1/2
h•x̄Jh(x̄)G

−1/2
x̄ G

1/2
x̄ Nx̄N

T
x̄ G

1/2
x̄ G

−1/2
x̄ Jh(x̄)

TG
1/2
h•x̄)G

1/2
h•ȳJh(ȳ)G

−1/2
ȳ G

1/2
ȳ Nȳ

= G
1/2
h•x̄Jh(x̄)G

−1/2
x̄ (In −G

1/2
x̄ Nx̄N

T
x̄ G

1/2
x̄)G

1/2
ȳ Nȳ (by assumption and (9.3.4))

= G
1/2
h•x̄Jh(x̄)G

−1/2
x̄ (In − Ñx̄Ñ

T
x̄)Ñȳ.

Similarly, we have

(In − Ñh•ȳÑ
T
h•ȳ)Ñh•x̄ = G

1/2
h•x̄Jh(x̄)G

−1/2
x̄ (In − ÑȳÑ

T
ȳ)Ñx̄.

Using the two equations above and noting that Oh = G
1/2
h•x̄Jh(x̄)G

−1/2
x̄ is an orthonormal matrix,

we have

Qh•x̄ = OhQx̄

Qh•ȳ = OhQȳ.

We have also that

T̄η↑h•x̄ ξ↑h•x̄ = G
−1/2
h•ȳ (In −Qh•x̄Q

T
h•x̄ −Qh•ȳQ

T
h•x̄)G

1/2
h•x̄ξ↑h•x̄

= G
−1/2
h•ȳ (In −Qh•x̄Q

T
h•x̄ −Qh•ȳQ

T
h•x̄)G

1/2
h•x̄ξ↑h•x̄

= G
−1/2
h•ȳ (In −OhQx̄Q

T
x̄O

T
h −OhQȳQ

T
x̄O

T
h)G

1/2
h•x̄Jh(x̄)ξ↑x̄ (by (iv) of Theorem 9.3.1)

= G
−1/2
h•ȳ Oh(In −Qx̄Q

T
x̄ −QȳQ

T
x̄)O

T
hG

1/2
h•x̄Jh(x̄)ξ↑x̄

= G
−1/2
h•ȳ G

1/2
h•ȳJh(ȳ)G

−1/2
ȳ (In −Qx̄Q

T
x̄ −QȳQ

T
x̄)G

−1/2
x̄ Jh(x̄)

TG
1/2
h•x̄G

1/2
h•x̄Jh(x̄)ξ↑x̄

= Jh(ȳ)G
−1/2
ȳ (In −Qx̄Q

T
x̄ −QȳQ

T
x̄)G

−1/2
x̄ Jh(x̄)

TGh•x̄Jh(x̄)ξ↑x̄

= Jh(ȳ)G
−1/2
ȳ (In −Qx̄Q

T
x̄ −QȳQ

T
x̄)G

1/2
x̄ ξ↑x̄ (by (9.3.4))

= Jh(ȳ)(T̄η↑x̄ ξ↑x̄)

which is the desired result.

Another method to satisfy (9.3.11) is to fix a representation when an equivalence class is given.

First of all, we define a section of a quotient manifold.

158

Definition 9.3.3. M is a quotient manifold with the total manifold M̄. S ⊂ M̄ is called a section

of the quotient manifold M if it satisfies

(i) S is a submanifold of M̄;

(ii) S intersects each equivalence class at most once.

If S intersects every equivalence class once, then S is called a global section of M, otherwise, it is

called a local section of M.

If a section S of the quotient manifold M is known, then a vector transport T̄ of M̄ with

associated retraction R̄ can define a vector transport T ofM by

Tηxξx = ζy,

where y = Rx(ηx), the horizontal lift of ζy at R̄x̄(η↑x̄) is T̄η↑x̄ ξ↑x̄ and x̄ ∈ S.

9.4 Product of Manifolds

9.4.1 General Discussion

A product of manifolds is a manifold and is denoted byM =M1×M2×· · ·×Mm, whereMi

is a manifold. In this section, we assumeMi is a di-dimensional manifold that can be represented

by ni-dimensional vector. The dimension of the manifoldM is d =
∑m

i=1 di. The product space in

which the representations of elements ofM reside is Rn where n =
∑m

i=1 ni. However, the metric

on M is not necessarily related to a particular metric on R
n. An element x in M is denoted by

x = (xT1 , x
T
2 , · · · , xTm)T , where xi ∈ Mi. The tangent space ofM is

TxM = Tx1M1 × Tx2M2 × · · · × TxmMm.

The tangent vector ηx is denoted by (ηTx1
, ηTx2

, · · · , ηTxm
)T .

The metric ofMi is denoted by gi(ηxi , ξxi) = ηTxi
Gxiξxi , where Gxi is an ni by ni matrix. The

metric ofM is

g(ηx, ξx) =
m
∑

i=1

gi(ηxi , ξxi) = ηTx diag(Gx1 , Gx2 , · · · , Gxm)ξx = ηTxGxξx,

where Gx = diag(Gx1 , Gx2 , · · · , Gxm) ∈ R
n×n is a block diagonal matrix. The definitions of ♭,

adjoint and vector transport are the same as in Section 9.2.1.

159

9.4.2 Construction of Isometric Vector Transports

We have discussed methods of constructing isometric vector transports for each Mi. Let Ti
denote the associated isometric vector transports. An isometric vector transport for M can be

defined as

Tηxξx = (((T1)ηx1 ξx1)
T , ((T2)ηx2 ξx2)

T , · · · , ((Tm)ηxm ξxm)
T)T

= diag((T1)ηx1 , (T2)ηx2 , · · · , (Tm)ηxm)ξx.

9.5 The Intrinsic Dimensional Approach

As discussed in Section 9, a d-dimensional representation for a tangent vector requires a choice

of basis. If the function Bx that builds an orthonormal basis is smooth, then we can use this

function to assign an orthonormal basis to each point on an open set of the manifold. Under this

framework, many operations become computationally inexpensive.

Only the implementation for a manifold in R
n is discussed in this section. When working on a

quotient manifold with the total manifold in R
n, vector transport, the metric, and linear operators

on the tangent spaces are, in fact, related to the horizontal space of the particular representative

element of the equivalence class associated with elements of the quotient manifold. This horizontal

space is simply a d-dimensional subspace of Rn and therefore the implementation is easily adapted

from the implementation discussed in the remainder of this section.

9.5.1 General Discussion

B is a smooth function to build an orthonormal basis, i.e., B : x → Bx is smooth. From the

discussion of Section 4.6, this function always exists at least locally. In practice, we assume that

the region on which it exists contains the level set {x|f(x) ≤ f(x0)}. If ηx, ξx ∈ TxM, then, since

TxM is a d-dimensional subspace of Rn, both ηx and ξx are n-dimensional vectors. By the function

Bx, we have that the d-dimensional representations of ηx and ξx are

vx = B♭
xηx and ux = B♭

xξx. (9.5.1)

The inner product has a simple form, g(vx, ux) = vTx ux. From (9.5.1), we have

g(vx, ux) = vTx ux = ηTx (B
♭
x)

Tux = ηTxGxBxux = ηTxGxξx,

160

which is consistent with (9.2.9). The linear operator A on a tangent space, TxM, is a d×d matrix.

A is self-adjoint if and only if A = AT .

9.5.2 Computational Benefits

When d-dimensional representations are used, the matrix expression of an inner product be-

comes inexpensive and simple since Ĝx = Id. The vector transports (9.2.19) and (9.3.19) are

both

T = ByB
♭
x.

The d-dimensional representation of the vector transport is

T dvx = B♭
yT ηx (by (9.5.1) and notice vx represents ηx)

= B♭
yByB

♭
xBxvx

= vx, (9.5.2)

where T d ∈ R
d×d is a d-dimensional representation of vector transport. We can see that the matrix

representations of the vector transports (9.2.19) and (9.3.19) become the identity. In other words,

the vector transport are implicit and automatically done by changing bases. This is the most

important advantage of this representation. We avoid many operations especially the expensive

one, i.e., Tη ◦H ◦ T −1η . The only requirement is that a smooth function of building an orthonormal

basis for TxM with acceptable computationally complexity is known.

161

CHAPTER 10

IMPLEMENTATION FOR SOME MANIFOLDS

10.1 Introduction

Chapter 9 contains a general discussion for manifolds that can be represented by a vector in R
n.

In this chapter, specific implementations for common manifolds, the sphere, the Stiefel manifold,

the orthogonal group and the Grassmann manifold, are presented. The discussed implementations

include matrix expression of metrics, linear operators on a tangent space, retractions and vector

transports. For retractions and vector transports, details for constructing pairs that satisfy the

locking condition are provided. Methods of computing the cotangent vector D fRx(s) required by

Ring and Wirth’s RBFGS [RW12] are also given.

This chapter is organized as follows. In Sections 10.2, 10.3, 10.4, 10.5 and 10.6, the implementa-

tion of the four manifolds are presented. Finally, computational complexity is presented in Section

10.7.

10.2 The Stiefel Manifold as an Embedded Submanifold

The Stiefel manifold is a frequently encountered manifold in practice. Edelman, Arias and

Smith [EAS98] have discussed its properties. The Stiefel manifold can be viewed as an embedded

submanifold or a quotient manifold. Their metrics are not equivalent except when p = 1 or p = n.

When p = 1, the manifold is the sphere and when p = n, the manifold is the orthogonal group.

They are considered in Section 10.4 and Section 10.5 respectively and it is assumed that 1 < p < n

for all other discussions of the Stiefel manifold. In this section, an embedded submanifold view of

the Stiefel manifold is taken. Section 10.3 considers the Stiefel manifold as a quotient manifold.

The Stiefel manifold can be defined as a submanifold of np-dimensional Euclidean space by

St(p, n) := {X ∈ R
n×p : XTX = Ip},

where Ip denotes the p by p identity matrix. The tangent space is

TX St(p, n) = {XΩ +X⊥K : ΩT = −Ω,K ∈ R
(n−p)×p},

162

where X⊥ is any n× (n− p) orthonormal matrix such that
[

X X⊥
]

is an orthogonal matrix. The

metric endowed from the Euclidean space is

g(U, V) = trace(UTV), (10.2.1)

where U, V ∈ TX St(p, n). Let ”vec” denote the operation that stacks the columns of its matrix

arguments into a single vector. The inner product can be written in vector form,

g(vec(U), vec(V)) = vec(U)T vec(V).

Therefore, the matrix expression GX of inner product is np×np identity matrix for all X ∈ St(p, n).

10.2.1 Retractions

The exponential mapping given in [EAS98] is

ExpX(U) =
(

X U
)

(

exp

(

A −S
Ip A

))(

Ip
0

)

exp(−A), (10.2.2)

where X ∈ St(p, n), U ∈ TX St(p, n), A = XTU and S = UTU . Some other retractions are given

in [AMS08].

RX(U) = qf(X + U), (10.2.3)

RX(U) = (X + U)(Ip + UTU)−1/2, (10.2.4)

where qf(A) denotes the Q factor of the QR decomposition with nonnegative elements on the

diagonal of R. (10.2.4) uses the polar decomposition.

10.2.2 Vector Transports

The differentiated retraction of the exponential mapping (10.2.2) can be derived using [NH95,

Theorems 4.5 and 4.15]. The resulting vector transport, however, is computationally very expensive.

Alternatives are required for efficiency.

Two vector transports are given in [AMS08, Section 7]. The first is vector transport by projec-

tion denoted by TP
TPU

V = V − Y sym(Y TV), (10.2.5)

163

where U, V ∈ TX St(p, n), Y = RX(U) and R is the associated retraction. The second is vector

transport by differentiated retraction (10.2.3)

TRU
V = Y ρskew(Y

TV (Y T (X + U))−1)

+ (In − Y Y T)V (Y T (X + U))−1, (10.2.6)

where U, V ∈ TX St(p, n), R is (10.2.3), Y = RX(U) and

(ρskew(B))i,j =







Bi,j, if i > j;
0, if i = j;
−Bj,i, if i < j.

The following lemma derives the differentiated retraction of (10.2.4).

Lemma 10.2.1. The differentiated retraction of (10.2.4) is

TRU
V = Y Ω+ (In − Y Y T)V (Y T (X + U))−1, (10.2.7)

where Y = RX(U), R is (10.2.4) and vec(Ω) = ((Y T (X +U))⊕ (Y T (X+U)))−1 vec(Y TV −V TY)

and ⊕ is the Kronecker sum, i.e., A⊕B = A⊗ I + I ⊗B.

Proof. Let t 7→W (t) be a curve on the noncompact Stiefel manifold R
n×p
∗ , i.e., the set of matrices

with full column rank. Ẇ (0) = V and let W (t) = Y (t)P (t) denote the polar decomposition of

W (t). We have

Ẇ = Ẏ P + Y Ṗ . (10.2.8)

We also have the decomposition

Ẏ = Y Y T Ẏ + (In − Y Y T)Ẏ . (10.2.9)

Therefore, we need only obtain Y Y T Ẏ and (In − Y Y T)Ẏ .

Multiplying (10.2.8) by In − Y Y T on the left and P−1 on the right, we obtain

(In − Y Y T)ẆP−1 = (In − Y Y T)Ẏ ,

which is the second part of (10.2.9).

Note the expression of the tangent space of the Stiefel manifold. Y T Ẏ is a skew symmetric

matrix and is denoted by Ω. Multiplying (10.2.8) by Y T , we have

Y T Ẇ = Y T Ẏ P + Ṗ = ΩP + Ṗ .

164

Since the tangent space of a symmetric positive definite matrix is a symmetric matrix, Ṗ is a

symmetric matrix. Hence, we obtain

Y T Ẇ − Ẇ TY = ΩP − P TΩT = ΩP + PΩ.

Rewriting it as an Kronecker sum expression, we obtain

(P ⊕ P) vec(Ω) = vec(Y T Ẇ − Ẇ TY).

By [Lau04, Theorem 13.16] and noting P is positive definite, we know (P ⊕P) is a full rank matrix.

Therefore, a unique solution for Ω exists and is given by vec(Ω) = (P ⊕ P)−1 vec(Y T Ẇ − Ẇ TY).

In summary, we have

Ẏ = Y Ω+ (In − Y Y T)ẆP−1. (10.2.10)

Computing TRU
V = d

dtRX(U + tV)|t=0 is equivalent to computing Ẏ (0) when W (t) = X +U + tV .

Therefore, we have Ẇ = V , Y = Y (0) = RX(U) and P = Y (0)TW (0) = Y T (X +U). Substituting

into (10.2.10) yields the desired result.

The sufficient conditions of the convergence analyses of the RBroyden family and RTR-SR1

require isometric vector transports. However, (10.2.3), (10.2.6), (10.2.7) are non-isometric. This

does not prevent their usefulness in practice under certain conditions without theoretical guarantees

of convergence. In Section 11.4.5, the performance of these non-isometric vector transports are

assessed empirically.

Parallel translation is the most natural isometric vector transport geometrically. Edelman,

Arias and Smith [EAS98] indicated that the closed expression for parallel translation is unknown.

The parallel translation of U along the geodesic γ(t) in direction γ̇(t) = V satisfies the ordinary

differential equation

ω′(t) = −1/2γ(t)(γ′(t)Tω(t) + ω(t)T γ′(t)), (10.2.11)

where ω(t) = P t←0
γ U . Solving the differential equation is expensive and parallel translation is not a

good choice of isometric vector transport in practice. Fortunately, the idea of Section 9.2.3 can be

used to construct isometric vector transports. The only remaining requirement is the construction

of functions that build a basis for the tangent spaces.

165

Note that TX St(p, n) = {XΩ + X⊥K : ΩT = −Ω,K ∈ R
(n−p)×p}. An orthonormal basis of

Tx St(p, n) denoted by Bx is given by

{ 1√
2
X(eie

T
j − eje

T
i) : i = 1, . . . , p, j = i+ 1, . . . , p} ∪ {X⊥ẽieTj , i = 1, . . . , n− p, j = 1, . . . , p},

(10.2.12)

where (e1, . . . , ep) is the canonical basis of Rp and (ẽ1, . . . , ẽn−p) is the canonical basis of Rn−p.

Similarly, note that NXSt(p, n) = {XS : S ∈ R
p×p, S = ST } (see, e.g., [AMS08, Example 3.6.2]),

hence an orthonormal basis of NXSt(p, n) denoted by Nx is given by

{Xeie
T
i : i = 1, . . . , p} ∪ { 1√

2
X(eie

T
j + eje

T
i) : i = 1, . . . , p, j = i+ 1, . . . , p}. (10.2.13)

The columns of BX and NX are thus chosen as the ”vec” of the basis elements.

We can see that the function of constructing Nx is smooth. Meanwhile, if X⊥ is smoothly

dependent on X, Bx is also a smooth function. The vector transports (9.2.17), (9.2.18), (9.2.19)

and (9.2.20) are all isometric vector transports.

10.2.3 Pairs of Retraction and Isometric Vector Transport Satisfying Locking

Condition

The RBroyden family of algorithms require the retraction and isometric vector transport used

to satisfy the locking condition (4.2.6). Chapter 4.4 provides three methods. The first two are

straightforward and are not discussed in detail. We discuss the implementation of the third method

in this section.

With the exception of (9.2.19), for the Stiefel manifold, the vector transports discussed in

Section 9.2.3 are not linear functions with respect to y. Therefore, an efficient retraction can

be derived based on the isometric vector transport (9.2.19) as follows. Let X ∈ St(p, n), U ∈
TX St(p, n) and denote the unknown RX(tU) as X(t). Equation (4.4.10) implies

d

dt
vec(X(t)) = BX(t)B

T
X vec(U), (10.2.14)

where BX(t) is the orthonormal basis of TX(t) St(p, n) given by (10.2.12) and X = X(0). Using the

expression of BX , we have that

BT
X vec(U) =

(√
2 vectriu(ΩU)
vec(KU)

)

,

166

where ΩU = XTU , KU = XT
⊥U and for M ∈ R

p×p,

vectriu(M) = (M12,M13, . . . ,M1p,M23 . . . ,M2p, . . . ,M(p−1)p)
T .

Substituting into (10.2.14), we have

d

dt
vec(X(t)) = BX(t)

(√
2 vectriu(ΩU)
vec(KU)

)

,

which yields
d

dt
X(t) =

(

X(t) X⊥(t)
)

(

ΩU

KU

)

. (10.2.15)

Note (X(t),X⊥(t)) is a smooth curve on the orthogonal group and the tangent space of the orthog-

onal group has form (10.5.1). We have that

d

dt

(

X(t) X⊥(t)
)

=
(

X(t) X⊥(t)
)

Ωn,

where Ωn ∈ R
n×n is a skew symmetric matrix. Since (10.2.15) holds, we have

d

dt

(

X(t) X⊥(t)
)

=
(

X(t) X⊥(t)
)

(

ΩU −KT

K Ω(n−p)

)

,

where Ω(n−p) ∈ R
(n−p)×(n−p) is some skew symmetric matrix. Without loss of generality, we choose

Ω(n−p) to be a zero matrix and we obtain

d

dt

(

X(t) X⊥(t)
)

=
(

X(t) X⊥(t)
)

(

ΩU −KT

K 0

)

.

By rewriting it in the form of Kronecker product, we have

d

dt
vec
((

X(t) X⊥(t)
))

=

(

(

ΩU −KT

K 0

)T

⊗ In

)

vec
((

X(t) X⊥(t)
))

.

The solution is

vec
((

X(t) X⊥(t)
))

= exp

(

(

ΩU −KT

K 0

)T

⊗ In

)

vec
((

X X⊥
))

=

(

exp

(

ΩU −KT

K 0

)T

⊗ In

)

vec
((

X X⊥
))

.

It follows that

(

X(t) X⊥(t)
)

=
(

X X⊥
)

exp

(

ΩU −KT

K 0

)

.

167

Therefore, we have the desired retraction

Y = RX(U) = X(1) =
(

X X⊥
)

exp

(

ΩU −KT

K 0

)(

Ip
0

)

(10.2.16)

and the Y⊥ in the basis BY of the isometric vector transport (9.2.19) is X⊥(1). One interesting

phenomenon is that the retraction (10.2.16) is equivalent to the exponential mapping (10.3.2) with

the Stiefel manifold canonical metric (10.3.1).

The differentiated retraction of the retraction (10.2.16) can be derived as follows. Let U, V ∈
TX St(p, n), ΩU = XTU , KU = XT

⊥U , ΩV = XTV , KV = XT
⊥V . We have

TRU
V =

d

dt
ExpX(U + tV)|t=0

=
(

X X⊥
) d

dt
exp

(

ΩU + tΩV −KT
U − tKT

V

KU + tKV 0

)

|t=0

(

Ip
0

)

.

Let

M1 =

(

ΩU −KT
U

KU 0

)

and M2 =

(

ΩV −KT
V

KV 0

)

.

It follows that

TRU
V =

(

X X⊥
) d

dt
exp(M1 + tM2)|t=0

(

Ip
0

)

=
(

X X⊥
)

Z((Z−1M2Z)⊙ Φ)Z−1
(

Ip
0

)

(by [NH95, Theorem 4.5]), (10.2.17)

where M1 = ZΛZ−1 is the spectral decomposition, λi = Λii, ⊙ denotes the Hadamard product, i.e.

(A⊙B)ij = AijBij and

Φij = Φji =

{

eλi−eλj
λi−λj

, if λi 6= λj ;

eλi , if λi = λj .

10.2.4 Cotangent Vector Required by Ring and Wirth’s RBFGS

Ring and Wirth’s RBFGS [RW12] requires D fRx(s) which is a cotangent vector of the tangent

space TxM, i.e., D fRx(s)[η] = g(grad f(Rx(s)),TRsη), η ∈ TxM. In general, if η, ξ ∈ TxM,

y = Rx(ξ) and ζ ∈ TyM then the cotangent vector in TxM defined by x, ξ, ζ is C(x, ξ, ζ)[η] =

g(ζ,TRξ
η) and, thus, D fRx(s) is C(x, s, grad f(Rx(s))). In this section, we discuss the methods

of computing the cotangent vector C(·, ·, ·) for the embedded Stiefel manifold. The methods of

computing cotangent vector for the quotient Stiefel manifold and Grassmann manifold are given in

Sections 10.3.3 and 10.7.

168

Let U, V ∈ TX St(p, n) and W ∈ TY St(p, n), Y = RX(U). Considering the retraction (10.2.3),

we have that

C(X,U,W)[V]

= trace(W T (Y ρskew(Y
TV (Y T (X + U))−1) + (In − Y Y T)V (Y T (X + U))−1))

= trace(W TY (tril(Y TV (Y T (X + U))−1)− tril(Y TV (Y T (X + U))−1)T))

+ trace(W T (In − Y Y T)V (Y T (X + U))−1)

= trace(W TY tril(Y TV (Y T (X + U))−1))− trace(tril(Y TV (Y T (X + U))−1)Y TW)

+ trace((Y T (X + U))−1W T (In − Y Y T)V)

= trace(tril(Y TV (Y T (X + U))−1)(W TY − Y TW))

+ trace((Y T (X + U))−1W T (In − Y Y T)V)

where tril(M) is the lower triangular part of the matrix M without including the diagonal elements.

Noting that W TY is a skew symmetric matrix and trace(tril(A)B) = trace(A triu(B)), we have

C(X,U,W)[V]

= trace(Y TV (Y T (X + U))−1 triu(2W TY)) + trace((Y T (X + U))−1W T (In − Y Y T)V)

= trace((Y T (X + U))−1(triu(2W TY)Y T +W T (In − Y Y T))V).

where triu(M) is the upper triangular part of the matrixM without including the diagonal elements.

Therefore, the cotangent vector for the retraction (10.2.3) is

C(X,U,W) = (Y T (X + U))−1(triu(2W TY)Y T +W T (In − Y Y T)). (10.2.18)

We also can compute the cotangent vector corresponding to the retraction (10.2.4). Using the

same notations, we have

C(X,U,W)[V] = trace(W T (Y Ω+ (In − Y Y T)V (Y T (X + U))−1))

= trace(W TY Ω) + trace((Y T (X + U))−1W T (In − Y Y T)V),

where vec(Ω) = ((Y T (X + U)) ⊕ (Y T (X + U)))−1 vec(Y TV − V TY). This expression does not

lend itself to rewriting trace(W TY Ω) as trace(MV), where M is some matrix, therefore, we use a

169

Kronecker product form. Specifically, we have

trace(W TY Ω)

= vec(Y TW)T vec(Ω)

= vec(Y TW)T ((Y T (X + U))⊕ (Y T (X + U)))−1 vec(Y TV − V TY)

= vec(Y TW)T ((Y T (X + U))⊕ (Y T (X + U)))−1((Ip ⊗ Y T)− (Y T ⊗ Ip)L) vec(V),

where L ∈ R
np×np satisfies L vec(V) = vec(V T), i.e.,

(L)i,j =

{

1, i = (k − 1)p + h, j = (h− 1)n + k where h = 1, . . . , p, k = 1, . . . , n;
0, otherwise.

Therefore, we have

C(X,U,W)[V]

= vec(Y TW)T ((Y T (X + U))⊕ (Y T (X + U)))−1((Ip ⊗ Y T)− (Y T ⊗ Ip)L) vec(V)

+ trace((Y T (X + U))−1W T (In − Y Y T)V),

which means that the cotangent vector is

C(X,U,W) = ZT + (Y T (X + U))−1W T (In − Y Y T), (10.2.19)

where vec(Z)T = vec(Y TW)T ((Y T (X + U))⊕ (Y T (X + U)))−1((Ip ⊗ Y T)− (Y T ⊗ Ip)L).

The cotangent vector corresponding to the retraction (10.2.16) satisfies

C(X,U,W)[V] = trace(W T
(

X X⊥
)

Z((Z−1M2Z)⊙ Φ)Z−1
(

Ip
0

)

)

= trace(Z−1
(

Ip
0

)

W T
(

X X⊥
)

Z((Z−1M2Z)⊙ Φ))

= trace(((Z−1
(

Ip
0

)

W T
(

X X⊥
)

Z)⊙ ΦT)(Z−1M2Z))

= trace(M3M2),

where

M3 = (Z((Z−1
(

Ip
0

)

W T
(

X X⊥
)

Z)⊙ ΦT)Z−1) ∈ R
n×n.

Splitting M3 into a 2 by 2 block matrix,

M3 =

(

M
(11)
3 M

(12)
3

M
(21)
3 M

(22)
3

)

,

170

where M
(11)
3 ∈ R

p×p, M (12)
3 ∈ R

p×(n−p), M (21)
3 ∈ R

(n−p)×p, and M
(22)
3 ∈ R

(n−p)×(n−p) and using the

expression of M2, we have

C(X,U,W)[V] = trace(M3M2)

= trace(M
(11)
3 XTV +M

(12)
3 XT

⊥V −M
(21)
3 V TX⊥)

= trace(
(

M
(11)
3 M

(12)
3 − (M

(21)
3)T

)

(

XT

XT
⊥

)

V).

Therefore, the cotangent vector is

C(X,U,W) =
(

M
(11)
3 M

(12)
3 − (M

(21)
3)T

)

(

XT

XT
⊥

)

. (10.2.20)

The cotangent vector (10.2.19) contains some big matrix operations. Whether it has efficient

implementations is still unknown. Therefore, the cotangent vectors (10.2.18) and (10.2.20) are used

in some experiments in the experiment Chapter 11.

10.3 The Stiefel Manifold as a Quotient Manifold

When the Stiefel manifold is viewed as a quotient manifold, the total space is the orthogonal

group O(n). Two elements O1, O2 ∈ O(n) are called equivalent if there exists Z ∈ O(n − p) such

that

O1 = O2

(

Ip
Z

)

.

The equivalence class is

[O] = {O
(

Ip
Z

)

|Z ∈ O(n− p)} = OO(n− p).

The quotient Stiefel manifold can be written in term of O(n)/O(n − p). The first p columns of

any element in an equivalence class are the same and the last n − p columns are an arbitrary

orthonormal matrix. The first p columns are therefore used to represent the equivalence class. The

set of representations is

St(p, n) = {X ∈ R
n×p : XTX = Ip},

which is the same as the embedded Stiefel manifold. Edelman, Arias and Smith [EAS98, Section

2.4.1] pointed out that the quotient Stiefel manifold is equivalent to the submanifold of Rn×p with

171

the canonical metric (10.3.1). Therefore, even though the Stiefel manifold is treated as a quotient

manifold, we still work on a submanifold of Rn×p but with a different metric.

The tangent space of St(p, n) with the metric defined below is

TX St(p, n) = {XΩ +X⊥K : ΩT = −Ω,K ∈ R
(n−p)×p},

where X⊥ is any n× (n− p) orthonormal matrix such that
[

X X⊥
]

is an orthogonal matrix. The

canonical metric is

g(U, V) = trace(UT (In −
1

2
XXT)V), (10.3.1)

where U, V ∈ TX St(p, n). Rewriting it as a vector expression, we have

g(vec(U), vec(V)) = vec(U)T diag(In −
1

2
XXT , · · · , In −

1

2
XXT) vec(V).

Hence GX is a block diagonal matrix, diag(In − 1
2XXT , · · · , In − 1

2XXT), where the number of

blocks is p.

10.3.1 Retractions

The exponential mapping given in [EAS98] is

ExpX(U) =
(

X Q
)

(

exp

(

A −RT

R 0

))(

Ip
0

)

, (10.3.2)

where Q and R is the compact QR factorization of (I − XXT)U . The retractions (10.2.3) and

(10.2.4) also can be used here since a retraction is independent of a metric.

10.3.2 Vector Transports

Noting that

In −
1

2
XXT =

(

X X⊥
)

(

1
2Ip 0
0 In−p

)

(

X X⊥
)T

is positive definite for all X ∈ St(p, n), we can extend the metric (10.3.1) to be on R
n×p. Therefore,

the ”orthonormal” based on this metric is well-defined on R
n and thus we obtain a projection to

a tangent space that turns out to be identical to the projection when the metric is endowed from

the Euclidean space. The vector transport by projection is then identical to (10.2.5), i.e.,

TPU
V = V − Y sym(Y TV).

172

The vector transport by differentiated retraction (10.2.3) is

TRU
V = Y ρskew(Y

TV (Y T (X + U))−1)

+ (In − Y Y T)V (Y T (X + U))−1,

and the vector transport by differentiated retraction (10.2.4) is

TRU
V = Y Ω+ (In − Y Y T)V (Y T (X + U))−1,

where Y = RX(U), vec(Ω) = ((Y T (X + U)) ⊕ (Y T (X + U)))−1 vec(Y TV − V TY) and ⊕ is the

Kronecker sum, i.e., A ⊕ B = A⊗ I + I ⊗ B. Both of them are the same as (10.2.6) and (10.2.7)

since they are independent of metrics.

Parallel translation is dependent on the metric and is different from (10.2.11). The parallel

translation of U along the geodesic γ(t) in direction γ̇(t) = V satisfies the ordinary differential

equation

ω′(t) = −1/2(ω(t)γ′(t)T + γ′(t)ω(t)T)γ(t)

− 1/2γ(t)(γ′(t)T (I − γ(t)γ(t)T)ω(t) + ω(t)T (I − γ(t)γ(t)T)γ′(t)), (10.3.3)

where ω(t) = P t←0
γ U . As with (10.2.11), the closed form is unknown. Therefore, the parallel

translation is also not a good choice of an isometric vector transport in practice.

As with the embedded manifold view of the Stiefel manifold, the idea of Section 9.2.3 can be

used to construct isometric vector transports. This requires the consideration of generating bases

for the tangent and normal spaces. Even though the tangent space is the same as that of the

embedded Stiefel manifold, the orthonormal basis is different due to the difference of metric. By

simple derivation, we have an orthonormal basis of Tx St(p, n) denoted by Bx is

{X(eie
T
j − eje

T
i) : i = 1, . . . , p, j = i+ 1, . . . , p} ∪ {X⊥ẽieTj , i = 1, . . . , n− p, j = 1, . . . , p},

where (e1, . . . , ep) is the canonical basis of Rp, (ẽ1, . . . , ẽn−p) is the canonical basis of Rn−p. An

orthonormal basis Nx St(p, n) denoted by Nx is then

{
√
2Xeie

T
i : i = 1, . . . , p} ∪ {X(eie

T
j + eje

T
i) : i = 1, . . . , p, j = i+ 1, . . . , p}.

The columns of BX and NX are then given by the ”vec” of the basis elements.

173

Although GX is not identity, G
1/2
X and G

−1/2
X are not difficult to compute. We have G

1/2
X =

diag(I − (1− 1/
√
2)XXT , · · · , I − (1− 1/

√
2)XXT) and G

−1/2
X = diag(I + (

√
2− 1)XXT , · · · , I +

(
√
2 − 1)XXT) where the number of blocks is p. One can find that B̃x and Ñx are (10.2.12) and

(10.2.13).

The basic requirements are satisfied with these vector transports. It is clear that the function

constructing Nx is smooth. If X⊥ is a smoothly dependent on X, Bx is also a smooth function.

