Riemannian Optimization for Computing Low-rank Solutions of Lyapunov Equations with a New Preconditioner

Wen Huang

Xiamen University

April 15, 2019

This is joint work with Bart Vandereycken at University of Geneva.

Problem Statement

Generalized Lyapunov equation: Given matrix A, M and C, find X such that

$$AXM^{T} + MXA^{T} = C \tag{1}$$

Applications: signal processing, model reduction, and system and control theory. [Moo03, Ben06]

Problem Statement

Generalized Lyapunov equation: Given matrix A, M and C, find X such that

$$AXM^{T} + MXA^{T} = C \tag{1}$$

Applications: signal processing, model reduction, and system and control theory. [Moo03, Ben06]

Problem: We focus on the problem:

- $A, M, C \in \mathbb{R}^{n \times n}$ are symmetric;
- $A \succ 0, M \succ 0$ (positive definite), $C \succeq 0$ (positive semidefinite);
- A, M are sparse;
- medium- to large-scale problems;

Problem Statement

 $A \succ 0, M \succ 0$ and $C \succeq 0, A, M$, and C are symmetric:

AXM + MXA - C = 0

- X is not sparse, even A and M are sparse;
- How to solve it for large-scale problems?

Problem Statement

 $A \succ 0, M \succ 0$ and $C \succeq 0, A, M$, and C are symmetric:

AXM + MXA - C = 0

- X is not sparse, even A and M are sparse;
- How to solve it for large-scale problems? Low rank solution

Problem Statement

 $A \succ 0, M \succ 0$ and $C \succeq 0, A, M$, and C are symmetric:

AXM + MXA - C = 0

- X is not sparse, even A and M are sparse;
- How to solve it for large-scale problems? Low rank solution
- Reasonable: For low rank *C*, the solution *X* has low numerical rank [Pen00b]

Existing Methods

 $A \succ 0, M \succ 0$ and $C \succeq 0, A, M$, and C are symmetric:

AXM + MXA - C = 0

Unique solution X and $X = X^T, X \succeq 0$ [Pen98] $\Longrightarrow X = YY^T$

Existing Methods

 $A \succ 0, M \succ 0$ and $C \succeq 0, A, M$, and C are symmetric:

AXM + MXA - C = 0

Unique solution X and $X = X^T, X \succeq 0$ [Pen98] $\Longrightarrow X = YY^T$

- Alternating Direction Implicit Iteration (ADI) or Smith method;
- Krylov subspace technique;
- Optimization method;

Existing Methods

 $A \succ 0, M \succ 0$ and $C \succeq 0, A, M$, and C are symmetric:

AXM + MXA - C = 0

Unique solution X and $X = X^T, X \succeq 0$ [Pen98] $\Longrightarrow X = YY^T$

- Alternating Direction Implicit Iteration (ADI) or Smith method;
- Krylov subspace technique;

Reformulate well-known iterative method to a low-rank setting. Work on the factor Y of $X = YY^{T}$.

Existing Methods

 $A \succ 0, M \succ 0$ and $C \succeq 0, A, M$, and C are symmetric:

AXM + MXA - C = 0

Unique solution X and $X = X^T, X \succeq 0$ [Pen98] $\Longrightarrow X = YY^T$

- Alternating Direction Implicit Iteration (ADI) or Smith method;
- Krylov subspace technique;
- Optimization method;

Problem Reformulation

- Consider a cost function on the set of symmetric matrices:
 - Cost function: $F : \mathbb{S}^{n \times n} \to \mathbb{R} : X \mapsto \text{trace}(XAXM) \text{trace}(XC);$
 - Gradient: AXM + MXA C;
 - The critical point is unique [Pen98].
 - Minimizer is the solution.

