
A Riemannian Limited-Memory BFGS Algorithm
for Computing the Matrix Geometric Mean

Xinru Yuan1, Wen Huang2, P.-A. Absil2 and Kyle A. Gallivan1

1Florida State University

2Université Catholique de Louvain

July 3, 2016

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 1



Symmetric Positive Definite (SPD) Matrix

Definition

A symmetric matrix A is called positive definite if xTAx > 0 for all
nonzero vector x ∈ Rn.

2× 2 SPD matrix

u√
λu

v√
λv

3× 3 SPD matrix

u√
λu

v√
λv

w√
λw

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 2



Possible Applications of SPD Matrices

Diffusion tensors in medical imaging

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 3



Motivation of Averaging SPD Matrices

Subtask in interpolation schemes

Example: retrieve a tensor field between measured tensor values at
sparse points [PFA06]1

Figure : Initial tensor measurements Figure : Retrieved tensor field after a
certain interpolation scheme

1X. Pennec, P. Fillard and N. Ayache, A Riemannian framework for tensor
computing, International Journal of Computer Vision, 2006

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 4



Averaging Schemes: from Scalars to Matrices

Let A1, . . . ,AK be SPD matrices.

Generalized arithmetic mean: 1
K

K∑
i=1

Ai

→ Not appropriate in many practical applications

A A+B
2 B

detA = 50 det(A+B
2 ) = 267.56 detB = 50

Generalized geometric mean: (A1 · · ·AK )1/K

→ Not appropriate due to non-commutativity

→ How to define a matrix geometric mean?

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 5



Averaging Schemes: from Scalars to Matrices

Let A1, . . . ,AK be SPD matrices.

Generalized arithmetic mean: 1
K

K∑
i=1

Ai

→ Not appropriate in many practical applications

A A+B
2 B

detA = 50 det(A+B
2 ) = 267.56 detB = 50

Generalized geometric mean: (A1 · · ·AK )1/K

→ Not appropriate due to non-commutativity

→ How to define a matrix geometric mean?

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 5



Averaging Schemes: from Scalars to Matrices

Let A1, . . . ,AK be SPD matrices.

Generalized arithmetic mean: 1
K

K∑
i=1

Ai

→ Not appropriate in many practical applications

A A+B
2 B

detA = 50 det(A+B
2 ) = 267.56 detB = 50

Generalized geometric mean: (A1 · · ·AK )1/K

→ Not appropriate due to non-commutativity

→ How to define a matrix geometric mean?

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 5



Desired Properties of a Matrix Geometric Mean

The desired properties are given in the ALM list2, some of which are:

Invariance under permutation:
G (Aπ(1), . . . ,Aπ(K)) = G (A1, . . . ,AK ) with π a permutation of
(1, . . . ,K )

Consistency with scalars:
if A1, . . . ,AK commute, then G (A1, . . . ,AK ) = (A1, . . . ,AK )1/K

Invariance under inversion:
G (A1, . . . ,AK )−1 = G (A−1

1 , . . . ,A−1
K )

Determinant equality:
det(G (A1, . . . ,AK )) = (det(A1) · · · det(AK ))1/K

2T. Ando, C.-K. Li, and R. Mathias, Geometric means, Linear Algebra and Its
Applications, 385:305-334, 2004

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 6



Desired Properties of a Matrix Geometric Mean

The desired properties are given in the ALM list2, some of which are:

Invariance under permutation:
G (Aπ(1), . . . ,Aπ(K)) = G (A1, . . . ,AK ) with π a permutation of
(1, . . . ,K )

Consistency with scalars:
if A1, . . . ,AK commute, then G (A1, . . . ,AK ) = (A1, . . . ,AK )1/K

Invariance under inversion:
G (A1, . . . ,AK )−1 = G (A−1

1 , . . . ,A−1
K )

Determinant equality:
det(G (A1, . . . ,AK )) = (det(A1) · · · det(AK ))1/K

2T. Ando, C.-K. Li, and R. Mathias, Geometric means, Linear Algebra and Its
Applications, 385:305-334, 2004

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 6



Desired Properties of a Matrix Geometric Mean

The desired properties are given in the ALM list2, some of which are:

Invariance under permutation:
G (Aπ(1), . . . ,Aπ(K)) = G (A1, . . . ,AK ) with π a permutation of
(1, . . . ,K )