The vector transports (9.2.17), (9.2.18), (9.2.19) and (9.2.20) are all isometric vector transports.

Using the procedures in Section 10.2.3, we can obtain a retraction corresponding to the vector

transport (9.2.19) such that the pair satisfies the locking condition (4.2.6). In fact, the result is

identical to that in Section 10.2.3.

We have

(

X(t) X⊥(t)
)

=
(

X X⊥
)

exp

(

ΩU −KT

K 0

)

.

The desired retraction is

Y = RX(U) = X(1) =
(

X X⊥
)

exp

(

ΩU −KT

K 0

)(

Ip
0

)

. (10.3.4)

and Y⊥ in the basis BY of the isometric vector transport (9.2.19) is X⊥(1).

The differentiated retraction of (10.3.4) is the same as (10.2.17),

TRU
V =

(

X X⊥
)

Z((Z−1M2Z)⊙ Φ)Z−1
(

Ip
0

)

,

where M1 = ZΛZ−1 is the spectral decomposition, λi = Λii, ⊙ denotes the Hadamard product, i.e.

(A⊙B)ij = AijBij and

Φij = Φji =

{

eλi−eλj
λi−λj

, if λi 6= λj ;

eλi , if λi = λj .

10.3.3 Cotangent Vector Required by Ring and Wirth’s RBFGS

The discussion in this section follows that in Section 10.2.4 while noting the differences be-

tween the metrics (10.3.1) and (10.2.1). The cotangent vectors C(·, ·, ·) corresponding to different

retractions are not the same as those in Section 10.2.4 since they are dependent on the metric.

174

Let U, V ∈ TX St(p, n) and W ∈ TY St(p, n), Y = RX(U). For the retraction (10.2.3), we have

that

C(X,U,W)[V]

= trace(W T (In −
1

2
Y Y T)(Y ρskew(Y

TV (Y T (X + U))−1) + (In − Y Y T)V (Y T (X + U))−1))

= trace((Y T (X + U))−1(triu(W TY)Y T +W T (In − Y Y T))V)

Therefore, the cotangent vector for the retraction (10.2.3) is

C(X,U,W) = (Y T (X + U))−1(triu(W TY)Y T +W T (In − Y Y T)).

Similarly for the retraction (10.2.6), we have

C(X,U,W)[V]

= trace(W T (In −
1

2
Y Y T)(Y Ω+ (In − Y Y T)V (Y T (X + U))−1))

=
1

2
vec(Y TW)T ((Y T (X + U))⊕ (Y T (X + U)))−1((Ip ⊗ Y T)− (Y T ⊗ Ip)L) vec(V)

+ trace((Y T (X + U))−1W T (In − Y Y T)V),

where vec(Ω) = ((Y T (X + U)) ⊕ (Y T (X + U)))−1 vec(Y TV − V TY) and L ∈ R
np×np satisfies

L vec(V) = vec(V T), i.e.,

(L)i,j =

{

1, i = (k − 1)p + h, j = (h− 1)n + k where h = 1, . . . , p, k = 1, . . . , n;
0, otherwise.

The cotangent vector is

C(X,U,W) = ZT + (Y T (X + U))−1W T (In − Y Y T),

where vec(Z)T = 1
2 vec(Y

TW)T ((Y T (X + U))⊕ (Y T (X + U)))−1((Ip ⊗ Y T)− (Y T ⊗ Ip)L).

The cotangent vector corresponding to the retraction (10.3.4) is

C(X,U,W)[V] = trace(W T (In −
1

2
Y Y T)

(

X X⊥
)

Z((Z−1M2Z)⊙ Φ)Z−1
(

Ip
0

)

)

= trace(M4M2),

where

M4 = (Z((Z−1
(

Ip
0

)

W T (In −
1

2
Y Y T)

(

X X⊥
)

Z)⊙ ΦT)Z−1) ∈ R
n×n.

175

Splitting M4 into a 2 by 2 block matrix,

M4 =

(

M
(11)
4 M

(12)
4

M
(21)
4 M

(22)
4

)

,

where M
(11)
4 ∈ R

p×p, M (12)
4 ∈ R

p×(n−p), M (21)
4 ∈ R

(n−p)×p, and M
(22)
4 ∈ R

(n−p)×(n−p) and noting

the expression of M2, we have

C(X,U,W)[V] = trace(M4M2)

= trace(M
(11)
4 XTV +M

(12)
4 XT

⊥V −M
(21)
4 V TX⊥)

= trace(
(

M
(11)
4 M

(12)
4 − (M

(21)
4)T

)

(

XT

XT
⊥

)

V).

Therefore, the cotangent vector is

C(X,U,W) =
(

M
(11)
4 M

(12)
4 − (M

(21)
4)T

)

(

XT

XT
⊥

)

.

10.4 The Sphere

Since the sphere is the Stiefel manifold with p = 1, i.e.,

S
n−1 := {x ∈ R

n|xTx = 1}

the discussions and techniques of the previous sections apply. Therefore, in this section the results

that arise from applying those techniques are simply stated. Details are only given when the

particular structure of the sphere allows extensions to the earlier results.

The tangent space of Sn−1 is

Tx S
n−1 = {η ∈ R

n : xT η = 0}.

The two metrics corresponding to an embedded submanifold and a quotient manifold are

ge(η, ξ) = ηT ξ and gq(η, ξ) = ηT (In −
1

2
xxT)ξ,

where η, ξ ∈ Tx S
n−1. Since xT η = xT ξ = 0 on the sphere, the two metrics are identical, i.e.,

g(η, ξ) = ge(η, ξ) = gq(η, ξ). (10.4.1)

176

10.4.1 Retractions

Two retractions of sphere are given in [AMS08]. The simplest retraction is achieved by normal-

izing the length of the vector,

Rx(η) =
x+ η

‖x+ η‖2
. (10.4.2)

The exponential mapping is given by

Expx(η) = x cos(‖η‖) + η

‖η‖ sin(‖η‖), (10.4.3)

where x ∈ S
n−1 and η ∈ Tx S

n−1.

10.4.2 Vector Transports

There are two non-isometric vector transports in [AMS08]. Vector transport by projection is

given by

TPηξ = ξ − yyT ξ,

where η, ξ ∈ S
n−1, y = Rx(η) and R is the associated retraction. On the sphere, there is considerable

simplification of vector transport by differentiated retraction (10.4.2) compared to the general Stiefel

case. It is simply a scaling of vector transport by projection, i.e.,

TRηξ =
ξ − yyT ξ

‖x+ η‖2
,

where η, ξ ∈ S
n−1, y = Rx(η) and R is (10.4.2).

For the sphere, the closed form of parallel translation along the geodesic is known,

P 1←0
γ ξ = ξ − 2ξT y

‖x+ y‖22
(x+ y), (10.4.4)

where ξ ∈ Tx S
n−1, γ is the geodesic from x to y and γ(0) = x, γ(1) = y.

Since the codimension of Sn−1 is 1, isometric vector transports can be constructed by (9.2.17)

and (9.2.20). They produce the same isometric vector transport,

TSηξ = (In − qqT − q̃qT)ξ, (10.4.5)

where q = (In − xxT)y/‖(In − xxT)y‖2 and q̃ = (In − yyT)x/‖(In − yyT)x‖2.
In fact, not only (9.2.17) and (9.2.20) produce the same vector transport. The next lemma

shows that parallel translation on a sphere is also equivalent.

177

Lemma 10.4.1. (10.4.4) and (10.4.5) are equivalent.

Proof. We have

‖(In − xxT)y‖22 = yT y + (xT y)2xTx− 2(xT y)2 = 1− (xT y)2 = (1− xT y)(1 + xT y),

‖(In − yyT)x‖22 = xTx+ (xT y)2yT y − 2(xT y)2 = 1− (xT y)2 = (1− xT y)(1 + xT y).

Therefore, we have ‖(I − xxT)y‖2 = ‖(I − yyT)x‖2. It follows that

(I − qqT − q̃qT)ξ =

(

I − (I − xxT)yyT (I − xxT)

‖(I − xxT)y‖22
− (I − yyT)xyT (I − xxT)

‖(I − xxT)y‖2‖(I − yyT)x‖2

)

ξ

=

(

I − (I − xxT)yyT

(1− xT y)(1 + xT y)
− (I − yyT)xyT

(1− xT y)(1 + xT y)

)

ξ

=

(

I − (y − xxT y)yT

(1− xT y)(1 + xT y)
− (x− yyTx)yT

(1− xT y)(1 + xT y)

)

ξ

=

(

I − (y + x− xxTy − yyTx)yT

(1− xT y)(1 + xT y)

)

ξ

=

(

I − (1− xT y)(y + x)yT

(1− xT y)(1 + xT y)

)

ξ

=

(

I − 2(y + x)yT

2 + 2xT y

)

ξ

=

(

I − 2(y + x)yT

‖x+ y‖22

)

ξ,

which is (10.4.4).

10.5 The Orthogonal Group

The orthogonal group is the Stiefel manifold with p = n, i.e.,

O(n) := {X ∈ R
n×n : XTX = In}.

as with the sphere results we highlight the differences that arise due to the specific structure of the

group.

The tangent space of O(n) is

TX O(n) = {XΩ : ΩT = −Ω}. (10.5.1)

The two metrics corresponding to an embedded submanifold and a quotient manifold are

ge(U, V) = trace(UTV), and gq(U, V) = trace(UT (In −
1

2
XXT)V)

178

where U, V ∈ TX O(n). Notice that UTV = UTXXTV , we have

ge(U, V) = 2gq(U, V).

Since the difference is scaling by a constant, they are equivalent and we choose the metric

g(U, V) = ge(U, V). (10.5.2)

By rewriting g(U, V) in vector form, Gx is seen to be the identity for all x ∈ O(n).

10.5.1 Retractions

As with the Stiefel manifold, three retractions are considered. The exponential mapping is

ExpX(U) = X exp(XTU),

where X ∈ O(n) and U ∈ TX O(n). The retractions based on the QR and polar decompositions

are

RX(U) = qf(X + U),

RX(U) = (X + U)(Ip + UTU)−1/2,

10.5.2 Vector Transports

Since the orthogonal group is a special case of the Stiefel manifold, the vector transport by

projection and vector transports by differentiated retractions are (10.2.5), (10.2.6), (10.2.7) and

(10.2.17) with p = n. However, as with the sphere, the closed form of the parallel translation is

known,

P 1←0
γ ξ = Xe

XT η
2 XT ξe

XT η
2 ,

where γ is a geodesic from X to Y and γ(0) = X, γ(1) = Y , ExpX(η) = Y .

Even though, for O(n), the codimension, n(n + 1)/2, and dimension, n(n + 1)/2, are not too

different using a basis of the tangent space is preferred to using a basis of the normal space since

the latter requires an extra QR decomposition. The procedure for using the basis of TX O(n) to

construct isometric vector transports is the same as that discussed in Section 10.2.2. Note however

in this case, since the matrix X is square, X⊥ does not exist which results in some simplification of

the computational complexity. Equations (9.2.17), (9.2.18), (9.2.19) and (9.2.20) are all isometric

vector transports.

179

10.6 The Grassmann Manifold

The Grassmann manifold, Gr(p, n), is the set of all p-dimensional subspaces of Rn. There are

several ways to describe it [EAS98], [AMS08]. This section uses the framework in [EAS98].

The Grassmann manifold is O(n)/(O(p) × O(n − p)). Since the quotient Stiefel manifold is

O(n)/O(n − p), the Grassmann manifold can be written also as St(p, n)/G where

G = O(p) (10.6.1)

and the group action, denoted ·, is matrix multiplication on the right, i.e., O1, O2 ∈ O(p),

O1 ·O2 = O2O1 (10.6.2)

and the group action on St(p, n) is also matrix multiplication on the right, i.e., X ∈ St(p, n) and

O ∈ O(p),
O •X = XO. (10.6.3)

Therefore, the equivalence class of X ∈ St(p, n) that corresponds to an element of the Gr(p, n) is

[X] = {XO : O ∈ O(p)} = XO(p).

In order to apply Theorem 9.3.1, an element and a tangent vector of the total manifold St(p, n)

must be expressed as a vector. Let Xv denote vec(X) and η↑Xv denote vec(η↑X), where X ∈ St(p, n)

and η[X] ∈ T[X]Gr(p, n). By the definition of Kronecker product, we obtain that the group is

G
v = {O ⊗ In|O ∈ O(p)}, (10.6.4)

the group action, denoted ·, is matrix multiplication on the left, i.e., O1, O2 ∈ O(p),

(O1 ⊗ In) · (O2 ⊗ In) = (O1 ⊗ In)(O2 ⊗ In) = O1O2 ⊗ In, (10.6.5)

and the group action on St(p, n) is also matrix multiplication on the left, i.e., O ∈ O(p),X ∈
St(p, n),

(O ⊗ In) •Xv = (O ⊗ In)X
v = vec(XOT). (10.6.6)

Equations (10.6.1), (10.6.2) and (10.6.3) are equivalent to (10.6.4), (10.6.5) and (10.6.6) respectively.

The only difference is that the former group action is on St(p, n) and the latter is on vec(St(p, n)) =

{vec(X)|X ∈ St(p, n)}.

180

For any O ∈ O(p), O ⊗ In defines a function O ⊗ In : vec(St(p, n)) → vec(St(p, n)) : Xv 7→
(O ⊗ In)X

v . It is smooth and therefore differentiable with Jacobian

J(O⊗In)(X) = (O ⊗ In). (10.6.7)

Hence, we can apply (iv) of Theorem 9.3.1 and obtain the relationship between horizontal lifts of

a tangent vector,

η↑(O×In)•vec(X)
= vec(η↑

XOT
) = vec(η↑XO

T),

which is essentially identical to [AMS08, Proposition 3.6.1].

From [AMS08, Example 3.6.4] and X ∈ St(p, n), the horizontal space at X is

HX = {X⊥K : K ∈ R
(n−p)×p}, (10.6.8)

where X⊥ is the same as in the definition of tangent space of St(p, n). The metric is

g[X](η[X], ξ[X]) = gX(η↑X , ξ↑X) = trace(ηT↑X (I −
1

2
XXT)ξ↑X) = trace(ηT↑X ξ↑X), (10.6.9)

where η[X], ξ[X] ∈ T[X]Gr(p, n), η↑X , ξ↑X are horizontal lifts of η[X], ξ[X] at X. By rewriting (10.6.9)

in vector form, it is clear that GX is an np by np identity matrix for all X ∈ St(p, n). This result

is consistent with (iii) of Theorem 9.3.1,

GX = Inp = (O ⊗ In)(O ⊗ In)
T = J(O⊗In)(X)TG(O⊗In)•XJ(O⊗In)(X)T .

A linear operator A[X] on a tangent space T[X]Gr(p, n) at different horizontal spaces has dif-

ferent expressions and they satisfy the general formula (9.3.6) which in this case is

A↑(O⊗In)•X
(O ⊗ In) = (O ⊗ In)A↑X .

10.6.1 Retractions

The exponential mapping of Gr(p, n) [EAS98, Theorem 2.3] is

Exp[X](η[X]) = [
(

XV U
)

(

cos Σ
sinΣ

)

V T],

where X ∈ [X], η↑X is the horizontal lift of η[X] at X and η↑X = UΣV T is the singular value

decomposition.

181

The matrix representation of the exponential mapping is

ExpX(η↑X) =
(

XV U
)

(

cos Σ
sinΣ

)

V T . (10.6.10)

Two retractions, (10.2.3) and (10.2.4), are on the total space St(p, n). Therefore, they are

retractions of the total space of the Grassmann manifold and we restate them for completeness,

R̄X(ηX) = qf(X + η↑X), (10.6.11)

R̄X(ηX) = (X + η↑X)(Ip + ηT↑Xη↑X)
−1/2. (10.6.12)

Both satisfy (9.3.7) and therefore define two retractions of Gr(p, n) by (9.3.8).

Lemma 10.6.1. The retraction (10.6.11) satisfies the condition (9.3.7) with h̃ not necessarily equal

to h and the retraction (10.6.12) satisfies the condition (9.3.7) with h̃ = h.

Proof. To show (10.6.11) and (10.6.12) satisfy (9.3.7), we must show that there exists a matrix

Õ ∈ O(p) such that R̄X(η↑X)Õ = R̄XO(η↑XO), X ∈ St(p, n), O ∈ O(p) and η↑X ∈ HX .

Consider (10.6.11) first. We have R̄X(η↑X) = qf(X + η↑X) and

R̄XO(η↑XO) = qf(XO + η↑XO) = qf((X + η↑X)O).

Since span(X + η↑X) = span((X + η↑X)O), R̄X(η↑X) and R̄XO(η↑XO) are orthonormal bases of

the same space. Therefore, there exists an orthonormal matrix, Oqf , such that R̄X(η↑X)Oqf =

R̄XO(η↑XO). Since Oqf is not equal to O in general, the retraction (10.6.11) satisfies (9.3.7) with h̃

not necessarily equal to h.

For (10.6.12), we have

R̄XO(η↑XO) = U1 and R̄X(η↑X) = U2,

where both (X + η↑X)O = U1P and X + η↑X = U2P are the unique polar decompositions. From

the property of the polar decomposition, we have U2O = U1. Therefore, we obtain

R̄X(η↑X)O = R̄XO(η↑XO).

Since Õ is equal to O, the retraction (10.6.12) satisfies (9.3.7) with h̃ = h.

It is also easy to verify the exponential mapping (10.6.10) satisfies (9.3.7) with h̃ = h.

182

10.6.2 Vector Transports

A mapping T̄ : HX →HY is called a vector transport of Gr(p, n) if it defines a vector transport

of Gr(p, n) by (9.3.12). The vector transport by projection is given in [AMS08],

T̄Pη↑X
ξ↑X = (I − Y Y T)ξ↑X , (10.6.13)

where η[X], ξ[X] ∈ Gr(p, n), η↑X , ξ↑X are horizontal lifts of η[X], ξ[X] at X, and Y = R̄X(η↑X). The

next lemma shows the requirement of the associated retraction of the vector transport by projection.

Lemma 10.6.2. The associated retraction of (10.6.13) must satisfy (9.3.7) with h̃ = h. The

retractions (10.6.10) and (10.6.12) do but retraction (10.6.11) does not.

Proof. We have

T̄Pη↑XO
ξ↑XO

= (I − Y ÕT ÕY T)ξ↑XO

= (I − Y Y T)ξ↑XO

= T̄Pη↑X
ξ↑XO, (10.6.14)

where O ∈ O(p), Y = R̄X(η↑X) and Y Õ = R̄XO(η↑XO
). Comparing (10.6.14) with (9.3.11) and

using (10.6.7), we obtain Õ = O. Since the retractions (10.6.10) and (10.6.12) satisfy (9.3.7) with

h̃ = h, i.e., Õ = O in this case, the vector transport by projection satisfies (9.3.11) with retractions

(10.6.10) and (10.6.12), but not with (10.6.11).

The vector transport by differentiated retraction (10.6.11) is given in the next lemma.

Lemma 10.6.3. The vector transport by differentiated retraction (10.6.11) is

T̄Rη↑X
ξ↑X = (In − Y Y T)ξ↑X (Y

T (X + η↑X))
−1, (10.6.15)

where η[X], ξ[X] ∈ Gr(p, n), η↑X , ξ↑X are horizontal lifts of η[X], ξ[X] at X, and Y = R̄X(η↑X).

Proof. Let t 7→ W (t) be a curve on the noncompact Stiefel manifold R
n×p
∗ , i.e., the set of matrix

that has full columns rank. Ẇ (0) = V and let W (t) = Y (t)P (t) denote the qf decomposition of

W (t). We have

Ẇ = Ẏ P + Y Ṗ . (10.6.16)

183

We also have the decomposition

Ẏ = Y Y T Ẏ + (In − Y Y T)Ẏ .

Using the expression for the horizontal space (10.6.8), we have Y T Ẏ = 0 which yields

Ẏ = (In − Y Y T)Ẏ .

Multiplying (10.6.16) by In − Y Y T on the left and multiplying P−1 on the right, we obtain

(In − Y Y T)ẆP−1 = (In − Y Y T)Ẏ .

Therefore, we have

Ẏ = (In − Y Y T)ẆP−1. (10.6.17)

Computing T̄Rη↑X
ξ↑X = d

dtR̄X(η↑X + tξ↑X)|t=0 is equivalent to computing Ẏ (0) when W (t) =

X + η↑X + tξ↑X . Therefore, we have Ẇ = ξ↑X , Y = Y (0) = R̄X(η↑X) and P = Y (0)TW (0) =

Y T (X + η↑X). Substituting into (10.6.17) gives the desired result.

Even though the differentiated retraction (10.6.15) is derived from the retraction (10.6.11), it is

not necessarily associated with the retraction. The next lemma shows that there is no requirement

on the relationship between h̃ and h for the associated retraction of the vector transport (10.6.15).

Lemma 10.6.4. The associated retraction of the vector transport (10.6.15) can be any retraction

of Gr(p, n), e.g., (10.6.10), (10.6.11) and (10.6.12).

Proof. Suppose R̄XO(ηXO) = RX(ηX)Õ holds, e.g., Õ = Oqf for retraction (10.6.11) and Õ = O

for retractions (10.6.10) and (10.6.12). We have

T̄Rη↑XO
ξ↑XO = (In − Y ÕÕTY T)ξ↑XO(ÕTY T (XO + η↑XO))−1

= (In − Y Y T)ξ↑X (Y
T (X + η↑X))

−1Õ

= (T̄Rη↑X
ξ↑X)Õ,

where Y = R̄X(η↑X). Therefore, the differentiated retraction (10.6.15) satisfies (9.3.11) with an

arbitrary retraction.

184

The differentiated retraction of (10.6.12) is identical to (10.6.15). This is due to the fact that

(10.6.11) and (10.6.12) are the same essentially. The main difference is that they choose different

representations of an equivalent class. This is shown in the following lemma.

Lemma 10.6.5. The differentiated retraction of (10.6.12) is

T̄Rη↑X
ξ↑X = (In − Y Y T)ξ↑X (Y

T (X + η↑X))
−1,

where η[X], ξ[X] ∈ Gr(p, n), η↑X , ξ↑X are horizontal lifts of η[X], ξ[X] at X, and Y = R̄X(η↑X).

Proof. The proof is basically the same as that in Lemma 10.6.3 and we do not repeat it here.

The vector transports of Gr(p, n) given above are non-isometric. The natural isometric vector

transport, the parallel translation [EAS98, Theorem 2.4]. is

P 1←0
γ̄(t) ξ↑X =

(

(

XV U
)

(

− sinΣ
cos Σ

)

UT + (I − UUT)

)

ξ↑X

where Y = ExpX η↑X , η↑X is the horizontal lift of η[X] at X, η↑X = UΣV T is the singular value

decomposition and γ̄(t) is a geodesic from X to Y such that γ̄(0) = X, γ̄(1) = Y , i.e.,

γ̄(t) =
(

XV U
)

(

cosΣt
sinΣt

)

V T .

The associated retraction of the parallel translation must be the exponential mapping since P 1←0
γ̄(t) ξ↑X

is only in the tangent space of ExpX(η↑X).

The matrix expression GX of the metric (10.6.9) is an identity matrix. Hence, it is a positive

definite matrix. Therefore, a perpendicular space of any horizontal space HX based on the metric

(10.6.9) is well-defined. An orthonormal basis BX of TX SX is given by

{X⊥ẽieTj , i = 1, . . . , n− p, j = 1, . . . , p}, (10.6.18)

where (e1, . . . , ep) is the canonical basis of Rp, (ẽ1, . . . , ẽn−p) is the canonical basis of Rn−p. An

orthonormal basis NX of NX SX = (HX)⊥ is given by

{X(eie
T
j), i = 1, . . . , p, j = 1, . . . , p}.

The columns of BX andNX are chosen as the ”vec” of the basis elements. The function constructing

NX is smooth. If X⊥ is smoothly dependent on X then BX is also a smooth function.

185

Given the functions constructing BX and NX , four mappings (9.3.17), (9.3.18), (9.3.19) and

(9.3.20) can be defined and Lemma 9.3.1 used to determine whether they are vector transports or

not.

From (10.6.7), we can see that JO⊗In(X) is independent on X. In addition, noticing GX is

identity for all X ∈ St(p, n), we know (9.3.4) holds. Therefore, by (i) of Lemma 9.3.1, (9.3.17)

is a vector transport. Since G
1/2
(O⊗In)•XvJO⊗In(X)G

1/2
X = JO⊗In(X) is independent of X, we also

obtain (9.3.18) is a vector transport. However, it is difficult to guarantee (9.3.19) and (9.3.20) are

vector transports since JO⊗In(X)BX = B(O⊗In)•Xv and JO⊗In(X)NX = N(O⊗In)•Xv do not hold

in general for any element X ∈ Gr(p, n).

We can define a section of the Grassmann manifold to overcome the difficulties of (9.3.19) and

(9.3.20). Given a X ∈ St(p, n), a section SX is defined as

SX = {Y ∈ St(p, n)|there exists a η↑X ∈ HX such that ExpX(η↑X) = Y and XTY is full rank.}

= {Y ∈ St(p, n)|XTY is a full rank and symmetric matrix. }.

If XTY is not full rank, then SX intersects each equivalent class more than once but in a neigh-

borhood only once. SX is therefore only a local section of the Grassmann manifold. In practice,

one can randomly choose a X0 ∈ St(p, n) and use SX0 . If a iterate X+ makes XT
0 X

+ not full rank,

then the section can be changed to be a new one SX+ .

In practice, it is worthwhile to try the mappings (9.3.19) and (9.3.20) directly. First, due to

the smoothness of the mappings, both of them are close to a vector transport locally, i.e., when the

two elements of the manifold defining the two tangent spaces are sufficiently close. Second, using a

section requires some extra work and may increase computational complexity. Third, the mapping

(9.3.19) is linear with respect to Y , which allows the use of the idea in Section 4.4.3 to construct

a cheap retraction that satisfies the locking condition with (9.3.19) in contrast to modifying the

mapping (9.3.19) based on a local section SX which does not give an vector transport that is linear

with respect to Y . Therefore, the mappings (9.3.19) and (9.3.20) give what can be informally

called local vector transports. This idea may be worth exploiting in the later iterations of an

algorithm due to savings in computational cost associated with the local vector transports. A similar

phenomenon occurs when non-isometric transports are locally near isometric vector transports and

allow convergence despite violating the conditions of the convergence analyses.

186

10.6.3 Pairs of Retraction and Isometric Vector Transport Satisfying Locking

Condition

Since the vector transport (9.3.19) is linear with respect to Y for the Grassmann manifold, we

can construct a retraction that satisfies the locking condition when paired with the vector transport.

The derivation is similar to those in Section 10.2.3.

Let X ∈ St(p, n), U ∈ HX and denote the unknown RX(tU) as X(t). Equation (4.4.10) implies

d

dt
vec(X(t)) = BX(t)B

T
X vec(U),

where BX(t) is the orthonormal basis of HX given by (10.6.18) and X = X(0). Using the form of

BX , we have that

BT
X vec(U) = vec(KU)

where KU = XT
⊥U . Using the same method in Section 10.2.1 and noting the non-existence of ΩU ,

we obtain an ordinary differential equation

d

dt

(

X(t) X⊥(t)
)

=
(

X(t) X⊥(t)
)

(

0 −KT

K 0

)

.

Therefore, the desired retraction is

Y = RX(U) = X(1) =
(

X X⊥
)

exp

(

0 −KT

K 0

)(

Ip
0

)

. (10.6.19)

and Y⊥ in the basis BY of the isometric vector transport (9.2.19) is X⊥(1). The retraction (10.6.19)

is the exponential mapping (10.6.10) [EAS98, Theorem 2.3].

In general, when the retraction associated with a vector transport is the exponential mapping,

as above, it does not necessarily imply that the vector transport is parallel translation. However, on

the Grassmann manifold, when the associated retraction of the vector transport by parallelization

is the exponential mapping and Y⊥ is used in the basis BY , the vector transport by parallelization

is the parallel translation. This can be seen easily from [EAS98, Theorem 2.4, proof 2]. Therefore,

we obtain a method to compute the parallel translation of the Grassmann manifold when X,Y are

given but Exp−1X Y is unknown.

The differentiated retraction of the retraction (10.6.19) is also straightforward to derive. Let

M1 =

(

0 −KT
U

KU 0

)

and M2 =

(

0 −KT
V

KV 0

)

.

187

It follows that

TRU
V =

(

X X⊥
) d

dt
exp(M1 + tM2)|t=0

(

Ip
0

)

=
(

X X⊥
)

Z((Z−1M2Z)⊙ Φ)Z−1
(

Ip
0

)

(by [NH95, Theorem 4.5]),

where M1 = ZΛZ−1 is the spectral decomposition, λi = Λii, ⊙ denotes the Hadamard product, i.e.

(A⊙B)ij = AijBij and

Φij = Φji =

{

eλi−eλj
λi−λj

, if λi 6= λj ;

eλi , if λi = λj .

10.6.4 Cotangent Vector Required by Ring and Wirth’s RBFGS

Since (10.6.11) and (10.6.12) have an identical differentiated retraction, the cotangent vectors

are also identical. Therefore, we consider them together. Let η↑X , ξ↑X ∈ HX and ζ↑Y ∈ HY ,

Y = R̄X(η↑X). We have that

C(X, η↑X , ζ↑Y)[ξ↑X] = trace(ζT↑Y (In − Y Y T)ξ↑X (Y
T (X + η↑X))

−1)

= trace((Y T (X + η↑X))
−1ζT↑Y (In − Y Y T)ξ↑X).

Therefore, the cotangent vector for the retraction (10.6.12) and (10.6.12) is

C(X, η↑X , ζ↑Y) = (Y T (X + η↑X))
−1ζT↑Y (In − Y Y T).

10.7 Complexity

In this section, we analyze the complexity of updating the Hessian approximation of Riemannian

quasi-Newton algorithms and gradient sampling algorithm. When the d-dimensional intrinsic repre-

sentation is used complexity depends strongly on the particular manifold. Therefore, we restrict the

discussion to d-dimensional Riemannian manifoldsM using n-dimensional vector representations.

For the assumed representation, a tangent vector is represented by an n-dimensional vector

while the Hessian approximation, inverse Hessian approximation, vector transport and inverse

vector transport are represented by n × n matrices. We assume the complexity of g(η, ξ) or η♭ is

O(n).

188

Table 10.1: Complexity of some steps of full version and limited-memory version. – means
this step is not explicit.

RBroyden family

Full version Limited-memory version

Action Complexity Action Complexity

get B̃k+1 from Bk O(n2) – –

TSB̃T −1S O(n3) transport sk, yk O(mn2)

Bη O(n2) Bη O(mn)

RTR-SR1

Full version Limited-memory version

Action Complexity Action Complexity

get B̃k+1 from Bk O(n2) – –

TSB̃T −1S O(n3) transport sk, yk O(mn2)

Bη O(n2) Bη O(mn) +O(m3)

In Riemannian quasi-Newton methods, since Bk operates on a d-dimensional space, it could be

written as Bk = PP T , where P ∈ R
n×d. In this way, we could decrease the complexity. Likewise,

TS could be written as low rank update(see Section 9.2.3 and 9.3.3). However, this can only be

exploited in practice when the cost of determining the factor is not excessive. When the factor is

available at an acceptable cost, the factored form saves computation compared to the complexity

listed above.

Table 10.2: Complexity of some steps of RGS.

Action Complexity

Transport grad f(xkj) to a same tangent space O(mn2)

Solving a convex quadratic program polynomial in n

In the Riemannian gradient sampling algorithm, even though solving a convex quadratic pro-

gram is polynomial in time complexity, it can still be quite time consuming in practice. Burke,

Lewis and Overton point this out and show empirically that once n > 200 the performance of

their implementation for Euclidean problems becomes problematic. They use MOSEK to solve the

convex optimization problem at each step (see http://www.mosek.com).

189

CHAPTER 11

EXPERIMENTS

11.1 Introduction

There are many aspects of the proposed algorithms and their performance that must be as-

sessed empirically. We must consider the effects of: the manifold defining the constraints; the

representation of manifold elements and tangent spaces; retractions, vector transports, their im-

plementations, and their relationships to the representations of manifold elements; the smoothness

of the cost function; and the properties of the problems. In this chapter, we discuss experiments

that are designed to isolate and address these aspects influencing the performance of the proposed

Riemannian algorithms. Empirical results for more complex application problems are presented in

Chapters 12 through 14.

11.2 Test Problems

We consider four basic well-known optimization problems defined on manifolds: minimization

of the Brockett cost function on the Stiefel manifold, minimization of the Rayleigh quotient on

the Grassmann manifold, and two minmax problems on the sphere. The first two problems have

smooth cost functions and detailed discussions can be found in [AMS08]. One minmax problem

has a partly smooth Lipschitz cost function and the other has a partly smooth non-Lipschitz cost

function.

