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Problem Statement

Generalized Lyapunov equation: Given matrix A, M and C , find X
such that

AXMT + MXAT = C (1)

Applications: signal processing, model reduction, and system and
control theory. [Moo03, Ben06]

Problem: We focus on the problem:

A,M,C ∈ Rn×n are symmetric;

A � 0,M � 0 (positive definite), C � 0 (positive semidefinite);

A,M are sparse;

medium- to large-scale problems;
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Problem Statement

A � 0,M � 0 and C � 0, A, M, and C are symmetric:

AXM + MXA− C = 0

X is not sparse, even A and M are sparse;

How to solve it for large-scale problems?

Low rank solution

Reasonable: For low rank C , the solution X has low numerical
rank [Pen00b]
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Existing Methods

A � 0,M � 0 and C � 0, A, M, and C are symmetric:

AXM + MXA− C = 0

Unique solution X and X = XT ,X � 0 [Pen98] =⇒ X = YY T

Alternating Direction Implicit Iteration (ADI) or Smith method;

Krylov subspace technique;

Optimization method;

Reformulate well-known iterative method to a low-rank setting. Work on
the factor Y of X = YY T .
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Problem Reformulation

Consider a cost function on the set of symmetric matrices:

Cost function: F : Sn×n → R : X 7→ trace(XAXM)− trace(XC);

Gradient: AXM +MXA− C ;

The critical point is unique [Pen98].

Minimizer is the solution.

Add low-rank constraints by fixing the rank to be r :

Cost function: f : Sn×n
r → R : X 7→ trace(XAXM)− trace(XC);

Gradient: P
TX Sn×n

r
(AXM +MXA− C);

Minimizer can be viewed as a low-rank approximation of the solution;
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Existing Riemannian Optimization technique [VV10]

Optimization problem on the symmetric positive semidefinite with rank r

min
X∈Sn×n

r

f (X ) = trace(XAXM)− trace(XC )

Ingredients for Riemannian optimization;

Trust-region Newton method

Preconditioner
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Ingredients for Riemannian optimization

Tangent space at X = YY T is

TX Sn×n
r =

{[
Y Y⊥

] [2S NT

N 0

] [
Y T

Y T
⊥

]
| S ∈ Sr×r ,N ∈ R(n−r)×r

}
=
{
YZT + ZY T | Z ∈ Rn×r

}
;
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Ingredients for Riemannian optimization

Tangent space at X = YY T is
{
YZT + ZY T | Z ∈ Rn×r

}
;

Riemannian metric:

gX (ηX , ξX ) = trace(ηT
X ξX ).

for any ηX , ξX ∈ TX Sn×n
r ;
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Ingredients for Riemannian optimization

Tangent space at X = YY T is
{
YZT + ZY T | Z ∈ Rn×r

}
;

Riemannian metric: gX (ηX , ξX ) = trace(ηT
X ξX );

Retraction:

RX (ηX ) = PSn×n
r

(X + ηX ),

where PSn×n
r

(Z ) =
∑r

i=1 σiviv
T
i , Z = VΣV , V = [v1, . . . , vn],

Σ = diag(σ1, . . . , σn) and σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0.
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Ingredients for Riemannian optimization

Tangent space at X = YY T is
{
YZT + ZY T | Z ∈ Rn×r

}
;

Riemannian metric: gX (ηX , ξX ) = trace(ηT
X ξX );

Retraction: RX (ηX ) = PSn×n
r

(X + ηX );

Riemannian gradient:

grad f (X ) = PTX Sn×n
r

(AXM + MXA− C ),

where PTX Sn×n
r

(Z ) = PY ZPY + P⊥Y ZPY + PY ZP
⊥
Y , P⊥Y = I − PY and

PY = Y (Y TY )−1Y T ;
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Ingredients for Riemannian optimization

Tangent space at X = YY T is
{
YZT + ZY T | Z ∈ Rn×r

}
;

Riemannian metric: gX (ηX , ξX ) = trace(ηT
X ξX );

Retraction: RX (ηX ) = PSn×n
r

(X + ηX );

Riemannian gradient: grad f (X ) = PTX Sn×n
r

(AXM + MXA− C );

Action of the Riemannian Hessian:

Hess f (X )[ηX ] =PTX Sn×n
r

(AηXM + MηXA)

+ PTX Sn×n
r

(
DPTX Sn×n

r
[ηX ](AXM + MXA− C )

)
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Riemannian Trust-region Newton method

1: for k = 0, 1, 2, . . . do
2: Let mk (η) = f (Xk ) + gXk

(grad f (Xk ), η) + 1
2gXk

(Hess f (Xk )[η], η);
3: Obtain ηk by approximately solving minη∈TXk

Sn×n
r ,‖η‖≤∆k

mk (η);

4: Compute ρk =
f (Xk )−f (RXk

(ηk ))

mk (0)−mk (ηk ) ;

5: Set Xk+1 = RXk
(ηk ) if ρk is sufficient large, Otherwise Xk+1 = Xk ;

6: Set ∆k+1 = 2∆k if ρk is sufficient large;
7: Set ∆k+1 = ∆k/4 if ρk is small;
8: end for

Build a local quadratic model;

Solve the local model approximately by truncated CG;

Accept the candidate if the local model is good enough;

Update the radius of the trust region;

(1) RTR-Newton converges quadratically locally; (2) Solving the local
model is expensive.
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Preconditioner

The action of the Riemannian Hessian is

Hess f (X )[ηX ] =PTX Sn×n
r

(AηXM + MηXA)

+ PTX Sn×n
r

(
DPTX Sn×n

r
[ηX ](AXM + MXA− C )

)