Consistency with scalars:
if A1, . . . ,AK commute, then G (A1, . . . ,AK ) = (A1, . . . ,AK )1/K

Invariance under inversion:
G (A1, . . . ,AK )−1 = G (A−1

1 , . . . ,A−1
K )

Determinant equality:
det(G (A1, . . . ,AK )) = (det(A1) · · · det(AK ))1/K

2T. Ando, C.-K. Li, and R. Mathias, Geometric means, Linear Algebra and Its
Applications, 385:305-334, 2004

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 6



Desired Properties of a Matrix Geometric Mean

The desired properties are given in the ALM list2, some of which are:

Invariance under permutation:
G (Aπ(1), . . . ,Aπ(K)) = G (A1, . . . ,AK ) with π a permutation of
(1, . . . ,K )

Consistency with scalars:
if A1, . . . ,AK commute, then G (A1, . . . ,AK ) = (A1, . . . ,AK )1/K

Invariance under inversion:
G (A1, . . . ,AK )−1 = G (A−1

1 , . . . ,A−1
K )

Determinant equality:
det(G (A1, . . . ,AK )) = (det(A1) · · · det(AK ))1/K

2T. Ando, C.-K. Li, and R. Mathias, Geometric means, Linear Algebra and Its
Applications, 385:305-334, 2004

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 6



Geometric Mean of SPD Matrices

A well-known mean on the manifold of SPD matrices is the Karcher
mean [Kar77]:

G (A1, . . . ,GK ) = arg min
X∈Sn

++

1

2K

K∑
i=1

dist2(X ,Ai ),

where dist(X ,Y ) = ‖ log(X−1/2YX−1/2)‖F is the distance under the
Riemannian metric

g(ηX , ξX ) = trace(ηXX
−1ξXX

−1).

It has been shown recently [LL11] that the Karcher mean satisfies all the
geometric properties in the ALM list.

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 7



Riemannian Manifolds

A Riemannian manifold M is a smooth set with a smoothly-varying inner
product on the tangent spaces.

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 8



Manifold of SPD Matrices

Let Sn++ be the manifold of SPD matrices

Tangent space at X ∈ Sn++:

TX Sn++ = {S ∈ Rn×n : S = ST}

Dimension: d = n(n + 1)/2

Riemannian metric:

g(ηX , ξX ) = trace(ηXX
−1ξXX

−1)

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 9



Algorithms

G (A1, . . . ,GK ) = arg min
X∈Sn

++

1

2K

K∑
i=1

dist2(X ,Ai ),

Riemannian steepest descent [RA11]

Riemannian steepest descent, conjugate gradient, BFGS, and trust
region Newton methods [JVV12]

Richardson-like iteration [BI13]

Limited-memory Riemannian BFGS method [YHAG16]

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 10



Karcher Mean of SPD Matrices

Hemstitching phenomenon
for steepest descent

well-conditioned Hessian ill-conditioned Hessian

Small condition number ⇒ fast convergence

Large condition number ⇒ slow convergence

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 11



Karcher Mean of SPD Matrices

Conditioning of the Riemannian Hessian of F at the minimizer:

For the cost function F (X ) = 1
2K

∑K
i=1 dist

2(Ai ,X ), we have

1 ≤ HessF (X )[∆X ,∆X ]

‖∆X‖2
≤ 1 +

ln(maxκi )

2
,

where κi is the condition number of Ai .

If maxκi = 1010, then 1 + ln(maxκi )
2 ≈ 12.51.

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 12



Optimization Algorithm: from Euclidean to Riemannian

Update formula:
xk+1 = xk + αkηk ,

where ηk is the search direction and αk is the stepsize.

Search direction:

ηk = −B−1
k grad f (xk).

xk xk + αkηk

Rxk(αkηk)

Optimization on a Manifold

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 13



Optimization Algorithm: from Euclidean to Riemannian

Update formula:
xk+1 = xk + αkηk ,

where ηk is the search direction and αk is the stepsize.

