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Symmetric Positive Definite (SPD) Matrix

Definition

A symmetric matrix A is called positive definite if xTAx > 0 for all
nonzero vector x ∈ Rn.

2× 2 SPD matrix

u√
λu

v√
λv

3× 3 SPD matrix

u√
λu

v√
λv

w√
λw
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Possible Applications of SPD Matrices

Diffusion tensors in medical imaging
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Motivation of Averaging SPD Matrices

Subtask in interpolation schemes

Example: retrieve a tensor field between measured tensor values at
sparse points [PFA06]1

Figure : Initial tensor measurements Figure : Retrieved tensor field after a
certain interpolation scheme

1X. Pennec, P. Fillard and N. Ayache, A Riemannian framework for tensor
computing, International Journal of Computer Vision, 2006
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Averaging Schemes: from Scalars to Matrices

Let A1, . . . ,AK be SPD matrices.

Generalized arithmetic mean: 1
K

K∑
i=1

Ai

→ Not appropriate in many practical applications

A A+B
2 B

detA = 50 det(A+B
2 ) = 267.56 detB = 50

Generalized geometric mean: (A1 · · ·AK )1/K

→ Not appropriate due to non-commutativity

→ How to define a matrix geometric mean?
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Desired Properties of a Matrix Geometric Mean

The desired properties are given in the ALM list2, some of which are:

Invariance under permutation:
G (Aπ(1), . . . ,Aπ(K)) = G (A1, . . . ,AK ) with π a permutation of
(1, . . . ,K )

Consistency with scalars:
if A1, . . . ,AK commute, then G (A1, . . . ,AK ) = (A1, . . . ,AK )1/K

Invariance under inversion:
G (A1, . . . ,AK )−1 = G (A−1

1 , . . . ,A−1
K )

Determinant equality:
det(G (A1, . . . ,AK )) = (det(A1) · · · det(AK ))1/K

2T. Ando, C.-K. Li, and R. Mathias, Geometric means, Linear Algebra and Its
Applications, 385:305-334, 2004
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Geometric Mean of SPD Matrices

A well-known mean on the manifold of SPD matrices is the Karcher
mean [Kar77]:

G (A1, . . . ,GK ) = arg min
X∈Sn

++

1

2K

K∑
i=1

dist2(X ,Ai ),

where dist(X ,Y ) = ‖ log(X−1/2YX−1/2)‖F is the distance under the
Riemannian metric

g(ηX , ξX ) = trace(ηXX
−1ξXX

−1).

It has been shown recently [LL11] that the Karcher mean satisfies all the
geometric properties in the ALM list.
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Riemannian Manifolds

A Riemannian manifold M is a smooth set with a smoothly-varying inner
product on the tangent spaces.

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 8



Manifold of SPD Matrices

Let Sn++ be the manifold of SPD matrices

Tangent space at X ∈ Sn++:

TX Sn++ = {S ∈ Rn×n : S = ST}

Dimension: d = n(n + 1)/2

Riemannian metric:

g(ηX , ξX ) = trace(ηXX
−1ξXX

−1)
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Algorithms

G (A1, . . . ,GK ) = arg min
X∈Sn

++

1

2K

K∑
i=1

dist2(X ,Ai ),

Riemannian steepest descent [RA11]

Riemannian steepest descent, conjugate gradient, BFGS, and trust
region Newton methods [JVV12]

Richardson-like iteration [BI13]

Limited-memory Riemannian BFGS method [YHAG16]
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Karcher Mean of SPD Matrices

Hemstitching phenomenon
for steepest descent

well-conditioned Hessian ill-conditioned Hessian

Small condition number ⇒ fast convergence

Large condition number ⇒ slow convergence
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Karcher Mean of SPD Matrices

Conditioning of the Riemannian Hessian of F at the minimizer:

For the cost function F (X ) = 1
2K

∑K
i=1 dist

2(Ai ,X ), we have

1 ≤ HessF (X )[∆X ,∆X ]

‖∆X‖2
≤ 1 +

ln(maxκi )

2
,

where κi is the condition number of Ai .

If maxκi = 1010, then 1 + ln(maxκi )
2 ≈ 12.51.
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Optimization Algorithm: from Euclidean to Riemannian

Update formula:
xk+1 = xk + αkηk ,

where ηk is the search direction and αk is the stepsize.