Preconditioner for the first term in the Riemannian Hessian: for any
ξX ∈ TX Sn×n

r , find ηX such that

PTX Sn×n
r

(AηXM + MηXA) = ξX (2)

Is equation (2) solvable? Yes, it can be written as

PTX Sn×n
r

(A⊗M + M ⊗ A)PTX Sn×n
r

vec(ηX ) = vec(ξX ),

Riemannian optimization for Solving Lyapunov Equations 13
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Preconditioner

Preconditioner:

PTX Sn×n
r

(A⊗M + M ⊗ A)PTX Sn×n
r

vec(ηX ) = vec(ξX )

Existing Preconditioner in [VV10]

The preconditioner need be solved in O(nr c ) with a reasonable
constant c ;

The existing one

Assumption: solve (A+ λI )x = b in O(n)
Only for M = I ;

Solve the preconditioner without letting M = I in order O(nr c );
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New Preconditioner

PTX Sn×n
r

(A⊗M + M ⊗ A)PTX Sn×n
r

vec(ηX ) = vec(ξX )

Key idea: Let X = YY T ; Then for any ζX ∈ TX Sn×n
r , ζX can be

decomposed into
ζX = YZT + ZY T ,

where Z =
[
Y Y⊥M

] [S
K

]
, S = ST , Y TMY⊥M

= 0 and

Y T
⊥M

Y⊥M
= I ;

Assumption: solve (A + λM)x = b in O(n);

Using such decomposition for ηX and ξX , one can solve for ηX in
O(nr c );

Riemannian optimization for Solving Lyapunov Equations 15
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Other Riemannian Algorithms

Riemannian steepest descent method;

Limited-memory Riemannian quasi-Newton methods (LRBFGS,
LRTRSR1);

Riemannian nonlinear CG methods;

Riemannian Newton method;

Riemannian Newton method based on line search with preconditioned
truncate CG works best.
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Riemannian Line-search Newton method

1: for k = 0, 1, 2, . . . do
2: Approximately solving Hess f (Xk )[ηk ] = − grad f (Xk ) for ηk ;
3: Set α = 1;
4: while f (RXk

(αηk )) > f (Xk ) + 0.001gXk
(αηk , grad f (Xk )) do

5: α = 0.25α;
6: end while
7: Xk+1 = RXk

(αηk );
8: end for

Approximately solve the linear system by the preconditioned truncate
CG;

Search for appropriate step size, attempt 1 first;

Converge quadratically locally;

Riemannian optimization for Solving Lyapunov Equations 17
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Numerical Experiments

n = 502; r = 10; Stop if ‖gradf (xi )‖/‖gradf (x0)‖ < 10−10;

A: the negative stiffness matrix of PDE ∇u(x , y) = f on unit
square Ω and u = 0 on ∂Ω (Lyapack [Pen00a]);

M: diagonal matrix;

C : rank one matrix bbT with entries of b from standard normal
distribution;

Table: M = I

No precon. precon. [VV10] New precon.

RTRNewton
iter. # 89 48 47

precon. # 439 57 54

RNewton
iter. # 21 14 14

precon. # 328 22 25
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Numerical Experiments

n = 502; r = 10; Stop if ‖gradf (xi )‖/‖gradf (x0)‖ < 10−10;

A: the negative stiffness matrix of PDE ∇u(x , y) = f on unit
square Ω and u = 0 on ∂Ω (Lyapack [Pen00a]);

M: diagonal matrix;

C : rank one matrix bbT with entries of b from standard normal
distribution;

Table: M = diag([rand(n − 1, 1); 0] + 0.1)

No precon. precon. [VV10] New precon.

RTRNewton
iter. # 48 57 49

precon. # 398 114 84

RNewton
iter. # 23 33 19

precon. # 324 95 46
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Numerical Experiments

A, M and C ; from semidiscretization of a steel rail cooling
problem [Pen06];

Coarse discretization: n = 821; r = 20; Stop if
‖gradf (xi )‖/‖gradf (x0)‖ < 10−10;

0 200 400 600 800

nz = 5395

0

200

400

600

800

A

0 200 400 600 800

nz = 5405

0

200

400

600

800

M

No precon. precon. [VV10] New precon.

RTRNewton
iter. # 1476 68 83

precon. # 3838 155 114

RNewton
iter. # 260 47 21

precon. # 1160 129 51
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Numerical Experiments

A, M and C ; from semidiscretization of a steel rail cooling
problem [Pen06];

Dense discretization: n = 3113; r = 20; Stop if
‖gradf (xi )‖/‖gradf (x0)‖ < 10−10;
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No precon. precon. [VV10] New precon.

RTRNewton
iter. # 2000 79 79

precon. # 5942 195 127

RNewton
iter. # 320 60 30

precon. # 2015 267 91
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Summary and Future Work

Summary:

Briefly introduced the generalized Lyapunov equation;

Propose a new efficient preconditioner for the subproblem;

Use different Riemannian methods and propose Riemannian
line-search Newton method;

Compare different preconditioners by experiments;

Future Work:

Add rank update strategy;

Compare with other state-of-the-art methods, e.g.,
CF-ADI [Pen00a], KPIK [Sim07];

Use large-scale real data;
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Riemannian Manifold Optimization Library

Most state-of-the-art methods;

Commonly-encountered manifolds;

Written in C++;

Interfaces with Matlab, Julia and R;

BLAS and LAPACK;

www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html

Users need only provide a cost function, gradient function, an action of
Hessian (if a Newton method is used) in Matlab, Julia, R or C++ and
parameters to control the optimization, e.g., the domain manifold, the
algorithm, stopping criterion.

Riemannian optimization for Solving Lyapunov Equations 23
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