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Framework of This Talk

Topic

A technique in implementations of Riemannian optimization algorithms

Riemannian Optimization

Implementation and Complexities

Experiments

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Riemannian Optimization

Problem: Given f (x) :M→ R,
solve

min
x∈M

f (x)

where M is a Riemannian manifold.
M

R
f

Unconstrained optimization problem on a constrained space.

Riemannian manifold = manifold + Riemannian metric

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Riemannian Manifold

Manifolds:

Sphere

Stiefel manifold: St(p, n) =
{X ∈ Rn×p|XTX = Ip};
Grassmann manifold Gr(p, n):
all p-dimensional subspaces of
Rn;

And many more.

Riemannian metric:

M

x

ξ

η

R

gx(η, ξ)
TxM

A Riemannian metric, denoted by g ,
is a smoothly-varying inner product
on the tangent spaces;

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Representative

Representative method: Limited memory BFGS (LBFGS) method;

Representative manifold: the Stiefel manifold
St(p, n) = {X ∈ Rn×p|XTX = Ip} with canonical metric:
g(ηX , ξX ) = trace

(
ηTX
(
In − 1

2XX
T
)
ξX
)
;

The idea in this talk can be used for more algorithms and many
commonly-encountered manifolds.

Speaker: Wen Huang Tangent Vectors and Vector Transport
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LBFGS method

Euclidean LBFGS method:

1 Given x0 ∈ Rn, dk = −∇f (x0), k = 0;

2 Repeat:
xk+1 = xk + αkdk = xk − αkHk∇f (xk) for
some αk ;

3 Compute dk+1 by (1);

4 k ← k + 1 and goto 2;

Euclidean LBFGS update [NW06, (7.19)]

dk+1 =φ(yk , sk , yk−1, sk−1,

. . . , yk−m+1, sk−m+1,∇f (xk+1)), (1)

where sk = xk+1 − xk , and
yk = ∇f (xk+1)−∇f (xk).

R

f

Problem: minx∈Rn f (x)

Rn

Euclidean

M

R
f

Problem: minx∈M f (x)

Riemannian

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Retraction and Vector Transport

Retraction: R : TM→M

Euclidean Riemannian
xk+1 = xk + αkdk xk+1 = Rxk (αkηk)

M

x
η

TxM

Rx(η)R̃x(η)

Two retractions:R and R̃

A vector transport:
T : TM× TM→ TM :
(ηx , ξx) 7→ Tηx ξx :

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Limited-memory Riemannian BFGS (LRBFGS) method
LRBFGS method:

1 Given x0 ∈M and η0 = − grad f (x0),
k = 0;

2 Repeat: xk+1 = Rxk (αkηk) for some αk ;

3 y
(k+1)
i = Tαkηk

y
(k)
i , s

(k+1)
i = Tαkηk

s
(k)
i ,

i = k − 1, k − 2, . . . , k −m + 1

4 Compute ηk+1 by (2);

5 k ← k + 1 and goto 2;

An LRBFGS update [HGA15]

ηk+1 = φ(y
(k+1)
k , s

(k+1)
k−1 ,

. . . , y
(k+1)
k−m+1, s

(k+1)
k−m+1, grad f (xk+1)), (2)

where y
(k+1)
k = grad f (xk+1)− Tξk grad f (xk),

s
(k+1)
k = Tξk ξk , ξk = αkηk

M

xk
ykk−1

TxM

xk+1

yk+1
k−1

ykk−2

ykk−3

yk+1
k−2

yk+1
k

M

R
f

Problem: minx∈M f (x)

Riemannian

Speaker: Wen Huang Tangent Vectors and Vector Transport
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An Example on the Stiefel Manifold

St(p, n) = {X ∈ Rn×p | XTX = Ip};

Retraction: 6np2

RX (ηX ) = qf(X + ηX ),

where qf denotes the Q factor of the QR decomposition with
nonnegative elements on the diagonal of R;

Vector transport by projection: 4np2

Tηξ = PX ξ = ξ − Y (Y T ξ + ξTY )/2,

where Y = RX (η);