The basic properties of our algorithms on an embedded manifold will be discussed using the

minimization of the Brockett cost function on the Stiefel manifold with a metric endowed from

the embedding Euclidean space (10.2.1). Since the Rayleigh quotient minimization problem can

be defined on the Stiefel and Grassmann manifolds, it is used to compare the properties of our

algorithms on a quotient representation and an embedded representation. The Lipschitz and non-

Lipschitz minmax problems on the sphere are used to investigate the relationships in performance

characteristics of RGS and RBFGS.

190

11.2.1 Brockett Cost Function Minimization on the Stiefel Manifold

The Brockett cost function is

f : St(p, n)→ R : X 7→ trace(XTBXN),

where N = diag(µ1, · · · , µp) with 0 < µ1 < · · · < µp and B ∈ R
n×n and B = BT . The gradient

with respect to the metric (10.2.1) is

grad f(X) = PX(2BXN),

where sym(M) = (M +MT)/2 and PX(V) = V −X sym(XTV) is the projection onto TX St(p, n).

The action of the Hessian on η ∈ TX St(p, n) with respect to the metric (10.2.1) is

Hess f(X)[η] = PX(2BηN − η sym(XT (2BXN))).

These are in [AMS08].

Additionally, we consider the gradient with respect to the metric (10.3.1). It is

grad f(X) = 2BXN −X(2BXN)TX.

The action of the Hessian on η ∈ TX St(p, n) with respect to the metric (10.3.1) is

Hess f(X)[η] = 2BηN −X(2BηN)TX −X skew((2BXN)T η)− skew(η(2BXN)T)X

− 1

2
(In −XXT)(ηXT (2BXN)),

where skew(M) = (M −MT)/2.

It is known that the columns of a global minimizer, X∗ei, are eigenvectors for the p smallest

eigenvalues, λi, ordered so that λ1 ≥ . . . ≥ λp [AMS08, §4.8].

11.2.2 Rayleigh Quotient Minimization on the Grassmann Manifold

The Rayleigh quotient is

f : Gr(p, n)→ R : [X] 7→ trace(XTCX),

where C is a n by n matrix and not necessary positive-definite. The gradient with respect to the

metric (10.6.9) satisfies

(grad f([X]))↑X = PX(2CX),

191

where PX(V) = (In − XXT)V is the projection onto HX . The action of the Hessian on η ∈
T[X]Gr(p, n) is

(Hess f([X])[η])↑X = (Hess f([X]))↑X [η↑X] = PX(2Cη↑X − η↑XX
T (2CX)).

The minimizer is a space such that the eigenvectors of p smallest eigenvalues form an orthonormal

basis of the space.

11.2.3 Lipschitz Minmax Problem on the Sphere

The cost function is

f : Sn−1 → R : x 7→ ‖x‖∞ = max(|x1|, . . . , |xn|).

This is a Lipschitz continuous function defined on the sphere. The gradient with respect to the

metric (10.4.1) is

grad f(x) = Px(v), v =

{

sign(xi), where |xi| is the largest;
0, otherwise,

where Px(v) = (In − xxT)v. If x has more than one maximal magnitude component |xi|, then
grad f(x) does not exist. The minimizer is a vector where all components have magnitude 1/

√
n.

11.2.4 Non-Lipschitz Minmax Problem on the Sphere

The cost function is

f : Sn−1 → R : x 7→ ‖x‖∞ = max(|x1 −
1√
n
| 13 , . . . , |xn −

1√
n
| 13).

The gradient with respect to the metric (10.4.1) is

grad f(x) = Px(v), v =

{

1
3 sign(xi − 1√

n
)|xi − 1√

n
|− 2

3 , where |xi − 1√
n
| 13 is the largest;

0, otherwise.

If x has more than one maximal magnitude component |xi − 1√
n
| 13 , then grad f(x) does not exist.

The minimizer is a vector where all components have magnitude 1/
√
n. If x approaches x∗, then

the norm of the gradient at x goes to infinity. Therefore, this function is non-Lipschitz continuous

at the minimizer.

192

11.3 Notation, Algorithm Parameters and Test Data Parameters

Ten algorithms are used in the experiments in this chapter. Six are combined with a line

search algorithm: RBFGS using an inverse Hessian approximation, the restricted RBroyden algo-

rithm using an inverse Hessian approximation and a problem specific φ̃k, the Davidon’s update

RBroyden algorithm using an inverse Hessian approximation, limited-memory RBFGS (LRBFGS),

Riemannian steepest descent with line search (RSD) and RGS. Four of them are combined with

a trust region: RTR-SR1, LRTR-SR1, Riemannian trust region with steepest descent (RTR-SD),

and RTR-Newton [Bak08].

The line search algorithm used with RBroyden family methods is [DS83, Algorithm A6.3.1mod]

for optimizing smooth functions and, is given as Algorithm 7 after appropriate modifications for

partly smooth functions. The line search algorithm in RGS is the one described in Algorithm 6.

The constants c1 and c2 in the Wolfe conditions are 1e-4 and 0.999 respectively.

When the n-dimensional embedded representation of a d-dimensional manifold is used, the

system Bkηk = − grad f(xk) may have multiple solutions. To solve Bkηk = − grad f(xk) such that

ηk ∈ Txk
Sn−1, we add the constraints xTk ηk = 0 for the sphere and the Grassmann manifold, xTk ηk+

ηTk x
T
k = 0 for the Stiefel manifold and the orthogonal group, to the system Bkηk = − grad f(xk).

The QR decomposition is used to find ηk. It is not difficult to show there is a unique solution ηk.

For RGS, when random tangent vectors in a given Tx S
n−1 are required, a random orthonormal

basis of Tx S
n−1 is generated. Each required random tangent vector is produced by generating

a random vector of coefficients in a unit box [−0.5, 0.5]n−1 and computing the associated linear

combination of the basis vectors. The number of samples in RGS and J for RBFGS (see Section

7.3.2) are both ceil(1.3d+5). The constants τx and τd in Section 7.3.2 are 1e-5 and 1e-6 respectively.

The initial sampling radius ǫ0, sampling radius reduction factor µ, initial optimality tolerance ν0,

optimality tolerance reduction factor θ, tolerance τν and Armijo parameter c1 in RGS are 1e-3, 0.1,

1e-3, 0.1, 1e-5 and 0 respectively .

The trust region inner iteration algorithm is the truncated CG inner iteration in [AMS08,

§7.3.2]. The θ, κ parameters in the inner iteration stopping criterion [AMS08, (7.10)] are set to

0.1, 0.9 respectively for RTR-SR1 and LRTR-SR1 and to 1, 0.1 respectively for RTR-Newton. The

constants τ1 and τ2 in trust region are 0.25 and 2 respectively. The initial radius ∆0 is 1, c in

RTR-SR1 and LRTR-SR1 is 0.1, and ν is the square root of machine epsilon.

193

Table 11.1: Notation for reporting the experimental results.

gf0 Riemannian metric value of the initial gradient

gff Riemannian metric value of the final gradient

iter number of iterations

nf number of function evaluations

ng number of gradient evaluations

nH number of operations of the form Hη
nV number of vector transports

nR number of retraction evaluations

t average time (seconds)

The comparisons are performed in Matlab 7.0.0 on a 32 bit Windows platform with 2.4 GHz

CPU (T8300).

Unless otherwise indicated in the description of the experiments, the following test data pa-

rameters are used. The problems are defined by setting B = R1 + RT
1 and C = R2 + RT

2 where

the elements of R1 and R2 are drawn from the standard normal distribution using Matlab’s rand-

n with seed 1, N is a diagonal matrix whose diagonal elements are integers from 1 to p, i.e.,

N = diag(1, 2, . . . , p). The initial iterate X0 is given by applying Matlab’s function orth to a ma-

trix whose elements are drawn from the standard normal distribution using Matlab’s randn with

seed 1. The identity is used as the initial Hessian inverse approximation. The stopping criterion

requires that the ratio of the norm of final gradient and the norm of initial gradient is less than

10−6.

The methods of constructing an isometric vector transport are discussed in Section 9. The

Matlab’s function ode45 with ”RelTol” and ”AbsTol” both set to 1e-5 is used to solve the ODE

of the parallel transport of the Stiefel manifold.

To obtain sufficiently stable timing results, an average time is taken of several runs with iden-

tical parameters for a total runtime of at least 1 minute. The notation used when reporting the

experimental results is given in Table 11.1.

There are some relationships among the operations. For RBroyden family methods nH =

2(iter − 1) holds; for RTR-SR1 we have iter = nf = ng = nv + 1 = nR + 1; for LRTR-SR1 we

have iter = nf = ng = nR+1; for RTR-SD iter = nf = nR+1; nH does not appear in LRBFGS,

RSD, RTR-SR1, RTR-SD and RGS; and, finally, nV does not appear in RTR-SD.

194

11.4 Results and Conclusions

11.4.1 Performance for Different φ in the RBroyden Family

We use the inverse Hessian approximation update for the RBroyden family algorithms

Hk+1 = H̃k −
H̃kyk(H̃∗kyk)♭
(H̃∗kyk)♭yk

+
sks

♭
k

s♭kyk
+ φ̃kg(yk, H̃kyk)uku

♭
k,

where

uk =
sk

g(sk, yk)
− H̃kyk

g(yk, H̃kyk)
,

are tested with φ̃k = φ̃ = 1.0, 0.8, 0.6, 0.4, 0.2, 0.1, 0.01, 0 and with a variable φ̃k set to

Davidon’s value φ̃D
k . The inverse Hessian approximation update tends to be preferred to the

Hessian approximation update since it avoids solving a linear system.

Most of the existing literature investigates the effects of the coefficient φk in the Hessian approx-

imation update formula. In [BNY87], Byrd et al. provide empirical evidence that, in a Euclidean

space, the ability to correct eigenvalues of the Hessian approximation that are much larger than

the eigenvalues of the true Hessian degrades for larger φ values. Our experiments show the same

trend on manifolds (see Table 11.2) and RBFGS is seen to be the best at such a correction among

the restricted RBroyden family methods.

Strategies for choosing φk and allowing it to be outside [0, 1] have been investigated. Davidon

[Dav75] defines an update for φk by minimizing the condition number of B−1k Bk+1. We have

generalized this update to Riemannian manifolds for both the Hessian approximation and inverse

Hessian approximation forms to obtain

φD
k =







g(yk ,sk)(g(yk ,B̃−1
k yk)−g(yk,sk))

g(sk,B̃ksk)g(yk ,B̃−1
k yk)−g(yk ,sk)2

, if g(yk, sk) ≤ 2g(sk ,B̃ksk)g(yk ,B̃−1
k yk)

g(sk ,B̃ksk)+g(yk ,B̃−1
k yk)

;

g(yk ,sk)

g(yk,sk)−g(sk ,B̃ksk)
, otherwise

φ̃D
k =







g(yk ,sk)(g(sk ,H̃−1
k yk)−g(yk ,sk))

g(yk ,H̃kyk)g(sk ,H̃−1
k sk)−g(yk ,sk)2

, if g(yk, sk) ≤ 2g(sk,H̃−1
k sk)g(yk ,H̃kyk)

g(sk,H̃−1
k sk)+g(yk ,H̃kyk)

;

g(yk,sk)

g(yk ,sk)−g(yk ,H̃kyk)
, otherwise

.

When the “if” conditions are satisfied in these definitions the Hessian and inverse Hessian approx-

imations are symmetric positive definite. The “otherwise” clauses in the definitions correspond to

the two forms of the Riemannian SR1 method (see Chapter 3 and [HAG13]).

195

Byrd et al. [BLN92] use negative values of φ to improve the performance of the Hessian

approximation form. However, their experiments require solving a linear system to find zk =

Hess f(xk)
−1vk. Their purpose was, of course, to demonstrate a theoretical value of φk and not to

recommend the specific form for computation which by involving the Hessian is inconsistent with

the goal of quasi-Newton methods. In the Riemannian setting, the action of the Hessian is often

known rather than the Hessian itself, i.e., given η ∈ TxM, Hess f(x)[η] is known. So zk could be

approximated by applying a few steps of an iterative method such as CG to the system of equations.

Also, the Hessian could be recovered given a basis for TxM and the linear system solved but this

is an excessive amount of work. Therefore, we test only the generalization of Davidon’s update,

φ̃D
k .

Since we use the inverse Hessian approximation update, φ̃k ≡ 1 corresponds to RBFGS and

φ̃k ≡ 0 corresponds to RDFP. Also note we are testing the restricted RBroyden family since

0 ≤ φ̃k ≤ 1 implies 0 ≤ φk ≤ 1. The parameters n and p are chosen to be 5 and 2 respectively. In

[BNY87], Byrd et al. set the initial Hessian approximation B0 diag(1, 1, . . . , 1, λ2, λ1) ∈ R
n×n

to demonstrate the correction properties of the different members of the Broyden family. Similarly,

to show the differences among RBroyden family with different φk, in our experiments the initial

inverse Hessian approximation H0 is set to diag(1, 1, . . . , 1, 1/50, 1/10000) ∈ R
d×d.

The intrinsic dimension representation is used for a tangent vector. The retraction is chosen to

be (10.2.16) and the vector transport is defined by parallelization.

The results in Table 11.2 and Figure 11.1 show trends typically observed in our experiments

with the Brockett cost function and others. There is a clear preference in performance for choosing

the constant φ̃ near 1.0 to yield RBFGS or a nearby method. For variable φ̃k, Davidon’s update

performs somewhat better than RBFGS for the Brockett cost function and is usually comparable

to RBFGS on other cost functions. The problem of choosing φ̃k or φk is still an open question in

Riemannian optimization research.

11.4.2 Retractions and Vector Transports for RBFGS

In this section, we show the results of RBFGS when using different pairs of retractions and vector

transports that satisfy the locking condition. Table 11.3 shows the pairs that are tested and the

notation used. Besides using the exponential mapping and parallel translation, we consider the qf

retraction and the corresponding isometric vector transports that satisfies the locking condition with

196

Table 11.2: Comparison of RBroyden family for φ̃D
k and several constant φ̃k. The subscript

−k indicates a scale of 10−k.

φ̃k φ̃D
k 1.0 0.8 0.6 0.4 0.2 0.1 0.01 0

iter 27 30 31 32 35 44 56 166 320
nf 29 38 38 38 42 49 60 168 322
ng 27 30 31 32 35 44 56 166 320
nH 52 58 60 62 68 86 110 330 638
nV 78 87 90 93 102 129 165 495 957
nR 28 37 37 37 41 48 59 167 321
gff 7.97−7 3.05−6 2.74−6 5.51−6 7.09−6 6.14−6 5.80−6 7.87−7 4.56−6

gff/gf0 8.58−8 3.28−7 2.96−7 5.94−7 7.64−7 6.61−7 6.26−7 8.48−8 4.92−7
t 1.66−2 1.81−2 1.82−2 1.83−2 1.97−2 2.48−2 3.11−2 9.06−2 1.74−1

50 100 150 200 250 300
10

−6

10
−4

10
−2

10
0

iter.

|g
ra

d
f|

Brockett on the Stiefel manifold

D
1.0
0.8
0.6
0.4
0.2
0.1
0.01
0

Figure 11.1: Comparison of RBroyden family for φ̃D
k and several constant φ̃k.

197

Table 11.3: Notations of retractions and vector transports.

EP Exponential map-
ping (10.2.2)

parallel translation (10.2.11)

QfDT qf retraction
(10.2.3)

vector transport (4.4.2) with TI be vector transport by di-
rection rotation based on tangent space(9.2.18)

QfDN qf retraction
(10.2.3)

vector transport (4.4.2) with TI be vector transport by di-
rection rotation based on normal space(9.2.17)

QfP qf retraction
(10.2.3)

vector transport (4.4.2) with TI be vector transport by par-
allelization (9.2.19)

QfR qf retraction
(10.2.3)

vector transport (4.4.2) with TI be vector transport by rig-
ging (9.2.20)

QfC qf retraction
(10.2.3)

vector transport by constructing (4.4.9)

QfInC qf retraction
(10.2.3)

vector transport by constructing (4.4.9) using intrinsic rep-
resentation

CPIn retraction (10.2.16) vector transport by parallelization (9.2.19) using intrinsic
representation

qf. In Section 10.2, we also discuss an another retraction based on the polar decomposition (10.2.4).

We do not show the results of this retraction due to two reasons. First, the polar decomposition is

more expensive than the QR decomposition. Second, finding the Ω in the differentiated retraction

(10.2.7) requires significant extra work solving a large linear system.

The parameters (p, n) are taken as (4, 12) and (8, 12). Table 11.4 and Figure 11.2 show the

results of the experiments.

Unsurprisingly, RBFGS with EP takes much more time than others due to the high cost of the

parallel translation even though the number of iterations are not too different from the other algo-

rithms. RBFGS with QfDT and RBFGS with QfDN have exactly the same number of iterations

since the vector transports are theoretically equivalent (see Lemma 9.2.3). In the experiments, as

long as the numerical behaviors of the two vector transports are close, the numbers of iterations

they require are identical. However, their computation times of are usually different. For example,

when (p, n) = (4, 12), RBFGS with vector transport based on the tangent space requires more

computation time than RBFGS with the vector transport based on the normal space and the per-

formance reverses when (p, n) = (8, 12). This phenomenon illustrates the discussions in Section

9.2.3, i.e., a smaller ratio of codimension and dimension of the manifold implies a less computation-

198

ally costly vector transport based on the tangent space and a more computationally costly vector

transport based on the normal space.

RBFGS with QfP and RBFGS with QfR require less computation time than RBFGS with QfDT

and RBFGS with QfDN respectively. The reason is that the vector transports by direct rotation

are more expensive when compared with the vector transports by rigging or parallelization since

the vector transports by direct rotation require the singular value decomposition, especially when

both the dimension and codimension of a manifold are not sufficiently small in the required the

singular value decomposition.

RBFGS with QfP, RBFGS with QfC and RBFGS with QfInC have identical numbers of it-

erations. The difference between the vector transports used in QfC and QfInC is only in their

implementations since they are identical theoretically. Noting that there is no difference between

doing the Householder reflection in intrinsic representation and in embedding space, the vector

transport in QfP is equivalent to the other two theoretically. The only differences are the computa-

tional implementation. Since working on the intrinsic dimension avoids many expensive operations,

RBFGS with QfInC has the smallest computational cost of the three.

RBFGS with CPIn is the fastest in terms of number of iterations and time. One reason is that

the locking condition is satisfied by definition and the computations of differentiated retraction

along a direction and Householder reflection are avoided. In addition, the number of iterations is

the smallest or the second smallest one in this example. This pair of retraction and vector transport

is preferred and is used in other comparisons of this chapter.

11.4.3 Comparison of RBFGS and Ring and Wirth’s Algorithm

The retraction and vector transport used for our RBFGS are (10.2.16) and vector transport by

parallelization which are shown, in Section 11.4.2, to be preferred. For Ring and Wirth’s RBFGS

(RW), retractions (10.2.3) and (10.2.16) are used. As we discussed in Section 10.2.3, these two

retractions have relatively efficient computational forms of cotangent vector. The vector transport

for RW is chosen to be by parallelization. The intrinsic representation for a tangent vector is used

for both algorithms.

Table 11.5 contains the results for the Brockett cost function with multiple sizes of the Stiefel

manifold for the efficient RW algorithm and RBFGS. Since the number of iterations among RBFGS

and RW with different retractions are not significantly different, the computational time depends

199

Table 11.4: Comparison of retraction and vector transports for RBFGS. The subscript
−k indicates a scale of 10−k.

p, n
RBFGS

EP QfDT QfDN QfP QfR QfC QfInC CPIn

4, 12

iter 59 56 56 73 55 73 73 49
nf 134 131 131 151 130 151 151 112
ng 59 56 56 73 55 73 73 49
nH 116 110 110 144 108 144 144 96
nV 174 165 165 216 162 216 216 144
nR 133 130 130 150 129 150 150 111
gff 1.20−5 4.65−6 4.65−6 1.71−5 7.13−6 1.71−5 1.71−5 1.56−5

gff/gf0 3.38−7 1.30−7 1.30−7 4.80−7 2.00−7 4.80−7 4.80−7 4.36−7
t 5.831 4.43−1 3.27−1 3.82−1 2.90−1 3.73−1 1.38−1 4.79−2

8, 12

iter 68 74 74 84 82 84 84 72
nf 179 188 188 209 204 209 209 182
ng 68 74 74 84 82 84 84 72
nH 134 146 146 166 162 166 166 142
nV 201 219 219 249 243 249 249 213
nR 178 187 187 208 203 208 208 181
gff 7.03−5 2.81−5 2.81−5 4.98−5 7.39−5 4.98−5 4.98−5 3.73−5

gff/gf0 8.00−7 3.20−7 3.20−7 5.66−7 8.41−7 5.66−7 5.66−7 4.24−7
t 1.552 1.62 1.92 9.54−1 1.59 9.37−1 2.68−1 9.44−2

200

10 20 30 40 50 60 70
10

−5

10
0

iter.

|g
ra

d
f|

Brockett on the Stiefel manifold

10 20 30 40 50 60 70 80

10
0

iter.

|g
ra

d
f|

Brockett on the Stiefel manifold

EP
QfDT
QfDN
QfP
QfR
QfC
QfInC
CPIn

EP
QfDT
QfDN
QfP
QfR
QfC
QfInC
CPIn

Figure 11.2: Comparison of retraction and vector transports for RBFGS. The top figure
corresponds to (p, n) = (4, 12) and the bottom figure corresponds to (p, n) = (8, 12).

201

Table 11.5: Comparison of RBFGS and RW. RW1 and RW2 denote RW with retractions
(10.2.16) and (10.2.3) respectively. The subscript −k indicates a scale of 10−k.

(n, p) (12, 6) (12, 12) (24, 12)

method RBFGS RW1 RW2 RBFGS RW1 RW2 RBFGS RW1 RW2

iter 61 62 63 78 74 80 186 207 217
nf 154 155 161 202 182 194 597 630 660
ng 61 62 63 79 74 80 186 207 217
nV 180 122 124 232 146 158 555 412 432
nR 153 154 160 201 181 193 596 629 659
gff 5.19−5 3.41−5 4.99−5 4.90−5 7.74−5 3.46−5 2.15−4 1.85−4 2.09−4

gff/gf0 7.60−7 5.00−7 7.31−7 6.18−7 9.75−7 4.36−7 8.02−7 6.88−7 7.79−7
t 6.49−2 1.29−1 9.77−2 1.19−1 1.79−1 1.57−1 1.28 2.51 1.58

on the cost of each iteration. Because the retraction (10.2.16) and the corresponding cotangent

vector (10.2.20) are more expensive than the retraction (10.2.3) and the corresponding cotangent

vector (10.2.18), it is unsurprising that RW with retraction (10.2.16) takes more time than RW with

retraction (10.2.3). This phenomenon is illustrated in Figure 11.3. Even though RW with retraction

(10.2.3) has relatively efficient components, the benefit of avoiding differentiated retraction is seen

in the time advantage of RBFGS for all three problem sizes. Figure 11.3 shows that RBFGS has a

time advantage regardless of the required accuracy.

The noticeable increase of the computation time on the largest problem indicates that the dense

matrix computations are beginning to mask the effects of other algorithmic choices. This motivates

a comparison with the LRBFGS method intended to limit the use of dense matrices with the full

dimension of the problem. Comparisons of LRBFGS and RBFGS for problems of moderate sizes

are shown in the next section.

11.4.4 Comparison of LRBFGS and RBFGS

The performance results for RBFGS and LRBFGS with different values of the parameter m are

given in Table 11.6 and Figure 11.4 for the Brockett cost function with n = p = 16. As expected,

the number of iterations required by LRBFGS to achieve the required reduction in the norm of

the gradient comparable to RBFGS decreases as m increases but remains higher than the number

required by RBFGS. The benefit of LRBFGS is seen from Figure 11.4 in computation times that

are better or similar to that of RBFGS for all tested values of m when a high accuracy is not

202

10 20 30 40 50 60 70 80

10
0

iter.

|g
ra

d
f|

Brockett on the Stiefel manifold

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

10
0

time(second)

|g
ra

d
f|

Brockett on the Stiefel manifold

RBFGS
RW1
RW2

RBFGS
RW1
RW2

Figure 11.3: Comparison of RBFGS and RW for (p, n) = (12, 12). RW1 and RW2 denote
RW with retractions (10.2.16) and (10.2.3) respectively. The top figure is the results of
iter versus |gradf | and the bottom one is the results of time versus |gradf |.

203

Table 11.6: Comparison of LRBFGS and RBFGS. The subscript −k indicates a scale of 10−k.

method RBFGS LRBFGS

m 1 2 4 8 16 32

iter 117 245 198 184 160 159 147
nf 330 272 215 200 172 174 160
ng 117 245 198 184 160 159 147
nV 348 732 983 1635 2647 4974 8498
nR 329 271 214 199 171 173 159
gff 1.30−4 1.32−4 1.10−4 1.20−4 1.47−4 1.29−4 9.51−5

gff/gf0 8.82−7 8.96−7 7.48−7 8.15−7 9.95−7 8.72−7 6.44−7
t 2.10−1 1.81−1 1.51−1 1.64−1 1.83−1 2.56−1 3.55−1

required. Even though a high accuracy is required, LRBFGS with m ≤ 8 still shows advantages in

computation time, which clearly indicates that, for this range of m, the approximation of the inverse

of the Hessian is of suitable quality in LRBFGS so that the number of less complex iterations is kept

sufficiently small to solve the problem in an efficient manner. The advantage is lost, as expected,

once m becomes too large for the size of the given problem. In practice, for moderately sized

problems, exploiting the potential benefits of LRBFGS requires an efficient method of choosing m

which depends strongly on the problem. The results are encouraging in the sense of potential for

problems large enough to preclude the use of RW, RBFGS, or other RBroyden family members.

11.4.5 Locking Condition and Isometry of Vector Transport in RBFGS

In order for RBFGS to be well-defined, the vector transport needs to be isometric and satisfy

the locking condition. In this section, we investigate what happens when these conditions are not

necessarily satisfied in our framework of RBFGS. Three vector transports are tested. The first is

a non-isometric vector transport that does not satisfy the locking condition, i.e., the vector trans-

port by projection (10.2.5). The second is a non-isometric vector transport satisfying the locking

condition, i.e., vector transport (4.4.2) with TI be the vector transport by projection (10.2.5). The

third is an isometric vector transport without the locking condition, i.e., the vector transport by

parallelization (9.2.19). The retractions for all transports are the qf retraction. For completeness,

the results of using proposed retraction (10.2.16) and vector transport (9.2.19) that satisfy the

isometry constraint and locking condition are included in the results.

The parameter (p, n) is chosen to be (6, 12). The stopping criterion requires the ratio of the

204

50 100 150 200

10
0

iter.

|g
ra

d
f|

Brockett on the Stiefel manifold

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

10
0

time(second)

|g
ra

d
f|

Brockett on the Stiefel manifold

RBFGS
LRBFGS:1
LRBFGS:2
LRBFGS:4
LRBFGS:8
LRBFGS:16
LRBFGS:32

RBFGS
LRBFGS:1
LRBFGS:2
LRBFGS:4
LRBFGS:8
LRBFGS:16
LRBFGS:32

Figure 11.4: Comparison of RBFGS and LRBFGS. The top figure is the results of iter
versus |gradf | and the bottom one is the results of time versus |gradf |.

205

Table 11.7: The numbers of successful runs of RBFGS with different retractions and vector
transports, where ”a successful run” mean reaching the required accuracy.

δo 1 10−1 10−2

nonIso-nonlocking 0 84 100
nonIso-locking 0 88 100
Iso-nonlocking 80 99 100
Iso-locking 100 100 100

norm of final gradient and the norm of initial gradient to be less than 10−3. The matrix B is chosen

to be Q diag(1, 2, . . . , n)QT where Q is given by applying Matlab’s function ORTH to an n by n

matrix whose elements are drawn from the standard normal distribution. The initial iterate X0

is given by [qp, qp−1, . . . , q1] + δ0R where qi is the i-th column of the matrix Q, the elements of

R ∈ R
n×n are drawn from the standard normal distribution and δ0 is specified in Table 11.7.

Table 11.7 shows the numbers of runs that reach the required accuracy among 100 using

1, 2, . . . , 100 as the random number generator seed. The reason of the failures of RBFGS in

the experiments is that the line search fails due to the search direction not being a descent direc-

tion. It is more likely for RBFGS with a non-isometric vector transport to fail when the initial

iterate is not close to the minimizer. Even though the locking condition is not satisfied, the RBFGS

still works in a quite high probability as long as the vector transport is isometric. The choice of

a vector transport reduces in importance as the initial iterate is chosen closer to the minimizer.

In particular, when δ0 is 10−2, all runs of RBFGS with all vector transports reach the required

accuracy. This phenomenon is explained by Lemma 4.3.6 that proves all vector transports are close

to each locally, i.e., when transporting a tangent vector in Txk
M to a fairly close Txk+1

M. Early

in the iteration, these tangent spaces will be far apart for algorithms that are converging satisfac-

torily and the vector transports’ behaviors will be different. Nearer the minimizer by necessity the

distance between successive iterates is much smaller and the transports’ behaviors begin to look

very much alike lessening the importance of the satisfying the two conditions. This implies that

there is further work to do understanding the effectiveness of non-isometric vector transports and

reducing even more the influence of the differentiated retraction.

206

Table 11.8: Notations of retractions and vector transports.

EP Exponential map-
ping (10.2.2)

parallel translation (10.2.11)

QfDT qf retraction
(10.2.3)

vector transport by direction rotation based on tangent s-
pace(9.2.18)

QfDN qf retraction
(10.2.3)

vector transport by direction rotation based on normal s-
pace(9.2.17)

QfP qf retraction
(10.2.3)

vector transport by parallelization (9.2.19)

QfR qf retraction
(10.2.3)

vector transport by rigging (9.2.20)

QfInP qf retraction
(10.2.3)

vector transport by parallelization (9.2.19) using intrinsic
representation

CPIn retraction (10.2.16) vector transport by parallelization (9.2.19) using intrinsic
representation

11.4.6 Retractions and Vector Transports for RTR-SR1

The performance of RTR-SR1 with different retractions and isometric vector transports is shown

in this section. Table 11.3 lists the pairs that are tested and the notation used. Since RTR-SR1

does not require an isometric vector transport to satisfy the locking condition, Methods 1 and

2 in Section 4.4 are not included since they require more computation per iteration and in our

experience their convergence rates do not result in overall computational savings.

Table 11.9 and Figure 11.5 show the results of the experiments, when (p, n) is (4, 12) and (8, 12).

The conclusions about the cost of vector transports are similar to those in Section 11.4.2. First,

RTR-SR1 with EP requires much more time than others since parallel translation is expensive

computationally. Second, RTR-SR1 with QfDT and RTR-SR1 with QfP are faster than RTR-SR1

with QfDN and RTR-SR1 with QfR when (p, n) = (8, 12) and the relationship is reversed when

(p, n) = (4, 12) due to the ratio of the dimension and codimension of the manifold and its influence

on the computational cost of vector transport. Third, RTR-SR1 with CPIn is the fastest algorithm.

This pair of retraction and vector transport is preferred and is used in other comparisons in this

chapter.

Unlike the results in Section 11.4.2, we do not always observe the vector transports that are

equivalent theoretically give identical numbers of iterations, function evaluations, gradient eval-

207

Table 11.9: Comparison of retraction and vector transports for RTR-SR1. The subscript
−k indicates a scale of 10−k.

p, n
RTR-SR1

EP QfDT QfDN QfP QfR QfInP CPIn

4, 12

iter 82 81 81 92 93 92 81
nf 82 81 81 92 93 92 81
ng 82 81 81 92 93 92 81
nH 292 291 291 330 360 329 289
nV 81 80 80 91 92 91 80
nR 81 80 80 91 92 91 80
gff 3.47−5 3.00−5 3.00−5 1.94−5 3.18−5 1.93−5 1.63−5

gff/gf0 9.73−7 8.41−7 8.41−7 5.42−7 8.90−7 5.42−7 4.58−7
t 6.011 3.07−1 2.18−1 2.30−1 2.25−1 6.93−2 5.67−2

8, 12

iter 114 113 124 172 137 168 123
nf 114 113 124 172 137 168 123
ng 114 113 124 172 137 168 123
nH 465 476 480 624 540 666 445
nV 113 112 123 171 136 167 122
nR 113 112 123 171 136 167 122
gff 6.06−5 3.63−5 3.86−5 8.21−5 4.24−5 3.72−5 7.22−5

gff/gf0 6.89−7 4.13−7 4.39−7 9.33−7 4.83−7 4.23−7 8.22−7
t 1.982 1.20 1.54 9.24−1 1.27 1.71−1 9.50−2

uations, Hessian actions, vector transports and retractions. For example, the differences be-

tween QfDT and QfDN, QfP and QfInP for (p, n) = (8, 12) are non-negligible. However, even

though theoretically, the pairs QfDT and QfDN, QfP and QfInP are equivalent respectively, when

(p, n) = (8, 12) we observed the iterations are identical only when iter is less than 60 for both pairs.