Search direction:

ηk = −B−1
k grad f (xk).

xk xk + αkηk

Rxk(αkηk)

Optimization on a Manifold
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Retraction

Definition

A retraction is a mapping R from TM to M
satisfying the following:

R is continuously differentiable

Rx(0) = x

DRx(0)(η) = η

Euclidean Riemannian

xk+1 = xk + αkηk xk+1 = Rxk (αkηk)
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Riemannian Optimization Algorithm

Euclidean Riemannian

xk+1 = xk + αkηk xk+1 = Rxk (αkηk)

Steepest Descent:
ηk = − grad f (xk)

Newton’s Method:

ηk = −Hess f (xk)−1 grad f (xk)

Quasi-Newton Method:

ηk = −B−1
k grad f (xk)
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Riemannian Gradient and Hessian

Riemannian gradient:

gradF (X ) =
1

K

K∑
i=1

A
1/2
i log(A

−1/2
i XA

−1/2
i )A

−1/2
i X 1/2

Riemannian Hessian:

HessF (X )[ξX ] =
1

2K

K∑
i=1

ξX log(A−1
i X )− 1

2K

K∑
i=1

log(XA−1
i )ξX

+
1

K

K∑
i=1

XD(log)(A−1
i X )[A−1

i ξX ]
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Richardson-like Iteration [BI13]

Update formula:

Xk+1 = Xk − αX 1/2
k

K∑
i=1

log(X
1/2
k A−1

i X
1/2
k )X

1/2
k

Stepsize:

α = 2/
K∑
i=1

κi + 1

κi − 1
log κi ,

where κi is the condition number of matrix X
1/2
k A−1

i X
1/2
k

Local linear convergence is proved
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Richardson-like Iteration, Ctd

The Richardson-like iteration can be considered from the view of
Riemannian optimization algorithm

Xk+1 = RXk
(αηk)

Search direction: ηk = − gradF (Xk)

Choice of retraction: RX (η) = X + η

Stepsize α satisfies the Wolfe condition
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BFGS Quasi-Newton Algorithm: from Euclidean to
Riemannian

Search direction:
ηk = −B−1

k grad f (xk)

Bk update:

Bk+1 = Bk −
Bksks

T
k Bk

sTk Bksk
+

yky
T
k

yT
k sk

,

where sk = xk+1 − xk , and yk = grad f (xk+1)− grad f (xk).

x On a manifold:
x

replaced by R−1
xk (xk+1) on different tangent spaces
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Vector Transport

Vector Transport

Transport a tangent vector from one
tangent space to another

Tηx ξx , denotes transport of ξx to
tangent space of Rx(ηx)

A LRBFGS Algorithm for Computing the Matrix Geometric Mean 20



Riemannian BFGS (RBFGS) Algorithm

Update formula:

xk+1 = Rxk (αkηk) with ηk = −B−1
k grad f (xk)

Bk update [HGA15]:

Bk+1 = B̃k −
B̃k sk(B̃k sk)[

(B̃k sk)[sk
+

yky[k
y[k sk

,

where sk = Tαkηkαkηk , yk = β−1
k grad f (xk+1)− Tαkηk grad f (xk),

and B̃k = Tαkηk ◦ Bk ◦ T −1
αkηk

.

Stores and transports B−1
k as a dense matrix

Requires excessive computation time and storage space for
large-scale problem
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Limited-memory RBFGS (LRBFGS)

Riemannian BFGS:

Bk+1 = B̃k − B̃k sk (B̃k sk )[

(B̃k sk )[sk
+

yky[k
y[k sk

,

where sk = Tαkηkαkηk , yk = β−1
k grad f (xk+1)− Tαkηk grad f (xk),

and B̃k = Tαkηk ◦ Bk ◦ T −1
αkηk

Limited-memory Riemannian BFGS:

Stores only the m most recent sk and yk

Transports those vectors to the new tangent space rather than the
entire matrix B−1

k

Computational and storage complexity depends upon m
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Limited-memory RBFGS (LRBFGS), Ctd

B−1
k update [HGA15]:

B−1
k = Ṽ[k Ṽ[k−1 . . . Ṽ[k−mH̃0

k+1Ṽk−m . . . Ṽk−1Ṽk

+ ρk−mṼ[k Ṽ[k−1 . . . Ṽ[k−m+1s (k+1)
k−m s (k+1)[

k−m Ṽk−m+1 . . . Ṽk−1Ṽk

+ · · ·+ ρk s (k+1)
k s (k+1)[

k ,

where Ṽi = id−ρiy (k+1)
i s (k+1)[

i , ρi = 1
g(yi ,si ) , H̃0

k+1 =
g(sk ,yk )

g(yk ,yk ) id, and

s (k+1)
i represents a tangent vector in Txk+1

M given by transporting

si , and likewise for y (k+1)
i

Avoids expensive matrix operations

Requires less memory
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Complexity Comparison