Speaker: Wen Huang Tangent Vectors and Vector Transport
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The Complexities

LRBFGS method:

1 Given x0 ∈M and η0 = − grad f (x0),
k = 0;

2 Repeat: xk+1 = Rxk (αkηk) for some αk ;

3 (2m) vector transport for yi and si ;

4 Compute grad f (xk+1);

5 Compute ηk+1 by (2);

6 k ← k + 1 and goto 2;

Function evaluation;

Riemannian gradient
evaluation;

Retraction evaluation: 6np2

flops;

(2m) times of vector
transports: 8mnp2 flops

Problem: Too much cost on vector transport evaluations especially when
the function and gradient evaluations have low complexities.

Speaker: Wen Huang Tangent Vectors and Vector Transport
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The Complexities

LRBFGS method:

1 Given x0 ∈M and η0 = − grad f (x0),
k = 0;

2 Repeat: xk+1 = Rxk (αkηk) for some αk ;

3 (2m) vector transport for yi and si ;

4 Compute grad f (xk+1);

5 Compute ηk+1 by (2);

6 k ← k + 1 and goto 2;

Function evaluation;

Riemannian gradient
evaluation;

Retraction evaluation: 6np2

flops;

(2m) times of vector
transports: 8mnp2 flops

Problem: Too much cost on vector transport evaluations especially when
the function and gradient evaluations have low complexities.

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Representations of Tangent Vectors

E = Rw ;

Dimension of M is d ;

Stiefel manifold: E = Rn×p;

Stiefel manifold: d = np − p(p + 1)/2;

M

x

E

Figure: An embedded submanifold

Extrinsic: ηx ∈ Rw ;

Intrinsic: η̃x ∈ Rd such that ηx = Bx η̃x , where Bx is smooth;

How to find a basis B?

Speaker: Wen Huang Tangent Vectors and Vector Transport



11/28

Riemannian Optimization
Limited-memory Riemannian BFGS Method

Representation and Complexities
Experiments

Representations of Tangent Vectors

E = Rw ;

Dimension of M is d ;

Stiefel manifold: E = Rn×p;

Stiefel manifold: d = np − p(p + 1)/2;

M

x

E

Figure: An embedded submanifold

Extrinsic: ηx ∈ Rw ;

Intrinsic: η̃x ∈ Rd such that ηx = Bx η̃x , where Bx is smooth;

How to find a basis B?

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Extrinsic Representation and Intrinsic Representation on
the Stiefel Manifold

TX St(p, n) = {XΩ + X⊥K | ΩT = −Ω,XTX⊥ = 0};

Bx =


[
X X⊥

]


0 1 . . . 0
−1 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 0


, . . . ,

[
X X⊥

]


0 0 . . . 0
0 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 0
1 0 . . . 0
0 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 0





Speaker: Wen Huang Tangent Vectors and Vector Transport
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Extrinsic Representation and Intrinsic Representation on
the Stiefel Manifold

TX St(p, n) = {XΩ + X⊥K | ΩT = −Ω,XTX⊥ = 0};

Extrinsic ηX :

ηX =
[
X X⊥

] [Ω
K

]

=
[
X X⊥

]


0 a12 . . . a1p
−a12 0 . . . a2p
. . . . . . . . . . . .
−a1p −a2p . . . 0
b11 b12 . . . b1p
b21 b22 . . . b2p
. . . . . . . . . . . .

b(n−p)1 b(n−p)2 . . . b(n−p)p



Intrinsic η̃X :

η̃X =



a12
a13
a23

...
a(p−1)p
b11
b21

...
b(n−p)p


Speaker: Wen Huang Tangent Vectors and Vector Transport
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Extrinsic Representation and Intrinsic Representation on
the Stiefel Manifold

Question

Extrinsic representation ηX ⇐⇒ Intrinsic representation η̃X

ηX =
[
X X⊥

] [Ω
K

]
⇔
[

Ω
K

]
⇔ η̃X

Apply Householder transformation to X , (Done in retraction)

QT
p QT

p−1 . . .Q
T
1 X = R = In×p.[

X X⊥
]