So RTR-SR1 is more sensitive to the numerical differences in the implementations of the pairs than

RBFGS. This is not too surprising since the RTR-SR1 and the restricted RBroyden family have

significantly different properties of approximation of the (inverse) Hessian, different local models

to set the direction vector and different convergence properties of the inner iteration on the local

models.

11.4.7 Comparison of LRTR-SR1 and RTR-SR1

The performance results for RTR-SR1 and LRTR-SR1 with different values of the parameter

m are given in Table 11.10 and Figure 11.6 for the Brockett cost function with n = p = 16 (a

208

10 20 30 40 50 60 70 80 90

10
0

iter.

|g
ra

d
f|

Brockett on the Stiefel manifold

20 40 60 80 100 120 140 160

10
0

iter.

|g
ra

d
f|

Brockett on the Stiefel manifold

EP
QfDT
QfDN
QfP
QfR
QfInP
CPIn

EP
QfDT
QfDN
QfP
QfR
QfInP
CPIn

Figure 11.5: Comparison of retraction and vector transports for RTR-SR1. The top figure
corresponds to (p, n) = (4, 12) and the bottom figure corresponds to (p, n) = (8, 12).

209

Table 11.10: Comparison of RTR-SR1 and LRTR-SR1. The subscript −k indicates a scale
of 10−k.

method RTR-SR1 LRTR-SR1

m 1 2 4 8 16 32

iter 180 707 994 399 445 575 542
nf 180 707 994 399 445 575 542
ng 180 707 994 399 445 575 542
nV 179 1938 4315 3042 6186 14964 27621
nR 179 706 993 398 444 574 541
gff 8.19−5 1.46−4 1.39−4 1.13−4 1.45−4 1.44−4 1.18−4

gff/gf0 5.55−7 9.91−7 9.44−7 7.66−7 9.82−7 9.73−7 8.02−7
t 1.74−1 6.01−1 9.73−1 4.93−1 7.75−1 1.58 2.68

problem of moderate size from a dense matrix computational point of view). Unlike the results for

LRBFGS shown in Table 11.6, the number of iterations required by LRTR-SR1 does not decreases

as m increases. Like the results shown in Table 11.6, the number of iterations remains higher than

the number required by RTR-SR1. Unfortunately, the computation time of LRTR-SR1 is higher

than RTR-SR1 for the range of m considered. Therefore, LRTR-SR1 is not competitive with RTR-

SR1 for this moderately sized problem. However, for the large scale versions of the Brockett cost

function in Section 11.4.9, LRTR-SR1 does show an advantage in computational efficiency.

11.4.8 Convergence Rate Comparison

Table 11.11 and Figure 11.7 report the observed values of the basic experimental metrics for

RSD, RTR-SD, RBFGS, RTR-SR1 and RTR-Newton applied to the Brockett cost function with

(p, n) = (6, 12). From this data we can verify our theoretical convergence rate analyses,

Since RSD and RTR-SD are convergent linearly and are the slowest among the tested algorithms,

the observed number iterations to achieve the required accuracy are significantly larger than those

of the other algorithms. RBFGS requires fewer iterations than RTR-SR1 which is also consistent

with their convergence rates, i.e., RBFGS converges superlinearly and RTR-SR1 converges d + 1-

step superlinearly. RTR-Newton requires the fewest iterations due to its quadratic convergence

rate. Since the action of the Hessian of the Brockett cost function on a vector is computationally

cheap, RTR-Newton requires the smallest computational time among all the tested algorithms.

Chapter 12 contains results on applications where the action of the Hessian on a vector is not

210

100 200 300 400 500 600 700 800 900

10
0

iter.

|g
ra

d
f|

Brockett on the Stiefel manifold

0 0.5 1 1.5 2 2.5

10
0

time(second)

|g
ra

d
f|

Brockett on the Stiefel manifold

RTR−SR1
LRTR−SR1:1
LRTR−SR1:2
LRTR−SR1:4
LRTR−SR1:8
LRTR−SR1:16
LRTR−SR1:32

RTR−SR1
LRTR−SR1:1
LRTR−SR1:2
LRTR−SR1:4
LRTR−SR1:8
LRTR−SR1:16
LRTR−SR1:32

Figure 11.6: Comparison of RTR-SR1 and LRTR-SR1. The top figure is the results of
iter versus |gradf | and the bottom one is the results of time versus |gradf |.

211

Table 11.11: Comparison of RTR-Newton, RBFGS, RTR-SR1, RSD and RTR-SD. The
subscript −k indicates a scale of 10−k.

method RTR-Newton RBFGS RTR-SR1 RSD RTR-SD

iter 16 61 137 2888 3127
nf 16 154 137 8691 3127
ng 16 61 137 2888 3114
nH 185 120 509 0 0
nV 0 180 136 2887 0
nR 15 153 136 8690 3126
gff 1.43−6 5.19−5 5.25−5 6.79−5 5.20−5

gff/gf0 2.10−8 7.60−7 7.69−7 9.95−7 7.62−7
t 2.98−2 6.57−2 1.00−1 2.48 1.61

computationally cheap and the performance predictions based on the convergence rates and the

relative computational efficiency per iteration of methods other than RTR-Newton being fastest

are verified with experimental observations.

11.4.9 A Large Scale Problem

Earlier experiments have evaluated the performance of limited memory algorithms LRBFGS

and LRTR-SR1 on moderately sized problems. In this section, the potential of the methods is

demonstrated by applying them to the Brockett cost function for several sufficiently large values

of n. The qf retraction is used and isometric vector transport is defined by rigging modified by

two rank-1 updates. The parameter m in LRBFGS is set to 4. Besides comparing the performance

of LRBFGS and LRTR-SR1, the performance of another method suitable for large-scale problems,

the Riemannian conjugate gradient algorithm (RCG) defined in [AMS08], is included. RCG uses

a modified Polak-Ribiére formula (see [NW06, (5.45)]) and imposes the same Wolfe conditions as

LRBFGS on the line search for the step size.

The performance results for LRBFGS, LRTR-SR1 and RCG for several values of the pair (n, p)

are shown in Table 11.12 and Figure 11.8. The reductions of the norm of the initial gradient are

comparable so all algorithms provide similar optimization performance. However, the computation

time required by LRBFGS to achieve the reduction is smaller than the computation time required

by LRTR-SR1, which is smaller than the computation time required by RCG. The number of

iterations for LRBFGS is smaller or comparable to RCG and LRTR-SR1 needs the largest number

212

500 1000 1500 2000 2500 3000

10
−5

10
0

iter.

|g
ra

d
f|

Brockett on the Stiefel manifold

0 0.5 1 1.5 2

10
−5

10
0

time(second)

|g
ra

d
f|

Brockett on the Stiefel manifold

RTR−Newton
RBFGS
RTR−SR1
RSD
RTR−SD

RTR−Newton
RBFGS
RTR−SR1
RSD
RTR−SD

Figure 11.7: Comparison of RTR-Newton, RBFGS, RTR-SR1, RSD and RTR-SD. The
top figure is the results of iter versus |gradf | and the bottom one is the results of time
versus |gradf |.

213

Table 11.12: LRBFGS, LRTR-SR1 and RCG for large scale problems. The subscript −k
indicates a scale of 10−k.

(n, p) (1000, 2) (1000, 3)

method LRBFGS LRTR-SR1 RCG LRBFGS LRTR-SR1 RCG

iter 175 399 236 293 778 438
nf 194 399 1079 315 778 1906
ng 175 399 1079 293 778 1906
nV 1554 3018 1078 2616 5909 1905
nR 193 398 843 314 777 1468
gff 1.86−4 1.66−4 1.96−4 3.17−4 3.25−4 3.17−4

gff/gf0 9.48−7 8.44−7 9.98−7 9.59−7 9.85−7 9.58−7
t 5.47 1.231 4.331 1.621 4.191 1.282

iterations than the other two. The main source of the difference in computation time is seen in

the much larger numbers of function and gradient evaluations required by RCG. This is due to the

line search having difficulty satisfying the Wolfe conditions and we conclude that LRBFGS and

LRTR-SR1 are viable approaches for large scale problems typified by the Brockett cost function.

The results also indicate that understanding the properties of application problems that indicated

when to prefer either a line search approach for the RBroyden family using one of the restricted

members or the trust region with the Riemannian SR1 updated member of the RBroyden family.

11.4.10 Comparison of the Stiefel Manifold and the Grassmann Manifold

If the M in a minimization problem min f(x), x ∈ M is a quotient manifold, then the mini-

mization problem can be considered as being defined on the total manifold M̄ ofM. One may also

ask whether there exist differences between using M̄ andM. Noting that the Grassmann manifold

is the quotient manifold of the quotient Stiefel manifold and the Rayleigh quotient minimization

problem is defined on the Grassmann manifold we consider that problem in this section.

The parameter (p, n) is set to (6, 12). Two sets of vector transports and retractions are tested.

The first set is the vector transports by parallelization and the retractions using the idea in Section

4.4.3. The second set is the parallel translations and exponential mappings. Results using the

embedded Stiefel manifold are included to complete the comparisons.

The experimental results are reported in Tables 11.13 and 11.14 and Figure 11.9. As seen from

Table 11.13 and the top graph of Figure 11.9, algorithms with pairs of metric and transport in

214

100 200 300 400 500 600 700

10
0

iter.

|g
ra

d
f|

Brockett on the Stiefel manifold

0 20 40 60 80 100 120

10
0

time(second)

|g
ra

d
f|

Brockett on the Stiefel manifold

LRBFGS
LRTR−SR1
RCG

LRBFGS
LRTR−SR1
RCG

Figure 11.8: Comparison of LRBFGS, LRTR-SR1 and RCG for the Brockett cost function
with (p, n) = (3, 1000). The top figure is the results of iter versus |gradf | and the bottom
one is the results of time versus |gradf |.

215

the first set have identical numbers of iterations, function evaluations, gradient evaluations, vector

transports and retractions. This behavior confirms theoretical expectations. The retractions and

vector transports in the first set of pairs are the same independently of the metric. Additionally, for

this cost function and metrics, the gradients are the same. Therefore, the iterations are expected

to be the same. Note that for other cost functions and these same metrics, the gradients might

differ and one would not expect this behavior.

The second set of pairs of vector transports and retractions comprising exponential mappings

and parallel translations are dependent on the metric of the manifold and we do not expect the

replication of behavior seen for the first set. The experimental results are in Table 11.14 and the

bottom graph of Figure 11.9. Note that across the table the number of iterations is essentially

the same as the results from the first set of vector transports and retractions. Since we know

that the exponential mappings and parallel translations are at least as expensive computationally

as alternative vector transports and retractions and are very often considerably more expensive

computationally, we expect the times in the Table to not improve relative to the first set. This is seen

to be the case and once again the basic premise of producing more efficient optimization algorithms

based on carefully constructed and computationally efficient vector transports and retractions is

confirmed. For this manifold, the first set shows that this is possible in a manner that is independent

of these typical metrics.

11.4.11 Comparison of RGS and RSD for Smooth Functions

RGS is an algorithm to find an optimum for a partly smooth function, where smooth means

differentiable, not infinitely differentiable. It can be used also to find an optimum of a smooth

function. In this section, we compare RGS with a classic linearly convergent algorithm, RSD.

We choose small (p, n) = (3, 6) since the quadratic programming in each step RGS is expensive

computationally. Multiple sampling radii, ǫ0, are tested. Since the cost function is smooth, the

stopping criterion for a partly smooth function is disabled, i.e., tolerance τν = 0 and the default

stopping criterion for smooth cost functions is used.

The numerical results are shown in Tables 11.15 and Figure 11.10. RGS uses gradients of

neighbors of the current iterate to approximate the gradient. When the radius of the neighborhood

is very small, the gradient approximation is very close to the true gradient and RGS is essentially

RSD. RGS almost always take more computation time to achieve the same accuracy as RSD.

216

Table 11.13: Comparison of the embedded Stiefel manifold(ES), the quotient Stiefel man-
ifold(QS) and the Grassmann manifold(GR) for the Rayleigh quotient problem using
RBFGS and RTR-SR1. The retractions used are (10.2.16), (10.3.4), (10.6.19) for ES,
QS and GR respectively. The vector transports are by parallelization. The subscript −k
indicates a scale of 10−k.

method RBFGS RTR-SR1

manifold ES QS GR ES QS GR

iter 41 41 41 32 32 32
nf 85 85 85 32 32 32
ng 41 41 41 32 32 32
nH 80 80 80 86 86 86
nV 120 120 120 31 31 31
nR 84 84 84 31 31 31
gff 1.01−5 1.01−5 1.01−5 1.40−5 1.40−5 1.40−5

gff/gf0 6.68−7 6.68−7 6.68−7 9.22−7 9.22−7 9.22−7
t 3.50−2 3.57−2 3.42−2 2.06−2 2.18−2 1.78−2

Table 11.14: Comparison of the embedded Stiefel manifold(ES), the quotient Stiefel man-
ifold(QS) and the Grassmann manifold(GR) for the Rayleigh quotient problem using
RBFGS and RTR-SR1. The retractions and vector transports are exponential mapping
and parallel translation. The subscript −k indicates a scale of 10−k.

method RBFGS RTR-SR1

manifold ES QS GR ES QS GR

iter 42 54 41 29 31 32
nf 88 134 85 29 31 32
ng 42 54 41 29 31 32
nH 82 106 80 75 91 86
nV 123 162 120 28 30 31
nR 87 133 84 28 30 31
gff 1.08−5 1.26−5 1.01−5 1.42−5 1.08−5 1.40−5

gff/gf0 7.13−7 8.31−7 6.68−7 9.38−7 7.14−7 9.22−7
t 5.811 3.821 1.01−1 3.151 1.691 9.44−2

217

5 10 15 20 25 30 35 40

10
0

iter.

|g
ra

d
f|

Rayleigh quotient

5 10 15 20 25 30 35 40 45 50

10
0

iter.

|g
ra

d
f|

Rayleigh quotient

RBFGS:ES
RBFGS:QS
RBFGS:GR
RTR−SR1:ES
RTR−SR1:QS
RTR−SR1:GR

RBFGS:ES
RBFGS:QS
RBFGS:GR
RTR−SR1:ES
RTR−SR1:QS
RTR−SR1:GR

Figure 11.9: Comparison of the embedded Stiefel manifold(ES), the quotient Stiefel man-
ifold(QS) and the Grassmann manifold(GR) for the Rayleigh quotient problem using
RBFGS and RTR-SR1. The retractions used in the top figure are (10.2.16), (10.3.4),
(10.6.19) for ES, QS and GR respectively. The vector transports are by parallelization.
The retractions and vector transports used in the bottom figure are exponential mapping
and parallel translation.

218

Table 11.15: Comparison of RSD and RGS with multiple initial sampling radii. The
subscript −k indicates a scale of 10−k.

method RSD RGS

ǫ0 10 10−1 10−3 10−5

iter 149 97 82 70 80
nf 439 1378 1163 692 1142
ng 149 2113 1783 1519 1739
nV 148 2016 1701 1449 1659
nR 438 3489 2944 2209 2879
gff 1.86−5 1.17−5 1.83−5 1.01−5 1.13−5

gff/gf0 9.91−7 6.25−7 9.77−7 5.40−7 6.03−7
t 1.06−1 2.34 1.82 1.38 1.63

This is due to the extra work relative to RSD required when computing sample gradients and

transporting them to a reference tangent space. In addition, a quadratic program must be solved.

These processes are expensive and in this form RGS is seen not to be suitable for large dimensional

problems.

11.4.12 Comparison of RGS and RBFGS for Partly Smooth Functions

Defined on a Riemannian Manifold

The Lipschitz and non-Lipschitz minmax problems on the sphere are used in this section to test

the performance of RGS and RBFGS. The retraction and vector transport are taken as (10.4.2)

and (10.4.4).

Table 11.16 shows the performance of RGS and RBFGS for a partly smooth Lipschitz continuous

function. Both of the algorithms work well. In addition, this performance illustrates the prediction

in Chapter 7 that RBFGS should be faster than RGS.

Chapter 7 also predicted that RBFGS should have difficulties optimizing a partly smooth non-

Lipschitz continuous function while RGS, by design, should converge reasonably well. The main

concern with RGS is the computational cost required to achieve such reliable convergence. The

experimental results in Table 11.17 illustrate these expectations.

219

20 40 60 80 100 120 140

10
0

iter.

|g
ra

d
f|

Brockett on the Stiefel manifold

0 0.5 1 1.5 2

10
0

time(second)

|g
ra

d
f|

Brockett on the Stiefel manifold

RSD
RGS:1e1
RGS:1e−1
RGS:1e−3
RGS:1e−5

RSD
RGS:1e1
RGS:1e−1
RGS:1e−3
RGS:1e−5

Figure 11.10: Comparison of RSD and RGS with multiple initial sampling radii.

Table 11.16: Comparison of RGS and RBFGS for a partly smooth Lipschitz continuous function.

n RGS RBFGS n RGS RBFGS n RGS RBFGS

iter

4

38 26

8

107 53

16

1486 106
nf 534 77 3134 167 63325 378
ng 380 77 1712 167 38636 378
nH 0 50 0 104 0 210
nV 342 133 1605 347 37150 1017
nR 912 76 4844 166 101959 377
gff 8.66−1 8.66−1 9.35−1 9.35−1 9.68−1 9.68−1

gff/gf0 1.07 1.07 1.05 1.05 1.04 1.04
t 2.70−1 3.66−2 1.19 8.85−2 3.081 3.23−1

220

Table 11.17: Comparison of RGS and RBFGS for a partly smooth non-Lipschitz contin-
uous function. ”lsf” means line search fails.

n RGS RBFGS n RGS RBFGS n RGS RBFGS

iter

4

35 27

8

44 lsf

16

128 lsf
nf 395 104 698 lsf 3678 lsf
ng 350 104 704 lsf 3328 lsf
nH 0 52 0 lsf 0 lsf
nV 315 170 660 lsf 3200 lsf
nR 743 103 1400 lsf 7004 lsf
gff 1.054 1.084 1.304 lsf 1.944 lsf

gff/gf0 8.373 8.603 1.104 lsf 2.384 lsf
t 2.57−1 4.34−2 5.25−1 lsf 3.26 lsf

221

CHAPTER 12

SOFT DIMENSION REDUCTION FOR

INDEPENDENT COMPONENT ANALYSIS AND

SYNCHRONIZATION OF ROTATION PROBLEM

12.1 Soft Dimension Reduction for Independent Component

Analysis

12.1.1 Introduction

Independent Component Analysis (ICA) is a key task in many statistical data analysis appli-

cations. The task is to determine an independent component form of a random vector, typically

known through a large number of samples, or to determine a few independent components similar to

Principal Component Analysis [HKO01]. The solution to the ICA problem does not lend itself to a

simple characterization and therefore a large number of heuristic approaches based on approximate

characterizations have been proposed. Joint diagonalization of a set of sample covariance matrices

is one popular and effective approximate characterization with which we have some experience

[AG06]. Theis et al. [TCA09] explored the problem of extracting a few sources from information

that has several data sources mixed using joint diagonalization.

12.1.2 Problem Statement

The cost function of the joint diagonalization problem on the Stiefel manifold is

f : St(p, n)→ R : Y 7−→ f(Y) = −
N
∑

i=1

‖diag(Y TCiY)‖2F , (12.1.1)

where Ci are known symmetric matrices and diag(M) is a vector formed by diagonal entries of a

matrix M . The Stiefel manifold can be viewed as a quotient manifold or embedded manifold with

each view defining a metric. Since both gradient and Hessian are related to metric, they also have

two distinct forms.

The gradient of this function with respect to the metric (10.2.1) is

grad f(Y) = PY grad f̂(Y),

222

and the gradient with respect to the metric (10.3.1) is

grad f(Y) = grad f̂(Y)− Y (grad f̂(Y))TY.

where PY ξ = ξ − Y sym(Y T ξ), grad f̂(Y) = −∑N
i=1 4CiY ddiag(Y TCiY) and ddiag(M) is a diag-

onal matrix whose diagonal entries are the diagonal entries of a matrix M .

The Hessian of this function with respect to the metric (10.2.1) is

Hess f(Y)[ξ] = PY [D grad f̂(Y)[ξ]− ξ sym(Y T grad f̂(Y))], (12.1.2)

and the Hessian with respect to the metric (10.3.1) is

Hess f(Y)[ξ] = Dgrad f̂(Y)[ξ]− Y (D grad f̂(Y)[ξ])TY − Y skew((grad f̂(Y))T ξ)

− skew(ξ(grad f̂(Y))T)Y − 1

2
(I − Y Y T)ξY T grad f̂(Y) (12.1.3)

where Dgrad f̂(Y)[ξ] is

D grad f̂(Y)[ξ] = −
N
∑

i=1

4Ci(ξ ddiag(Y
TCiY) + Y ddiag(ξTCiY) + Y ddiag(Y TCiξ)).

In [TCA09], Theis et al. used the RTR-Newton method in [Bak08]. RTR-Newton requires

the action of the Hessian on a tangent vector and converges quadratically. For this cost function,

however, the actions of the Hessians on tangent vectors in (12.1.2) and (12.1.3) are expensive when

N is large. In this chapter, we assess the ability of our Riemannian quasi-Newton algorithms to

provide sufficiently fast convergence while avoiding evaluation of the action of the Hessian on a

tangent vector.

12.1.3 Implementations and Results

The cost function (12.1.1) is defined on the Stiefel manifold and details about the implementa-

tion of objects on that manifold are discussed in Section 9. The retraction is chosen to be (10.2.16)

and the vector transport is chosen to be by parallelization (9.2.19) with intrinsic representation

since they are the preferred pair for the Stiefel manifold as shown in Section 11.4.2 and 11.4.6.

From Section 11.4.10, we can see that there is no differences between the metric (10.2.1) and the

metric (10.3.1) if the preferred retraction and vector transport are used. Therefore, without loss of

generality, we only show the experimental results when using the metric (10.2.1). The algorithmic

parameters settings are the same as those in Section 11.3.

223

The problem size parameters are (p, n) = (4, 12). Table 12.1 and Figure 12.1 present the

experimental results obtained for the joint diagonalization problem (12.1.1). The Ci matrices

in (12.1.1) are chosen to be approximately jointly diagonalizable, which is normally the case in

practical applications. Specifically, the Ci matrices are selected as Ci = diag(n, n − 1, . . . , 1) +

ǫC(Ri +RT
i), where the elements of Ri ∈ R

n×n are independently drawn from the standard normal

distribution. Table 12.1 and Figure 12.1 correspond to ǫC = 0.1, but we have observed similar

results for a wide range of values of ǫC. Table 12.1 indicates that RTR-Newton requires fewer

iterations than RTR-SR1, which requires fewer iterations than RBFGS and LRTR-SR1. This was

expected since RTR-Newton uses the Hessian of f while RBFGS and RTR-SR1 use an inexact

Hessian and LRBFGS and LRTR-SR1 are further constrained by the limited memory. However,

the iterations of RTR-Newton tend to be more time-consuming that those of the quasi-Newton

methods, all the more so if N gets large since the number of terms in the Hessian of f is linear

in N . The experiments reported in Table 12.1 show that the trade-off between the number of

iterations and the time per iteration is in favor of LRBFGS and RTR-SR1 for N sufficiently large.

12.2 Synchronization of Rotation Problem

12.2.1 Introduction

The synchronization problem is to find N unknown rotations R1, . . . , RN ∈ SO(n) from M

noisy measurements, Hij of H̃ij = RiR
T
j . In general, noisy measurements are not given for all H̃ij.

We can induce a graph G = (V,E), with vertices V = {1, 2, . . . , N} and edges

E = {(i, j)|j > i and Hij or Hji is given.}

Boumal et al. [BSAB12] give a overview of the applications and previous work of this problem

and propose a Riemannian approach. In this chapter, the Riemannian quasi-Newton algorithms

are applied for their approach.

12.2.2 Problem Statement

The noisy measurements Hij satisfy Hij = ZijH̃ij where Zij ∈ SO(n) is noise. The noise Zij is

sampled from the isotropic Langevin distribution on SO(n) with mean In and outliers [BSAB12,

224

Table 12.1: Comparison of RTR-Newton and Riemannian quasi-Newton algorithms for
the joint diagonalization problem: n = 12, p = 4, ǫC = 0.1

N
RTR

RBFGS
LRBFGS RTR LRTR-SR1

Newton m : 2 m : 4 m : 8 SR1 m : 2 m : 4 m : 8

16

iter 12 73 97 97 87 163 300 212 206
nf 12 328 114 117 99 163 300 212 206
ng 12 73 97 97 87 163 300 212 206
nH 96 144 0 0 0 439 0 0 0
nV 0 216 478 852 1406 162 1429 1811 3187
nR 11 327 113 116 98 162 299 211 205
gff 5.99−4 2.16−3 1.97−3 2.48−3 1.75−3 1.96−3 2.47−3 1.50−3 2.49−3

gff/gf0 2.40−7 8.61−7 7.84−7 9.88−7 6.97−7 7.83−7 9.87−7 6.00−7 9.95−7
t 6.40−2 1.34−1 8.59−2 9.37−2 9.68−2 1.28−1 3.25−1 2.88−1 3.55−1

64

iter 16 87 127 108 99 237 587 371 195
nf 16 391 162 137 126 237 587 371 195
ng 16 88 127 108 99 237 587 371 195
nH 120 172 0 0 0 683 0 0 0
nV 0 259 628 951 1610 236 2860 3218 2998
nR 15 390 161 136 125 236 586 370 194
gff 2.58−3 3.11−3 8.48−3 5.72−3 7.19−3 5.17−3 8.26−3 7.75−3 6.90−3

gff/gf0 2.90−7 3.50−7 9.56−7 6.45−7 8.10−7 5.83−7 9.31−7 8.73−7 7.78−7
t 2.14−1 3.20−1 2.11−1 1.89−1 2.02−1 3.61−1 1.05 7.45−1 4.80−1

256

iter 13 72 94 92 83 105 267 217 236
nf 13 397 119 117 104 105 267 217 236
ng 13 72 94 92 83 105 267 217 236
nH 109 142 0 0 0 289 0 0 0
nV 0 213 463 807 1338 104 1292 1868 3767
nR 12 396 118 116 103 104 266 216 235
gff 8.08−3 2.00−2 3.21−2 3.30−2 2.14−2 3.49−2 1.88−2 3.43−2 3.63−2

gff/gf0 2.00−7 4.94−7 7.91−7 8.15−7 5.29−7 8.62−7 4.63−7 8.47−7 8.97−7
t 6.61−1 8.81−1 4.70−1 4.50−1 4.25−1 4.42−1 1.27 1.05 1.25

225

20 40 60 80 100 120 140 160 180 200

10
0

iter.

|g
ra

d
f|

The joint diagonaliztion problem

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
0

time(second)

|g
ra

d
f|

The joint diagonaliztion problem

RTR−Newton
RBFGS
LRBFGS(m:4)
RTR−SR1
LRTR−SR1(m:4)

RTR−Newton
RBFGS
LRBFGS(m:4)
RTR−SR1
LRTR−SR1(m:4)

Figure 12.1: Comparison of RTR-Newton and Riemannian quasi-Newton algorithms for
the joint diagonalization problem: n = 12, p = 4, N = 256, ǫC = 0.1

226

(4.12)]. The log-likelihood function [BSAB12, (2.5)] is then

L : SO(n)× · · · × SO(n)→ R : R = (R1, . . . , RN) 7−→ L(SO(n)× · · · × SO(n))

=
1

2

∑

(i,j)∈E
log(

p

cn(κ)
exp(κ trace(RT

i HijRj)) + 1− p), (12.2.1)

where p ∈ [0, 1], κ > 0, Hij are the observed matrices in SO(n) and

cn(κ) =

∫

SO(n)
exp(κ trace(O))dµ(O).

The domain M = (SO(n), . . . , SO(n)) is a manifold formed by a product of manifolds whose

tangent space and metric are discussed in Section 9.4. The orthogonal projection to a tangent

space of the manifold is

PMR V = (P
SO(n)
R1

V1, . . . , P
SO(n)
RN

VN),

where V = (V1, . . . , VN) ∈ R
n×(nN) and P

SO(n)
Ri

Vi = (Vi − RiV
T
i Ri)/2. For any U ∈ R

n×(nN), let

the Uk denote the matrix formed by nk + 1 to n(k + 1) columns of U , i.e., U can be written as

U = (U1, U2, . . . , UN). The gradient of the cost function is given by

gradL(R) = PMR grad L̄(R),

where

(grad L̄(R))k =
1

2

∑

(i,k)∈E
ωikH

T
ikRi +

1

2

∑

(k,j)∈E
ωkjHkjRj,

for all (i, j) ∈ E and

ωij =
κlij

lij + 1− p
, lij =

p

cn(κ)
exp(κ trace(RT

i HijRj)).

The action of the Hessian on a tangent vector is

(HessL(R)[ξ])k =
1

2
PMRk

(D(grad L̂(R))k[ξ]− ξk(grad L̂(R))TkRk

−Rk(grad L̂(R))Tk ξk −Rk(D(grad L̂(R))k[ξ])
TRk),

where

D(grad L̂(R))k[ξ] =
1

2

∑

(i,k)∈E
(ωikH

T
ikξi + ω′ikH

T
ikRi) +

1

2

∑

(k,j)∈E
(ωkjHkjξj + ω′kjHkjRj),

and

ω′ij =
κ2(1− p)lij(trace(ξ

T
i HijRj +RT

i Hijξj))

(lij + 1− p)2
.

227

12.2.3 Implementation and Results

Since the goal is to maximize the likelihood function (12.2.1) and the optimization algorithms

are to minimize a cost function, the negative of the likelihood function is used to be the cost

function.

Details of the implementation of the Riemannian objects needed are discussed in Chapter 9.

The retraction and the vector transport are given by (10.2.16) and (9.2.19) since they are shown to

be preferred in Sections 11.4.2 and 11.4.6 1. We use the intrinsic approach to represent a tangent

vector. The algorithmic parameters settings are the same as those in Section 11.3.

The problem dimensions are (n, p) = (3, 0.5), and κ = 0.5 in our experiments. The initial

R(0) = {R(0)
1 , R

(0)
2 , . . . , R

(0)
N } is chosen such that R

(0)
i = qf(Mi) where the elements of Mi are

independently drawn from the standard normal distribution. TheHij are taken to beHij = qf(Nij),

where the elements of Nij are independently drawn from the standard normal distribution. In order

to obtain a connected graph, we use recursion. Suppose a k-node graph is connected. A k+1-node

connected graph can be obtained by adding a node and a edge between (k + 1)-th node and one

of previous nodes. After completing an N -node connected graph, that is in fact a tree given the

construction procedure, some edges are added randomly. Specifically, each pair of nodes (i, j) is

checked. If an edge connecting i and j exists, the next pair is considered. If a connecting edge does

not exist, then one is added with probability q.

Table 12.2 and Figure 12.2 show the results for q = 1/N and Table 12.3 and Figure 12.3 show

the results for q = 0.5. The number of edges of the former is linear in the number of nodes, while

the number of edges in the latter is quadratic in the number of nodes.

RTR-Newton requires the smallest number of iteration since it exploits the Hessian. However,

it is relatively slow due to the relatively high computational cost of the action of the Hessian on

a tangent vector. From Tables 12.2 and 12.3, we can see that RBFGS and LRBFGS are the two

fastest algorithms and RTR-SR1 is competitive when N = 16 or 32.

1The retraction (10.2.16) is identical to the exponential mapping of the orthogonal group but the vector transport
by parallelization (9.2.19) is different from the parallel translation of the orthogonal group. The vector transport
(9.2.19) is cheaper than the parallel translation.

228

Table 12.2: Comparison of RTR-Newton and Riemannian quasi-Newton algorithms for
the synchronization of rotation problem with q = 1/N .