Problem Reformulation

- Consider a cost function on the set of symmetric matrices:
 - Cost function: $F : \mathbb{S}^{n \times n} \to \mathbb{R} : X \mapsto \operatorname{trace}(XAXM) \operatorname{trace}(XC);$
 - Gradient: AXM + MXA C;
 - The critical point is unique [Pen98].
 - Minimizer is the solution.
- Add low-rank constraints by fixing the rank to be r:
 - Cost function: $f : \mathbb{S}_r^{n \times n} \to \mathbb{R} : X \mapsto \operatorname{trace}(XAXM) \operatorname{trace}(XC);$
 - Gradient: $P_{T_X S_r^{n \times n}}(AXM + MXA C);$
 - Minimizer can be viewed as a low-rank approximation of the solution;

Existing Riemannian Optimization technique [VV10]

Optimization problem on the symmetric positive semidefinite with rank r

$$\min_{X \in \mathbb{S}_r^{n \times n}} f(X) = \operatorname{trace}(XAXM) - \operatorname{trace}(XC)$$

- Ingredients for Riemannian optimization;
- Trust-region Newton method
- Preconditioner

Ingredients for Riemannian optimization

• Tangent space at $X = YY^T$ is

$$\begin{aligned} \mathbf{T}_{X} \, \mathbb{S}_{r}^{n \times n} &= \left\{ \begin{bmatrix} Y & Y_{\perp} \end{bmatrix} \begin{bmatrix} 2S & N^{T} \\ N & 0 \end{bmatrix} \begin{bmatrix} Y^{T} \\ Y_{\perp}^{T} \end{bmatrix} \mid S \in \mathbb{S}^{r \times r}, N \in \mathbb{R}^{(n-r) \times r} \right\} \\ &= \left\{ YZ^{T} + ZY^{T} \mid Z \in \mathbb{R}^{n \times r} \right\}; \end{aligned}$$

Ingredients for Riemannian optimization

• Tangent space at
$$X = YY^T$$
 is $\{YZ^T + ZY^T \mid Z \in \mathbb{R}^{n \times r}\};$

• Riemannian metric:

$$g_X(\eta_X,\xi_X) = \operatorname{trace}(\eta_X^T\xi_X).$$

for any $\eta_X, \xi_X \in T_X \mathbb{S}_r^{n \times n}$;

Ingredients for Riemannian optimization

- Tangent space at $X = YY^T$ is $\{YZ^T + ZY^T \mid Z \in \mathbb{R}^{n \times r}\};$
- Riemannian metric: $g_X(\eta_X, \xi_X) = \operatorname{trace}(\eta_X^T \xi_X);$
- Retraction:

$$R_X(\eta_X) = P_{\mathbb{S}_r^{n \times n}}(X + \eta_X),$$

where $P_{\mathbb{S}_{r}^{n \times n}}(Z) = \sum_{i=1}^{r} \sigma_{i} v_{i} v_{i}^{T}$, $Z = V \Sigma V$, $V = [v_{1}, \ldots, v_{n}]$, $\Sigma = \operatorname{diag}(\sigma_{1}, \ldots, \sigma_{n})$ and $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n} \geq 0$.

Ingredients for Riemannian optimization

- Tangent space at $X = YY^T$ is $\{YZ^T + ZY^T \mid Z \in \mathbb{R}^{n \times r}\};$
- Riemannian metric: $g_X(\eta_X, \xi_X) = \operatorname{trace}(\eta_X^T \xi_X);$
- Retraction: $R_X(\eta_X) = P_{\mathbb{S}_r^{n \times n}}(X + \eta_X);$
- Riemannian gradient:

$$\operatorname{grad} f(X) = P_{\operatorname{T}_X \mathbb{S}^{n \times n}_r}(AXM + MXA - C),$$

where $P_{T_X S_r^{n \times n}}(Z) = P_Y Z P_Y + P_Y^{\perp} Z P_Y + P_Y Z P_Y^{\perp}$, $P_Y^{\perp} = I - P_Y$ and $P_Y = Y(Y^T Y)^{-1} Y^T$;