RBFGS Limited-memory RBFGS

Action Complexity Action Complexity

get B̃−1
k+1 from B−1

k O(d2) - -

B−1η O(d2) B−1η O(md)

d denotes the dimension of SPD manifold
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Algorithm Comparison

Not sure where to put this table

Algorithm Convergence

Riemannian steepest descent global, linear

Riemannian BFGS global(convex), superlinear

Riemannian limited-memory BFGS global(convex), faster than linear

Riemannian Newton’s method global, quadratic
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Outline

Background of the SPD Karcher mean computation

A brief description of the limited-memory RBFGS (LRBFGS) method

Apply the LRBFGS to the SPD Karcher mean computation

Practical implementation

Experiments on various data sets
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Implementations

Cost function:

F (X ) =
1

2K

K∑
i=1

dist2(Ai ,X )

=
1

2K

K∑
i=1

‖ log(A
−1/2
i XA

−1/2
i )‖2

F

Riemannian gradient:

gradF (X ) =
1

K

K∑
i=1

A
1/2
i log(A

−1/2
i XA

−1/2
i )A

−1/2
i X 1/2

The dominant computation time is on the function evaluation
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Implementations

Efficient representations of tangent vectors, see [YHAG16]

Retraction

Exponential mapping: ExpX (ξX ) = X 1/2 exp(X−1/2ξXX
−1/2)X 1/2

Vector transport

Parallel translation: TpηX (ξX ) = QξXQ
T ,

where Q = X 1/2 exp(
X−1/2ηXX

−1/2

2
)X−1/2
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Implementations

Efficient numerical representations of tangent vectors

Retraction

Exponential mapping: ExpX (ξX ) = X 1/2 exp(X−1/2ξXX
−1/2)X 1/2

Second order retraction [JVV12]: RX (ξX ) = X + ξX +
1

2
ξXX

−1ξX

Vector transport

Parallel translation: TpηX (ξX ) = QξXQ
T ,

where Q = X 1/2 exp(
X−1/2ηXX

−1/2

2
)X−1/2
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Implementations

Efficient numerical representations of tangent vectors

Retraction

Exponential mapping: ExpX (ξX ) = X 1/2 exp(X−1/2ξXX
−1/2)X 1/2

Second order retraction: RX (ξX ) = X + ξX +
1

2
ξXX

−1ξX

Vector transport

Parallel translation: TpηX (ξX ) = QξXQ
T ,

where Q = X 1/2 exp(
X−1/2ηXX

−1/2

2
)X−1/2

Vector transport by parallelization3: essentially an identity

3W. Huang, P.-A. Absil, and K. A. Gallivan, A Riemannian symmetric rank-one
trust-region method, Mathematical Programming, 2014
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Numerical Results I: K = 100, 3× 3, d = 6, m = 2

1 ≤ κ(Ai ) ≤ 200

iterations
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Figure : Evolution of averaged distance between current iterate and the exact
Karcher mean with respect to time and iterations
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Numerical Results II: K = 30, 100× 100, d = 5050, m = 2

1 ≤ κ(Ai ) ≤ 20

iterations
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Summary

Analyze the conditioning of the Hessian of the Karcher cost function

Apply a Riemannian version of limited-memory BFGS method to
computing the SPD Karcher mean

Present efficient implementations

Compare with the state-of-the-art methods

The proposed LRBFGS method is seen to be the method of choice
for computing the SPD Karcher mean when the data matrices
increase in size or number.
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Implementation in Matlab

F (X ) =
1

2K

K∑
i=1

‖ log(A
−1/2
i XA

−1/2
i )‖2

F

=
1

2K

K∑
i=1

‖ log(A
−1/2
i LLTA

−1/2
i )‖2

F

=
1

2K

K∑
i=1

‖ log[(A
−1/2
i L)(A

−1/2
i L)T ]‖2

F

Let S = A
−1/2
i L, and SST = QUQT , where QQT = I , and U is an upper

triangle matrix whose diagonal elements are the eigenvalues. Then

F (X ) =
1

2K

K∑
i=1

‖ log(SST )‖2
F

=
1

2K

K∑
i=1

‖Q log(diag(U))QT‖2
F
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