N
RTR

RBFGS
LRBFGS RTR LRTR-SR1

Newton m : 2 m : 4 m : 8 SR1 m : 2 m : 4 m : 8

16

iter 21 85 89 89 75 100 193 154 176
nf 21 89 102 95 82 100 193 154 176
ng 20 87 91 91 77 100 193 154 176
nH 134 168 0 0 0 438 0 0 0
nV 0 254 440 782 1204 99 794 1077 2295
nR 20 88 101 94 81 99 192 153 175
gff 1.55−10 4.35−7 7.48−7 5.89−7 4.07−7 5.66−7 4.76−7 7.74−7 6.97−7

gff/gf0 2.00−10 5.62−7 9.66−7 7.61−7 5.25−7 7.31−7 6.15−7 9.99−7 9.00−7
t 7.45−1 3.48−1 3.64−1 3.61−1 3.26−1 3.81−1 7.92−1 6.71−1 8.53−1

32

iter 24 120 157 114 107 140 340 259 269
nf 24 126 165 122 113 140 340 259 269
ng 20 120 157 114 107 140 340 259 269
nH 301 238 0 0 0 599 0 0 0
nV 0 357 778 1005 1746 139 1449 1870 3402
nR 23 125 164 121 112 139 339 258 268
gff 4.60−10 1.12−6 1.13−6 8.32−7 1.01−6 1.05−6 8.11−7 9.63−7 8.36−7

gff/gf0 4.08−10 9.95−7 9.99−7 7.38−7 8.95−7 9.27−7 7.20−7 8.55−7 7.42−7
t 4.82 1.11 1.36 1.00 9.61−1 1.21 3.00 2.34 2.57

64

iter 40 234 301 307 266 391 1270 1072 1282
nf 40 238 323 317 275 391 1270 1072 1282
ng 33 235 302 308 267 391 1270 1072 1282
nH 704 466 0 0 0 2897 0 0 0
nV 0 700 1499 2743 4450 390 5323 7763 16857
nR 39 237 322 316 274 390 1269 1071 1281
gff 8.25−7 1.52−6 1.41−6 1.31−6 1.23−6 1.40−6 1.60−6 1.56−6 1.61−6

gff/gf0 5.04−7 9.29−7 8.59−7 8.00−7 7.52−7 8.56−7 9.79−7 9.50−7 9.83−7
t 4.121 6.11 7.53 8.11 6.15 9.32 2.891 2.431 2.991

229

50 100 150 200 250

10
−5

10
0

iter.

|g
ra

d
f|

The synchronization of rotation problem

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

10
−5

10
0

time(second)

|g
ra

d
f|

The synchronization of rotation problem

RTR−Newton
RBFGS
LRBFGS(m:4)
RTR−SR1
LRTR−SR1(m:4)

RTR−Newton
RBFGS
LRBFGS(m:4)
RTR−SR1
LRTR−SR1(m:4)

Figure 12.2: Comparison of RTR-Newton and Riemannian quasi-Newton algorithms for
the synchronization of rotation problem with q = 1/N,N = 32.

230

Table 12.3: Comparison of RTR-Newton and Riemannian quasi-Newton algorithms for
the synchronization of rotation problem with q = 0.5.

N
RTR

RBFGS
LRBFGS RTR LRTR-SR1

Newton m : 2 m : 4 m : 8 SR1 m : 2 m : 4 m : 8

16

iter 17 47 51 49 48 48 73 63 62
nf 17 51 56 53 54 48 73 63 62
ng 16 47 51 49 48 48 73 63 62
nH 73 92 0 0 0 134 0 0 0
nV 0 138 248 420 743 47 286 434 759
nR 16 50 55 52 53 47 72 62 61
gff 1.35−7 1.29−6 1.25−6 8.94−7 8.61−7 1.25−6 3.50−7 9.51−7 1.45−6

gff/gf0 8.92−8 8.48−7 8.21−7 5.90−7 5.68−7 8.22−7 2.31−7 6.27−7 9.57−7
t 5.44−1 2.38−1 2.51−1 2.39−1 2.51−1 2.22−1 3.57−1 3.27−1 3.47−1

32

iter 25 71 125 71 71 105 161 131 140
nf 25 75 127 73 73 105 161 131 140
ng 23 71 125 71 71 105 161 131 140
nH 154 140 0 0 0 350 0 0 0
nV 0 210 618 618 1134 104 666 926 1811
nR 24 74 126 72 72 104 160 130 139
gff 7.39−9 1.80−6 2.20−6 1.67−6 2.02−6 1.34−6 2.21−6 1.44−6 2.39−6

gff/gf0 2.98−9 7.26−7 8.87−7 6.72−7 8.14−7 5.39−7 8.91−7 5.82−7 9.63−7
t 3.90 9.64−1 1.64 9.48−1 9.64−1 1.42 2.18 1.81 2.00

64

iter 42 166 152 120 221 225 351 262 311
nf 42 181 162 124 247 225 351 262 311
ng 35 166 152 120 224 225 351 262 311
nH 309 330 0 0 0 803 0 0 0
nV 0 495 753 1059 3687 224 1496 1913 4210
nR 41 180 161 123 246 224 350 261 310
gff 1.57−7 4.15−6 5.63−6 3.97−6 5.58−6 2.21−6 4.78−6 5.66−6 3.28−6

gff/gf0 2.76−8 7.30−7 9.91−7 6.98−7 9.83−7 3.88−7 8.41−7 9.96−7 5.77−7
t 2.941 7.64 6.76 5.30 1.011 1.001 1.531 1.151 1.401

231

20 40 60 80 100 120

10
−5

10
0

iter.

|g
ra

d
f|

The synchronization of rotation problem

0 0.5 1 1.5 2 2.5 3 3.5

10
−5

10
0

time(second)

|g
ra

d
f|

The synchronization of rotation problem

RTR−Newton
RBFGS
LRBFGS(m:4)
RTR−SR1
LRTR−SR1(m:4)

RTR−Newton
RBFGS
LRBFGS(m:4)
RTR−SR1
LRTR−SR1(m:4)

Figure 12.3: Comparison of RTR-Newton and Riemannian quasi-Newton algorithms for
the synchronization of rotation problem with q = 0.5, N = 32.

232

CHAPTER 13

RIEMANNIAN OPTIMIZATION FOR ELASTIC

SHAPE ANALYSIS

13.1 Introduction

Many approaches to shape analysis have been proposed in the literature and used to varying de-

grees of success in applications, e.g., point-based methods, domain-based shape representations and

parameterized curve representations. Among parameterized curve representation methods, elastic

shape analysis has become increasingly important in recent years due to its superior theoretical

basis and empirically demonstrated effectiveness. In this chapter, we consider the framework of

elastic shape analysis due to Srivastava et. al. [SKJJ11].

A fundamental operation in elastic shape analysis, upon which many other important tasks

depend, is the accurate and efficient computation of distance between two curves. We develop and

analyze a novel approach to determining optimal reparameterizations and rotations between two

curves and evaluate its use in computing the distance and minimal geodesic between two curves.

This chapter is organized as follows. Section 13.2 presents the Riemannian framework for shape

analysis including the definition of the elastic metric for open and closed curves in R
n. Section

13.3 presents the algorithm of Srivastava et al. [SKJJ11], the approximations upon which it is

based and its core dynamic programming algorithm. The proposed Riemannian approach to the

solution of the optimization problem that defines the elastic distance metric evaluation is derived

in Section 13.4 and a detailed discussion of its implementation using Riemannian optimization

algorithms follows in Section 13.5. Empirical evaluation of the relative efficiency and effectiveness

of the methods is presented in Section 13.6 and our conclusions are given in Section 13.7.

13.2 Riemannian Framework and Problem Statement

13.2.1 Curve Representation

The derivation of the basic representation of a shape begins with a parametrized curve, i.e.,

β(t) : D → R
n, where D is the domain of the curve, D = [0, 1] for an open curve and D = S

1,

233

i.e., the unit circle in R
2, for a closed curve. The shape is taken to be invariant with respect to

rescaling, translation, and rotation for inelastic shape analysis, while elastic shape analysis adds

invariance with respect to reparameterization. All four invariants must be taken into account when

developing a representation that supports efficient and robust computation.

The framework of Srivastava et al. [SKJJ11] uses the square root velocity (SRV) function

q(t) =
β̇(t)

√

‖β̇(t)‖2

as the basis for elastic analysis of a shape defined by the parameterized curve β(t). Observe that

β̇(t) can be recovered from q(t) by β̇(t) = ‖q(t)‖2q(t). Translation is removed automatically by the

use of β̇(t) in the definition. Rescaling is removed by the normalization of the length of the curve

to 1. Since the length of a curve, β(t), is
∫

D
‖β̇(t)‖2dt =

∫

D
‖q(t)‖22dt, the normalization requires

that
∫

D
‖q(t)‖22dt = 1 and the set of all SRV functions is the unit sphere in L

2(D,Rn). This sphere

is called the preshape space. For open curves in R
n, the domain is D = [0, 1] and the preshape

space

lon = {q : [0, 1]→ R
n|
∫ 1

0
‖q(t)‖22dt = 1},

is the unit sphere of L2([0, 1],Rn). For closed curves, the domain is D = S1 and the preshape space

is

lcn = {q : S1 → R
n|
∫

S1

‖q(t)‖22dt = 1,

∫

S1

q(t)‖q(t)‖2dt = 0},

where
∫

S1
q(t)‖q(t)‖2dt = 0 is the closure condition.

Removing rotation and reparameterization is required to define the shape space. This is done

by defining an appropriate quotient operation via isometric group actions. This, in turn, defines

the distance between curves, the associated optimization problem, and other key tasks such as

determining geodesics containing the two curves. Since the approaches taken differ for open and

closed curves they are considered separately below. However, both approaches require the rotation

and reparameterization groups, and their actions. In these two definitions, Γ and ln are used to

indicate the reparameterization group and preshape space for both open and closed curves. They

are distinguished in later discussions by the addition of a superscript o and c respectively.

Definition 13.2.1. The rotation group for curves in R
n is

SO(n) = {O ∈ R
n×n|OTO = In,det(O) = 1}.

234

and its action is SO(n)× ln → ln : (O, q)→ Oq.

Definition 13.2.2. The reparameterization group for curves in R
n is

Γ = {γ : D→ D|γ ∈ D(D,D)}

and its action is ln×Γ→ ln : (q, γ)→ (q ◦γ)√γ̇, where D(D,D) is the set of diffeomorphisms from

D to itself (an invertible function such that both the function and its inverse are smooth, i.e., in

C∞).

13.2.2 Open Curves in R
n

The preshape space for open curves, lon, is a well-known infinite dimensional manifold. The

tangent space of q ∈ lon is

Tq l
o
n = {v : [0, 1]→ R

n|
∫ 1

0
q(t)T v(t)dt = 0}.

The Riemannian metric can be taken as the endowed metric from the embedding space L2([0, 1],Rn),

i.e.,

〈v1, v2〉lon = 〈v1, v2〉L2 =

∫ 1

0
v1(t)

T v2(t)dt,

where v1, v2 ∈ Tq l
o
n and the distance function on the manifold induced by this Riemannian metric

is

dlon(x, y) = cos−1 〈x, y〉L2 . (13.2.1)

The resulting shape space for open curves is given by the quotient

L
o
n = lon/(SO(n)× Γo) = {[q]|q ∈ lon},

where [q] = {O(q ◦ γ)√γ̇|(O, γ(t)) ∈ SO(n)× Γo, q ∈ lon} is the orbit.

If a compact Lie group G acts freely on a Riemannian manifoldM by isometries, and the orbits

are closed, then the quotientM/G is a manifold, and inherits a Riemannian metric fromM.

Srivastava et al. [SKJJ11] proved that SO(n) × Γo is an isometric group for lon. However, as

pointed by Robinson [Rob12] Γo is not a closed set since a sequence of γ’s can have a limit that is

flat on some nontrivial interval and is, therefore, not a diffeomorphism. In order to overcome this

difficulty, we can work with the closure of the orbit, [q] and the shape space is approximated by

L
o
n ≈ {[q]|q ∈ lon}.

235

(See [SKJJ11] for the technical details.) Another way to elaborate this to first introduce a semi-

group:

Γo
s = {γ : [0, 1]→ [0, 1]|γ(0) = 0, γ(1) = 1,

γ is an absolutely continuous, non-decreasing and surjective function } .

It can be shown that Γo
s is closed under composition, [q] is the orbit of q under the semigroup Γo

s

and Γo is dense in Γo
s.

Now we can define a distance between orbits of Γo
s, [q1] and [q2] as:

dLo
n
([q1], [q2]) = inf

γ1,γ2∈Γo
s ,O∈SO(n)

dlon((q1 ◦ γ1)
√

γ̇1, O(q2 ◦ γ2)
√

γ̇2) .

Since Γo is dense in Γo
s, for any ǫ > 0, there exists a γ∗ ∈ Γo and an O∗ ∈ SO(n) such that:

|dLo
n
([q1], [q2])− dlon(q1, O

∗(q2 ◦ γ∗)
√

γ̇∗)| < ǫ .

Therefore, our goal is to find this pair (O∗, γ∗) ∈ SO(n)× Γo that solves for,

inf
γ∈Γo,O∈SO(n)

dlon(q1, O(q2 ◦ γ)
√

γ̇) = inf
γ∈Γo,O∈SO(n)

cos−1 〈q1, O(q2 ◦ γ)
√

γ̇〉L2 . (13.2.2)

Even though this will not be an exact calculation of the shape distance, this approximation will

serve as distance for comparing shapes of curves in practical situations.

13.2.3 Closed Curves in R
n

The preshape space of closed curves, lcn, is a submanifold of lon and the Riemannian metric

inherited from the embedding space is

〈v1, v2〉lcn = 〈v1, v2〉L2 =

∫

S1

v1(t)
T v2(t)dt.

The resulting shape space is

L
c
n = lcn/(SO(n)× Γc) = {[q]|q ∈ lcn},

where [q] = {O(q ◦ γ)√γ̇|(O, γ(t)) ∈ SO(n) × Γc, q ∈ lcn} is the orbit. As with open curves, Lc
n is

not known to be a Riemannian manifold, so it is approximated by a manifold

L
c
n ≈ {[q]|q ∈ lcn}.

236

Using the same idea as with open curves, a semigroup Γc
s, which is closure under composition

and in which Γc is dense, is imposed and [q] is the orbit of q under the semigroup Γc
s.

The distance between orbits of Γc
s, [q1] and [q2], is

dLc
n
([q1], [q2]) = inf

γ1,γ2∈Γc
s,O∈SO(n)

dlcn((q1 ◦ γ1)
√

γ̇1, O(q2 ◦ γ2)
√

γ̇2) .

and for any ǫ > 0, there exists a γ∗ ∈ Γc and an O∗ ∈ SO(n) such that:

|dLc
n
([q1], [q2])− dlcn(q1, O

∗(q2 ◦ γ∗)
√

γ̇∗)| < ǫ .

Unlike the case of open curves, there is no known analytical expression of distance on lcn. Since lcn

is a submanifold of lon, the approximation

arg min
γ1,γ2∈Γc

s,O∈SO(n)
dlcn((q1 ◦ γ1)

√

γ̇1, O(q2 ◦ γ2)
√

γ̇2)

≈ arg min
γ1,γ2∈Γc

s,O∈SO(n)
dlon((q1 ◦ γ1)

√

γ̇1, O(q2 ◦ γ2)
√

γ̇2)

is used and our goal is to find (γ∗, O∗) ∈ SO(n)× Γc that solves for,

inf
γ∈Γc,O∈SO(n)

dlon(q1, O(q2 ◦ γ)
√

γ̇)

= inf
γ∈Γc,O∈SO(n)

cos−1 〈q1(t), O(q2 ◦ γ(t))
√

γ̇(t)〉L2dt. (13.2.3)

As with open curves, this will not be an exact calculation of the shape distance, but this approxi-

mation will serve as distance for comparing shapes of curves in practical situations.

13.3 The Coordinate Relaxation Method

The discussion in Sections 13.2.2 and 13.2.3 characterizes the reparameterization problem from

the Riemannian manifold point of view but does not suggest an algorithm. Sebastian et al. [SKK03]

define an edit distance to characterize differences between shapes and develop an algorithm for closed

curves with computational complexity O(N2 logN). It requires the cost function to be invariant

to rotation which is clearly not the case for the cost functions discussed above.

Srivastava et al. [SKJJ11] developed a method for finding (γ∗, O∗) for open and closed curves

based on the idea of alternately optimizing on SO(n) and Γc, i.e., a generalized Coordinate Relax-

ation method. The simpler open curve problem and algorithm are discussed first followed by the

adaptation to closed curves.

237

13.3.1 The Basic Ingredients

For open curves Srivastava et al.[SKJJ11] use the cost function

Ho(O, γ(t)) =

∫ 1

0
‖q1(t)−O(q2 ◦ γ(t))

√

γ̇(t)‖22dt, (13.3.1)

that has the same extreme points as the cost function used in (13.2.2). This is easily seen from

∫ 1

0
‖q1(t)−O(q2 ◦ γ(t))

√

γ̇(t)‖22dt = 〈q1, q1〉L2 + 〈q2, q2〉L2 − 2〈q1, O(q2 ◦ γ)
√

γ̇〉L2

= 2− 2 cos(cos−1(〈q1, O(q2 ◦ γ)
√

γ̇〉L2))

= 2− 2 cos(dlon(q1, O(q2 ◦ γ)
√

γ̇)).

They propose a variant of the general Coordinate Relaxation method approach given in Algorithm

8.

Algorithm 8 Coordinate Relaxation Algorithm for Ho(O, γ)

Input: Initial Γ0;

1: k = 0;

2: Find Ok+1 = argminO Ho(O, γk);

3: Find γk+1 = argminγ H
o(Ok+1, γ);

4: If termination criterion is satisfied, stop, otherwise, k = k + 1 and go to step 2.

The minimizer Ok+1 of Ho(O, γk) is Ok+1 = UV T , where USV T is the singular value decompo-

sition (SVD) of A =
∫

S1
q1(t)q̃2(t)

T dt and q̃2(t) = (q2 ◦ γk(t))
√

γ̇k(t). The SVD of a generic dense

matrix A ∈ R
n×n is well-understood and can be computed reliably and efficiently using well-known

numerical linear algebra techniques for n up to several hundred, i.e., much larger than typically

required for typical shape analysis problems. This is common to both open and closed curve prob-

lems. To find the minimizer γk+1 of Ho(Ok, γ) for open curves, Srivastava et. al. [SKJJ11] use

dynamic programming (DP).

DP can be used to solve approximately optimization problems of the form,

min
γ∈Γo

∫ 1

0
|f(t)− g(γ(t))|2dt,

where f and g are given sufficiently smooth functions. Ho(Ok+1, γ) is of this form and satisfies the

additional necessary condition for applying DP that the cost function is additive in t.

238

The approximation arises for this problem because DP works on a grid in [0, 1] × [0, 1] rather

than the continuous space Γo. Srivastava et al. use GN ×GN where GN = {0, 1/N, 2/N, . . . , (N −
1)/N, 1}. On GN ×GN , DP uses a partial cost function

E(s, t; γ) =

∫ t

s
|f(τ)− g(γ(τ))|2dτ.

and determines a piecewise linear path defined by connecting points moving to the right and up,

i.e., (0, 0) = (i0, j0), (i1, j1), (i2, j2) . . . (im, jm) = (1, 1) where (ir, jr) ∈ GN × GN that minimizes

the cost
m−1
∑

r=0

E(ir, ir+1;L(ir, jr; ir+1, jr+1)),

where L(ir, jr; ir+1, jr+1) is a linear function passing though (ir, jr) and (ir+1, jr+1).

DP uses induction to construct a minimal path. Suppose S ⊆ GN × GN is such that for any

(p, q) ∈ S the global minimizing path γ∗(p,q) from (0, 0) to (p, q) and the associated cost function value

W (p, q) are known. Let Ui,j ⊆ S denote the set {(p, q)|0 ≤ p < i, 0 ≤ q < j} where i, j, p, q ∈ GN .

The basic DP step adds (i, j) to S by computing γ∗(i,j), the global minimizing path on GN × GN

from (0, 0) to (i, j), and the associated cost function value W (i, j). This is done by considering

each (p, q) ∈ Ui,j, adding the edge between (p, q) and (i, j) to the path γ∗(p,q) and determining its

cost. Formally, determining W (i, j) and γ∗(i,j) is solving

min
(k,l)∈Ui,j

E(k, i;L(k, l; i, j)) +W (k, l), with W (0, 0) = 0,

Eventually, S = GN ×GN and a path with minimal cost on S ⊂ Γo is given by γ∗(1,1).

The complexity of DP as described above is O(N4) and too high for practical problems. To

reduce the complexity, the set Ui,j is constrained to

Ni,j = {(k, l)|max(i− h, 0) ≤ k < i,max(j − h, 0) ≤ l < j} ⊂ Ui,j, (13.3.2)

for some h. The setNi,j can be further reduced by removing some repeated slopes, e.g., (i−2, j−2) is
deleted because (i−1, j−1) exists. Using the set Ni,j rather than Ui,j reduces the complexity of DP

to O(N2). However, since the number of slopes considered when adding (i, j) to S is constrained,

the minimizer may change and may no longer be a global minimizer on GN ×GN .

The quality of γ∗(1,1) compared to a global minimizer, γ̃∗(1,1) on Γo is not known analytically nor

is the potential further degradation in quality compared to γ̃∗(1,1) that results in replacing Ui,j with

239

Ni,j. Additionally, the path found by DP is piecewise linear and therefore not a diffeomorphism

but it is a practical approximation of one.

The cost function defined on SO(n)× Γc for closed curves is

Hc(O, γ) =

∫

S1

‖q1(t)−O(q2 ◦ γ(t))
√

γ̇(t)‖22dt. (13.3.3)

A DP-based Coordinate Relaxation algorithm cannot be applied to Hc(O, γ) directly since DP

requires a grid of a domain that is the cross product of two intervals, e.g., [0, 1]× [0, 1] rather than

S1 × S1. Srivastava et al. solve this by applying the open curve DP-based algorithm to a set of

open curves, {β̃(i), 1 ≤ i ≤ w} derived from the closed curve β using w break points, ti, 1 ≤ i ≤ w,

i.e.,

β̃(i)(t) =

{

β(t+ ti), if 0 ≤ t ≤ 1− ti;
β(t− (1 − ti)), if 1− ti < t ≤ 1.

The open curve DP algorithm using Ho(O, γ) is applied to each open curve β̃(i) to determine

γ(i). A γ(i) with minimal cost is chosen as the closed curve reparameterization. Since DP is run

w times, the complexity for this closed curve algorithm is O(wN2) and w is usually proportional

to N , e.g., every second or third point is used as a break point, yielding O(N3) complexity. A

key consideration for closed curve reparameterization is therefore computational complexity versus

quality of γ.

13.3.2 Coordinate Relaxation Difficulties

The use of DP on a grid to solve approximately the optimization problem implies that γ is

represented by a sequence of scalars such that the i-th scalar is γ at (i− 1)/N . The curves β1 and

β2 are also represented discretely by a sequence of points in R
n and values at points other than the

discrete set are recovered using an interpolatory parameterized polynomial, e.g., an interpolatory

spline of degree 1, 2 or 3. The theoretical descriptions of the optimization algorithms for open and

closed curves assume that the operations of rotation and reparameterization preserve the shape of

the curves and it is important to maintain this invariant in the context of the discrete representations

of γ, β1 and β2.

Algorithm 9 and Algorithm 10 are two discrete representation versions of the Coordinate Re-

laxation algorithm applied to closed curves based on the cost function (13.3.3). The open curve

discrete versions are easily derived from either. The differences between Algorithm 9 and Algorithm

240

10 are specifically designed to highlight some crucial implementation decisions and the problem-

s that arise in both implementations. These problems are all overcome by the new Riemannian

algorithms we propose in Section 13.4.

Note that cost function (13.3.3) applies the reparameterization, γ to β2. Also note that in

Step 10 of Algorithm 9 interpolation is used when evaluating the reparameterized curve β2 ◦ γ.
This implies that the vector of discrete points in R

n used to represent β2 is updated by each

reparameterization. If, equivalently from an optimization point of view, γ is associated with β1 then

its vector changes. Therefore, when multiple iterations of Coordinate Relaxation are performed, a

problem arises. Since the points upon which the interpolatory parameterized polynomial is based

change, the parameterized polynomial changes and therefore the shape of the curve changes with

each reparameterization. Algorithm 10 overcomes this difficulty by representing β2 as a continuous

function determined by the interpolatory parameterized polynomial (Step 1) and maintaining it

throughout the algorithm.

Algorithm 10, however, has a problem that is not seen in Algorithm 9. In Step 11 the expression

β̄
(min,k)
2 = O(min,k)O

(k)
∗ (β2 ◦ γ(k)∗) ◦ ((γ(min,k) + b

(k)
min/N) mod 1). (13.3.4)

is implicitly used whenH(min,k) = Hc(O
(k)
∗ , γ

(k)
∗) is computed and is then explicitly used to compute

β̄
(min,k)
2 . The curves β̄

(min,k)
2 and β

(k+1)
2 are, in theory, the same. However, on the next iteration,

k + 1, the curve β
(k+1)
2 is explicitly computed using the composition

β
(k+1)
2 = O(min,k)O

(k)
∗ β2 ◦ (γ(k)∗ ◦ ((γ(min,k) + b

(k)
min/N) mod 1)). (13.3.5)

Note that associativity has been applied in the composition of functions. This is required given that

the interpolatory parameterized polynomial representing β2 is maintained for all iterations. The

change of order does not matter theoretically in the continuous form but the curves are different in

the discrete case. If the cost function value H(min,k) was computed using the order of composition in

(13.3.5) it may yield a different value than the cost function value used during iteration k to update

β2 mentioned above. In fact, the cost function value associated with the form (13.3.5) implicit in

iteration k + 1 may be larger than the cost function value actually computed in iteration k using

(13.3.4). Therefore, we may compute a β
(k+1)
2 that does not decrease the cost function value in

practice.

241

The experiments in Srivastava et. al. [SKJJ11] simplify the optimization considerably by using

only a single iteration of the Coordinate Relaxation algorithm. Algorithm 9 and 10 are then

identical and avoid both of these problems. If a more accurate optimization is demanded therefore

requiring more iterations, as done in Section 13.6, problems ensue. Note that these problems are

not the result of using DP to approximate the optimization problem. Rather, they arise from the

Coordinate Relaxation approach. The new Riemannian algorithm discussed in Section 13.4 avoids

these difficulties.

Algorithm 9 Coordinate Relaxation Algorithm 1 for Hc(O, γ)

Input: Two closed curves β1 = {v1, v2, . . . , vN , v1} and β
(0)
2 = {u(0)1 , u

(0)
2 , . . . , u

(0)
N , u

(0)
1 } where

u
(0)
i , vi ∈ R

2; a set of break points {b1, b2, . . . , bw};
1: k = 0;

2: for i = 1, 2, . . . , w do

3: Shift β
(k)
2 and get β̃

(i,k)
2 = {u(k)bi

, u
(k)
bi+1, . . . , u

(k)
N , u

(k)
1 , . . . , u

(k)
bi
};

4: Compute the rotation O(i,k) based on β1 and β̃
(i,k)
2 ;

5: Set β̄2 = O(i,k)β̃
(i,k)
2 ;

6: Compute γ(i,k) for β1 and β̄2 by DP;

7: Compute cost function H(i,k)

8: end for

9: Find H(min,k) = min1≤i≤w{H(i,k)} and get the corresponding O(min,k), γ(min,k) and β̄
(min,k)
2 ;

10: Interpolate points β̄
(min,k)
2 to get a function, e.g., spline cubic function and get β

(k+1)
2 by e-

valuating the function at γ(min,k); (This is the implementation of β
(k+1)
2 = β̄

(min,k)
2 ◦ γ(min,k));

11: If a stopping criterion is satisfied, then stop, otherwise k = k + 1 and goto step 2;

13.4 A Riemannian Optimization Method

In order to make use of Riemannian optimization theory and algorithms in the fundamental

elastic shape analysis task of efficiently and effectively computing the distance between two curves,

we must define an appropriate cost function on a Riemannian manifold, the Riemannian gradient

of the cost function, the retraction operation on the manifold, and an appropriate vector transport.

Several Riemannian optimization algorithms are applicable to the distance computation and a

representative set is investigated and compared to the DP-based approach of Srivastava et al. for

closed curves in this and the following section. Specifically, the algorithms RTR-SR1, LRTR-SR1,

242

Algorithm 10 Coordinate Relaxation Algorithm 2 for Hc(O, γ)

Input: Two closed curves β1 = {v1, v2, . . . , vN , v1} and β2 = {u1, u2, . . . , uN , u1} where ui, vi ∈ R
2;

a set of break points {b1, b2, . . . , bw}; initial γ(0)∗ = {0, 1/n, . . . , 1}; O(0)
∗ = In;

1: Compute interpolation function Fβ2 for β2, e.g., a spline cubic function;

2: k = 0;

3: Compute β
(k)
2 by evaluating Fβ2 at γ

(k)
∗ and left multiplying by O

(k)
∗ ;

4: for i = 1, 2, . . . , w do

5: Shift β
(k)
2 and get β̃

(i,k)
2 = {u(k)bi

, u
(k)
bi+1, . . . , u

(k)
N , u

(k)
1 , . . . , u

(k)
bi
};

6: Compute the rotation O(i,k) based on β1 and β̃
(i,k)
2 ;

7: Set β̄2 = O(i,k)β̃
(i,k)
2 ;

8: Compute γ(i,k) for β1 and β̄2 by DP;

9: Compute cost function H(i,k);

10: end for

11: Find H(min,k) = min1≤i≤w{H(i,k)} and get the corresponding O(min,k), γ(min,k), β̄
(min,k)
2 and the

shift b
(k)
min;

12: Set O
(k+1)
∗ = O(min,k)O

(k)
∗ ;

13: Interpolate points γ
(k)
∗ to get a function, e.g., spline function and evaluate the function at

(γ(min,k) + imin/N) mod 1 =













(γ(min,k)(0) + b
(k)
min/N) mod 1

(γ(min,k)(1/N) + b
(k)
min/N) mod 1

...

(γ(min,k)(1) + b
(k)
min/N) mod 1













to get γ
(k+1)
∗ ; (This is the implementation of γ

(k+1)
∗ = γ

(k)
∗ ◦ γ(min,k));

14: If a stopping criterion is satisfied, then stop, otherwise k = k + 1 and goto step 3;

243

RBFGS, LRBFGS and RSD are applied to the distance problem and it is shown that a Riemannian

approach is more efficient computationally and produces a superior distance computation than the

DP-based approach.

13.4.1 Cost Function

Using the Riemannian approach we can handle the closed curve distance problem directly, i.e.,

breaking the curve into several open curves and taking the minimal solution is avoided. The first

step in defining the cost function and associated Riemannian manifold requires reconsidering the

representation of Γc for closed curves

Γc = {γ : S1 → S
1|γ is a diffeomorphism.}.

and its group action. We use Γ̃×R which is a covering space of Γc with the covering mapping from

(γ(t),m)) to γ(t) +m mod 2π, where

Γ̃ = {γ : [0, 2π]→ [0, 2π]|γ is diffeomorphism. }.

The Γc group action on q

(q, γ) = q ◦ γ
√

γ̇, γ ∈ Γc

is replaced with the Γ̃× R group action on q defined by

(q, (γ,m)) = (q(γ +m mod 2π))
√

γ̇, (γ,m) ∈ Γ̃× R.

Note that the addition of R to the group definition removes the need for break points since the

offset has been added as a decision variable.

The cost function on the Riemannian manifold SO(n)× R× Γ̃ is

H(O,m, γ) =

∫ 2π

0
‖q1(t)−O(q2(γ(t) +m mod 2π))

√

γ̇(t)‖22dt

Using the Riemannian manifold structure of Γ̃ complicates the basic objects required for a

Riemannian optimization algorithm. The tangent space of γ ∈ Γ̃ is Tγ Γ̃ = {v : [0, 2π] → R|v(0) =
v(2π) = 0, v is smooth}. Note that Γ̃ is an open subset of L2([0, 2π],R), it is natural to endowed

the metric from L2([0, 2π],R). Therefore, the exponential mapping is given by Expγ v = γ + v.

When the exponential mapping is used as the retraction in a Riemannian optimization algorithm,

244

the update tangent vector ηi in the update γi+1 = γi + ηi must be carefully chosen to guarantee

that γi+1 is a diffeomorphism. This is, in general, not easy to guarantee for an arbitrary γi on

the manifold and we know of no retractions to replace the exponential map that can guarantee a

diffeomorphism in a computationally efficient manner. Fortunately, we can approximate Γ̃ with

another manifold that provides the required computational efficiency while capturing the structure

of Γ̃ and Γc effectively.

Note that any γ ∈ Γ̃ and its derivative γ̇ satisfy the constraints γ(0) = 0, γ(2π) = 2π and

γ̇(s) > 0 for all s ∈ [0, 2π]. These are equivalent to γ(0) = 0,
∫ 2π
0 γ̇(t)dt = 2π and γ̇(s) > 0 for

all s ∈ [0, 2π]. The positivity constraint on the derivative can be guaranteed by replacing γ̇ with

an even power function. For example setting γ̇ = l2 where l : [0, 2π] → R yields all of the γ that

satisfy the constraints. All three constraints are condensed into the constraints
∫ 2π
0 l2(t)dt = 2π

and l2(s) 6= 0 for all s ∈ [0, 2π]. (The method of keeping l2 away from 0 is discussed in Section

13.5.2.) Therefore, l is an element of the 2-norm sphere and γ(t) can be recovered by
∫ t
0 l

2(s)ds. It

follows that
√
γ̇ = |l| and the cost function becomes

L(O,m, l) =

∫ 2π

0
‖Oq1(t)− q2(

∫ t

0
l2(s)ds +m mod 2π)|l(t)|‖22dt.