= Q1Q2 . . .Qp (Do not compute)

Extrinsic to Intrinsic: QT
p QT

p−1 . . .Q
T
1 ηX =

[
Ω
K

]
and reshape to η̃X ;

(4np2 − 2p3) flops

Intrinsic to Extrinsic: reshape η̃X and ηX = Q1Q2 . . .Qp

[
Ω
K

]
;

(4np2 − 2p3) flops

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Benefits of Intrinsic Representation

Operations on tangent vectors are cheaper since d ≤ w ;

If the basis is orthonormal, then the Riemannian metric reduces to
the Euclidean metric:

g(ηx , ξx) = g(Bx η̃x ,Bx ξ̃x) = η̃Tx ξ̃x .

Stiefel: trace
(
ηTX
(
In − 1

2XX
T
)
ξX
)
−→ η̃TX ξ̃X

A vector transport has identity implementation, i.e., T̃η = id.

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Vector Transport by Parallelization

Vector transport by parallelization:

Tηx ξx = ByB
†
x ξx ;

where y = Rx(ηx) and † denotes pseudo-inverse, has identity
implementation [HAG16]:

Tη̃x ξ̃x = ξ̃x .

Example:

Extrinsic:

ζ = Tηξ = ByB
†
x ξ

Intrinsic:

ζ̃ =T̃ηξ
=B†yByB

†
xBx ξ̃

=ξ̃

M

x
ξ1

TxM

y

ζ1

ξ2

ζ2

TyM

Bx =
[
ξ1 ξ2

]

By =
[
ζ1 ζ2

]

ξ = aξ1 + bξ2

ζ = aζ1 + bζ2

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Using the Intrinsic Representation for LRBFGS Method

Extrinsic approach:

1 η0 = −gradf (x0), k = 0;

2 xk+1 = Rxk (αkηk) for some αk ;

3 (2m) vector transport for yi and si ;

4 Compute gradf (xk+1);

5 Compute ηk+1 by (2);

6 k ← k + 1 and goto 2;

Intrinsic approach:

1 η̃0 = −g̃radf (x0), k = 0;

2 Compute ηk from η̃k ;

3 xk+1 = Rxk (αkηk) for some αk ;

4 Compute g̃radf (xk+1);

5 Compute η̃k+1 by (2);

6 k ← k + 1 and goto 2;

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Complexity Comparison

Extrinsic approach:

Function;

Intrinsic approach:

Function;

Both approaches have the same Complexities

Riemannian gradient; Riemannian gradient;

Retraction; Retraction;

(2m) times of vector transport; No explicit vector transport;

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Complexity Comparison

Extrinsic approach:

Function;

Intrinsic approach:

Function;

Riemannian gradient; Riemannian gradient;

Both approaches have the same Complexities: ∇f (X ) cost +4np2

Retraction; Retraction;

(2m) times of vector transport; No explicit vector transport;

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Complexity Comparison

Extrinsic approach:

Function;

Intrinsic approach:

Function;

Riemannian gradient; Riemannian gradient;

Retraction;
Evaluate RX (ηX )

Retraction;
Compute ηX from η̃X and
evaluate RX (ηX )

Intrinsic cost = Extrinsic cost + 4np2

(2m) times of vector transport; No explicit vector transport;

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Complexity Comparison

Extrinsic approach:

Function;

Intrinsic approach:

Function;

Riemannian gradient; Riemannian gradient;

Retraction; Retraction;

(2m) times of vector transport; No explicit vector transport;

Extrinsic cost = Intrinsic cost + 8mnp2 + O(p3)

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Complexity Comparison

Extrinsic approach:

Function;

Intrinsic approach:

Function;

Riemannian gradient; Riemannian gradient;

Retraction; Retraction;

(2m) times of vector transport; No explicit vector transport;

Complexity comparison:

f +∇f + 10np2 + 8mnp2; f +∇f + 10np2 + 4np2;

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Sparse Eigenvalue Problem

Problem

Fine eigenvalues and eigenvectors of a sparse symmetric matrix A.