Ingredients for Riemannian optimization

- Tangent space at $X = YY^T$ is $\{YZ^T + ZY^T \mid Z \in \mathbb{R}^{n \times r}\};$
- Riemannian metric: $g_X(\eta_X, \xi_X) = \operatorname{trace}(\eta_X^T \xi_X);$
- Retraction: $R_X(\eta_X) = P_{\mathbb{S}_r^{n \times n}}(X + \eta_X);$
- Riemannian gradient: $\operatorname{grad} f(X) = P_{\operatorname{T}_X \mathbb{S}_r^{n \times n}}(AXM + MXA C);$
- Action of the Riemannian Hessian:

$$\begin{aligned} \operatorname{Hess} f(X)[\eta_X] = & P_{\operatorname{T}_X \mathbb{S}_r^{n \times n}} (A\eta_X M + M\eta_X A) \\ &+ P_{\operatorname{T}_X \mathbb{S}_r^{n \times n}} \left(\operatorname{D} P_{\operatorname{T}_X \mathbb{S}_r^{n \times n}}[\eta_X] (AXM + MXA - C) \right) \end{aligned}$$

Riemannian Trust-region Newton method

- 1: for k = 0, 1, 2, ... do
- 2: Let $m_k(\eta) = f(X_k) + g_{X_k}(\operatorname{grad} f(X_k), \eta) + \frac{1}{2}g_{X_k}(\operatorname{Hess} f(X_k)[\eta], \eta);$
- 3: Obtain η_k by approximately solving $\min_{\eta \in \mathrm{T}_{X_k} \mathbb{S}_r^{n \times n}, \|\eta\| \leq \Delta_k} m_k(\eta)$;

4: Compute
$$\rho_k = \frac{f(X_k) - f(R_{X_k}(\eta_k))}{m_k(0) - m_k(\eta_k)};$$

- 5: Set $X_{k+1} = R_{X_k}(\eta_k)$ if ρ_k is sufficient large, Otherwise $X_{k+1} = X_k$;
- 6: Set $\Delta_{k+1} = 2\Delta_k$ if ρ_k is sufficient large;
- 7: Set $\Delta_{k+1} = \Delta_k/4$ if ρ_k is small;
- 8: end for

Riemannian Trust-region Newton method

- 1: for k = 0, 1, 2, ... do
- 2: Let $m_k(\eta) = f(X_k) + g_{X_k}(\operatorname{grad} f(X_k), \eta) + \frac{1}{2}g_{X_k}(\operatorname{Hess} f(X_k)[\eta], \eta);$
- 3: Obtain η_k by approximately solving $\min_{\eta \in \mathrm{T}_{X_k} \mathbb{S}_r^{n \times n}, \|\eta\| \leq \Delta_k} m_k(\eta)$;
- 4: Compute $\rho_k = \frac{f(X_k) f(R_{X_k}(\eta_k))}{m_k(0) m_k(\eta_k)};$
- 5: Set $X_{k+1} = R_{X_k}(\eta_k)$ if ρ_k is sufficient large, Otherwise $X_{k+1} = X_k$;
- 6: Set $\Delta_{k+1} = 2\Delta_k$ if ρ_k is sufficient large;
- 7: Set $\Delta_{k+1} = \Delta_k/4$ if ρ_k is small;
- 8: end for
 - Build a local quadratic model;

Riemannian Trust-region Newton method

1: for
$$k = 0, 1, 2, \dots$$
 do

- 2: Let $m_k(\eta) = f(X_k) + g_{X_k}(\operatorname{grad} f(X_k), \eta) + \frac{1}{2}g_{X_k}(\operatorname{Hess} f(X_k)[\eta], \eta);$
- 3: Obtain η_k by approximately solving $\min_{\eta \in T_{X_k} ||\mathfrak{S}_r^{n \times n}, ||\eta|| \le \Delta_k} m_k(\eta)$;

4: Compute
$$\rho_k = \frac{f(X_k) - f(R_{X_k}(\eta_k))}{m_k(0) - m_k(\eta_k)};$$

- 5: Set $X_{k+1} = R_{X_k}(\eta_k)$ if ρ_k is sufficient large, Otherwise $X_{k+1} = X_k$;
- 6: Set $\Delta_{k+1} = 2\Delta_k$ if ρ_k is sufficient large;

7: Set
$$\Delta_{k+1} = \Delta_k/4$$
 if ρ_k is small;

8: end for

- Build a local quadratic model;
- Solve the local model approximately by truncated CG;