Search direction:

ηk = −B−1
k grad f (xk).

xk xk + αkηk

Rxk(αkηk)

Optimization on a Manifold

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 13



Retraction

Definition

A retraction is a mapping R from TM to M
satisfying the following:

R is continuously differentiable

Rx(0) = x

DRx(0)(η) = η

Euclidean Riemannian

xk+1 = xk + αkηk xk+1 = Rxk (αkηk)

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 14



Riemannian Optimization Algorithm

Euclidean Riemannian

xk+1 = xk + αkηk xk+1 = Rxk (αkηk)

Steepest Descent:
ηk = − grad f (xk)

Newton’s Method:

ηk = −Hess f (xk)−1 grad f (xk)

Quasi-Newton Method:

ηk = −B−1
k grad f (xk)

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 15



Riemannian Gradient and Hessian

Riemannian gradient:

gradF (X ) =
1

K

K∑
i=1

A
1/2
i log(A

−1/2
i XA

−1/2
i )A

−1/2
i X 1/2

Riemannian Hessian:

HessF (X )[ξX ] =
1

2K

K∑
i=1

ξX log(A−1
i X )− 1

2K

K∑
i=1

log(XA−1
i )ξX

+
1

K

K∑
i=1

XD(log)(A−1
i X )[A−1

i ξX ]

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 16



Richardson-like Iteration [BI13]

Update formula:

Xk+1 = Xk − αX 1/2
k

K∑
i=1

log(X
1/2
k A−1

i X
1/2
k )X

1/2
k

Stepsize:

α = 2/
K∑
i=1

κi + 1

κi − 1
log κi ,

where κi is the condition number of matrix X
1/2
k A−1

i X
1/2
k

Local linear convergence is proved

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 17



Richardson-like Iteration, Ctd

The Richardson-like iteration can be considered from the view of
Riemannian optimization algorithm

Xk+1 = RXk
(αηk)

Search direction: ηk = − gradF (Xk)

Choice of retraction: RX (η) = X + η

Stepsize α satisfies the Wolfe condition

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 18



BFGS Quasi-Newton Algorithm: from Euclidean to
Riemannian

Search direction:
ηk = −B−1

k grad f (xk)

Bk update:

Bk+1 = Bk −
Bksks

T
k Bk

sTk Bksk
+

yky
T
k

yT
k sk

,

where sk = xk+1 − xk , and yk = grad f (xk+1)− grad f (xk).

x On a manifold:
x

replaced by R−1
xk (xk+1) on different tangent spaces

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 19



BFGS Quasi-Newton Algorithm: from Euclidean to
Riemannian

Search direction:
ηk = −B−1

k grad f (xk)

Bk update:

Bk+1 = Bk −
Bksks

T
k Bk

sTk Bksk
+

yky
T
k

yT
k sk

,

where sk = xk+1 − xk , and yk = grad f (xk+1)− grad f (xk).x On a manifold:
x

replaced by R−1
xk (xk+1) on different tangent spaces

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 19



Vector Transport

Vector Transport

Transport a tangent vector from one
tangent space to another

Tηx ξx , denotes transport of ξx to
tangent space of Rx(ηx)

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 20



Riemannian BFGS (RBFGS) Algorithm

Update formula:

xk+1 = Rxk (αkηk) with ηk = −B−1
k grad f (xk)

Bk update [HGA15]:

Bk+1 = B̃k −
B̃k sk(B̃k sk)[

(B̃k sk)[sk
+

yky[k
y[k sk

,

where sk = Tαkηkαkηk , yk = β−1
k grad f (xk+1)− Tαkηk grad f (xk),

and B̃k = Tαkηk ◦ Bk ◦ T −1
αkηk

.

Stores and transports B−1
k as a dense matrix

Requires excessive computation time and storage space for
large-scale problem

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 21



Riemannian BFGS (RBFGS) Algorithm

Update formula:

xk+1 = Rxk (αkηk) with ηk = −B−1
k grad f (xk)

Bk update [HGA15]:

Bk+1 = B̃k −
B̃k sk(B̃k sk)[

(B̃k sk)[sk
+

yky[k
y[k sk

,

where sk = Tαkηkαkηk , yk = β−1
k grad f (xk+1)− Tαkηk grad f (xk),

and B̃k = Tαkηk ◦ Bk ◦ T −1
αkηk

.

