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Introduction

The Phase Retrieval problem concerns recovering a
signal given the modulus of its linear transform, e.g.,
Fourier or wavelet transform;

Applications:

X-ray crystallography imaging [Har93];

Diffraction imaging [BDP+07];

Optics [Wal63];

Microscopy [MISE08].
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Problem formulation

For a signal x of size n, only bi = |a∗i x |2, i = 1, . . . ,m are observed, e.g.,
X-ray diffraction image.

Candés et al.

Find x ∈ Cn such that |a∗i x |2 = bi , i = 1, . . . ,m;
|a∗i x |2 = a∗i xx∗ai ;

Let A =
[
a1 a2 . . . am

]T
and b =

[
b1 b2 . . . bm

]T
;

Find x ∈ Cn such that diag(Axx∗A∗) = b;
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Problem formulation

Feasible problem

Find x ∈ Cn such that diag(Axx∗A∗) = b;

PhaseLift framework [CESV13]1

Lifting (quadratic to linear): X := xx∗ ⇒ diag(AXA∗) =: A(X );

Find X ∈ Cn×n such that A(X ) = b, X < 0 and rank(X ) = 1;

Convex optimization problem: minX∈Sn+ ‖b −A(X )‖2
2 + κ trace(X );

Exactly recovery: [CSV13, CL13, DH14];

The dimension of domain;

1[CESV13]: E. J. Candés, Y. C. Eldar, T.Strohmer, and V. Voroninski, Phase
retrieval via matrix completion, SIAM Journal on Imaging Sciences, 6(1):199-225, 2013
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Optimality Condition

An equivalent cost function

A : Sn+ → R : X 7→ A(X ) = ‖b −A(X )‖2
2 + κ trace(X ).

The cost function: in form of H : Sn+ → R : X 7→ H(X );

rank(X ) ≤ p =⇒ ∃Y ∈ Cn×p such that X = YY ∗;

An alternate cost function to H can be used2:

Fp : Cn×p → R : Yp 7→ H(YpY ∗p );

p = 1 is equivalent to the cost function without lifting;

p > 1 brings benefits.

2This idea has been used in [BM03, JBAS10] for real numbers.
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Optimality condition

Theorem

Suppose Yp is a rank deficient minimizer of Fp. Then X = YpY ∗p is a
stationary point of H. If furthermore H is convex, then X is a global
minimizer of H over Sn+.

{Y ∈ Cn×p|rank(Y ) < p}

{Y ∈ Cn×p|rank(Y ) = p}

Z

Domain of Fp: Cn×p

X = ZZ ∗ is a stationary point of H

A version for real numbers of this Theorem can be found at [JBAS10].
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Basic idea
Riemannian Optimization on a Quotient Manifold
Optimization Method
Initial iterate
Gap

Optimization

Equivalence: Fp(Yp) = Fp(YpOp), where Op ∈ Op and Op is the set
of all p-by-p unitary matrices;

All minimizers: degenerate;

Optimization on a quotient manifold;

Reduce the rank p;

Cn×p
∗ /Op = {[X ] | X ∈ Cn×p

∗ }, where Cn×p
∗ is the noncompact

Stiefel manifold and [X ] = {XO | O ∈ Op};
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Riemannian optimization on a quotient manifold

Work with representatives;

Green line: vertical space;

Red line: horizontal space;

Riemannian metric:
〈ηX , ξX 〉X = Real(tr((X ∗X )η∗X ξX ));

Cn×p
∗

x

ξx

η↑x

Cn×p
∗ /Op

[x ]

y

z

[y ]

[z ]

η[x ]
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Rank reduce method

{Y ∈ Cn×p|rank(Y ) < p}

{Y ∈ Cn×p|rank(Y ) = p}

Z

small enough

The desired rank is known;

Reduce rank by eliminating small singular values;
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Initial iterate

Feasible problem

Find x ∈ Cn such that diag(Axx∗A∗) = b;

Algorithm:

Orthonormal matrix Y ∈ Cn×p.
for i = 1, . . . , N do

Y ← orth(A∗Diag(b)AY );
end for
Y

(0)
p ← Y ;

Initial iterate: an orthonormal basis of the space of the p largest
eigenvectors of A∗Diag(b)A;

[CLS16, Algorithm 1]3 uses p = 1

3[CLS16]: E. J. Candés, X. Li, and M. Soltanolkotabi, Phase retrieval via Wirtinger
flow, IEEE Transactions on Information Theory, 64(4):1985-2007, 2016
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Gap

Theorem

Suppose Yp is a rank deficient minimizer of Fp. Then X = YpY ∗p is a
stationary point of H. If furthermore H is convex, then X is a global
minimizer of H over Sn+.

It is unknown whether the proposed algorithm is guaranteed to find
a rank deficient minimizer of Fp.
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Experiments

Fourier transformation;

Initial rank p0 = 4;

Complexity per iteration: O(pm log(n)), if p � n;

Limited-memory version of Riemannian BFGS method
[HGA15, HAG16]

Stopping criterion: ‖ gradF (Xk)‖ < 10−8;
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Comparison with an existing method

Fast iterative shrinkage-thresholding algorithm [BT09]

A state-of-the-art algorithm for convex programming;

Too expensive: 100 by 100 image requires solving a 10000 by 10000
semidefinite programming problem;

A low-rank version is used, denoted by LR-FISTA, used in [CESV13];

Stopping criterion: ‖Xk+1 − Xk‖F/‖Xk‖F < 10−6;
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Comparison with an existing method

Table: Comparisons of Riemannian method and LR-FISTA for the noiseless
PhaseLift problem with n1 = n2 = 64, n = n1n2 = 4096 and several values of
rank in LR-FISTA. RMSE denotes the relative mean-square error:
min|a|=1 ‖ax − x∗‖2/‖x∗‖2.

noiseless
R-method

LR-FISTA
1 2 4 8

iter 104 492 484 521 1538
nf 108 1064 1004 1113 3323
ng 104 532 502 556 1661
ff 3.88−15 3.54−12 3.20−12 7.41−12 1.52−11

RMSE 1.93−7 6.20−6 4.68−6 1.59−5 8.92−5

t (sec) 8.37−1 59.6 53.3 80.7 337
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Performance on natural images

Gold balls data set

min

max

Figure: A gold balls data set image of 256 by 256 pixels. n = 65536. The
values of pixels are complex numbers. The computational times of initial
iterate and R-method are 4.86 seconds and 7.61 seconds, respectively.
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Performance on natural images

Galaxy

min

max

Figure: A gray galaxy image of 1800 by 2880 pixels. n = 5184000. The values
of pixels are real numbers. The computational times of initial iterate and
R-method are 536.6 seconds and 1826 seconds, respectively.
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Conclusions

Briefly introduced the phase retrieval problem and the PhaseLift
framework;

Suggested an equivalent cost function Fp(Yp) := H(YpY ∗p );

Gave an optimality condition for a stationary point of H using Fp;

Optimized the cost function Fp by Riemannian optimization
methods and a rank reduce strategy;

Showed the efficiency and effectiveness by experiments;

Matlab codes:
http://www.math.fsu.edu/~whuang2/papers/SPLRROMCSC.htm
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