Riemannian Trust-region Newton method

- 1: for k = 0, 1, 2, ... do
- 2: Let $m_k(\eta) = f(X_k) + g_{X_k}(\operatorname{grad} f(X_k), \eta) + \frac{1}{2}g_{X_k}(\operatorname{Hess} f(X_k)[\eta], \eta);$
- 3: Obtain η_k by approximately solving $\min_{\eta \in \mathrm{T}_{X_k} \mathbb{S}_r^{n \times n}, \|\eta\| \leq \Delta_k} m_k(\eta)$;
- 4: Compute $\rho_k = \frac{f(X_k) f(R_{X_k}(\eta_k))}{m_k(0) m_k(\eta_k)};$
- 5: Set $X_{k+1} = R_{X_k}(\eta_k)$ if ρ_k is sufficient large, Otherwise $X_{k+1} = X_k$;
- 6: Set $\Delta_{k+1} = 2\Delta_k$ if ρ_k is sufficient large;
- 7: Set $\Delta_{k+1} = \Delta_k/4$ if ρ_k is small;
- 8: end for
 - Build a local quadratic model;
 - Solve the local model approximately by truncated CG;
 - Accept the candidate if the local model is good enough;

Riemannian Trust-region Newton method

- 1: for k = 0, 1, 2, ... do
- 2: Let $m_k(\eta) = f(X_k) + g_{X_k}(\operatorname{grad} f(X_k), \eta) + \frac{1}{2}g_{X_k}(\operatorname{Hess} f(X_k)[\eta], \eta);$
- 3: Obtain η_k by approximately solving $\min_{\eta \in \mathrm{T}_{X_k} \mathbb{S}_r^{n \times n}, \|\eta\| \leq \Delta_k} m_k(\eta)$;
- 4: Compute $\rho_k = \frac{f(X_k) f(R_{X_k}(\eta_k))}{m_k(0) m_k(\eta_k)};$
- 5: Set $X_{k+1} = R_{X_k}(\eta_k)$ if ρ_k is sufficient large, Otherwise $X_{k+1} = X_k$;
- 6: Set $\Delta_{k+1} = 2\Delta_k$ if ρ_k is sufficient large;
- 7: Set $\Delta_{k+1} = \Delta_k/4$ if ρ_k is small;
- 8: end for
 - Build a local quadratic model;
 - Solve the local model approximately by truncated CG;
 - Accept the candidate if the local model is good enough;
 - Update the radius of the trust region;

Riemannian Trust-region Newton method

- 1: for k = 0, 1, 2, ... do
- 2: Let $m_k(\eta) = f(X_k) + g_{X_k}(\operatorname{grad} f(X_k), \eta) + \frac{1}{2}g_{X_k}(\operatorname{Hess} f(X_k)[\eta], \eta);$
- 3: Obtain η_k by approximately solving $\min_{\eta \in \mathrm{T}_{X_k} \mathbb{S}_r^{n \times n}, \|\eta\| \leq \Delta_k} m_k(\eta)$;
- 4: Compute $\rho_k = \frac{f(X_k) f(R_{X_k}(\eta_k))}{m_k(0) m_k(\eta_k)};$
- 5: Set $X_{k+1} = R_{X_k}(\eta_k)$ if ρ_k is sufficient large, Otherwise $X_{k+1} = X_k$;
- 6: Set $\Delta_{k+1} = 2\Delta_k$ if ρ_k is sufficient large;
- 7: Set $\Delta_{k+1} = \Delta_k/4$ if ρ_k is small;

8: end for

- Build a local quadratic model;
- Solve the local model approximately by truncated CG;
- Accept the candidate if the local model is good enough;
- Update the radius of the trust region;

(1) RTR-Newton converges quadratically locally; (2) Solving the local model is expensive.