While this approach simplifies the constraints considerably, the resulting cost function is only partly

smooth due to the present of |l(t)| and does not satisfy the C2 smoothness assumption required

for the Riemannian quasi-Newton algorithms and other superlinearly convergent Riemannian op-

timization algorithms.

An alternative is to let l4 = γ̇. Therefore,

l ∈ L = {l : [0, 2π] → R|
∫ 2π

0
l4(t)dt = 2π}.

Therefore, l is an element of 4-norm sphere and the cost function becomes

∫ 2π

0
‖q1(t)−Oq2(

∫ t

0
l4(s)ds+m mod 2π)l2(t)‖22dt

which is defined on SO(n)× R× L. Exploiting the invariance of the norm under isometry, we use

the equivalent cost function

L(O,m, l) =

∫ 2π

0
‖Oq1(t)− q2(

∫ t

0
l4(s)ds+m mod 2π)l2(t)‖22dt.

The reason we put O on q1(t) will be discussed in Section 13.5.1.

245

13.4.2 The Riemannian Manifold

The Riemannian manifold used to define the constraints for the optimization problem associated

with the efficient algorithm to compute the distance function for elastic shape analysis is SO(n)×
R × L. The Riemannian gradient of the cost function, the retraction operation on the manifold,

and an appropriate vector transport, as discussed in Chapter 9, can be constructed by considering

each on the components of the product.

SO(n) is a well-known Riemannian manifold the structure of which is discussed in the literature

[AMS08] and the associated implementation issues are considered in Section 10.5.

L is an infinite dimension Riemannian manifold. The tangent space of L at any point is

therefore an infinite dimensional linear space with elements that are functions defined on [0, 2π].

The following lemma characterizes, TL, the tangent bundle of L and an element of a tangent space.

Lemma 13.4.1. The tangent space TlL of l ∈ L is

Tl L = {v : [0, 2π] → R|〈l3, v〉L2 = 0},

and therefore the projection onto the tangent space is

Pl(v) = v − l3
〈v, l3〉L2

〈l3, l3〉L2

Proof. By definition of a tangent vector, ∀v ∈ Tl L, we can find a smooth curve C(s), s ∈ [0, 1] on

L such that dC
ds (0) = v and C(0) = l. Let Fc(t, s) denote C(s), and notice that for a fixed s, C(s)

is in L. Since L is the 4-norm sphere, we have
∫ 2π

0
F 4
c (t, s)dt = 2π.

Taking a derivative with respect to s, we obtain
∫ 2π

0
4F 3

c (t, s)
∂Fc(t, s)

∂s
dt = 0.

When s = 0, we have

0 =

∫ 2π

0
F 3
c (t, 0)

∂Fc(t, 0)

∂s
dt =

∫ 2π

0
C3(0)

dC

ds
(0)dt =

∫ 2π

0
l3vdt

∴ 〈l3, v〉L2 = 0

Since L ⊂ L
2([0, 2π],R) and Tl L has only one constraint, l3/

√

〈l3, l3〉L2 is an orthonormal basis

of the normal space of L at l and we obtain the projection given in the Lemma.

246

Let the metric of L be endowed from the embedding space L
2([0, 2π],R). Analytical forms of

the exponential mapping and parallel vector transport on L are unknown. However, an efficient re-

traction and isometric vector transport can be constructed. They are characterized in the following

Lemma.

Lemma 13.4.2. The function Rl(v) : L × Tl L → L

Rl(v) = (2π)1/4
l + v

‖l + v‖L4

defines a retraction on L and the associated differentiated retraction is

TRvu = (2π)1/4
u

‖l + v‖L4

− (2π)1/4
(l + v)〈(l + v)3, u〉L2

‖l + v‖5
L4

,

where ‖ · ‖L4 = (
∫ 2π
0 (·)4dt)1/4 and u, v ∈ Tl L. An isometric vector transport is given by

TSvu = u− 2(l̃1 + l̃2)〈l̃2, u〉L2

‖l̃1 + l̃2‖2L2

.

where l̃1 = l3/〈l3, l3〉L2 , l̃2 = l32/〈l32, l32〉L2 , l2 = Rl(v).

Proof. Define

Φ : L × R+ → L
2([0, 2π],R) − {0} : (l(t), r) 7→ l(t)r,

and

π1 : L × R+ → L : (l(t), r) 7→ l(t),

where R+ denotes the set of positive number. By [AMS08, Proposition 4.1.2], we have π1(Φ
−1(l+v))

is a retraction, i.e.,

Rl(v) = (2π)1/4
l + v

‖l + v‖L4

By the definition of differentiated retraction,

TRvu =
dR(v + tu)

dt
|t=0 = (2π)1/4

d

dt

(

l + v + tu

‖l + v + tu‖L4

)

|t=0

= (2π)1/4
u

‖l + v‖L4

− (2π)1/4
(l + v)〈(l + v)3, u〉L2

‖l + v‖5
L4

.

It is easily verified that the proposed isometric vector transport satisfies the three conditions of

the Definition 1.2.3 of vector transports and smoothness. The isometry is a consequence of the

isometry property of Householder reflectors.

247

For the cost function of interest an analytical form of the Riemannian gradient can be derived.

It is given in the following Lemma.

Lemma 13.4.3. The Riemannian gradient of the cost function

L(O,m, l) =

∫ 2π

0
‖Oq1(t)− q2(

∫ t

0
l4(s)ds+m mod 2π)l2(t)‖22dt, (O,m, l) ∈ SO(n)× R×L

is

∇L(O,m, l) =

(PO(−2
∫ 2π

0
q2(

∫ t

0
l4(s)ds +m mod 2π)l2(t)q1(t)

T dt),

− 2

∫ 2π

0
〈Oq1(t)− l2(t)q2(

∫ t

0
l4(s)ds+m mod 2π), l2(t)q′2(

∫ t

0
l4(s)ds +m mod 2π)〉2dt,

Pl(2y(t)l
3(t)− 2x(t)))

where POU = (U −OUTO)/2 is the projection to TO SO(n),

x(t) = 〈Oq1(t)− l2(t)q2(

∫ t

0
l4(s)ds+m mod 2π), 2l(t)q2(

∫ t

0
l4(s)ds+m mod 2π)〉2,

and y(t) is any primitive of

y′(t) = 〈Oq1(t)− l2(t)q2(

∫ t

0
l4(s)ds +m mod 2π), 4l2(t)q′2(

∫ t

0
l4(s)ds +m mod 2π)〉2.

Proof. Consider the cost function defined on the embedding manifold

L̄(O,m, l) : Rn×n×R×L
2 → R : (O,m, l) 7→

∫ 2π

0
‖Oq1(t)− q2(

∫ t

0
l4(s)ds+m mod 2π)l2(t)‖22dt.

For simplicity of notation, let q̃2(l,m) denote q2(
∫ t
0 l

4(s)ds + m mod 2π) and q̃′2(l,m) denote

q′2(
∫ t
0 l

4(s)ds +m mod 2π). The gradient for the variable O is

gradO L̄(O,m, l) = −2
∫ 2π

0
q̃2(l,m)l2(t)q1(t)

Tdt ∈ R
n×n.

The gradient for the variable m is

gradm L̄(O,m, l) = −2
∫ 2π

0
〈Oq1(t)− l2(t)q̃2(l,m), l2(t)q̃′2(l,m)〉2dt.

The gradient for the variable l is not easy to compute directly. First, consider the directional

derivative along v ∈ Tl L.

Dl L̄(O,m, l)[v] = −2
∫ 2π

0
〈Oq1(t)− q̃2(l,m)l2(t), 2l(t)v(t)q̃2(l,m) + 4l2(t)q̃′2(l,m)

∫ t

0
l3(s)v(s)ds〉2dt.

248

Simplifying, we have

Dl L̄(O,m, l)[v] = −2
∫ 2π

0
〈Oq1(t)− q̃2(l,m)l2(t), 2l(t)q̃2(l,m)〉2v(t)dt

− 2

∫ 2π

0
〈Oq1(t)− q̃2(l,m)l2(t), 4l2(t)q̃′2(l,m)〉2

∫ t

0
l3(s)v(s)dsdt

If

x(t) = 〈Oq1(t)− l2(t)q̃2(l,m), 2l(t)q̃2(l,m)〉2

y′(t) = 〈Oq1(t)− l2(t)q̃2(l,m), 4l2(t)q̃′2(l,m)〉2.

then

Dl L̄(O,m, l)[v]

= −2
∫ 2π

0
x(t)v(t)dt − 2

∫ 2π

0
y′(t)

∫ t

0
l3(s)v(s)dsdt

= −2
∫ 2π

0
x(t)v(t)dt − 2(y(t)

∫ t

0
l3(s)v(s)ds|2π0 −

∫ 2π

0
y(t)l3(t)v(t)dt) (integration by part)

= −2
∫ 2π

0
x(t)v(t)dt + 2

∫ 2π

0
y(t)l3(t)v(t)dt (by v ∈ Tl L)

=

∫ 2π

0
(2y(t)l3(t)− 2x(t))v(t)dt

= 〈2y(t)l3(t)− 2x(t), v(t)〉L2 .

Since the gradient is the vector that satisfies

DlL̄(O,m, l)[v] = 〈∇lL̄(O,m, l), v(t)〉L2 ,

we obtain

gradl L̄(O,m, l) = 2y(t)l3(t)− 2x(t).

Therefore, the gradient of L̄(O,m, l) is

grad L̄(O,m, l)

=(−2
∫ 2π

0
q2(

∫ t

0
l4(s)ds +m mod 2π)l2(t)q1(t)

T dt,

− 2

∫ 2π

0
〈Oq1(t)− l2(t)q2(

∫ t

0
l4(s)ds +m mod 2π), l2(t)q′2(

∫ t

0
l4(s)ds+m mod 2π)〉2dt,

2y(t)l3(t)− 2x(t))

249

Finally, the Riemannian gradient is given by projecting each component of L̄(O,m, l) to its associ-

ated manifold.

13.5 Implementation Comments

13.5.1 Representation and Cost Function

We assume all of the curves are continuous In practice, all of the curves are represented by a

set of points and therefore, the q-function of a curve β(t) is also represented by points that are on

some smooth function. Since O is an isometry in the cost functions, we can apply it to either q1

or q2. We apply it to q1. Therefore representing q1 does not require the use of an interpolatory

function and a vector of points is sufficient.

In all of the cost functions considered, q2 is composed with some function and, therefore, rep-

resenting q2 as a set of points is not sufficient. A suitable function must be used. Since the

convergence analysis of Riemannian quasi-Newton optimization algorithms requires a C2 cost func-

tion, an interpolatory cubic spline of the set of points on q2 is used but a spline of degree 1, i.e.,

piecewise linear, or degree 2 are also practical.

It should be noted however that there is nothing in the formulation that requires an interpolatory

approximation. The discrete points in the representation could be control points for a continuous

approximating parameterized curve, e.g., a parameterized B-spline.

Finally, all integrals required by the algorithms are approximated by the Composite Trapezoidal

Rule.

13.5.2 Diffeomorphism Considerations

As discussed earlier and seen from (13.2.3) and (13.3.3), γ∗ may not be a diffeomorphism due

to a horizontal and/or vertical region and is therefore in the closure of Γc. In order to guarantee

the symmetry of the distance function

dlcn(q1, O(q2 ◦ γ)
√

γ̇) = dlcn(O(q1 ◦ γ−1, q2)
√

˙γ−1),

we must have the symmetry of the cost function

Hc(O, γ) = 2− 2

∫

S1

〈q1(t), O(q2 ◦ γ(t))
√

γ̇(t)〉L2dt (13.5.1)

= 2− 2

∫

S1

〈O(q1 ◦ γ−1(t))
√

˙γ−1(t), q2(t)〉L2dt. (13.5.2)

250

If (O, γ) ∈ SO(n) × Γc, then the symmetries are guaranteed by isometry of SO(n) and Γc.

However, if γ is not a diffeomorphism, then there are some problems. For γ containing a flat

region, γ(t) = a,∀t ∈ [b, c], the cost function (13.5.1) is well defined. However, (13.5.2) is not due

to the non-existent of γ−1(a). One way to guarantee symmetry is to define γ−1(a) to be b or c. In

fact, for the purpose of computing the value of the cost function, γ−1(a) can be defined as any finite

number since the jump discontinuity of γ−1 at a does not change the integral. For γ containing a

vertical region, γ(a) = [b, c], it is not a function. Similar to previous idea, we can redefine γ(a) to

be any finite point and γ−1 to satisfy γ−1(t) = a,∀t ∈ [b, c] and symmetry is satisfied.

Theoretically, therefore, when γ is not a diffeomorphism evaluation and symmetry of the cost

function can be handled. In practice, however, numerically evaluating the cost function Hc(O, γ)

requires a quadrature rule that depends on every point in the discrete set. If γ has a vertical or near

vertical segment then γ̇ is infinite or very large and numerical overflow may occur. γ containing a

flat region does not cause numerical problems when evaluating the cost function. In some versions,

e.g., Algorithm 10 an interpolatory spline is used to represent γ. If a spline of degree 1, i.e.,

piecewise linear, is used there is no numerical problem. However, a higher degree spline requires

care must be taken to guarantee that it is nondecreasing. This is not an issue during the iteration

of the new Riemannian algorithm.

These theoretical and practical issues can be avoided for both the Coordinate Relaxation DP-

based Algorithm 10 and the new Riemannian algorithm. In Section 13.3.1, the DP algorithm

constrains the set of slope choices Ni,j to remain sufficiently far from 0 or ∞ and thereby avoids

horizontal and vertical regions in γ∗. In the Riemannian algorithm, the third component l is defined

by l2 =
√
γ̇. To avoid horizontal and vertical regions in γ, a penalty term is added and the cost

function becomes

∫ 2π

0
‖Oq1(t)− q2(

∫ t

0
l4(s)ds+m mod 2π)l2(t)‖22dt+ ω((

∫ 2π

0
(l2(t)− 1)2dt+

∫ 2π

0
(l−2(t)− 1)2dt)),

(13.5.3)

where ω is a constant that makes the extra term relative small. When some region of γ is close

to horizontal or vertical, the extra term increases and γ∗ does not have such a region. There is

no explicit lower or upper bound for the slopes of γ unlike the approach above for the DP-based

algorithm.

251

13.5.3 Escaping Local Minima

The Riemannian optimization methods convergence results relate to a local minimum. There

are many approaches to escape from local minima when working in Euclidean space. Two standard

ones are the MCMC simulated annealing algorithm and the use of multiple runs with different

initial conditions. For Riemannian optimizations, we can use similar ideas.

We have tested a Riemannian gradient-based MCMC simulated annealing algorithm using a

Metropolis-Hastings acceptance test. For sufficiently small “temperature”, the algorithm changes

to one of Riemannian quasi-Newton algorithms. The basic idea of this algorithm is to search

the domain sufficiently and find a satisfactory minimum. Unfortunately, the dimension of domain

SO(n) × R × L is infinite and the dimension of the finite approximation used is large enough so

that a sufficiently thorough search was often found to be unacceptably expensive.

A simpler and, in practice effective, choice in this setting is to run the Riemannian quasi-Newton

algorithms with multiple initial conditions. Let (O0,m0, l0) ∈ SO(n) × R × L denote the initial

iterate. The initial rotation O0 is given by the method used in Algorithm 8. The initial l0 is given

by choosing a small number of points on the curve, Ns, and running DP with small h, where h is

defined in (13.3.2). The motivation is to make use of the global minimization property of DP on a

coarse grid and then improve the quality of the solution by Riemannian quasi-Newton algorithms.

The valuem0 can be chosen uniformly or randomly on [0, 2π]. However, we automatically choose

a set of m0’s as well as Ns for Riemannian quasi-Newton algorithms by exploring the structure of

the curves. For example, let the curves in Figure 13.1 be two parts of two closed curves. If the rest

of the curves are ignored, there are two minima that correspond to the peak of curve 1 matching

the first peak or second peak of curve 2. The two minima can be obtained by using only two m0’s.

Suppose the starting point of curve 1 is the point marked with a cross on the graph. The starting

point on curve 2 can be any point in the green parts of curve 2. For these two initial conditions,

Riemannian algorithms are able to search for the best matching point. Using this idea, if the total

change of the angle for some interval along the curve is greater than a specified threshold Tm, an

m0 is added at the end of the interval. In order to avoid noise, it is required that the difference

between consecutive m0 points is greater than or equal to some positive value z. Each of the m0’s

produced generates a distinct initial condition for the Riemannian optimization.

In practice, when one curve changes direction frequently and the other curve is relatively simple

252

in shape, choosing which curve is used as the basis for the generation of the set of of m0’s depends on

the context of the distance computation. Two curves with significantly different shape are expected

to have a large distance. If the application requires an accurate approximation of the large distance

then the curve with the more complicated shape should be used to generate the m0’s. If, however,

large distances need not be approximated accurately, e.g., when distances are used to determine

that the shapes are not in the same class, then the simpler curve should be used to generate the

m0’s and the computational complexity of the optimization is reduced. This is quite different from

DP which often requires a large number of break points to get a satisfactory result in either case

above.

Ns is taken as min(2π/(m
(i+1)
0 −m

(i)
0)) where m

(i)
0 is the i-th initial condition of m. It is used

for all runs of the Riemannian optimization algorithm. In practice, Ns can be chosen by another

set of m0’s that result from the procedure above applied with a different threshold Tm̂ rather than

the threshold Tm used to generate the initial conditions for the parameter m.

Part of closed curve 1 Part of closed curve 2

Figure 13.1: Choosing initial m for Riemannian quasi-Newton algorithms

13.6 Experiments

13.6.1 Overview of Experiments

The performance of the Riemannian optimization approach and Coordinate Relaxation meth-

ods to computing the elastic distance metric for curves in R
2 is assessed in three stages. First,

the problems Algorithms 9 and 10 have with multiple coordinate relaxation iterations, as discussed

in Section 13.3.2 are illustrated. Second, the performances of the Riemannian optimization algo-

rithms, RBFGS, LRBFGS, RTR-SR1, LRTR-SR1 and RSD, are compared to identify the preferred

Riemannian method. Third, the preferred Riemannian method is compared systematically with the

253

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

Figure 13.2: Samples of leaves from Flavia leaf dataset. One sample per species is illustrated.

DP-based algorithm used by Srivastava et al. in their experiments [SKJJ11], i.e. the Coordinate

Relaxation method using only one iteration that we denote CR1.

Two public datasets are used in the experiments: the Flavia leaf dataset [WBX+07] and the

MPEG-7 dataset [Uni]. The Flavia leaf dataset contains images of 1907 leaves from 32 species.

Figure 13.2 shows an example leaf from each species. MPEG-7 contains 1400 images in 70 clusters

each of which contains 20 shapes. Figure 13.3 shows an example shape from each cluster. The

boundary curves of the shapes are extracted using the bwboundaries function in Matlab and

piecewise linear interpolation is used to resample the curve at 100 points in R
2, i.e., a 2 × 100

matrix.

13.6.2 Examples of Coordinate Relaxation Difficulties

For the experiments using Coordinate Relaxation based on DP, the mesh size, h defined in

(13.3.2), is 6 and every 4-th point is chosen as a break point. The shapes from MPEG-7 dataset

shown in Figure 13.4 are used to illustrate the problems of Algorithm 9 and Algorithm 10.

254

1 2 3 4 5 6 7
8

9 10
11 12

13
14

15 16 17 18
19 20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38 39 40 41 42

43
44

45 46 47 48 49 50
51 52 53 54 55

56

57
58 59 60 61

62
63 64 65 66 67 68 69

70

Figure 13.3: Samples of curves from MPEG-7 dataset. One sample per cluster is illustrated.

β
1

β
2

Figure 13.4: Two shapes from the MPEG-7 dataset.

The variation in the shape of curve β2 in Algorithm 9 was identified as a serious problem. Figure

13.5 shows the shape of β2 initially and in the first 4 iterations of the algorithm along with value of

the cost function. The change to the shape is clear with many of its details disappearing gradually.

Most significantly, the cost function is increasing and the algorithm is not reliable for optimization.

255

original curve 1−th iter., Hc:0.22734 2−th iter., Hc:0.17231 3−th iter., Hc:0.1646 4−th iter., Hc:0.1792

Figure 13.5: The variance of curve β2 during the iteration in Algorithm 9.

The potential conflict in Algorithm 10 between the value of the cost function,Hc, evaluated

during iteration k for β̄
(min,k)
2 computed using (13.3.4) and the value of Hc for the theoretically

identical curve β(k+1) computed using (13.3.5) is also observed for the illustrative pair of shapes.

Table 13.1 shows the variations of cost function. The value of Hc in the second row for iteration

k should be the same as the value in the first row for iteration k + 1. Clearly, the values are

significantly different. Note also the values in the second row, which are the ones used by the

algorithm in optimization decisions, are not decreasing. They, in fact, increase in subsequent

iterations and the algorithm is unreliable.

Table 13.1: The variations of the cost function values in Algorithm 10

iteration (k) 1 2 3 4

Hc for β(k) of (13.3.5) 1.684911 0.267587 0.338316 0.285586

Hc for β̄
(min,k)
2 of (13.3.4) 0.227343 0.202650 0.196659 0.205583

The two difficulties illustrated by this pair of shapes were observed at some point in the iterations

for every pair tested. This does not necessarily result in a significant error in the distance, but it

does result in the inability to trust that additional iterations improve distance accuracy.

The difficulties can be avoided by only performing a single iteration of Coordinate Relaxation.

This was done by Srivastava et al. [SKJJ11] and as a result they did not observe the problems.

However, the accuracy of the distance computed using a single iteration is thereby limited by the

quality of the choice of the initial reparameterization and rotation. Of the two, the initial reparam-

eterization is the main difficulty since the optimal rotation for any particular reparameterization is

given by the SVD.

256

Using a standard initial reparameterization such as the identity map does not reliably give an

accurate distance. Figure 13.6 shows the optimization results for a single iteration of Coordinate Re-

laxation (CR1), using the identity map and the SVD, and for the Riemannian algorithm LRBFGS

iterating until the cost function value is invariant to three digits. The final cost function is a factor

of 2 smaller for LRBFGS and the superior quality of the final rotation and reparameterization from

LRBFGS is clearly illustrated.

0 2 4 6
0

1

2

3

4

5

6

γ functions

0 0.2 0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

LRBFGS, f:0.12233

0 0.2 0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

CR1, f:0.22734

Figure 13.6: Results for LRBFGS and CR1.

13.6.3 The Preferred Riemannian Quasi-Newton Algorithm

The two public datasets were also used to compare the performances of several Riemannian op-

timization algorithms in minimizing the cost function (13.5.3). For these experiments, the stopping

criterion for the Riemannian algorithms requires the relative change of the cost function in two

successive iterates to be less than 10−3, and the minimum number of iterations is 10. The number

of points used to get the third component of the initial condition for the Riemannian algorithms,

Ns, is set as described in Section 13.5.3. The weight, ω, in the cost function (13.5.3) is 1/8 initially

and decreases on each iteration by ω ← 0.8ω. For the Flavia dataset, the values Tm = 3π/4,

Tm̃ = π and z = 4 are used when setting initial m0 and Ns. Since the shapes in the MPEG-7

dataset are more complex, the values Tm̃ = π/2 and z = 2 are used. For both datasets if the value

recommended automatically for Ns is less than 40 it is reset to 40.

All codes are written in C, compiled with gcc and run on the Florida State University HPC

system using Quad-Core 2356 2.3 GHz Opterons [Cen]. The output time is the average CPU time

of 10 runs with identical parameters. (The times observed had very low variance.)

To find the preferred Riemmanian method, all of the methods were run on several sets of

257

randomly chosen pairs of shapes from the two datasets. Table 13.2 reports, tave, the average time

to compute the distance between two shapes and, Lave, the average cost function value for one of

these sets from the Flavia and MPEG-7 shapes. The trends in other sets were similar.

The RBFGS and RTR-SR1 methods produce the smallest final cost function values, but this

comes at the cost of computational times that are approximately 2 to 3 times those of the other

methods. This is easily explained by noting that the computational complexity per step for these

two methods is O(N2) due to the use of a dense matrix vector product. Note this also implies O(N2)

space complexity. Both are less complex than the CR1 method with computational complexity per

step of O(N3) and O(N2) space complexity.

The RSD method has low computational times due to its relatively low O(N) computational

complexity per step, but it does not result in a competitive final cost function value due to the

simplicity of the approach.

The limited memory methods of LRBFGS and LRTR-SR1, do not require an N × N dense

matrix vector product or N ×N dense matrix storage. The final cost function values they achieve

are not as small as those from RBFGS and RTR-SR1 but they are close, e.g., within 5% for

LRBFGS.

Table 13.2: Comparison of Riemannian Methods for representative sets from the Flavia
and MPEG-7 datasets: average time per pair (tave) in seconds and average cost function
per pair (Lave).

RBFGS LRBFGS RTR-SR1 LRTR-SR1 RSD

Flavia dataset
Lave 0.1783 0.1841 0.1779 0.1941 0.2068

tave 0.3012 0.1136 0.3387 0.1398 0.1211

MPEG-7 dataset
Lave 0.3485 0.3656 0.3421 0.4030 0.4506

tave 0.9259 0.3024 1.0483 0.3897 0.3331

The computational complexity per step for LRBFGS is O(Nkms) where k is the number of

iterations and ms is the number of initial conditions. Given two curves and a fixed stopping

criterion, thems and k do not vary that much as N increases. Therefore, practically, the complexity

of LRBFGS is O(N). The effect of the substantial difference in the complexities of LRBFGS and

CR1 is illustrated in Figure 13.7 for a representative pair of leaf shapes from the 27th species of

the Flavia dataset. Boundary curves were extracted with different number of points N to test the

258

relationship between N and time costs for LRBFGS and CR1. The break points of CR1 are chosen

to be every 4 points and the time cost is the average of 10 runs with identical parameters.

In summary, all of the Riemannian algorithms were competitive with CR1 in terms of complexity

and LRBFGS with its acceptable optimization of the cost function and its low computational and

storage complexity is chosen as the preferred Riemannian algorithm for use further comparisons to

CR1 from the point of view of quality of shape distance computations.

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

Number of samples (closed curves)

T
im

e
(s

ec
on

ds
)

LRBFGS
CR1

Figure 13.7: Comparison of complexities of CR1 and LRBFGS.

13.6.4 Performance Comparison for Flavia and MPEG-7 Datasets

In order to compare the cost and efficacy of the preferred Riemannian algorithm, LRBFGS,

to those of the current state-of-the-art, CR1, all pairwise distances in the Flavia and MPEG-7

data sets were computed (1, 819, 278 and 980, 700 pairs respectively) using the testing environment

described in Section 13.6.3. For CR1, the effect of the number of break points was considered by

running each pair with a break point every 2, 4, 8 and 16 points given a fixed initial point, i.e., the

sets are nested.

In addition to comparing the computation times and cost function values for the two algorithms,

the quality of the distance computations was assessed using the one-nearest-neighbor (1NN) metric

of cluster (species) preservation for the MPEG-7 (Flavia) shapes. The 1NN metric, µ, computes

the percentage of points whose nearest neighbor are in the same cluster, i.e.,

µ =
1

n

n
∑

i=1

C(i), C(i) =

{

1 if point i and its nearest neighbor are in the same cluster

0 otherwise
.

259

A very significant improvement in the final value of the cost function achieved by LRBFGS

compared to the value achieved by CR1 is observed. For the Flavia dataset, LRBFGS reduces the

cost function more than CR1 in 93.65%, 94.84%, 96.28% and 97.85% of the pairs when choosing

break points every 2, 4, 8 and 16 points for CR1 respectively. For the MPEG-7 dataset, LRBFGS

minimizes the cost function better than CR1 in 88.39%, 90.66%, 93.35% and 96.02% of the pairs

when choosing break points every 2, 4, 8 and 16 points for CR1 respectively.

The distribution of the ratio of the cost function value of CR1 to that of LRBFGS is shown in

the histograms in Figure 13.8. Ratios where LRBFGS was more than 4 times better are not include

for presentation purposes. The maximum ratios for the Flavia data set (and the number of ratios

exceeding 4) were 13.3 (215), 17.4 (525), 30.9 (1393) and 40.9 (4312) when choosing break points

every 2, 4, 8 and 16 points for CR1 respectively. The maximum ratios for the MPEG-7 data set

(and the number of ratios exceeding 4) were 11750 (2), 11750 (7), 11750 (27) and 12329 (232) when

choosing break points every 2, 4, 8 and 16 points for CR1 respectively. The amazingly large ratios

beyond 4 occur for pairs of shapes that are fairly close in shape where LRBFGS achieves a very

small cost function value. Not only is it clear from this data that, in general, LRBFGS reduces

the cost function more than CR1, but also in the cases when CR1 produces a smaller cost function

value it is usually very close to the value produced by LRBFGS.

Of course, if the improvement in the reduction of the cost function requires a very large increase

in computation time then the argument in favor of LRBFGS and the other Riemannian methods

weakens. The histograms of computation times for CR1 and LRBFGS for the MPEG-7 and Flavia

datasets in Figure 13.9 show that LRBFGS has a significant advantage in computation time. The

largest computation time for LRBFGS is smaller than all computation times of CR1 using N/2

and N/4 break points for both Flavia and MPEG-7 datasets and also when using N/8 break points

for the Flavia dataset. When using N/8 break points for the MPEG-7 dataset only 0.03% of the

pairs have CR1 computation times smaller than the largest LRBFGS computation time. When

using N/16 break points 0.06% and 13% of the pairs have CR1 computation times smaller than the

largest LRBFGS computation time for the Flavia and MPEG-7 datasets respectively. Therefore,

the Riemannian approach to the cost function and its optimization using LRBFGS yields superior

optimization in significantly less time than CR1 for the vast majority of the pairs computed.

A more careful examination of the the times indicates that the Riemannian approach has another

260

advantage. The computation time for a pair of shapes using CR1 is essentially proportional to the

number of break points used. There is very little variation between computation times when using

the same number of break points as is seen in the CR1 spikes in Figure 13.9.

Figure 13.9 also shows that the, much smaller, computation times for LRBFGS have significant

variation. Recall that the Riemannian methods automatically select the position and number of

initial conditions used to compute the distance for a pair of shapes. The computation time per

initial condition (PIC) for LRBFGS varies only slightly as is shown also in Figure 13.10, and the

computation time for a pair of shapes is essentially proportional to the number of initial conditions

used. Since the number of initial conditions is a simple measure of the complexity of one or both

of the shapes in the pair, the Riemannian methods have the additional advantage of only requiring

a computation time that reflects the difficulty of the problem.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8
x 10

5 MPEG−7

ratio of function values

nu
m

be
r

C/L:N/2
C/L:N/4
C/L:N/8
C/L:N/16

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15
x 10

5 Flavia

ratio of function values

nu
m

be
r

C/L:N/2
C/L:N/4
C/L:N/8
C/L:N/16

Figure 13.8: Histograms of ratios of the CR1 cost function value to the LRBFGS cost
function value (C/L) for MPEG-7 and Flavia datasets. N/i, i = 2, 4, 8, 16 denote the
number of break points in CR1. Bins are (0, 0.1), . . . , (0.9, 1.0), . . . , (3.9, 4.0).

261

0 1 2 3 4 5
0

1

2

3

4

5

6
x 10

5

time(seconds)

nu
m

be
r

MPEG−7

0 1 2 3 4 5
0

2

4

6

8

10
x 10

5

time(seconds)

nu
m

be
r

Flavia

LRBFGS
CR1: N/2
CR1: N/4
CR1: N/8
CR1: N/16

LRBFGS
CR1: N/2
CR1: N/4
CR1: N/8
CR1: N/16

Figure 13.9: Histograms of computation times of LRBFGS and CR1 for MPEG-7 and
Flavia datasets.

0 0.5 1 1.5
0

2

4

6

8

10
x 10

5

time(seconds)

nu
m

be
r

MPEG−7

time
PIC

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2
x 10

6

time(seconds)

nu
m

be
r

Flavia

time
PIC

Figure 13.10: Histograms of computation times of LRBFGS and computation times per
initial condition (PIC) of LRBFGS for MPEG-7 and Flavia datasets.

Table 13.3 shows the average time cost and 1NN for both datasets. The trends are as expected

given the examples in Figures 13.2, 13.3. For the MPEG-7 dataset, the shapes in different clusters

are very distinct compared to the significantly greater similarity of shapes in certain pairs of species

in the Flavia dataset, e.g., species 1 and 21. Therefore, the µ values are expected to be higher for

MPEG-7 distances since the distinctions are easier to make while lower µ values are expected for

Flavia distances. For CR1 it is expected that µ values would increase as the number of break points

increases. All of these trends are observed in the µ data.

The comparison of µ achieved by LRBFGS to those of CR1 shows a clear advantage to L-

262

RBFGS. LRBFGS achieves a value of µ higher than CR1 using the densest set of break points.