The Brockett cost function:

f : St(p, n)→ R : X 7→ trace(XTAXD);

D = diag(µ1, µ2, . . . , µp) with µ1 > · · · > µp > 0;

Unique minimizer: X ∗ are eigenvectors for the p smallest
eigenvalues.

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Setting and Complexities

f : St(p, n)→ R : X 7→ trace(XTAXD);

Setting

A = diag(1, 2, . . . , n) + B + BT , where entries of B has probability
1/n to be nonzero;

D = diag(p, p − 1, . . . , 1);

Complexities

Function evaluation: ≈ 8np

Euclidean gradient evaluation: np (After function evaluation)

Retraction evaluation (QR): 6np2

Extrinsic:

(10 + 8m)np2 +O(p3) +O(np);

Intrinsic:

14np2 + O(p3) + O(np);

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Results

Table: An average of 100 random runs. Note that m is the upper bound of the
limited-memory size m. n = 1000 and p = 8.

m 2 8 32
Extr Intr Extr Intr Extr Intr

iter 1027 915 933 830 877 745
nf 1052 937 941 837 883 751
ng 1028 916 934 831 878 746
nR 1051 936 940 836 882 750
nV 1027 915 933 830 877 745

gf/gf0 9.00−7 9.11−7 9.24−7 9.25−7 9.52−7 9.49−7
t 2.94−1 2.50−1 4.84−1 2.74−1 1.27 4.31−1

t/iter 2.86−4 2.73−4 5.18−4 3.31−4 1.45−3 5.79−4

Intrinsic representation yields faster LRBFGS implementation.

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Intrinsic representation yields faster LRBFGS implementation.
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Blind Deconvolution Problem

Problem

Find signals w and x given the convolution of them: y = w ∗ x.

The cost function

f (h,m) = ‖y − Ldiag
(
(FBh)(F̄Cm)∗

)
‖22 + ρG (h,m).

y ∈ CL, B ∈ CL×K and C ∈ CL×N and F is the unitary L-by-L DFT
matrix;

G (h,m) is a penalty function;

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Setting and Complexities

f (h,m) = ‖y − Ldiag
(
(FBh)(F̄Cm)∗

)
‖22 + ρG (h,m)

Setting

B = IL×K ;

C: the first N Haar wavelet basis;

Complexities (Penalty is ignored)

Function evaluation: 2FFT + 14L

Euclidean gradient evaluation: 2FFT + 8L + K + N (After function
evaluation)

Retraction evaluation (Addition): K + N

Extrinsic1:

4FFT+22L+(28m+1)(K+N);

Intrinsic:

4FFT + 22L + 7(K + N);

1Vector transport in [Van13]:
B. Vandereycken, Low-rank matrix completion by Riemannian optimization, SIAM
Journal on Optimization, 23(2):1214-1236, 2013

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Results

Table: An average of 100 random runs. RMSE denotes the relative error
‖hmT−h∗m

T
∗ ‖

‖h∗‖‖m∗‖ .

L = 512,K = 4,N = 64
[ARR14] [LLSW16] LRBFGS

nFFT 500 510 290
RMSE 1.59−6 3.19−6 2.61−6

[LLSW16]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via
nonconvex optimization, preprint arXiv:1606.04933, 2016

[ARR14]: A. Ahmed et. al., Blind deconvolution using convex programming, IEEE
Transactions on Information Theory, 60(3):1711-1732, 2014

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Results

Table: An average computational time of 20 random runs for the LRBFGS
method.

(L,N,K )
(1282, 162, 8) (2562, 322, 16) (5122, 642, 32) (10242, 1282, 64)

t 0.38 2.57 16.6 103

LRBFGS is written in C++ and implemented in ROPTLIB [HAGH16].

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Conclusion

Topic

A technique in implementations of Riemannian optimization algorithms

Intrinsic representation of tangent vectors;

Implementation in LRBFGS

Theoretical complexity analysis and benefits

Numerical evidences of low complexity

Riemannian method using this implementation can be efficient for
real-world problems

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Thank you

Thank you!

Speaker: Wen Huang Tangent Vectors and Vector Transport
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