Solving PhaseLift by low-rank Riemannian optimization methods

Wen Huang*, Kyle A. Gallivan^{\flat} and Xiangxiong Zhang^{\dagger}

*Université catholique de Louvain

^bFlorida State University

[†] Purdue University

June 2016

Introduction Problem Formulation

Introduction

- The Phase Retrieval problem concerns recovering a signal given the modulus of its linear transform, e.g., Fourier or wavelet transform;
- Applications:
 - X-ray crystallography imaging [Har93];
 - Diffraction imaging [BDP⁺07];
 - Optics [Wal63];
 - Microscopy [MISE08].

Introduction Problem Formulation

Problem formulation

For a signal x of size n, only $b_i = |a_i^* x|^2$, i = 1, ..., m are observed, e.g., X-ray diffraction image.

Candés et al.

- Find $x \in \mathbb{C}^n$ such that $|a_i^*x|^2 = b_i, i = 1, \dots, m$;
- $|a_i^* x|^2 = a_i^* x x^* a_i;$
- Let $A = \begin{bmatrix} a_1 & a_2 & \dots & a_m \end{bmatrix}^T$ and $b = \begin{bmatrix} b_1 & b_2 & \dots & b_m \end{bmatrix}^T$; • Find $x \in \mathbb{C}^n$ such that diag $(Axx^*A^*) = b$;

Introduction Problem Formulation

Problem formulation

Feasible problem

Find $x \in \mathbb{C}^n$ such that $\operatorname{diag}(Axx^*A^*) = b$;

PhaseLift framework [CESV13]¹

- Lifting (quadratic to linear): $X := xx^* \Rightarrow \operatorname{diag}(AXA^*) =: \mathcal{A}(X);$
- Find $X \in \mathbb{C}^{n \times n}$ such that $\mathcal{A}(X) = b$, $X \succcurlyeq 0$ and $\operatorname{rank}(X) = 1$;
- Convex optimization problem: min_{X∈Sⁿ₊} ||b − A(X)||²₂ + κ trace(X);
- Exactly recovery: [CSV13, CL13, DH14];
- The dimension of domain;

¹[CESV13]: E. J. Candés, Y. C. Eldar, T.Strohmer, and V. Voroninski, Phase retrieval via matrix completion, *SIAM Journal on Imaging Sciences*, 6(1):199-225, 2013

Alternate Cost Function Optimality Condition

An equivalent cost function

$$\mathcal{A}: \mathbb{S}^n_+ o \mathbb{R}: X \mapsto \mathcal{A}(X) = \|b - \mathcal{A}(X)\|_2^2 + \kappa \operatorname{trace}(X).$$

- The cost function: in form of $H : \mathbb{S}^n_+ \to \mathbb{R} : X \mapsto H(X)$;
- $\operatorname{rank}(X) \leq p \Longrightarrow \exists Y \in \mathbb{C}^{n \times p}$ such that $X = YY^*$;
- An alternate cost function to *H* can be used²:

$$F_{p}: \mathbb{C}^{n \times p} \to \mathbb{R}: Y_{p} \mapsto H(Y_{p}Y_{p}^{*});$$

- p = 1 is equivalent to the cost function without lifting;
- *p* > 1 brings benefits.

²This idea has been used in [BM03, JBAS10] for real numbers.

Alternate Cost Function Optimality Condition

Optimality condition

Theorem

Suppose Y_p is a rank deficient minimizer of F_p . Then $X = Y_p Y_p^*$ is a stationary point of H. If furthermore H is convex, then X is a global minimizer of H over \mathbb{S}^n_+ .

A version for real numbers of this Theorem can be found at [JBAS10].

