A Riemannian Limited-Memory BFGS Algorithm for Computing the Matrix Geometric Mean

Xinru Yuan¹, Wen Huang², P.-A. Absil² and Kyle A. Gallivan¹

¹Florida State University

²Université Catholique de Louvain

July 3, 2016

Symmetric Positive Definite (SPD) Matrix

Definition

A symmetric matrix A is called positive definite if $x^T A x > 0$ for all nonzero vector $x \in \mathbb{R}^n$.

 3×3 SPD matrix

Possible Applications of SPD Matrices

• Diffusion tensors in medical imaging

Motivation of Averaging SPD Matrices

- Subtask in interpolation schemes
 - \bullet Example: retrieve a tensor field between measured tensor values at sparse points $[\mathsf{PFA06}]^1$

Figure : Initial tensor measurements

Figure : Retrieved tensor field after a certain interpolation scheme

¹X. Pennec, P. Fillard and N. Ayache, *A Riemannian framework for tensor computing*, International Journal of Computer Vision, 2006

A LRBFGS Algorithm for Computing the Matrix Geometric Mean

Averaging Schemes: from Scalars to Matrices

Let A_1, \ldots, A_K be SPD matrices.

• Generalized arithmetic mean: $\frac{1}{K} \sum_{i=1}^{K} A_i$

 \rightarrow Not appropriate in many practical applications

Averaging Schemes: from Scalars to Matrices

Let A_1, \ldots, A_K be SPD matrices.

• Generalized arithmetic mean: $\frac{1}{K} \sum_{i=1}^{K} A_i$

 \rightarrow Not appropriate in many practical applications

Averaging Schemes: from Scalars to Matrices

Let A_1, \ldots, A_K be SPD matrices.

• Generalized arithmetic mean: $\frac{1}{K} \sum_{i=1}^{K} A_i$

 \rightarrow Not appropriate in many practical applications

• Generalized geometric mean: $(A_1 \cdots A_K)^{1/K}$

- \rightarrow Not appropriate due to non-commutativity
- \rightarrow How to define a matrix geometric mean?

The desired properties are given in the ALM list², some of which are:

• Invariance under permutation: $G(A_{\pi(1)}, \ldots, A_{\pi(K)}) = G(A_1, \ldots, A_K)$ with π a permutation of $(1, \ldots, K)$

²T. Ando, C.-K. Li, and R. Mathias, *Geometric means*, Linear Algebra and Its Applications, 385:305-334, 2004

The desired properties are given in the ALM list², some of which are:

- Invariance under permutation: $G(A_{\pi(1)}, \ldots, A_{\pi(K)}) = G(A_1, \ldots, A_K)$ with π a permutation of $(1, \ldots, K)$
- Consistency with scalars: if A_1, \ldots, A_K commute, then $G(A_1, \ldots, A_K) = (A_1, \ldots, A_K)^{1/K}$

²T. Ando, C.-K. Li, and R. Mathias, *Geometric means*, Linear Algebra and Its Applications, 385:305-334, 2004

The desired properties are given in the ALM list², some of which are:

- Invariance under permutation: $G(A_{\pi(1)}, \ldots, A_{\pi(K)}) = G(A_1, \ldots, A_K)$ with π a permutation of $(1, \ldots, K)$
- Consistency with scalars: if A_1, \ldots, A_K commute, then $G(A_1, \ldots, A_K) = (A_1, \ldots, A_K)^{1/K}$
- Invariance under inversion: $G(A_1, \ldots, A_K)^{-1} = G(A_1^{-1}, \ldots, A_K^{-1})$

²T. Ando, C.-K. Li, and R. Mathias, *Geometric means*, Linear Algebra and Its Applications, 385:305-334, 2004

The desired properties are given in the ALM list², some of which are:

- Invariance under permutation: $G(A_{\pi(1)}, \ldots, A_{\pi(K)}) = G(A_1, \ldots, A_K)$ with π a permutation of $(1, \ldots, K)$
- Consistency with scalars: if A_1, \ldots, A_K commute, then $G(A_1, \ldots, A_K) = (A_1, \ldots, A_K)^{1/K}$
- Invariance under inversion: $G(A_1, \ldots, A_K)^{-1} = G(A_1^{-1}, \ldots, A_K^{-1})$
- Determinant equality: $det(G(A_1, \dots, A_K)) = (det(A_1) \cdots det(A_K))^{1/K}$

²T. Ando, C.-K. Li, and R. Mathias, *Geometric means*, Linear Algebra and Its Applications, 385:305-334, 2004

A LRBFGS Algorithm for Computing the Matrix Geometric Mean

A well-known mean on the manifold of SPD matrices is the Karcher mean [Kar77]:

$$G(A_1,\ldots,G_K) = \operatorname*{arg\,min}_{X\in\mathcal{S}^n_{++}} rac{1}{2K} \sum_{i=1}^K \mathrm{dist}^2(X,A_i),$$

where dist $(X, Y) = \|\log(X^{-1/2}YX^{-1/2})\|_F$ is the distance under the Riemannian metric

$$g(\eta_X,\xi_X) = \operatorname{trace}(\eta_X X^{-1}\xi_X X^{-1}).$$

It has been shown recently [LL11] that the Karcher mean satisfies all the geometric properties in the ALM list.

A Riemannian manifold ${\cal M}$ is a smooth set with a smoothly-varying inner product on the tangent spaces.

Manifold of SPD Matrices

• Let \mathcal{S}_{++}^n be the manifold of SPD matrices

• Tangent space at
$$X \in \mathcal{S}_{++}^n$$
:

$$\mathbf{T}_{X} \, \mathcal{S}_{++}^{n} = \{ S \in \mathbb{R}^{n \times n} : S = S^{T} \}$$

• Dimension:
$$d = n(n+1)/2$$

• Riemannian metric:

$$g(\eta_X,\xi_X) = \operatorname{trace}(\eta_X X^{-1}\xi_X X^{-1})$$

Algorithms

$$G(A_1,\ldots,G_K) = \operatorname*{arg\,min}_{X\in\mathcal{S}^n_{++}} rac{1}{2K} \sum_{i=1}^K \mathrm{dist}^2(X,A_i),$$

- Riemannian steepest descent [RA11]
- Riemannian steepest descent, conjugate gradient, BFGS, and trust region Newton methods [JVV12]
- Richardson-like iteration [BI13]
- Limited-memory Riemannian BFGS method [YHAG16]

Karcher Mean of SPD Matrices

well-conditioned Hessian

ill-conditioned Hessian

- Small condition number \Rightarrow fast convergence
- Large condition number ⇒ slow convergence

Conditioning of the Riemannian Hessian of F at the minimizer:

• For the cost function $F(X) = \frac{1}{2K} \sum_{i=1}^{K} \operatorname{dist}^{2}(A_{i}, X)$, we have

$$1 \leq \frac{\operatorname{Hess} F(X)[\Delta X, \Delta X]}{\|\Delta X\|^2} \leq 1 + \frac{\ln(\max \kappa_i)}{2},$$

where κ_i is the condition number of A_i .

• If max
$$\kappa_i = 10^{10}$$
, then $1 + \frac{\ln(\max \kappa_i)}{2} \approx 12.51$.

Optimization Algorithm: from Euclidean to Riemannian

• Update formula:

$$x_{k+1} = x_k + \alpha_k \eta_k,$$

where η_k is the search direction and α_k is the stepsize.

• Search direction:

 $\eta_k = -B_k^{-1} \operatorname{grad} f(x_k).$

Optimization Algorithm: from Euclidean to Riemannian

• Update formula:

$$x_{k+1} = x_k + \alpha_k \eta_k,$$

where η_k is the search direction and α_k is the stepsize.