Preconditioner

The action of the Riemannian Hessian is

$$\begin{aligned} \operatorname{Hess} f(X)[\eta_X] = & P_{\operatorname{T}_X \mathbb{S}_r^{n \times n}} (A\eta_X M + M\eta_X A) \\ &+ P_{\operatorname{T}_X \mathbb{S}_r^{n \times n}} \left(\operatorname{D} P_{\operatorname{T}_X \mathbb{S}_r^{n \times n}}[\eta_X] (AXM + MXA - C) \right) \end{aligned}$$

Preconditioner

The action of the Riemannian Hessian is

$$\begin{aligned} \operatorname{Hess} f(X)[\eta_X] = & P_{\operatorname{T}_X \mathbb{S}_r^{n \times n}} (A \eta_X M + M \eta_X A) \\ &+ P_{\operatorname{T}_X \mathbb{S}_r^{n \times n}} \left(\operatorname{D} P_{\operatorname{T}_X \mathbb{S}_r^{n \times n}}[\eta_X] (A X M + M X A - C) \right) \end{aligned}$$

• Preconditioner for the first term in the Riemannian Hessian: for any $\xi_X \in T_X \mathbb{S}_r^{n \times n}$, find η_X such that

$$P_{\mathrm{T}_{X} \mathbb{S}_{r}^{n \times n}}(A\eta_{X}M + M\eta_{X}A) = \xi_{X}$$
⁽²⁾

Preconditioner

The action of the Riemannian Hessian is

$$\begin{aligned} \operatorname{Hess} f(X)[\eta_X] = & P_{\operatorname{T}_X \mathbb{S}_r^{n \times n}} (A \eta_X M + M \eta_X A) \\ &+ P_{\operatorname{T}_X \mathbb{S}_r^{n \times n}} \left(\operatorname{D} P_{\operatorname{T}_X \mathbb{S}_r^{n \times n}}[\eta_X] (A X M + M X A - C) \right) \end{aligned}$$

• Preconditioner for the first term in the Riemannian Hessian: for any $\xi_X \in T_X \mathbb{S}_r^{n \times n}$, find η_X such that

$$P_{\mathrm{T}_X \, \mathbb{S}_r^{n \times n}}(A\eta_X M + M\eta_X A) = \xi_X \tag{2}$$

• Is equation (2) solvable? Yes, it can be written as

$$P_{\operatorname{T}_X \mathbb{S}_r^{n imes n}}(A \otimes M + M \otimes A) P_{\operatorname{T}_X \mathbb{S}_r^{n imes n}} \operatorname{vec}(\eta_X) = \operatorname{vec}(\xi_X),$$

Preconditioner

Preconditioner:

$${\mathcal P}_{\operatorname{T}_X {\mathbb S}^{n imes n}_r}(A \otimes M + M \otimes A) {\mathcal P}_{\operatorname{T}_X {\mathbb S}^{n imes n}_r} \mathrm{vec}(\eta_X) = \mathrm{vec}(\xi_X)$$

Existing Preconditioner in [VV10]

• The preconditioner need be solved in $O(nr^c)$ with a reasonable constant c;

Preconditioner

Preconditioner:

$$P_{\mathrm{T}_X \, \mathbb{S}_r^{n imes n}}(A \otimes M + M \otimes A) P_{\mathrm{T}_X \, \mathbb{S}_r^{n imes n}} \mathrm{vec}(\eta_X) = \mathrm{vec}(\xi_X)$$

Existing Preconditioner in [VV10]

- The preconditioner need be solved in $O(nr^c)$ with a reasonable constant c;
- The existing one
 - Assumption: solve $(A + \lambda I)x = b$ in O(n)
 - Only for M = I;

Preconditioner

Preconditioner:

$$P_{\mathrm{T}_X \, \mathbb{S}_r^{n imes n}}(A \otimes M + M \otimes A) P_{\mathrm{T}_X \, \mathbb{S}_r^{n imes n}} \mathrm{vec}(\eta_X) = \mathrm{vec}(\xi_X)$$

Existing Preconditioner in [VV10]

- The preconditioner need be solved in $O(nr^c)$ with a reasonable constant c;
- The existing one
 - Assumption: solve $(A + \lambda I)x = b$ in O(n)
 - Only for M = I;
- Solve the preconditioner without letting M = I in order $O(nr^c)$;

New Preconditioner

$$P_{\mathrm{T}_{X} \mathbb{S}_{r}^{n \times n}}(A \otimes M + M \otimes A)P_{\mathrm{T}_{X} \mathbb{S}_{r}^{n \times n}} \mathrm{vec}(\eta_{X}) = \mathrm{vec}(\xi_{X})$$