Stores and transports B−1
k as a dense matrix

Requires excessive computation time and storage space for
large-scale problem

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 21



Limited-memory RBFGS (LRBFGS)

Riemannian BFGS:

Bk+1 = B̃k − B̃k sk (B̃k sk )[

(B̃k sk )[sk
+

yky[k
y[k sk

,

where sk = Tαkηkαkηk , yk = β−1
k grad f (xk+1)− Tαkηk grad f (xk),

and B̃k = Tαkηk ◦ Bk ◦ T −1
αkηk

Limited-memory Riemannian BFGS:

Stores only the m most recent sk and yk

Transports those vectors to the new tangent space rather than the
entire matrix B−1

k

Computational and storage complexity depends upon m

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 22



Limited-memory RBFGS (LRBFGS), Ctd

B−1
k update [HGA15]:

B−1
k = Ṽ[k Ṽ[k−1 . . . Ṽ[k−mH̃0

k+1Ṽk−m . . . Ṽk−1Ṽk

+ ρk−mṼ[k Ṽ[k−1 . . . Ṽ[k−m+1s (k+1)
k−m s (k+1)[

k−m Ṽk−m+1 . . . Ṽk−1Ṽk

+ · · ·+ ρk s (k+1)
k s (k+1)[

k ,

where Ṽi = id−ρiy (k+1)
i s (k+1)[

i , ρi = 1
g(yi ,si ) , H̃0

k+1 =
g(sk ,yk )

g(yk ,yk ) id, and

s (k+1)
i represents a tangent vector in Txk+1

M given by transporting

si , and likewise for y (k+1)
i

Avoids expensive matrix operations

Requires less memory

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 23



Complexity Comparison

RBFGS Limited-memory RBFGS

Action Complexity Action Complexity

get B̃−1
k+1 from B−1

k O(d2) - -

B−1η O(d2) B−1η O(md)

d denotes the dimension of SPD manifold

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 24



Algorithm Comparison

Not sure where to put this table

Algorithm Convergence

Riemannian steepest descent global, linear

Riemannian BFGS global(convex), superlinear

Riemannian limited-memory BFGS global(convex), faster than linear

Riemannian Newton’s method global, quadratic

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 25



Outline

Background of the SPD Karcher mean computation

A brief description of the limited-memory RBFGS (LRBFGS) method

Apply the LRBFGS to the SPD Karcher mean computation

Practical implementation

Experiments on various data sets

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 26



Implementations

Cost function:

F (X ) =
1

2K

K∑
i=1

dist2(Ai ,X )

=
1

2K

K∑
i=1

‖ log(A
−1/2
i XA

−1/2
i )‖2

F

Riemannian gradient:

gradF (X ) =
1

K

K∑
i=1

A
1/2
i log(A

−1/2
i XA

−1/2
i )A

−1/2
i X 1/2

The dominant computation time is on the function evaluation

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 27



Implementations

Efficient representations of tangent vectors, see [YHAG16]

Retraction

Exponential mapping: ExpX (ξX ) = X 1/2 exp(X−1/2ξXX
−1/2)X 1/2

Vector transport

Parallel translation: TpηX (ξX ) = QξXQ
T ,

where Q = X 1/2 exp(
X−1/2ηXX

−1/2

2
)X−1/2

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 28



Implementations

Efficient numerical representations of tangent vectors

Retraction

Exponential mapping: ExpX (ξX ) = X 1/2 exp(X−1/2ξXX
−1/2)X 1/2

Second order retraction [JVV12]: RX (ξX ) = X + ξX +
1

2
ξXX

−1ξX

Vector transport

Parallel translation: TpηX (ξX ) = QξXQ
T ,

where Q = X 1/2 exp(
X−1/2ηXX

−1/2

2
)X−1/2

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 29



Implementations

Efficient numerical representations of tangent vectors

Retraction

Exponential mapping: ExpX (ξX ) = X 1/2 exp(X−1/2ξXX
−1/2)X 1/2

Second order retraction: RX (ξX ) = X + ξX +
1

2
ξXX

−1ξX

Vector transport

Parallel translation: TpηX (ξX ) = QξXQ
T ,

where Q = X 1/2 exp(
X−1/2ηXX

−1/2

2
)X−1/2

Vector transport by parallelization3: essentially an identity

3W. Huang, P.-A. Absil, and K. A. Gallivan, A Riemannian symmetric rank-one
trust-region method, Mathematical Programming, 2014

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 30



Numerical Results I: K = 100, 3× 3, d = 6, m = 2

1 ≤ κ(Ai ) ≤ 200

iterations
0 10 20 30 40 50 60 70

d
is
t(
µ
,
X

k
)