Optimization on a Manifold

 $R_{x_k}(\alpha_k\eta_k)$

x_k

Xk

 $\alpha_k \eta_k$

Definition

A retraction is a mapping R from TM to M satisfying the following:

- *R* is continuously differentiable
- $R_x(0) = x$

•
$$\mathsf{D}\mathsf{R}_{\mathsf{x}}(\mathsf{0})(\eta) = \eta$$

Euclidean	Riemannian
$x_{k+1} = x_k + \alpha_k \eta_k$	$x_{k+1} = R_{x_k}(\alpha_k \eta_k)$

Riemannian Optimization Algorithm

Euclidean	Riemannian
$x_{k+1} = x_k + \alpha_k \eta_k$	$x_{k+1} = R_{x_k}(\alpha_k \eta_k)$

Steepest Descent:

$$\eta_k = -\operatorname{grad} f(x_k)$$

• Newton's Method:

$$\eta_k = -\operatorname{Hess} f(x_k)^{-1} \operatorname{grad} f(x_k)$$

• Quasi-Newton Method:

$$\eta_k = -B_k^{-1} \operatorname{grad} f(x_k)$$

Riemannian Gradient and Hessian

• Riemannian gradient:

$$\operatorname{grad} F(X) = \frac{1}{K} \sum_{i=1}^{K} A_i^{1/2} \log(A_i^{-1/2} X A_i^{-1/2}) A_i^{-1/2} X^{1/2}$$

• Riemannian Hessian:

Hess
$$F(X)[\xi_X] = \frac{1}{2K} \sum_{i=1}^{K} \xi_X \log(A_i^{-1}X) - \frac{1}{2K} \sum_{i=1}^{K} \log(XA_i^{-1})\xi_X$$

 $+ \frac{1}{K} \sum_{i=1}^{K} XD(\log)(A_i^{-1}X)[A_i^{-1}\xi_X]$

• Update formula:

$$X_{k+1} = X_k - \alpha X_k^{1/2} \sum_{i=1}^K \log(X_k^{1/2} A_i^{-1} X_k^{1/2}) X_k^{1/2}$$

• Stepsize:

$$\alpha = 2/\sum_{i=1}^{K} \frac{\kappa_i + 1}{\kappa_i - 1} \log \kappa_i,$$

where κ_i is the condition number of matrix $X_k^{1/2} A_i^{-1} X_k^{1/2}$

- The Richardson-like iteration can be considered from the view of Riemannian optimization algorithm
- $X_{k+1} = R_{X_k}(\alpha \eta_k)$
 - Search direction: $\eta_k = \operatorname{grad} F(X_k)$
 - Choice of retraction: $R_X(\eta) = X + \eta$
 - $\bullet\,$ Stepsize α satisfies the Wolfe condition

BFGS Quasi-Newton Algorithm: from Euclidean to Riemannian

Search direction:

$$\eta_k = -B_k^{-1} \operatorname{grad} f(x_k)$$

• *B_k* update:

$$B_{k+1} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k},$$

where $s_k = \underline{x_{k+1} - x_k}$, and $y_k = \underline{\operatorname{grad} f(x_{k+1}) - \operatorname{grad} f(x_k)}$.

BFGS Quasi-Newton Algorithm: from Euclidean to Riemannian

Search direction:

$$\eta_k = -B_k^{-1} \operatorname{grad} f(x_k)$$

B_k update:

where s_k

$$B_{k+1} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k},$$

= $x_{k+1} - x_k$, and $y_k = \operatorname{grad} f(x_{k+1}) - \operatorname{grad} f(x_k).$

On a manifold:

replaced by $R_{x_k}^{-1}(x_{k+1})$ on different tangent spaces

Vector Transport

- Transport a tangent vector from one tangent space to another
- $\mathcal{T}_{\eta_x}\xi_x$, denotes transport of ξ_x to tangent space of $R_x(\eta_x)$

Riemannian BFGS (RBFGS) Algorithm

• Update formula:

$$x_{k+1} = \mathsf{R}_{\mathsf{x}_k}(lpha_k\eta_k)$$
 with $\eta_k = -\mathcal{B}_k^{-1}\operatorname{grad} f(\mathsf{x}_k)$