• Key idea: Let $X = YY^T$; Then for any $\zeta_X \in T_X \mathbb{S}_r^{n \times n}$, ζ_X can be decomposed into

$$\begin{split} \zeta_X &= YZ^T + ZY^T, \\ \text{where } Z &= \begin{bmatrix} Y & Y_{\perp_M} \end{bmatrix} \begin{bmatrix} S \\ K \end{bmatrix}, \ S &= S^T, \ Y^T M Y_{\perp_M} = 0 \text{ and} \\ Y_{\perp_M}^T Y_{\perp_M} &= I; \end{split}$$

New Preconditioner

$$P_{\mathrm{T}_{X} \mathbb{S}_{r}^{n \times n}}(A \otimes M + M \otimes A)P_{\mathrm{T}_{X} \mathbb{S}_{r}^{n \times n}} \mathrm{vec}(\eta_{X}) = \mathrm{vec}(\xi_{X})$$

Key idea: Let X = YY^T; Then for any ζ_X ∈ T_X S^{n×n}, ζ_X can be decomposed into

$$\zeta_{X} = YZ^{T} + ZY^{T},$$
where $Z = \begin{bmatrix} Y & Y_{\perp_{M}} \end{bmatrix} \begin{bmatrix} S \\ K \end{bmatrix}$, $S = S^{T}$, $Y^{T}MY_{\perp_{M}} = 0$ and
 $Y_{\perp_{M}}^{T}Y_{\perp_{M}} = I;$
• Assumption: solve $(A + \lambda M)x = b$ in $O(n);$

New Preconditioner

$$P_{\mathrm{T}_X \, \mathbb{S}_r^{n \times n}}(A \otimes M + M \otimes A) P_{\mathrm{T}_X \, \mathbb{S}_r^{n \times n}} \mathrm{vec}(\eta_X) = \mathrm{vec}(\xi_X)$$

• Key idea: Let $X = YY^T$; Then for any $\zeta_X \in T_X \mathbb{S}_r^{n \times n}$, ζ_X can be decomposed into

$$\zeta_{X} = YZ^{T} + ZY^{T},$$

where $Z = \begin{bmatrix} Y & Y_{\perp_{M}} \end{bmatrix} \begin{bmatrix} S \\ K \end{bmatrix}$, $S = S^{T}$, $Y^{T}MY_{\perp_{M}} = 0$ and
 $Y_{\perp_{M}}^{T}Y_{\perp_{M}} = I;$

- Assumption: solve $(A + \lambda M)x = b$ in O(n);
- Using such decomposition for η_X and ξ_X , one can solve for η_X in $O(nr^c)$;

Other Riemannian Algorithms

- Riemannian steepest descent method;
- Limited-memory Riemannian quasi-Newton methods (LRBFGS, LRTRSR1);
- Riemannian nonlinear CG methods;
- Riemannian Newton method;

Riemannian Newton method based on line search with preconditioned truncate CG works best.

Riemannian Line-search Newton method

- 1: for $k = 0, 1, 2, \dots$ do
- 2: Approximately solving $\operatorname{Hess} f(X_k)[\eta_k] = -\operatorname{grad} f(X_k)$ for η_k ;
- 3: Set $\alpha = 1$;
- 4: while $f(R_{X_k}(\alpha \eta_k)) > f(X_k) + 0.001g_{X_k}(\alpha \eta_k, \operatorname{grad} f(X_k))$ do
- 5: $\alpha = 0.25\alpha$;
- 6: end while
- 7: $X_{k+1} = R_{X_k}(\alpha \eta_k);$
- 8: end for
 - Approximately solve the linear system by the preconditioned truncate CG;
 - Search for appropriate step size, attempt 1 first;
 - Converge quadratically locally;

- $n = 50^2$; r = 10; Stop if $||gradf(x_i)|| / ||gradf(x_0)|| < 10^{-10}$;
- A: the negative stiffness matrix of PDE ∇u(x, y) = f on unit square Ω and u = 0 on ∂Ω (Lyapack [Pen00a]);
- M: diagonal matrix;
- C: rank one matrix bb^T with entries of b from standard normal distribution;