Introduction Basic idea Theoretical Results Riemannian Optimization on a Quotient Manifold Optimization Method Experiments Initial iterate Conclusions Gap

Optimization

- Equivalence: F_p(Y_p) = F_p(Y_pO_p), where O_p ∈ O_p and O_p is the set of all p-by-p unitary matrices;
- All minimizers: degenerate;
- Optimization on a quotient manifold;
- Reduce the rank *p*;
- $\mathbb{C}_*^{n \times p} / \mathcal{O}_p = \{ [X] \mid X \in \mathbb{C}_*^{n \times p} \}$, where $\mathbb{C}_*^{n \times p}$ is the noncompact Stiefel manifold and $[X] = \{ XO \mid O \in \mathcal{O}_p \}$;

Basic idea Riemannian Optimization on a Quotient Manifold Optimization Method Initial iterate Gap

Riemannian optimization on a quotient manifold

- Work with representatives;
- Green line: vertical space;
- Red line: horizontal space;

Riemannian metric: $\langle \eta_X, \xi_X \rangle_X = \text{Real}(\text{tr}((X^*X)\eta_X^*\xi_X));$

Basic idea Riemannian Optimization on a Quotient Manifold **Optimization Method** Initial iterate Gap

Rank reduce method

 $\{Y \in \mathbb{C}^{n \times p} | \operatorname{rank}(Y) = p\}$

- The desired rank is known;
- Reduce rank by eliminating small singular values;

Introduction Basic idea Theoretical Results Riemannian Optimization on a Quotient Manifold Optimization Optimization Method Experiments Initial iterate Conclusions Gap

Initial iterate

Feasible problem

```
Find x \in \mathbb{C}^n such that \operatorname{diag}(Axx^*A^*) = b;
```

• Algorithm:

```
Orthonormal matrix Y \in \mathbb{C}^{n \times p}.

for i = 1, ..., N do

Y \leftarrow orth(A^* \operatorname{Diag}(b)AY);

end for

Y_p^{(0)} \leftarrow Y;
```

 Initial iterate: an orthonormal basis of the space of the p largest eigenvectors of A*Diag(b)A;

• [CLS16, Algorithm 1]³ uses
$$p = 1$$

³[CLS16]: E. J. Candés, X. Li, and M. Soltanolkotabi, Phase retrieval via Wirtinger flow, *IEEE Transactions on Information Theory*, 64(4):1985-2007, 2016

Introduction Basic idea Theoretical Results Riemannian Optimization on a Quotient Manifold Optimization Optimization Method Experiments Initial iterate Conclusions Gap

Theorem

Suppose Y_p is a rank deficient minimizer of F_p . Then $X = Y_p Y_p^*$ is a stationary point of H. If furthermore H is convex, then X is a global minimizer of H over \mathbb{S}^n_+ .

• It is unknown whether the proposed algorithm is guaranteed to find a rank deficient minimizer of F_p .

Settings Comparisons Performance on Natural Images

Experiments

- Fourier transformation;
- Initial rank $p_0 = 4$;
- Complexity per iteration: $O(pm \log(n))$, if $p \ll n$;
- Limited-memory version of Riemannian BFGS method [HGA15, HAG16]
- Stopping criterion: $\|\operatorname{grad} F(X_k)\| < 10^{-8}$;

Settings Comparisons Performance on Natural Images

Comparison with an existing method

Fast iterative shrinkage-thresholding algorithm [BT09]

- A state-of-the-art algorithm for convex programming;
- Too expensive: 100 by 100 image requires solving a 10000 by 10000 semidefinite programming problem;
- A low-rank version is used, denoted by LR-FISTA, used in [CESV13];

• Stopping criterion:
$$\|X_{k+1} - X_k\|_F / \|X_k\|_F < 10^{-6}$$
;

Settings Comparisons Performance on Natural Images

Comparison with an existing method

Table: Comparisons of Riemannian method and LR-FISTA for the noiseless PhaseLift problem with $n_1 = n_2 = 64$, $n = n_1n_2 = 4096$ and several values of rank in LR-FISTA. RMSE denotes the relative mean-square error: min_{|a|=1} $||ax - x_*||_2 / ||x_*||_2$.

noiseless	P. mothod	LR-FISTA			
	R-method	1	2	4	8
iter	104	492	484	521	1538
nf	108	1064	1004	1113	3323
ng	104	532	502	556	1661
f_f	3.88_{-15}	3.54_{-12}	3.20_{-12}	7.41_{-12}	1.52_{-11}
RMSE	1.93_{-7}	6.20_{-6}	4.68_{-6}	1.59_{-5}	8.92_{-5}
t (sec)	8.37_1	59.6	53.3	80.7	337

Settings Comparisons Performance on Natural Images

Performance on natural images

Gold balls data set

Figure: A gold balls data set image of 256 by 256 pixels. n = 65536. The values of pixels are complex numbers. The computational times of initial iterate and R-method are 4.86 seconds and 7.61 seconds, respectively.