B_k update [HGA15]:

$$\mathcal{B}_{k+1} = ilde{\mathcal{B}}_k - rac{ ilde{\mathcal{B}}_k s_k (ilde{\mathcal{B}}_k s_k)^\flat}{(ilde{\mathcal{B}}_k s_k)^\flat s_k} + rac{y_k y_k^\flat}{y_k^\flat s_k},$$

where $s_k = \mathcal{T}_{\alpha_k \eta_k} \alpha_k \eta_k$, $y_k = \beta_k^{-1} \operatorname{grad} f(x_{k+1}) - \mathcal{T}_{\alpha_k \eta_k} \operatorname{grad} f(x_k)$, and $\tilde{\mathcal{B}}_k = \mathcal{T}_{\alpha_k \eta_k} \circ \mathcal{B}_k \circ \mathcal{T}_{\alpha_k \eta_k}^{-1}$.

Riemannian BFGS (RBFGS) Algorithm

• Update formula:

$$x_{k+1} = {\sf R}_{{\sf x}_k}(lpha_k\eta_k)$$
 with $\eta_k = -{\cal B}_k^{-1}\operatorname{grad} f({\sf x}_k)$

B_k update [HGA15]:

$${\mathcal B}_{k+1} = ilde{\mathcal B}_k - rac{ ilde{\mathcal B}_k s_k (ilde{\mathcal B}_k s_k)^{top}}{(ilde{\mathcal B}_k s_k)^{top} s_k} + rac{y_k y_k^{ top}}{y_k^{ top} s_k}$$

where $s_k = \mathcal{T}_{\alpha_k \eta_k} \alpha_k \eta_k$, $y_k = \beta_k^{-1} \operatorname{grad} f(x_{k+1}) - \mathcal{T}_{\alpha_k \eta_k} \operatorname{grad} f(x_k)$, and $\tilde{\mathcal{B}}_k = \mathcal{T}_{\alpha_k \eta_k} \circ \mathcal{B}_k \circ \mathcal{T}_{\alpha_k \eta_k}^{-1}$.

- Stores and transports \mathcal{B}_k^{-1} as a dense matrix
- Requires excessive computation time and storage space for large-scale problem

Riemannian BFGS:

•
$$\mathcal{B}_{k+1} = \tilde{\mathcal{B}}_k - \frac{\tilde{\mathcal{B}}_{ks_k}(\tilde{\mathcal{B}}_{ks_k})^b}{(\tilde{\mathcal{B}}_{ks_k})^b s_k} + \frac{y_k y_k^b}{y_k^b s_k},$$

where $s_k = \mathcal{T}_{\alpha_k \eta_k} \alpha_k \eta_k$, $y_k = \beta_k^{-1} \operatorname{grad} f(x_{k+1}) - \mathcal{T}_{\alpha_k \eta_k} \operatorname{grad} f(x_k),$
and $\tilde{\mathcal{B}}_k = \mathcal{T}_{\alpha_k \eta_k} \circ \mathcal{B}_k \circ \mathcal{T}_{\alpha_k \eta_k}^{-1}$

Limited-memory Riemannian BFGS:

- Stores only the *m* most recent s_k and y_k
- Transports those vectors to the new tangent space rather than the entire matrix B_k⁻¹
- Computational and storage complexity depends upon m

Limited-memory RBFGS (LRBFGS), Ctd

•
$$\mathcal{B}_k^{-1}$$
 update [HGA15]:

$$\begin{aligned} \mathcal{B}_{k}^{-1} &= \tilde{\mathcal{V}}_{k}^{\flat} \tilde{\mathcal{V}}_{k-1}^{\flat} \dots \tilde{\mathcal{V}}_{k-m}^{\flat} \tilde{\mathcal{H}}_{k+1}^{0} \tilde{\mathcal{V}}_{k-m} \dots \tilde{\mathcal{V}}_{k-1} \tilde{\mathcal{V}}_{k} \\ &+ \rho_{k-m} \tilde{\mathcal{V}}_{k}^{\flat} \tilde{\mathcal{V}}_{k-1}^{\flat} \dots \tilde{\mathcal{V}}_{k-m+1}^{\flat} s_{k-m}^{(k+1)^{\flat}} \tilde{\mathcal{V}}_{k-m+1} \dots \tilde{\mathcal{V}}_{k-1} \tilde{\mathcal{V}}_{k} \\ &+ \dots + \rho_{k} s_{k}^{(k+1)} s_{k}^{(k+1)^{\flat}}, \end{aligned}$$