Table: M = I

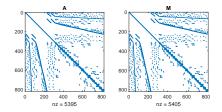
		No precon.	precon. [VV10]	New precon.
RTRNewton	iter. #	89	48	47
IN INNEWLOI	precon. #	439	57	54
RNewton	iter. #	21	14	14
Nivewton	precon. #	328	22	25

- $n = 50^2$; r = 10; Stop if $||gradf(x_i)|| / ||gradf(x_0)|| < 10^{-10}$;
- A: the negative stiffness matrix of PDE ∇u(x, y) = f on unit square Ω and u = 0 on ∂Ω (Lyapack [Pen00a]);
- M: diagonal matrix;
- C: rank one matrix bb^T with entries of b from standard normal distribution;

		No precon.	precon. [VV10]	New precon.
RTRNewton	iter. #	48	57	49
IN INNEWLOI	precon. #	398	114	84
RNewton	iter. #	23	33	19
Ninewion	precon. #	324	95	46

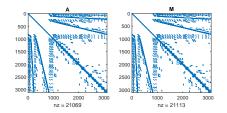
Table:	M = diag([rand(<i>n</i> –	1, 1); 0] -	+ 0.1)
--------	-----------	-------------------	-------------	--------

- A, M and C; from semidiscretization of a steel rail cooling problem [Pen06];
- Coarse discretization: n = 821; r = 20; Stop if $\|gradf(x_i)\|/\|gradf(x_0)\| < 10^{-10}$;



		No precon.	precon. [VV10]	New precon.
RTRNewton	iter. #	1476	68	83
IN INNEWLOIT	precon. #	3838	155	114
RNewton	iter. #	260	47	21
Rivewion	precon. #	1160	129	51

- A, M and C; from semidiscretization of a steel rail cooling problem [Pen06];



		No precon.	precon. [VV10]	New precon.
RTRNewton	iter. #	2000	79	79
IN INNEWLOIT	precon. #	5942	195	127
RNewton	iter. #	320	60	30
Rivewion	precon. #	2015	267	91

Summary and Future Work

Summary:

- Briefly introduced the generalized Lyapunov equation;
- Propose a new efficient preconditioner for the subproblem;
- Use different Riemannian methods and propose Riemannian line-search Newton method;
- Compare different preconditioners by experiments;

Future Work:

- Add rank update strategy;
- Compare with other state-of-the-art methods, e.g., CF-ADI [Pen00a], KPIK [Sim07];
- Use large-scale real data;

Riemannian Manifold Optimization Library

- Most state-of-the-art methods;
- Commonly-encountered manifolds;
- Written in C++;
- Interfaces with Matlab, Julia and R;
- BLAS and LAPACK;
- www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html

Users need only provide a cost function, gradient function, an action of Hessian (if a Newton method is used) in Matlab, Julia, R or C++ and parameters to control the optimization, e.g., the domain manifold, the algorithm, stopping criterion.

References I

P. Benner.

Control Theory. Handbook of Linear Algebra, Chapman and Hall/CRC, 2006.

B. Moore.

Principal component analysis in linear systems: Controllability, observability, and model reduction. *IEEE Transactions on Automatic Control*, 26(1):17–32, 2003.

Thilo Penzl.

Numerical solution of generalized lyapunov equations. Advances in Computational Mathematics, 8(1-2):33–48, 1998.

Thilo Penzl.

A cyclic low-rank smith method for large sparse lyapunov equations. Siam Journal on Scientific Computing, 21(4):1401–1418, 2000.

Thilo Penzl.

Eigenvalue decay bounds for solutions of lyapunov equations: the symmetric case. Systems and Control Letters, 40(2):139–144, 2000.

Thilo Penzl.

Algorithms for model reduction of large dynamical systems. *Linear Algebra and Its Applications*, 415(2):322–343, 2006.

V. Simoncini.

A new iterative method for solving large-scale Lyapunov matrix equations. SIAM Journal on Scientific Computing, 29:1268–1288, 2007.

Bart Vandereycken and Stefan Vandewalle.

A riemannian optimization approach for computing low-rank solutions of lyapunov equations. Siam Journal on Matrix Analysis and Applications, 31(5):2553–2579, 2010.