Not surprisingly, given the distributions of computation times discussed earlier, the average time

for LRBFGS is significantly smaller than the average time for even the sparsest set of CR1 break

points (N/16).

Table 13.3: The average computation time and 1NN of LRBFGS and CR1 with break
points chosen to be every 2, 4, 8 and 16 points.

LRBFGS
CR1

N/16 N/8 N/4 N/2

Flavia leaf dataset
average time(seconds) 0.1596 0.5754 1.0683 2.0541 4.1077

1NN of 32 species 87.41% 80.02% 82.01% 84.58% 87.31%

MPEG-7 dataset
average time(seconds) 0.3509 0.5744 1.0665 2.0507 4.1010

1NN of 70 clusters 97.21% 95.21% 97.00% 97.21% 97.00%

13.7 Conclusion

We have explored the computation of the elastic distance metric for open and closed curves in

R
2 and reviewed CR1, the DP-based algorithm of Srivastava et al., [SKJJ11], the approximations

upon which it is based, its computational complexity, its difficulties, and its performance in terms

of time and cost function reduction. As an alternative to CR1, we have derived a Riemannian

approach to computing the elastic distance metric and developed an efficient implementation using

various Riemannian optimization algorithms.

Empirical comparisons of the Riemannian approach using LRBFGS and CR1 and shapes from

the MPEG-7 and Flavia datasets were performed. The results demonstrate that the Riemannian

approach produces more useful distance estimates, as measured by the 1NN metric for clustering,

in significantly less time and that the computational time required adapts to the complexity of the

shapes being compared.

The efficiency and efficacy of the Riemannian approach to computing the elastic distance metric

promises to improve considerably shape analysis computations that are based upon distance com-

putations, e.g., the Karcher mean of a set of shapes, geodesic paths between shapes, and inferences

on shapes. These improvements will be demonstrated in future work.

263

CHAPTER 14

SECANT-BASED NONLINEAR DIMENSION

REDUCTION

14.1 Introduction

The problem of dimension reduction occurs in many forms. In its most straightforward form,

sample data is given in a metric space of unknown dimension or a Euclidean space of high dimension

and the problem is to determine a representation for the data in a sufficiently low dimensional

Euclidean space while approximately preserving some specified property, e.g., pairwise distances,

[LV07a]. The techniques are commonly used in manifold learning (see [ZZ04] and its references). It

is used often also in model reduction of dynamical systems where the data represents one or more

solution trajectory in the state space (see for example [Li00, Rew03, FST88, MT89, JKT90, BK05,

TAJP08]).

The work in this chapter is based on the work of Broomhead and Kirby [BK05]. They consider

dynamical systems that are defined on high-dimensional spaces, but which have low-dimensional

attractors. The low-dimensional attractor may be approximated by a subspace or a submanifold

M. The idea of Broomhead and Kirby is based on Whitney’s Theorem [Whi36] and uses a cost

function that is optimized in the sense that the projection is easy to invert. Our work is to compare

the performance of different optimization methods.

This chapter is organized as follows. The problem is stated in Section 14.2. Section 14.3

provides some details of the computation of the two cost functions considered in the experiments.

Experimental results are presented in Section 14.4 and conclusions are discussed in Section 14.5.

14.2 Problem Statement

SupposeM is a manifold with dimension m embedded in R
n. Let U denote a tall thin n × p

matrix with full rank, col(U) denote the column space of U and πU denote the orthogonal projection

onto col(U),

πU = U(UTU)−1UT .

264

Since πU is a projection onto a space, it is related to the Grassmann manifold. Based on the

implementation of Section 10.6, we consider that an orthonormal matrix U such that [U] represents

an element of the Grassmann manifold. Noting that the projection is invariant to the choice of

representations in [U], we define the projection

π[U] = UUT .

The Whitney Embedding Theorem [Whi36] says that when p ≥ 2m + 1, there is a large

(open dense) set of projections π[U] such that π[U]|M, the projection restricted to M, is invert-

ible. Specifically, let col(U)⊥ denote the perpendicular space of col(U). There is a function

g : dom(g) ⊆ col(U)→ col(U)⊥ such that

M = {(x, g(x))|x ∈ dom(g)},

and π[U]|M : M = (x, g(x)) 7→ x, called an embedding projection of M into the p-dimensional

linear space col(U), is invertible. Note a invertible linear function is smooth. Therefore, π[U]|M is

a diffeomorphism.

Remark 14.2.1. p ≥ 2m+1 guarantees that there is an open dense set of embedding projections for

M, but for a givenM, it is quite possible that there is an open dense set of embedding projections

for smaller p. For example, let M be the unit circle in span{e1, e2} ⊂ R
n. We have m = 1 (the

circle is a one-dimensional manifold) and 2m+1 = 3, but it is clear that there is an open dense set

of n × 2 matrices U such that πU is an embedding of M. It is also clear that the ”best” col(U) is

span{e1, e2}, in which case g : span{e1, e2} → span{e3} is the zero function with dom(g) the unit

circle in span{e1, e2}.

The Whitney Embedding Theorem provides conditions for the existence of the projections.

Broomhead and Kirby [BK05] further search for projections that are easy to invert. The function

π−1[U] : dom(g)→M is Lipschitz due to diffeomorphism, i.e., there exists a constant kπ[U]
such that

kπ[U]
‖x̃− ỹ‖2 ≤ ‖π[U]x̃− π[U]ỹ‖2, (14.2.1)

for all x̃, ỹ ∈ M. kπ[U]
is taken as a measure of the conditioning of the inverse of the projection.

The larger kπ[U]
is, the more slowly varying the inverse is, and the easier it is to fit the function g.

Based on (14.2.1), kπ[U]
satisfies

kπ[U]
≤
∥

∥

∥

∥

π[U](x̃− ỹ)

‖x̃− ỹ‖2

∥

∥

∥

∥

2

.

265

Therefore, kπ[U]
can be defined as

kπ[U]
= inf

x̃,ỹ∈M,x̃6=ỹ

∥

∥

∥

∥

π[U](x̃− ỹ)

‖x̃− ỹ‖2

∥

∥

∥

∥

2

. (14.2.2)

Let Σ denote the set of unit secants of the manifoldM,

Σ =

{

x̃− ỹ

‖x̃− ỹ‖2
: ∀x̃, ỹ ∈ M, x̃ 6= ỹ

}

,

and Σ̄ denote the closure of Σ. Using φ([U]) to denote the square of (14.2.2), gives the cost function

φ([U]) = min
k∈Σ̄
‖π[U]k‖22. (14.2.3)

φ([U]) is a partly smooth function defined on the Grassmann manifold. Broomhead and Kirby

[BK05] did not work on this cost function directly. Instead, they proposed a smooth cost function

F ([U]) =
1

|Σ|
∑

k∈Σ

1

‖π[U]k‖2
, (14.2.4)

where |Σ| denotes the number of elements in Σ. In (14.2.4), small projections of unit secant norms

are heavily penalized while in (14.2.3) the smallest projection is forced to be large. Maximizing

φ([U]) and minimizing F ([U]) have similar goals, however, whether and when they have same

optima are still open questions.

The horizontal lift of the gradient of φ([U]) at U is

(grad φ([U]))↑U = (I − UUT)(2k∗k
T
∗ U),

where k∗ = argmink∈Σ̄(‖UT k‖). If mink∈Σ̄(‖UT k‖) has more than one solution for a given U , then

φ([U]) is not differentiable at [U]. The horizontal lift of the gradient of F ([U]) at U is

(gradF ([U]))↑U = − 1

|Σ|
∑

k∈Σ

kkTU

‖UUTk‖32

and the action of Hessian of F ([U]) on a vector ξ in the horizontal space HU is

(HessF ([U]))↑U [ξ↑U] = −
I − UUT

|Σ|
∑

k∈Σ

(

kkT ξ − ξUTkkTU

‖UT k‖32
− 3 trace(kTUξTk)kkTU

‖UTk‖52

)

.

266

14.3 Properties of the Cost Functions and Discretization

Given a manifold M and U , the projection π[U]|M : M → dom(g) may not be an invertible

function. If it is not, then there exist x̃, ỹ and x̃ 6= ỹ such that π[U]x̃ = π[U]ỹ. Therefore,

‖π[U]k̃‖2 = 0, where k̃ = (x̃− ỹ)/‖x̃ − ỹ‖2. By the definitions of φ([U]) and F ([U]), we have that

φ([U]) = 0 and F ([U]) =∞,

where ∞ represents a positive number divided by 0. Let Z denote the set of [U] that defines a

non-invertible projection π[U]|M, i.e.,

Z = {[U] ∈ Gr(p, n)|π[U]|M :M→ dom(g) is not invertible.}

If the initial [U0] is in the set Z, then F ([U]) cannot be used as a cost function. Furthermore,

Z may contain a dense open set N . When the initial [U0] is in this open set N , the gradient

gradφ([U0]) is a zero tangent vector. All of the gradient methods cannot escape from this point

[U0]. Therefore, φ([U]) cannot be used as a cost function. Overall, a bad choice of initial [U0] may

cause serious problems for both cost functions.

Since the number of the points on manifoldM is infinite, the number of elements in Σ is also

infinite and it is impossible to compute φ([U]) and F ([U]) exactly in practice. A practical method

must discretize the manifold and choose a finite set of points making the number of elements in Σ

finite. Let M̃ denote the discretized manifold. Let Σ̃ denote the finite set and let φ̃([U]), F̃ ([U])

denote the cost functions for Σ̃.

There are some consequences of discretization. First, accuracy depends upon the discretization.

Second and more important, Z is replaced with the finite set

Z̃ = {[U] ∈ Gr(p, n)|π[U] : M̃ → dom(g) is not invertible.}

Since the number of elements in Z̃ is finite, it is unlikely for [U0] to be in Z̃ . φ̃([U]) and F̃ ([U])

are therefore well-defined for most of initial conditions. The new cost functions φ̃([U]) and F̃ ([U])

may have many local optima over N rather than the flat profiles of φ([U]) and F ([U]) at the values

of 0 and ∞ respectively. Escaping from the local optima becomes an algorithmic problem. In

the implementation used for the experiments in the next section, the manifold is discretized and

multiple initial conditions are used.

267

14.4 Experiments

In [BK05], Broomhead and Kirby use RCG(Algorithm 11) based on the Polak-Ribiére formula

with parallel translation and exponential mapping to optimize the smooth cost function F̃ ([U]).

Details of an RCG implementation that do not depend on a retraction and a vector transport are

discussed in Chapter 9. For the cost function F̃ ([U]), the behavior of RCG is compared to the

behaviors of RBFGS, LRBFGS, RTR-SR1, RTR-Newton and LRTR-SR1. For the partly smooth

cost function φ̃([U]) the behaviors RBFGS and RGS are presented. Aspects of the implementations

specific to the two cost functions are given below.

Algorithm 11 Conjugate gradient for minimizing F (Y) on the Grassmann manifold

1: Given Y0 such that Y T
0 Y0 = I, compute G0 = gradF (Y0) and set H0 = −G0;

2: for k = 0, 1, . . . do

3: Minimize F (Yk(t)) over t and find tmin where

Y (t) = Y V cos(Σt)V T + U sin(Σt)V T

and UΣV T is the compact singular value decomposition of Hk.

4: Set tk = tmin and Yk+1 = Yk(tk).

5: Compute Gk+1 = gradF (Yk+1).

6: Apply parallel translation for tangent vectors Hk and Gk and transport them to the horizontal

space of Yk+1:

P 1←0
γk

Hk = (−YkV sinΣtk + U cosΣtk)ΣV
T ,

P 1←0
γk

Gk = Gk − (YkV sinΣtk + U(I − cosΣtk))U
TGk,

where γk is a geodesic from Yk to Yk+1 such that γk(0) = Yk and γk(1) = Yk+1.

7: Compute the new search direction

Hk+1 = −Gk+1 + σkP
1←0
γk

Hk, where σk =
〈Gk+1 − P 1←0

γk
Gk, Gk+1〉

〈Gk, Gk〉

and 〈∆1,∆2〉 = trace∆T
1 ∆2.

8: Reset Hk+1 = −Gk+1 if k + 1 mod p(n− p) = 0.

9: end for

For the Riemannian methods other than RCG, the retraction is (10.6.11) and the vector trans-

port is (9.5.2) or (4.4.9) depending on whether the locking condition is imposed or not. The

algorithmic parameter settings of RBFGS, LRBFGS, RTR-SR1 and LRTR-SR1 are the same as

268

−1
−0.5

0
0.5

1

−1

0

1
−1

−0.5

0

0.5

1

x

example

y

z

Figure 14.1: The example P = G(S1).

those in Section 11.3. The exact line search algorithm of RCG is based on the function fminunc

in Matlab. The comparison is performed in Matlab 7.0.0 on a 32 bit Windows platform with a 2.4

GHz CPU (T8300).

We consider the example that first appeared in [BK00] and is also used in [BK05]. The manifold

M is the range of a map of circle

G : S1 → R
3, θ 7→ (sin θ, cos θ, sin 2θ),

and as shown in Figure 14.1. The experiments consider projecting this manifold from R
3 to R

2.

Thus, n is 3 and p is 2. W is defined by 50 points uniformly separated in [0, 2π] and the manifold

is discretized as P = G(S1) by M̃ = G(W). The initial iterate is chosen by orthonormalizing the

columns of a matrix with elements drawn from a normal random distribution. Since the dimension

of the Grassmann manifold Gr(2, 3) is only 2 and the parameter m in LRBFGS an LRTR-SR1 are

usually chosen to be less than the dimension of the manifold, we choose the m to be 1.

Given a [U] ∈ Gr(2, 3), the functions φ̂[U](η) = φ̃(Exp[U](η)) and F̂[U](η) = F̃ (Exp[U](η)) are

defined on the tangent space T[U]Gr(2, 3) which is a 2-dimensional flat space. Figure 14.2 shows

the graphs of φ̂[U∗](η) and F̂[U∗](η) where [U∗] is the desired optimum (see Figure 14.3 and 14.5).

The tangent space of two figures in the left column is [−π, π]× [−π, π] and tangent space of the two

figures in the right column is [−π/2, π/2]× [−π/2, π/2]. For all U ∈ Gr(2, 3), η ∈ T[U]Gr(2, 3) and

‖η‖2 = π/2, we know Exp[U](2η) = U and thus Exp[U](η) = Exp[U](−η). We only need to observe

the region where ‖η‖2 ≤ π/2.

269

0.
02

0.02

0.02

0.
02

0.02

0.
02

0.02

0.02

0.02

0.
02

0.02

0.
04

0.04

0.04

0.
04

0.04

0.04

0.04

0.04

0.04

0.04

0.
04

0.04

0.
06

0.06

0.06

0.
06

0.06

0.06

0.06

0.06

0.
06

0.06

0.06

0.06

0.
08

0.08

0.08

0.
08

0.08

0.08
0.08

0.08

0.
08

0.08

0.08

0.08

0.
1

0.1

0.1

0.
1

0.1

0.1
0.1

0.1

0.
1

0.1

0.1

0.1

0.
12

0.12

0.12

0.1
2

0.12

0.12

0.12
0.12

0.12

0.12

0.
12

0.12

0.
14

0.14

0.14

0.
14

0.14

0.14

0.14

0.14

0.14

0.14

0.14

0.
16

0.16

0.16

0.16

0.16

0.16
0.16

0.16

0.16

0.16

0.16

0.
16

0.18
0.18

0.18

0.18

0.18

0.18

0.18

0.18

tangent space

ta
ng

en
t s

pa
ce

the contour graph of φ̂U ∗
(η)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

0.02

0.02

0.02

0.02

0.
04

0.04

0.04

0.
06

0.06

0.080.10.120.14

0.16

tangent space

ta
ng

en
t s

pa
ce

the contour graph of φ̂U ∗
(η)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

1.4

1.4

1.4

1.4

1.
4

1.4

1.4
1.4

1.
4

1.
4

1.4 1.4

1.4

1.
4

1.4

1.4

1.
4

1.4

1.
4

1.
4

1.
4

1.4

1.
6

1.
6

1.6
1.6

1.6

1.6

1.6

1.6

1.
6

1.
6

1.
6

1.
6

1.6

1.6

1.6

1.6

1.6

1.6

1.6 1.
6

1.
6

1.6

1.6

1.
6

1.6

1.
6

1.6

1.61.6

1.6

1.6 1.
6

1.6

1.6

1.8 1.8

1.8 1.8

1.
8

1.
8

1.
8

1.
8

1.8

1.8

1.
8

1.
8

1.8
1.8

1.8

1.8

1.8

1.8

1.8

1.
8

1.8 1.8

1.8

1.8

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

tangent space

ta
ng

en
t s

pa
ce

the contour graph of F̂U ∗
(η)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3
1.

4

1.4

1.4

1.
4

1.4

1.4
1.4

1.4

1.4

1.4

1.6

1.
6

1.6

1.
6

1.6

1.6

1.6

1.6

1.6

1.6
1.6

1.6

1.
6

1.6

1.6

1.
6

1.6

1.6

1.
6

1.6

1.61.6

1.6

1.6

1.8

1.8

1.
8

1.
8

1.
8

1.8 1.
81.8

1.8
1.8

1.8

1.8

2

2

2

2

2

2

2

2

2
2

2

2

2

2
2

2

tangent space

ta
ng

en
t s

pa
ce

the contour graph of F̂U ∗
(η)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 14.2: The top two figures show the contours of φ̂[U∗](η) and the bottom two figures

are the contours of F̂[U∗](η).

270

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y
[U∗] =









1 0
0 1
0 0









Figure 14.3: The left figure is the projection of [U∗] onto 2-dimensional space π[U∗]P and
the matrix on the right is the desired optimizer. The optimal projection π[U∗] projects P
onto the X-Y plane [BK00].

From the figure of φ̂[U∗](η) in Figure 14.2, we can see the origin is a maximizer which verifies

the way we choose [U∗]. What is more, within the region ‖η‖2 ≤ π/2, the origin is also the only

significant maximizer, i.e., other local maxima with much smaller cost function values are not

visible. Around the maximizer, there is a large flat region that corresponds to the set Z on which

the function π[U] is non-invertible. Let Exp
−1
[U∗]
Z denote this flat region. Ideally, φ̂[U∗](η) should be

0 in Exp−1[U∗]
Z. Due to the discretization, it is not 0 and there are many local optima in Exp−1[U∗]

Z
(see discussion in Section 14.3). From the figure of F̂[U∗](η), the origin is a minimizer. Based on

the discussion in Section 14.3, F̂[U∗](η) should be∞ in Exp−1[U∗]
Z or at least in practice much larger

than the value of the cost function at the origin. However, the figure clearly shows that this is not

the case for the discretized problem and this cost function. Instead of using 50 points to represent

the manifold, 100, 200 and 400 points are also used and similar contours are observed.

To test the efficiency of the optimization algorithms, we use an initial point [U0] 6∈ Z to make

all algorithms tested converge to the desired optimizer [U∗]. The method of choosing the set of

initial conditions to improve the likelihood of converging to [U∗] or at least to an invertible local

extrema is still an open question for both cost functions.

Tables 14.1 and 14.2 show the performance of the algorithms. We can see for the partly smooth

function φ̃([U]), RBFGS is the fastest one and for the smooth cost function F̃ ([U]), LRBFGS is

the fastest.

271

Table 14.1: Comparison of RTR-Newton, Riemannian quasi-Newton algorithms and RCG
for smooth cost function F̃ ([U]). F̃ ([U∗]) = 1.355322.

RTR-Newton RBFGS LRBFGS RTR-SR1 LRTR-SR1 RCG

iter 6 15 11 22 32 6
nf 6 23 19 22 32 37
ng 6 19 15 22 32 37
nH 12 28 0 47 0 0
nV 0 46 34 21 79 36
nR 5 22 18 21 31 31
gff 8.34−9 1.44−7 2.58−7 6.38−11 1.06−11 6.02−9

gff/gf0 2.66−8 4.60−7 8.25−7 2.04−10 3.38−11 1.92−8
t 1.41 1.53 1.19 1.72 2.55 4.19

Table 14.2: Comparison of RBFGS and RGS for partly smooth cost function φ̃([U]).
φ̃([U∗]) = 2.006318e-001

RBFGS RGS

iter 20 33
nf 54 330
ng 54 297
nH 38 0
nV 96 264
nR 53 625
gff 8.01−1 8.01−1

gff/gf0 3.32 3.32
t 1.70 9.75

272

0.02

0.02

0.02

0.02

0.04

0.04

0.04

0.
06

0.06
0.08
0.10.120.14

tangent space

ta
ng

en
t s

pa
ce

the contour graph of φ̂U∗
(η)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
contour
U

1

U
2

U
3

U
4

U
5

1.4

1.4

1.4

1.
4

1.4

1.
6

1.6

1.6

1.
6

1.6

1.6

1.6
1.6

1.6

1.
6

1.6

1.
6

1.6

1.
6

1.6
1.6

1.6

1.6

1.8

1.8
1.8

1.8

1.
8

1.
8

1.8

1.8

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

tangent space

ta
ng

en
t s

pa
ce

the contour graph of F̂U∗
(η)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
contour
U

1

U
2

U
3

U
4

U
5

Figure 14.4: The initial points Ui 6∈ Z, i = 1, . . . 5 in the contour graphs of φ̂[U∗](η) and F̂[U∗](η).

RCG, used by Broomhead and Kirby [BK05], is the slowest algorithm, despite its small number

of iterations, due to the relatively large number of function evaluations and gradient evaluations

required by its exact line search. RCG using the modified Polak-Ribiére formula (see [NW06,

(5.45)]) and an inexact line search algorithm based on the Wolfe conditions was investigated as

a potentially more efficient algorithm. While the cost per iteration decreased, the computational

time increased significantly since the number of iterations increased to 52. RTR-Newton converges

quadratically and requires fewer function and gradient evaluations. However, its computational

time is larger than LRBFGS and comparable to that of RBFGS due to the expense of computing

the action of the Hessian on a tangent vector.

To show the influence of the choice of initial condition to the combination of cost functions

and optimization algorithms, 20 initial conditions [Ui] ∈ Z, i = 1, 2, . . . , 20 are used. The first 5,

[Ui] ∈ Z, i = 1, 2, . . . , 5, are used as typical examples in Figures 14.4, 14.5 and Table 14.3. Figure

14.4 shown the 5 initial conditions [Ui] ∈ Z, i = 1, 2, . . . , 5 lifted into T[U∗]Gr(2, 3). Table 14.3

presents the performance results and Figure 14.5 presents the 2-dimensional projections of the

computed optimizers for the 5 initial conditions. Table 14.4 presents the types of optima obtained

by the combinations of the cost functions and the algorithms for the 20 initial conditions.

The partly smooth cost function φ([U]) is Lipschitz continuous. As we discussed in Chapter 7,

on such cost functions, RBFGS is typically faster than RGS due to its smaller number of function

and gradient evaluations. This does not mean RGS is useless. RGS is more resistant than RBFGS

273

Table 14.3: The cost function values at the optimizers from 5 initial conditions for the
different methods. The 2-dimensional projections of the optimizers are shown in Figure
14.5 at the indices given.

RTR-Newton
F ([U∗i]) 1.3555 1.3573 1.3555 1.3555 1.3535
index (1) (2) (3) (4) (5)

RBFGS
F ([U∗i]) 1.3537 1.3535 1.3535 1.3535 1.3555
index (6) (7) (8) (9) (10)

LRBFGS
F ([U∗i]) 1.3535 1.3535 1.3555 1.3535 1.3535
index (11) (12) (13) (14) (15)

RTR-SR1
F ([U∗i]) 1.3555 1.3535 1.3537 1.3573 1.3555
index (16) (17) (18) (19) (20)

LRTR-SR1
F ([U∗i]) 1.3535 1.3535 1.3537 1.3573 1.3555
index (21) (22) (23) (24) (25)

RCG
F ([U∗i]) 1.3555 1.3573 1.3555 1.3555 1.3535
index (26) (27) (28) (29) (30)

RBFGS
φ([U∗i]) 2.8641−4 1.4792−3 7.3108−4 3.1011−4 5.7567−4
index (31) (32) (33) (34) (35)

RGS
φ([U∗i]) 2.0063−1 1.2965−2 2.0063−1 2.0063−1 1.8031−2
index (36) (37) (38) (39) (40)

Table 14.4: The results of algorithms using 20 initial points in Z. NNIP denotes the
number of non-invertible projections. NIP denotes the number of invertible projections,
NDP denotes the number of times the desired global optimizer was found and AT denotes
the average computational time of the 20 initial conditions(second).

Function Algorithm NNIP NIP(NDP) AT

F̃ RTR-Newton 18 2(2) 8.27

F̃ RBFGS 18 2(2) 2.08

F̃ LRBFGS 19 1(1) 2.64

F̃ RTR-SR1 18 2(2) 2.59

F̃ LRTR-SR1 18 2(2) 3.31

F̃ RCG 16 4(4) 1.171
φ̃ RBFGS 15 5(5) 1.37

φ̃ RGS 0 20(16) 1.411

274

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

36 37 38 39 40

Figure 14.5: 2-dimensional projections of optimizers from 5 initial conditions and 8 algo-
rithms for both smooth and partly smooth cost functions.

275

to getting stuck in the neighborhood of a local maxima. Using the same set of initial conditions,

RGS is able to avoid the flat region of φ([U]) and converge to the global maximizer, [U∗], for 16 of

the 20 initial conditions. (Since all of the sampled gradients in the flat region are fairly random in

direction and RGS tends to behave more like a random walk algorithm than a line search descent

method.) For the other 4 initial conditions, RGS converges to points that are only local maxima

but that have the desired property of invertibility.

For the same 20 initial conditions to optimize φ̃([U]), RBFGS does not perform as well. It finds

15 local maximizers that are different from one another and different from all of the maximizers

found by RGS. The values of cost function φ̃([U]) at the local maximizers [U∗i] of RBFGS are

relatively small compared to the value at [U∗] and therefore are located in the flat region Z which

was to be avoided. Additionally, the projected curves of the [U∗i] of RBFGS are self-intercepting

and the π[U∗i]|M are not invertible making these local maxima not desirable solutions.

The 20 initial conditions were used also in an attempt to optimize the discretized smooth cost

function F̃ ([U]). As seen from Table 14.4, all of the algorithms have difficulty to escape from

local minima for the smooth cost function F̃ ([U]). The sequence generated by the algorithms

with most of the initial conditions converge to similar minimizers of F̃ ([U]) and the projected

curve is self-intercepting(see Figure 14.5 for 5 examples). Therefore, π[U∗i]|M is not invertible and

these minimizers are clearly not desirable. Furthermore, the values of F̃ ([U]) at some of these

minimizers are approximately 1.353, which is even smaller than the function value, 1.355, at the

desired invertible minimizer. The fact that F̃ ([U]) at the undesired minimizers is smaller than

the desired one is also true when 100, 200, and 400 points are used in the discretized manifold

M̃. This indicates that discretization of F ([U]) produces an approximation F̃ ([U]) whose global

minimizer does not match the corresponding global minimizer F ([U]). So minimizing F̃ ([U]) does

not approximately solve the problem of minimizing F ([U]). However, the value of φ̃([U]) at the

desired maximizer is much larger than the value at the other local maximizers (see Table 14.3).

This indicates that unlike for the cost function F̃ ([U]), finding a global maximizer is sufficient to

find the desired one for the cost function φ̃([U]).

As seen from Table 14.4, the most efficient algorithm is RBFGS for the smooth cost function

F̃ ([U]). RTR-Newton needs a relatively large number of iterations before detecting a neighborhood

of a local minimizer. Therefore, RTR-Newton needs much large computational time compared to

276

the problem with an initial point close to the desire minimizer. The RCG, used by Broomhead and

Kirby [BK05], is still the slowest method for F̃ ([U]). For the partly smooth cost function φ̃([U]),

even though RGS needs more computational time than RBFGS, it shows its robustness of finding

invertible projection.

14.5 Conclusion

We compared the performance of algorithms for F̃ (U) and φ̃(U) and also compared the two cost

functions F̃ (U) and φ̃(U) for the discretized manifold M̃. F̃ (U), the discretization of a smooth

approximation to the original partly smooth cost function φ([U]) was shown to be unsatisfactory

for reliably solving the example problem. The discretization φ̃([U]) does not have these difficulties.

For φ̃([U]), RBFGS has advantage of converging fast but does not reliably produce an invertible

projection even at a local maximizer with an acceptably large cost function value. RGS exhibited

the desirable ability of escaping from the flat region Z to move toward an acceptable invertible

projection. The resulting reliability of RGS as a potential global optimization algorithm for this

problem must be weighed carefully against the speed of any future modifications of RBFGS that

mitigate is problems with local maxima.

277

CHAPTER 15

CONCLUSIONS AND FURTHER RESEARCH

In this dissertation, we generalized the Euclidean quasi-Newton methods which are used for opti-

mizing sufficiently smooth functions to the Riemannian setting with a combination of line search

and trust region strategies. In addition, two optimization algorithms, the gradient sampling al-

gorithm and a modified version of BFGS, which are used for optimizing partly smooth functions,

were generalized to the Riemannian setting. Experiments and applications were used to illustrate

the value of Riemannian quasi-Newton methods.

The major contributions of this dissertation are:

1. Generalizing the Broyden family of methods to the Riemannian setting and com-

bining it with line search strategy;

This is a significant extension of the core theory and implementation for Riemannian opti-

mization. Previous work has concentrated on generalizing the BFGS member of the Broyden

family. There are two main Riemannian versions and both have strong constraints on the

retraction and vector transport allowed. The version of Qi [Qi11] requires the use of the expo-

nential mapping and parallel translation and the version of Ring and Wirth [RW12] requires

the often computationally expensive differentiated retraction. Our work weakens significant-

ly the requirements on a retraction and a vector transport and proved the RBroyden family

algorithm to be well-defined.

2. Systematic and complete analysis of the convergence properties of the line search

based RBroyden family methods;

The convergence analyses are generalized from [DM77], [GT82], and [BNY87]. Global and

linear convergence analyses are given for a twice continuously differentiable and retraction-

convex cost function. Superlinear convergence is proven when the Hessian of the cost function

satisfies the generalized Hölder continuity condition at the minimizer (Assumption 6.2.2).

3. Generalizing limited-memory BFGS algorithm to the Riemannian setting;

The LRBFGS method in this dissertation is the first general Riemannian version of the

limited-memory BFGS algorithm. Imposing the limited-memory constraint, may decrease

the convergence rate, however, LRBFGS is useful in the sense that it not only reduces the

complexity of storage, but also reduces the computational time for each iteration and the

computational time of the vector transport in particular.

278

4. Generalizing the SR1 update to the Riemannian setting and combining it with

trust region strategy;

Previous work for the Riemannian setting based on the trust region strategy is given by

Baker [Bak08]. To obtain a fast local convergent rate, his algorithm needs the action of

the Hessian which may be unavailable or too expensive computationally. This dissertation

avoids the requirement of the action of the Hessian by generalizing the SR1 update to the

Riemannian setting while maintaining a satisfactory convergence rate. Unlike the restricted

Broyden family update, SR1 update does not guarantee the positive definiteness of the Hessian

approximation. However, the result of producing a better Hessian compared with restricted

Broyden family update and combining it with the trust region strategy produces an effective

and efficient method. Even though the known convergence rate of RTR-SR1 is slower than

the RBroyden family, there are some important benefits of RTR-SR1. For example, the SR1

update is a cheaper update and its combination with trust region strategy completely avoids

the requirement of the information of the differentiated retraction.

5. Systematically analyzing the convergence properties of RTR-SR1;

The global convergence analysis of a Riemannian trust region approach given in [Bak08] does

not require the information of the second order term in the local model. Therefore, our work

focused on the local convergence analysis and it is based on the work of [CGT91], [KBS93] and

[BKS96]. Comparing to the work in the Euclidean setting, we weaken the accuracy required

when solving the local model. By assuming the Lipschitz continuity of the Hessian of the

cost function around the minimizer, d+1-superlinear convergence is obtained, where d is the

dimension of the manifold.

6. Generalizing the limited-memory SR1 trust region method to the Riemannian

setting;

Similar to LRBFGS, LRTR-SR1 is also the first general Riemannian version of a limited-

memory SR1 algorithm. It also has the benefits of reducing the storage requirements and

computational time per iteration.

7. Generalizing some important concepts and theorems to the Riemannian setting

based on the framework of retraction and vector transport;

The main Euclidean concepts and theorems generalized are:

• Concepts:

– Lipschitz continuity of the Hessian of a function (see Assumptions 3.3.3 and 3.3.4);

– Convexity of a function (Definition 4.3.1);

– Lipschitz continuity of the gradient of a function (Definition 5.2.1);

• Theorems:

279

– Equivalence property of the Broyden family of methods (Theorem 4.7.1);

– Dennis Moré conditions for root solving and optimization (Theorem 5.2.2, Corollary

5.2.1 and Theorem 5.2.4).