where $\tilde{\mathcal{V}}_i = \mathrm{id} - \rho_i y_i^{(k+1)} s_i^{(k+1)^{\flat}}$, $\rho_i = \frac{1}{g(y_i, s_i)}$, $\tilde{\mathcal{H}}_{k+1}^0 = \frac{g(s_k, y_k)}{g(y_k, y_k)}$ id, and $s_i^{(k+1)}$ represents a tangent vector in $\mathrm{T}_{x_{k+1}} \mathcal{M}$ given by transporting s_i , and likewise for $y_i^{(k+1)}$

- Avoids expensive matrix operations
- Requires less memory

RBFGS		Limited-memory RBFGS	
Action	Complexity	Action	Complexity
get $ ilde{\mathcal{B}}_{k+1}^{-1}$ from \mathcal{B}_k^{-1}	$O(d^2)$	-	-
$\mathcal{B}^{-1}\eta$	$O(d^2)$	$\mathcal{B}^{-1}\eta$	O(md)

• d denotes the dimension of SPD manifold

Not sure where to put this table

Algorithm	Convergence
Riemannian steepest descent	global, linear
Riemannian BFGS	global(convex), superlinear
Riemannian limited-memory BFGS	global(convex), faster than linear
Riemannian Newton's method	global, quadratic

- Background of the SPD Karcher mean computation
- A brief description of the limited-memory RBFGS (LRBFGS) method
- Apply the LRBFGS to the SPD Karcher mean computation
 - Practical implementation
 - Experiments on various data sets

• Cost function:

$$F(X) = \frac{1}{2K} \sum_{i=1}^{K} \operatorname{dist}^{2}(A_{i}, X)$$
$$= \frac{1}{2K} \sum_{i=1}^{K} \|\log(A_{i}^{-1/2} X A_{i}^{-1/2})\|_{F}^{2}$$

• Riemannian gradient:

$$\operatorname{grad} F(X) = \frac{1}{K} \sum_{i=1}^{K} A_i^{1/2} \log(A_i^{-1/2} X A_i^{-1/2}) A_i^{-1/2} X^{1/2}$$

• The dominant computation time is on the function evaluation

- Efficient representations of tangent vectors, see [YHAG16]
- Retraction
 - Exponential mapping: $\operatorname{Exp}_X(\xi_X) = X^{1/2} \exp(X^{-1/2} \xi_X X^{-1/2}) X^{1/2}$

- Vector transport
 - Parallel translation: $\mathcal{T}_{p_{\eta_X}}(\xi_X) = Q\xi_X Q^T$,

where
$$Q = X^{1/2} \exp(\frac{X^{-1/2} \eta_X X^{-1/2}}{2}) X^{-1/2}$$

- Efficient numerical representations of tangent vectors
- Retraction
 - Exponential mapping: $\operatorname{Exp}_X(\xi_X) = X^{1/2} \exp(X^{-1/2} \xi_X X^{-1/2}) X^{1/2}$
 - Second order retraction [JVV12]: $R_X(\xi_X) = X + \xi_X + \frac{1}{2}\xi_X X^{-1}\xi_X$
- Vector transport

• Parallel translation:
$$\mathcal{T}_{\rho_{\eta_X}}(\xi_X) = Q\xi_X Q^T$$
,
where $Q = X^{1/2} \exp(rac{X^{-1/2}\eta_X X^{-1/2}}{2})X^{-1/2}$

Implementations

- Efficient numerical representations of tangent vectors
- Retraction
 - Exponential mapping: $\operatorname{Exp}_X(\xi_X) = X^{1/2} \exp(X^{-1/2} \xi_X X^{-1/2}) X^{1/2}$
 - Second order retraction: $R_X(\xi_X) = X + \xi_X + \frac{1}{2}\xi_X X^{-1}\xi_X$
- Vector transport