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

RSD
RCG
LRBFGS
RL Iteration

time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

d
is
t(
µ
,
X

t)

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

RSD
RCG
LRBFGS
RL Iteration

103 ≤ κ(Ai ) ≤ 2 · 106

iterations
20 40 60 80 100 120 140

d
is
t(
µ
,
X

k
)

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

RSD
RCG
LRBFGS
RL Iteration

time (s)
0 0.2 0.4 0.6 0.8 1 1.2

d
is
t(
µ
,
X

t)

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

RSD
RCG
LRBFGS
RL Iteration

Figure : Evolution of averaged distance between current iterate and the exact
Karcher mean with respect to time and iterations

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 31



Numerical Results II: K = 30, 100× 100, d = 5050, m = 2

1 ≤ κ(Ai ) ≤ 20

iterations
0 5 10 15 20 25 30 35 40 45 50

d
is
t(
µ
,
X

k
)

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

RSD
RCG
LRBFGS
RL Iteration

time (s)
0 1 2 3 4 5 6

d
is
t(
µ
,
X

t)

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

RSD
RCG
LRBFGS
RL Iteration

104 ≤ κ(Ai ) ≤ 2 · 106

iterations
0 50 100 150

d
is
t(
µ
,
X

k
)

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

RSD
RCG
LRBFGS
RL Iteration

time (s)
0 2 4 6 8 10 12

d
is
t(
µ
,
X

t)

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

RSD
RCG
LRBFGS
RL Iteration

Figure : Evolution of averaged distance between current iterate and the exact
Karcher mean with respect to time and iterations

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 32



Summary

Analyze the conditioning of the Hessian of the Karcher cost function

Apply a Riemannian version of limited-memory BFGS method to
computing the SPD Karcher mean

Present efficient implementations

Compare with the state-of-the-art methods

The proposed LRBFGS method is seen to be the method of choice
for computing the SPD Karcher mean when the data matrices
increase in size or number.

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 33



Implementation in Matlab

F (X ) =
1

2K

K∑
i=1

‖ log(A
−1/2
i XA

−1/2
i )‖2

F

=
1

2K

K∑
i=1

‖ log(A
−1/2
i LLTA

−1/2
i )‖2

F

=
1

2K

K∑
i=1

‖ log[(A
−1/2
i L)(A

−1/2
i L)T ]‖2

F

Let S = A
−1/2
i L, and SST = QUQT , where QQT = I , and U is an upper

triangle matrix whose diagonal elements are the eigenvalues. Then

F (X ) =
1

2K

K∑
i=1

‖ log(SST )‖2
F

=
1

2K

K∑
i=1

‖Q log(diag(U))QT‖2
F

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 34



References I

D. A. Bini and B. Iannazzo.
Computing the Karcher mean of symmetric positive definite
matrices.
Linear Algebra and its Applications, 438(4):1700–1710, 2013.

W. Huang, K. A. Gallivan, and P.-A. Absil.
A Broyden class of quasi-Newton methods for Riemannian
optimization.
SIAM Journal on Optimization, 25(3):1660–1685, 2015.

B. Jeuris, R. Vandebril, and B. Vandereycken.
A survey and comparison of contemporary algorithms for computing
the matrix geometric mean.
Electronic Transactions on Numerical Analysis, 39:379–402, 2012.

H. Karcher.
Riemannian center of mass and mollifier smoothing.
Communications on Pure and Applied Mathematics, 1977.

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 35



References II

Jimmie Lawson and Yongdo Lim.
Monotonic properties of the least squares mean.
Mathematische Annalen, 351(2):267–279, 2011.

Xavier Pennec, Pierre Fillard, and Nicholas Ayache.
A riemannian framework for tensor computing.
International Journal of Computer Vision, 66(1):41–66, 2006.

Q. Rentmeesters and P.-A. Absil.
Algorithm comparison for Karcher mean computation of rotation
matrices and diffusion tensors.
In 19th European Signal Processing Conference, pages 2229–2233,
Aug 2011.

Xinru Yuan, Wen Huang, P.-A. Absil, and Kyle A. Gallivan.
A Riemannian limited-memory BFGS algorithm for computing the
matrix geometric mean.
In ICCS 2016, 2016.

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 36