8. Generalizing two algorithms, the gradient sampling algorithm and modified ver-

sion of RBFGS, for optimizing partly smooth functions to the Riemannian setting

without convergence analysis;

The generalizations of the gradient sampling algorithm and modified version of BFGS are

based on previous Euclidean work [BLO05] and [LO13] respectively.

9. Efficient implementation design for four types of manifolds;

A frequently encountered situation is that an element in a manifold can be represented by a

n-dimensional vector and this happens commonly in four situations. The implementations of

metric, adjoint, linear operator and vector transport for these kinds of manifolds are discussed

in detail in Chapter 9.

10. Providing detailed efficient implementations for four particular manifolds, the

sphere, the Stiefel manifold, the orthogonal group and the Grassmann manifold;

Implementations of different kinds of retractions, non-isometric and isometric vector trans-

ports and cotangent vectors required by Ring and Wirth’s RBFGS are given in detail. The

efficiency of the implementations is also discussed.

11. Providing empirical assessments and comparisons of the performance of proposed

Riemannian algorithms and existing Riemannian algorithms.

The preferred pair of retraction and vector transport for the RBroyden family and RTR-SR1

are identified. RBFGS (φ = 0) is the best in the restricted Broyden family algorithms for

the problems tested. The systematic selection of the parameter φ to improve performance

remains an open problem. The value of limited-memory versions of RBFGS and RTR-SR1

is shown in both moderately sized and large scale problems. RBFGS shows an advantage

of computational time for Lipschitz continuous partly smooth function and RGS shows an

advantage of robustness for non-Lipschitz continuous partly smooth function.

12. Applying Riemannian quasi-Newton algorithms to applications and illustrating

their effectiveness and efficiency;

• The joint diagonalization problem for ICA

RTR-SR1 and LRBFGS are the two relatively fastest algorithms for this problem when

N is sufficiently large. RTR-Newton requires the action of the Hessian which is expensive

in this problem for large N and, therefore, Riemannian quasi-Newton algorithms show

advantages in computational time for large N .

280

• Synchronization of rotation problem

RBFGS and LRBFGS are the two relatively fastest algorithms for this problem. Similar

to the joint diagonalization problem, the action of the Hessian is also expensive in this

application. RTR-Newton does not converge relatively fast.

• Rotation and reparameterization problem of curves in elastic shape analysis

The closed form of the Hessian of the cost function in this application is unknown

and, therefore, RTR-Newton cannot be applied. Riemannian quasi-Newton algorithms

can be applied for this problem, even though the dimension of the domain of the cost

function is infinite. The Riemannian quasi-Newton algorithms are shown to outperform

RSD. LRBFGS is chosen as the representative Riemannian quasi-Newton algorithm

and is significantly faster the existing method, DP, in most of the problems tested .

Additionally, the quality of the solution is assessed by 1NN and LRBFGS has competitive

or superior performance to DP with dense breaking points.

13. Applying RGS and a modified version of RBFGS for a problem in secant-based

nonlinear dimension reduction and illustrating their advantages;

Two cost functions are proposed in [BK05]. The partly smooth cost function φ([U]) is shown

in this dissertation to be a better cost function. The modified version of RBFGS converges

quickly for initial conditions sufficiently close to the global minimizer, while RGS is more

robust in the sense of escaping from the flat region of the domain and obtaining a desirable

invertible projection.

14. The Matlab and C packages have been developed .

There are several avenues of future research in both algorithms and their applications. For

algorithms, we will consider modifications to the RBroyden family algorithms to extend the con-

vergence properties to a wider range of φ (especially for φ < 0), to nonconvex objective functions,

and without requiring information about differentiated retraction. Additionally, the convergence

analysis of RGS and the modified version of RBFGS for optimizing partly smooth functions will

be developed. All algorithms in this dissertation find a local minimizer of an objective function

efficiently and effectively without the guarantee of finding a global minimizer. We will investigate

the global optimization properties on Riemannian manifolds. Finally, one of the most important

topics for future algorithmic research is the optimization of problems with constraints that are a

non-manifold subset of a Riemannian manifold. Such problems arise in many areas, e.g., rank-

constrained matrix approximation and reconstruction.

281

For applications, the growing body of advanced theory, understanding of efficient design, and

implementation of efficient computational libraries are increasing the acceptance of Riemannian

optimization methods. This is evident in the many applications of RTR variants in the literature.

The work in this dissertation provides the promise of successfully applying Riemannian quasi-

Newton algorithms to problems in many fields. We will continue to conduct systematic comparisons

with existing methods to adapt and improve both the Riemannian methods and our understanding

of their behaviors and relationship to application characteristics. In particular, the results will be

presented in so far as it is possible from application’s point of view. These fields of interest include

but are not limited to large scale data mining, image analysis, signal processing, machine learning

and shape analysis.

282

BIBLIOGRAPHY

[ABG07] P.-A. Absil, C. G. Baker, and K. A. Gallivan. Trust-region methods on Riemannian
manifolds. Foundations of Computational Mathematics, 7(3):303–330, 2007.

[ADM02] R. L. Adler, J.-P. Dedieu, and J. Y. Margulies. Newton’s method on Riemannian
manifolds and a geometric model for the human spine. IMA Journal of Numerical
Analysis, 22(3):359–390, 2002.

[AG06] P.-A. Absil and K. A. Gallivan. Joint diagonalization on the oblique manifold for
independent component analysis. 2006 IEEE International Conference on Acoustics,
Speech and Signal Processing, 2006. ICASSP 2006 Proceedings., 5:V945–V948, 2006.

[AMS08] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix mani-
folds. Princeton University Press, Princeton, NJ, 2008.

[ATV13] B. Afsari, R. Tron, and R. Vidal. On the convergence of gradient descent for finding the
Riemannian center of mass. SIAM Journal on Control and Optimization, 51(3):2230–
2260, 2013. arXiv:1201.0925v1.

[BA10] P. B. Borckmans and P.-A. Absil. Oriented bounding box computation using parti-
cle swarm optimization. ESANN 2010 proceedings, European Symposium on Artificial
Neural Networks - Computational Intelligence and Machine Learning, pages 345–350,
2010.

[BA11] N. Boumal and P.-A. Absil. RTRMC: A Riemannian trust-region method for low-rank
matrix completion. Advances in Neural Information Processing Systems 24 (NIPS),
pages 406–414, 2011.

[BAG08] C. G. Baker, P.-A. Absil, and K. A. Gallivan. An implicit trust-region method on
Riemannian manifolds. IMA Journal of Numerical Analysis, 28(4):665–689, 2008.

[Bak08] C. G. Baker. Riemannian manifold trust-region methods with applications to eigenprob-
lems. PhD thesis, Florida State University, 2008.

[Ber82] D. P. Bertsekas. Projected Newton methods for optimization problems with sample
constraints*. SIAM Journal on Control and Optimization, 20(2):221–246, 1982.

[Ber03] D. P. Bertsekas. Nonlinear programming. Athena Scientific, second edition, 2003.

[BI13] D. A. Bini and B. Iannazzo. Computing the Karcher mean of symmetric positive
definite matrices. Linear Algebra and its Applications, 438(4):1700–1710, February
2013. doi:10.1016/j.laa.2011.08.052.

283

[BK00] D. S. Broomhead and M. Kirby. A new approach to dimensionality reduction: theory
and algorithms. SIAM Journal on Applied Mathematics, 60(6):2114–2142, 2000.

[BK05] D. S. Broomhead and M. J. Kirby. Dimensionality reduction using secant-based pro-
jection methods : the induced dynamics in projected systems. Nonlinear Dynamics,
41(1-3):47–67, 2005.

[BKS96] R. H. Byrd, H. F. Khalfan, and R. B. Schnabel. Analysis of a symmetric rank-one trust
region method. SIAM Journal on Optimization, 6(4):1025–1039, 1996.

[BLN92] R. H. Byrd, D. C. Liu, and J. Nocedal. On the behavior of Broyden’s class of quasi-
Newton methods. SIAM Journal on Optimization, 2(4):533–557, 1992.

[BLO05] J. V. Burke, A. S. Lewis, and M. L. Overton. A robust gradient sampling algorithm for
nonsmooth, nonconvex optimization. SIAM Journal on Optimization, 15(3):751–779,
January 2005. doi:10.1137/030601296.

[BM06] I. Brace and J. H. Manton. An improved BFGS-on-manifold algorithm for computing
weighted low rank approximations. Proceedings of 17th international Symposium on
Mathematical Theory of Networks and Systems, pages 1735–1738, 2006.

[BNS94] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-Newton matrices
and their use in limited memory methods. Mathematical Programming, 63(1-3):129–
156, 1994.

[BNY87] R. H. Byrd, J. Nocedal, and Y.-X. Yuan. Global convergence of a class of quasi-Newton
methods on convex problems. SIAM Journal on Numerical Analysis, 24(5):1171–1190,
1987.

[Bor12] R. Borsdorf. Structured matrix nearness problems: theory and algorithms. PhD thesis,
The University of Manchester, 2012.

[BSAB12] N. Boumal, A. Singer, P.-A. Absil, and V. D. Blondel. Cramer-Rao bounds for syn-
chronization of rotations, 2012. arXiv:1211.1621v1.

[Cen] Florida State University Research Computing Center. FSU high performance comput-
ing system.

[CGT91] A. R. Conn, N. I. M. Gould, and P. L. Toint. Convergence of quasi-Newton matrices
generated by the symmetric rank one update. Mathematical Programming, 50(1-3):177–
195, March 1991. doi:10.1007/BF01594934.

[CGT00] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-region methods. MPS/SIAM Series
on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA, 2000.

284

[Cha06] I. Chavel. Riemannian geometry: a modern introduction. Cambridge Studies in Ad-
vanced Mathematics, second edition, 2006.

[Cla90] F. H. Clarke. Optimization and nonsmooth snalysis. Classics in Applied Mathematics
of SIAM, 1990.

[Dav75] W. C. Davidon. Optimally conditioned optimization algorithms without line searches.
Mathematical Programming, 9(1):1–30, 1975.

[dC92] M. P. do Carmo. Riemannian geometry. Mathematics: Theory & Applications, 1992.

[DE99] L. Dieci and T. Eirola. On smooth decompositions of matrices. SIAM
Journal on Matrix Analysis and Applications, 20(3):800–819, January 1999.
doi:10.1137/S0895479897330182.

[DK70] C. Davis and W. M. Kahan. The rotation of eigenvectors by a perturbation. III. SIAM
Journal on Numerical Analysis, 7(1):1–46, 1970.

[DKM12] W. Dai, E. Kerman, and O. Milenkovic. A geometric approach to low-rank matrix
completion. IEEE Transactions on Information Theory, 58(1):237–247, 2012. arX-
iv:1006.2086v1.

[DM74] J. E. Dennis and J. J. Moré. A characterization of superlinear convergence and its
application to quasi-Newton methods *. Mathematics of Computation, 28(126):549–
560, 1974.

[DM77] J. E. Dennis and J. J. Moré. Quasi-Newton methods, motivation and theory. SIAM
Review, 19(1):46–89, 1977.

[DS83] J. E. Dennis and R. B. Schnabel. Numerical methods for unconstrained optimization
and nonlinear equations. Springer, New Jersey, 1983.

[EAS98] A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogo-
nality constraints. SIAM Journal on Matrix Analysis and Applications, 20(2):303–353,
January 1998. doi:10.1137/S0895479895290954.

[FST88] C. Foias, G. R. Sell, and R. Temam. Inertial manifolds for nonlinear evolutionary
equations. Journal of Differential Equations, 73(2):309–353, 1988.

[Gab82] D Gabay. Minimizing a differentiable function over a differential manifold. Journal of
Optimization Theory and Applications, 37(2):177–219, 1982.

[GQA12] K. A. Gallivan, C. Qi, and P.-A. Absil. A Riemannian Dennis-More condition. In
Michael W. Berry, Kyle A. Gallivan, Efstratios Gallopoulos, Ananth Grama, Bernard

285

Philippe, Yousef Saad, and Faisal Saied, editors, High-Performance Scientific Comput-
ing, pages 281–293. Springer London, 2012. doi:10.1007/978-1-4471-2437-5 14.

[GT82] A. Griewank and P. L. Toint. Local convergence analysis for partitioned quasi-Newton
updates. Numerische Mathematik, 29:429–448, 1982.

[GV96] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, third edition, 1996.

[Haa04] M. Haarala. Large-scale nonsmooth optimization: variable metric bundle method with
limited memory. PhD thesis, University of Jyvaskyla, 2004.

[HAG13] W. Huang, P.-A. Absil, and K. A. Gallivan. A Riemannian symmetric rank-one trust-
region method. Tech. report UCL-INMA-2013.03-v1, 2013.

[HKO01] A. Hyvärinen, J. Karhunen, and E. Oja. Independent component analysis, volume 7.
John Wiley & Sons, Inc., 2001.

[HM94] U. Helmke and J. B. Moore. Optimization and dynamical systems. Spfinger-Verlag,
June 1994. doi:10.1109/JPROC.1996.503147.

[IAVD11] M. Ishteva, P.-A. Absil, S. Van Huffel, and L. De Lathauwer. Best low multilinear rank
approximation of higher-order tensors, based on the Riemannian trust-region scheme.
SIAM Journal on Matrix Analysis and Applications, 32(1):115–135, 2011.

[JBAS10] M. Journée, F. Bach, P.-A. Absil, and R. Sepulchre. Low-rank optimization on the
cone of positive semidefinite matrices. SIAM Journal on Optimization, 20(5):2327–
2351, 2010.

[JKT90] M. S. Jolly, I. G. Kevrekidis, and E. S. Titi. Approximate inertial manifolds for the
Kuramoto-Sivashinsky equation: analysis and computation. Physica D: Nonlinear Phe-
nomena, 44(1C2):38–60, 1990.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combina-
torica, 4(4):373–395, 1984.

[KBS93] H. F. Khalfan, R. H. Byrd, and R. B. Schnabel. A theoretical and experimental study of
the symmetric rank-one update. SIAM Journal on Optimization, 3(1):1–24, February
1993. doi:10.1137/0803001.

[Kel99] C. T. Kelley. Iterative methods for optimization. Society for Industrial and Applied
Mathematics, 1999.

[Kiw85] K. C. Kiwiel. Methods of descent for nondifferentiable optimization. Springer Berlin
Heidelberg, 1985.

286

[KS12] M. Kleinsteuber and H. Shen. Blind source separation with compressively sensed linear
mixtures. IEEE Signal Processing Letters, 19(2):107–110, 2012. arXiv:1110.2593v1.

[Lau04] A. J. Laub. Matrix analysis for scientists and engineers. SIAM, Philadelphia, PA,
2004.

[Li00] J.-R. Li. Model reduction of large linear systems via low rank system gramians. PhD
thesis, Massachusetts Institute of Technology, 2000.

[LO13] A. S. Lewis and M. L. Overton. Nonsmooth optimization via quasi-Newton methods.
Mathematical Programming, 141(1-2):135–163, February 2013. doi:10.1007/s10107-012-
0514-2.

[Lue72] D. G. Luenberger. The gradient projection method along geodesics. Management
Science, 18(11):620–631, 1972.

[Lue73] D. G. Luenberger. Introduction to linear and nonlinear programming. Addison-Wesley,
1973.

[LV07a] J. A. Lee and M. Verleysen. Nonlinear dimensionality reduction. Springer, 2007.

[LV07b] C. Liu and S. A. Vander Wiel. Statistical quasi-Newton: a new look at least change.
SIAM Journal on Optimization, 18(4):1266–1285, 2007.

[LY08] D. G. Luenberger and Y. Ye. Linear and nonlinear programming. Springer, third
edition, 2008.

[MMBS11] B. Mishra, G. Meyer, F. Bach, and R. Sepulchre. Low-rank optimization with trace
norm penalty, 2011. arXiv:1112.2318v2.

[MMS11] B. Mishra, G. Meyer, and R. Sepulchre. Low-rank optimization for distance matrix com-
pletion. In Proceeding of 50th IEEE Conference on Decision and Control and European
Control Conference, pages 4455–4460, December 2011. doi:10.1109/CDC.2011.6160810.

[MT89] M. Marion and R. Temam. Nonlinear Galerkin methods. SIAM Journal on Numerical
Analysis, 26(5):1139–1157, October 1989. doi:10.1137/0726063.

[NH95] I. Najfeld and T. F. Havel. Derivatives of the matrix exponential and their computation.
Advances in Applied Mathematics, 16(3):321–375, 1995.

[NW99] J. Nocedal and S. J. Wright. Numerical optimization. Springer, 1999.

[NW06] J. Nocedal and S. J. Wright. Numerical optimization. Springer, second edition, 2006.

[Pow76] M. J. D. Powell. Some global convergence properties of a variable metric algorithm

287

for minimization without exact line searches. Nonlinear Programming, SIAM-AMS
Proceedings, 9, 1976.

[Pow86] M. J. D. Powell. How bad are the BFGS and DFP method when the objective function
is quadratic? Mathematical Programming, 34:34–37, 1986.

[QGA10] C. Qi, K. A. Gallivan, and P.-A. Absil. Riemannian BFGS algorithm with applications.
Recent Advances in Optimization and its Applications in Engineering, pages 183–192,
2010.

[Qi11] C. Qi. Numerical optimization methods on Riemannian manifolds. PhD thesis, Florida
State University, 2011.

[QZL05] L. Qiu, Y. Zhang, and C.-K. Li. Unitarily invariant metrics on the Grassmann space.
SIAM Journal on Matrix Analysis and Applications, 27(2):507–531, 2005.

[Rew03] M. J. Rewienski. A trajectory piecewise-linear approach to model order reduction of
nonlinear dynamical systems. PhD thesis, Massachusetts Institute of Technology, 2003.

[Rit79] K. Ritter. Local and superlinear convergence of a class of variable metric methods.
Computing, 23:287–297, 1979.

[Rit81] K. Ritter. Global and superlinear convergence of a class of variable metric methods.
Mathematical Programming, 15:178–205, 1981.

[Rob12] D. T. Robinson. Functional data analysis and partial shape matching in the square root
velocity framework. PhD thesis, Florida State University, 2012.

[RV74] A. W. Roberts and D. E. Varberg. Another proof that convex functions are locally
lipschitz. The American Mathematical Monthly, 81(9):1014–1016, 1974.

[RW12] W. Ring and B. Wirth. Optimization methods on Riemannian manifolds and their
application to shape space. SIAM Journal on Optimization, 22(2):596–627, January
2012. doi:10.1137/11082885X.

[SAGQ12] S. E. Selvan, U. Amato, K. A. Gallivan, and C. Qi. Descent algorithms on oblique
manifold for source-adaptive ICA contrast. IEEE Transactions on Neural Networks
and Learning Systems, 23(12):1930–1947, 2012.

[San10] O. Sander. Geodesic finite elements for Cosserat rods. International Journal for Nu-
merical Methods in Engineering, 82(13):1645–1670, 2010. doi:10.1002/nme.2814.

[Sch78] R. B. Schnabel. Optimal conditioning in the convex class of rank two updates. Math-
ematical Programming, 15(1):247–260, 1978.

288

[Ska10] A. Skajaa. Limited memory BFGS for nonsmooth optimization. PhD thesis, New York
University, 2010.

[SKH13] M. Seibert, M. Kleinsteuber, and K. H\”uper. Properties of the BFGS method on
Riemannian manifolds. Mathematical System Theory C Festschrift in Honor of Uwe
Helmke on the Occasion of his Sixtieth Birthday, pages 395–412, 2013.

[SKJJ11] A. Srivastava, E. Klassen, S. H. Joshi, and I. H. Jermyn. Shape analysis of elastic curves
in Euclidean spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(7):1415–1428, September 2011. doi:10.1109/TPAMI.2010.184.

[SKK03] T. B. Sebastian, P. N. Klein, and B. B. Kimia. On aligning curves. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 25(1):116–125, January 2003.
doi:10.1109/TPAMI.2003.1159951.

[SL10] B. Savas and L. H. Lim. Quasi-Newton methods on Grassmannians and multilinear
approximations of tensors. SIAM Journal on Scientific Computing, 32(6):3352–3393,
2010.

[Smi94] S. T. Smith. Optimization techniques on Riemannian manifolds. Hamiltonian and
Gradient Flows, Algorithms and Control, 3:113–136, 1994.

[Sta81] A. Stachurski. Superlinear convergence of Broyden’s bounded theta-class of methods.
Mathematical Programming, 20(1):196–212, 1981.

[Sto75] J. Stoer. On the convergence rate of imperfect minimization algorithms in Broyden’s
beta class. Mathematical Programming, 9(1):313–335, 1975.

[TAJP08] P. Tabuada, A. D. Ames, A. Julius, and G. J. Pappas. Approximate reduc-
tion of dynamic systems. Systems and Control Letters, 57(7):538–545, July 2008.
doi:10.1016/j.sysconle.2007.12.005.

[TCA09] F. J. Theis, T. P. Cason, and P.-A. Absil. Soft dimension reduction for ICA by joint
diagonalization on the Stiefel manifold. Proceedings of the 8th International Conference
on Independent Component Analysis and Signal Separation, 5441:354–361, 2009.

[TVSC11] P. Turaga, A. Veeraraghavan, A. Srivastava, and R. Chellappa. Statistical computations
on Grassmann and Stiefel manifolds for image and video-based recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(11):2273–86, November
2011. doi:10.1109/TPAMI.2011.52.

[Uni] Temple University. Shape similarity research project.

[Van12] B. Vandereycken. Low-rank matrix completion by Riemannian optimization—extended
version, 2012.

289

[VV10] B. Vandereycken and S. Vandewalle. A Riemannian optimization approach for com-
puting low-rank solutions of Lyapunov equations. SIAM Journal on Matrix Analysis
and Applications, 31(5):2553–2579, January 2010. doi:10.1137/090764566.

[WBX+07] S. G. Wu, F. S. Bao, E. Y. Xu, Y.-X. Wang, Y.-F. Chang, and Q.-L. Xiang. A
leaf recognition algorithm for plant classification using probabilistic neural network.
2007 IEEE International Symposium on Signal Processing and Information Technology,
pages 11–16, 2007. arXiv:0707.4289v1.

[Whi36] H. Whitney. Differentiable manifolds. The Annals of Mathematics, 37(3):645–680, 1936.

[WY12] Z. Wen and W. Yin. A feasible method for optimization with orthogonality constraints.
Mathematical Programming, Published online, August 2012. doi:10.1007/s10107-012-
0584-1.

[YVGS08] Jin Yu, S. V. N. Vishwanathan, S. Gunter, and N. N. Schraudolph. A quasi-Newton
approach to non-smooth convex optimization. Proceedings of the 25th International
Conference on Machine Learning, pages 1216–1223, 2008.

[ZT88] Y. Zhang and R. P. Tewarson. Quasi-Newton algorithms with updates from the pre-
convex part of Broyden’s family. IMA Journal of Numerical Analysis, 8(4):487–509,
1988.

[ZZ04] Z. Zhang and H. Zha. Principal manifolds and nonlinear dimensionality reduction
via tangent space alignment. SIAM Journal on Scientific Computing, 26(1):313–338,
January 2004. doi:10.1137/S1064827502419154.

[ZZA+00] S. Zhang, X. Zou, J. Ahlquist, I. M. Navon, and J. G. Sela. Use of differentiable
and nondifferentiable optimization algorithms for variational data assimilation with
discontinuous cost functions. Monthly Weather Review, 128(12):4031–4044, 2000.

290

BIOGRAPHICAL SKETCH

Wen Huang, son of Weixing Huang and Zhu Jiang, was born on October 8th, 1985 in Fu’an, Fujian

province of P.R. China. He has a elder-sister called Shu Huang. He finished his Bachelor degree in

Information and Computing Science in 2007 at the University of Science and Technology of China

and worked at G-bits Network Technology Co., Ltd as a numerical designer from 2007 to 2008. He

enrolled in the Ph.D. program of the Department of Mathematics at Florida State University on

August 2008 and worked with Prof. Kyle A. Gallivan and Prof. Pierre-Antoine Absil.

Wen’s research topics include nonlinear dimension reduction, optimization on Riemannian man-

ifolds and their application to problems such as statistical shape analysis. He developed software,

called TreeScaper, for phylogenetic analysis and a toolbox for Riemannian optimization. He made

significant contributions to Riemannian quasi-Newton optimization methods.

After his Ph.D., Wen will start his post doctoral research position in the Mathematical Engi-

neering Department of the Catholic University of Louvain.

291

	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	1 INTRODUCTION
	1.1 The Problem of Optimization on a Manifold
	1.2 Basic Principles
	1.2.1 Unconstrained Optimization on a Constrained Space
	1.2.2 Tangent Space
	1.2.3 Riemannian Metric
	1.2.4 Affine Connections, Geodesics, Exponential Mapping and Parallel Translation
	1.2.5 Gradient and Hessian
	1.2.6 Retraction and Vector Transport
	1.2.7 Coordinate Expressions

	1.3 Historical Context
	1.4 Research Overview and Dissertation Statement

	2 QUASI-NEWTON PREPARATION: SECANT CONDITIONS
	2.1 Secant Condition on a Euclidean Space
	2.2 A Secant Condition on a Riemannian Manifold
	2.3 Retraction, Vector Transport and a Secant Condition

	3 A RIEMANNIAN TRUST REGION WITH SYMMETRIC RANK-ONE UPDATE METHOD
	3.1 Introduction
	3.2 The Riemannian SR1 Trust Region Method
	3.3 Convergence Analysis of RTR-SR1
	3.3.1 Notation and Standing Assumptions
	3.3.2 Global Convergence Analysis
	3.3.3 More Notation and Standing Assumptions
	3.3.4 Local Convergence Analysis

	3.4 Limited Memory Version of RTR-SR1

	4 A BROYDEN FAMILY OF QUASI-NEWTON METHOD
	4.1 Introduction
	4.2 RBroyden Family of Methods
	4.3 Global Convergence Analysis
	4.3.1 Basic Assumptions and Definitions
	4.3.2 Preliminary Lemmas
	4.3.3 Main Convergence Result

	4.4 Constructing Isometric Vector Transport or Retraction
	4.4.1 Method 1 of Constructing an Isometric Vector Transport
	4.4.2 Method 2 of Constructing an Isometric Vector Transport
	4.4.3 Constructing a Retraction

	4.5 Limited-memory RBFGS
	4.6 Ring and Wirth's RBFGS Update Formula
	4.7 Property of RBroyden Family Method

	5 RIEMANNIAN DENNIS-MORÉ CONDITIONS
	5.1 Introduction
	5.2 Riemannian Dennis-Moré Conditions
	5.2.1 Riemannian Dennis-Moré Conditions for a Vector Field
	5.2.2 Riemannian Dennis-Moré Condition for a Real-valued Function

	6 CONVERGENCE RATE ANALYSIS OF THE RIEMANNIAN BROYDEN FAMILY METHOD
	6.1 Introduction
	6.2 The RBroyden Family Convergence Rate Analysis
	6.2.1 R-Linear Convergence Analysis
	6.2.2 Superlinear Convergence Analysis

	7 OPTIMIZING PARTLY SMOOTH FUNCTIONS ON A RIEMANNIAN MANIFOLD
	7.1 Introduction
	7.2 Gradient Sampling Algorithm on a Riemannian Manifold
	7.3 Modifications for RBFGS Algorithms
	7.3.1 Line Search Algorithm for Partly Smooth Function
	7.3.2 Stopping Criterion of RBroyden Family Algorithms for a Partly Smooth Function

	8 RIEMANNIAN OPTIMIZATION AND CONSTRAINED OPTIMIZATIONS ON EUCLIDEAN SPACE
	8.1 Introduction
	8.2 Constrained Optimization
	8.2.1 Feasible Direction Methods
	8.2.2 Barrier Methods
	8.2.3 Penalty Methods

	8.3 Riemannian Optimization
	8.4 Comparison of Riemannian Optimization and Gradient Projection Methods
	8.4.1 Nonlinear Inequalities and Equalities Constraints
	8.4.2 Convex Set Constraints
	8.4.3 Bounds Constraints

	9 GENERAL IMPLEMENTATION TECHNIQUES
	9.1 Introduction
	9.2 A Manifold in Rn
	9.2.1 Basic Properties of the Metric as a Matrix
	9.2.2 Operations Using n Dimensional Representation
	9.2.3 Construction of Isometric Vector Transports

	9.3 Quotient Manifold of a Manifold in Rn
	9.3.1 General Discussion
	9.3.2 Operations Using n Dimensional Representation
	9.3.3 Construction of Isometric Vector Transports

	9.4 Product of Manifolds
	9.4.1 General Discussion
	9.4.2 Construction of Isometric Vector Transports

	9.5 The Intrinsic Dimensional Approach
	9.5.1 General Discussion
	9.5.2 Computational Benefits

	10 IMPLEMENTATION FOR SOME MANIFOLDS
	10.1 Introduction
	10.2 The Stiefel Manifold as an Embedded Submanifold
	10.2.1 Retractions
	10.2.2 Vector Transports
	10.2.3 Pairs of Retraction and Isometric Vector Transport Satisfying Locking Condition
	10.2.4 Cotangent Vector Required by Ring and Wirth's RBFGS

	10.3 The Stiefel Manifold as a Quotient Manifold
	10.3.1 Retractions
	10.3.2 Vector Transports
	10.3.3 Cotangent Vector Required by Ring and Wirth's RBFGS

	10.4 The Sphere
	10.4.1 Retractions
	10.4.2 Vector Transports

	10.5 The Orthogonal Group
	10.5.1 Retractions
	10.5.2 Vector Transports

	10.6 The Grassmann Manifold
	10.6.1 Retractions
	10.6.2 Vector Transports
	10.6.3 Pairs of Retraction and Isometric Vector Transport Satisfying Locking Condition
	10.6.4 Cotangent Vector Required by Ring and Wirth's RBFGS

	10.7 Complexity

	11 EXPERIMENTS
	11.1 Introduction
	11.2 Test Problems
	11.2.1 Brockett Cost Function Minimization on the Stiefel Manifold
	11.2.2 Rayleigh Quotient Minimization on the Grassmann Manifold
	11.2.3 Lipschitz Minmax Problem on the Sphere
	11.2.4 Non-Lipschitz Minmax Problem on the Sphere

	11.3 Notation, Algorithm Parameters and Test Data Parameters
	11.4 Results and Conclusions
	11.4.1 Performance for Different in the RBroyden Family
	11.4.2 Retractions and Vector Transports for RBFGS
	11.4.3 Comparison of RBFGS and Ring and Wirth's Algorithm
	11.4.4 Comparison of LRBFGS and RBFGS
	11.4.5 Locking Condition and Isometry of Vector Transport in RBFGS
	11.4.6 Retractions and Vector Transports for RTR-SR1
	11.4.7 Comparison of LRTR-SR1 and RTR-SR1
	11.4.8 Convergence Rate Comparison
	11.4.9 A Large Scale Problem
	11.4.10 Comparison of the Stiefel Manifold and the Grassmann Manifold
	11.4.11 Comparison of RGS and RSD for Smooth Functions
	11.4.12 Comparison of RGS and RBFGS for Partly Smooth Functions Defined on a Riemannian Manifold

	12 SOFT DIMENSION REDUCTION FOR INDEPENDENT COMPONENT ANALYSIS AND SYNCHRONIZATION OF ROTATION PROBLEM
	12.1 Soft Dimension Reduction for Independent Component Analysis
	12.1.1 Introduction
	12.1.2 Problem Statement
	12.1.3 Implementations and Results

	12.2 Synchronization of Rotation Problem
	12.2.1 Introduction
	12.2.2 Problem Statement
	12.2.3 Implementation and Results

	13 RIEMANNIAN OPTIMIZATION FOR ELASTIC SHAPE ANALYSIS
	13.1 Introduction
	13.2 Riemannian Framework and Problem Statement
	13.2.1 Curve Representation
	13.2.2 Open Curves in Rn
	13.2.3 Closed Curves in Rn

	13.3 The Coordinate Relaxation Method
	13.3.1 The Basic Ingredients
	13.3.2 Coordinate Relaxation Difficulties

	13.4 A Riemannian Optimization Method
	13.4.1 Cost Function
	13.4.2 The Riemannian Manifold

	13.5 Implementation Comments
	13.5.1 Representation and Cost Function
	13.5.2 Diffeomorphism Considerations
	13.5.3 Escaping Local Minima

	13.6 Experiments
	13.6.1 Overview of Experiments
	13.6.2 Examples of Coordinate Relaxation Difficulties
	13.6.3 The Preferred Riemannian Quasi-Newton Algorithm
	13.6.4 Performance Comparison for Flavia and MPEG-7 Datasets

	13.7 Conclusion

	14 SECANT-BASED NONLINEAR DIMENSION REDUCTION
	14.1 Introduction
	14.2 Problem Statement
	14.3 Properties of the Cost Functions and Discretization
	14.4 Experiments
	14.5 Conclusion

	15 CONCLUSIONS AND FURTHER RESEARCH
	Bibliography
	Biographical Sketch