Settings Comparisons Performance on Natural Images

Performance on natural images

Figure: A gray galaxy image of 1800 by 2880 pixels. n = 5184000. The values of pixels are real numbers. The computational times of initial iterate and R-method are 536.6 seconds and 1826 seconds, respectively.

Conclusions

- Briefly introduced the phase retrieval problem and the PhaseLift framework;
- Suggested an equivalent cost function F_p(Y_p) := H(Y_pY^{*}_p);
- Gave an optimality condition for a stationary point of H using F_p ;
- Optimized the cost function F_p by Riemannian optimization methods and a rank reduce strategy;
- Showed the efficiency and effectiveness by experiments;
- Matlab codes: http://www.math.fsu.edu/~whuang2/papers/SPLRROMCSC.htm

References I

O. Bunk, A. Diaz, F. Pfeiffer, C. David, B. Schmitt, D. K. Satapathy, and J. F. van der Veen.

Diffractive imaging for periodic samples: retrieving one-dimensional concentration profiles across microfluidic channels. Acta crystallographica. Section A, Foundations of crystallography, 63(Pt 4):306–314, July 2007. doi:10.107/S0108767307021903.

S. Burer and R. D. C. Monteiro.

A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Mathematical Programming, 95(2):329–357, February 2003. doi:10.1007/s10107-002-0352-8.

A. Beck and M. Teboulle.

A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM Journal on Imaging Sciences*, 2(1):183–202, January 2009. doi:10.1137/080716542.

E. J. Candès, Y. C. Eldar, T. Strohmer, and V. Voroninski.

SIAM Journal on Imaging Sciences, 6(1):199–225, 2013. arXiv:1109.0573v2.

E. J. Candès and X. Li.

Solving quadratic equations via phaselift when there are about as many equations as unknowns. Foundations of Computational Mathematics, June 2013. doi:10.1007/s10208-013-9162-z.

E. J. Candés, X. Li, and M. Soltanolkotabi.

Phase retrieval via Wirtinger flow: theory and algorithms. IEEE Transactions on Information Theory, 64(4):1985–2007, 2016.

References II

E. J. Candès, T. Strohmer, and V. Voroninski.

PhaseLift : Exact and stable signal recovery from magnitude measurements via convex programming. Communications on Pure and Applied Mathematics, 66(8):1241–1274, 2013.

L. Demanet and P. Hand.

Stable optimizationless recovery from phaseless linear measurements. Journal of Fourier Analysis and Applications, 20(1):199–221, 2014.

Wen Huang, P.-A. Absil, and K. A. Gallivan.

A Riemannian BFGS method for nonconvex optimization problems. Lecture Notes in Computational Science and Engineering, To appear, 2016.

R. W. Harrison.

Phase problem in crystallography.

Journal of the Optical Society of America A, 10(5):1046–1055, May 1993. doi:10.1364/JOSAA.10.001046.

Wen Huang, K. A. Gallivan, and P.-A. Absil.

A Broyden Class of Quasi-Newton Methods for Riemannian Optimization. SIAM Journal on Optimization, 25(3):1660–1685, 2015.

M. Journée, F. Bach, P.-A. Absil, and R. Sepulchre.

Low-rank optimization on the cone of positive semidefinite matrices. SIAM Journal on Optimization, 20(5):2327–2351, 2010.

References III

J. Miao, T. Ishikawa, Q. Shen, and T. Earnest.

Extending X-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. Annual review of physical chemistry, 59:387–410, January 2008. doi:10.1146/annurey.phys.em.59.032607.093642.

A. Walther.

The question of phase retrieval in optics.

Optica Acta: International Journal of Optics, 10(1):41-49, January 1963. doi:10.1080/713817747.