• Parallel translation:
$$\mathcal{T}_{P\eta_X}(\xi_X) = Q\xi_X Q^T$$
,
where $Q = X^{1/2} \exp(\frac{X^{-1/2}\eta_X X^{-1/2}}{2})X^{-1/2}$

• Vector transport by parallelization³: essentially an identity

³W. Huang, P.-A. Absil, and K. A. Gallivan, *A Riemannian symmetric rank-one trust-region method*, Mathematical Programming, 2014

A LRBFGS Algorithm for Computing the Matrix Geometric Mean

Numerical Results I: K = 100, 3×3 , d = 6, m = 2

• $1 \leq \kappa(A_i) \leq 200$

Figure : Evolution of averaged distance between current iterate and the exact Karcher mean with respect to time and iterations

Numerical Results II: K = 30, 100×100 , d = 5050, m = 2

• $1 \leq \kappa(A_i) \leq 20$

Figure : Evolution of averaged distance between current iterate and the exact Karcher mean with respect to time and iterations

- Analyze the conditioning of the Hessian of the Karcher cost function
- Apply a Riemannian version of limited-memory BFGS method to computing the SPD Karcher mean
- Present efficient implementations
- Compare with the state-of-the-art methods
- The proposed LRBFGS method is seen to be the method of choice for computing the SPD Karcher mean when the data matrices increase in size or number.

Implementation in Matlab

$$F(X) = \frac{1}{2K} \sum_{i=1}^{K} \|\log(A_i^{-1/2} X A_i^{-1/2})\|_F^2$$

= $\frac{1}{2K} \sum_{i=1}^{K} \|\log(A_i^{-1/2} L L^T A_i^{-1/2})\|_F^2$
= $\frac{1}{2K} \sum_{i=1}^{K} \|\log[(A_i^{-1/2} L)(A_i^{-1/2} L)^T]\|_F^2$

Let $S = A_i^{-1/2}L$, and $SS^T = QUQ^T$, where $QQ^T = I$, and U is an upper triangle matrix whose diagonal elements are the eigenvalues. Then

$$\begin{split} F(X) &= \frac{1}{2K} \sum_{i=1}^{K} \|\log(SS^T)\|_F^2 \\ &= \frac{1}{2K} \sum_{i=1}^{K} \|Q\log(\operatorname{diag}(U))Q^T\|_F^2 \end{split}$$

D. A. Bini and B. lannazzo.

Computing the Karcher mean of symmetric positive definite matrices.

Linear Algebra and its Applications, 438(4):1700–1710, 2013.

W. Huang, K. A. Gallivan, and P.-A. Absil. A Broyden class of quasi-Newton methods for Riemannian optimization.

SIAM Journal on Optimization, 25(3):1660-1685, 2015.

B. Jeuris, R. Vandebril, and B. Vandereycken. A survey and comparison of contemporary algorithms for computing the matrix geometric mean.

Electronic Transactions on Numerical Analysis, 39:379–402, 2012.

H. Karcher.

Riemannian center of mass and mollifier smoothing. Communications on Pure and Applied Mathematics, 1977.

References II

Jimmie Lawson and Yongdo Lim. Monotonic properties of the least squares mean. *Mathematische Annalen*, 351(2):267–279, 2011.

- Xavier Pennec, Pierre Fillard, and Nicholas Ayache.
 A riemannian framework for tensor computing.
 International Journal of Computer Vision, 66(1):41–66, 2006.
 - Q. Rentmeesters and P.-A. Absil.

Algorithm comparison for Karcher mean computation of rotation matrices and diffusion tensors.

In *19th European Signal Processing Conference*, pages 2229–2233, Aug 2011.

Xinru Yuan, Wen Huang, P.-A. Absil, and Kyle A. Gallivan. A Riemannian limited-memory BFGS algorithm for computing the matrix geometric mean.

In ICCS 2016, 2016.