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Symmetric Positive Definite (SPD) Matrix

Definition

A symmetric matrix A is called positive definite A � 0 iff all its
eigenvalues are positive.

Sn
++ = {A ∈ Rn×n : A = AT ,A � 0}

2× 2 SPD matrix

u√
λu

v√
λv

3× 3 SPD matrix

u√
λu

v√
λv

w√
λw
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Motivation of Averaging SPD Matrices

Possible applications of SPD matrices

- Diffusion tensors in medical imaging
[CSV12, FJ07, RTM07]

- Describing images and video
[LWM13, SFD02, ASF+05, TPM06,
HWSC15]

Motivation of averaging SPD matrices

- denoising / interpolation

- clustering / classification
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Averaging Schemes: from Scalars to Matrices

Let A1, . . . ,AK be SPD matrices.

Generalized arithmetic mean: 1
K

K∑
i=1

Ai

→ Not appropriate in many practical applications

A A+B
2 B

detA = 50 det(A+B
2 ) = 267.56 detB = 50

Generalized geometric mean: (A1 · · ·AK )1/K

→ Not appropriate due to non-commutativity

→ How to define a matrix geometric mean?
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Desired Properties of a Matrix Geometric Mean

The desired properties are given in the ALM list1, some of which are:

G (Aπ(1), . . . ,Aπ(K)) = G (A1, . . . ,AK ) with π a permutation of (1, . . . ,K)

if A1, . . . ,AK commute, then G(A1, . . . ,AK ) = (A1, . . . ,AK )1/K

G(A1, . . . ,AK )−1 = G(A−1
1 , . . . ,A−1

K )

det(G(A1, . . . ,AK )) = (det(A1) · · · det(AK ))1/K

ALM list

1T. Ando, C.-K. Li, and R. Mathias, Geometric means, Linear Algebra and Its
Applications, 385:305-334, 2004
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Geometric Mean of SPD Matrices

A well-known mean on the manifold of SPD matrices is the Karcher
mean [Kar77]:

G (A1, . . . ,AK ) = arg min
X∈Sn

++

1

2K

K∑
i=1

δ2(X ,Ai ), (1)

where δ(X ,Y ) = ‖ log(X−1/2YX−1/2)‖F is the geodesic distance
under the affine-invariant metric

g(ηX , ξX ) = trace(ηXX−1ξXX−1)

The Karcher mean defined in (1) satisfies all the geometric
properties in the ALM list [LL11]
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Algorithms

G (A1, . . . ,Ak) = arg min
X∈Sn

++

1

2K

K∑
i=1

δ2(X ,Ai )

Riemannian steepest descent [RA11] for Karcher mean

Riemannian steepest descent, conjugate gradient, BFGS, and trust
region Newton methods [JVV12] for general problems applied to
Karch mean

Richardson-like iteration [BI13] for Karcher mean

Riemannian Barzilai-Borwein method with nonmonotone line search
and the Karcher mean computation [IP17]
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Jeuris et al. [JVV12] Results

G (A1, . . . ,Ak) = arg min
X∈Sn

++

1

2K

K∑
i=1

δ2(X ,Ai )

Considered RTR-Newton-CG, RBFGS, RSD, RCG.

First two considerably more complex per step than last two.

RSD and RCG preferred.

Higher rate of convergence for RBFGS (superlinear) and
RTR-Newton-CG (quadratic) did not make up for extra complexity.

Simpler first order methods recommended over a wide range of
problems.

Averaging positive definite matrices 9



Recent results on SPD Karcher mean
computation

Based on Xinru Yuan, Wen Huang, Pierre-Antoine Absil, & Kyle A.
Gallivan, A Riemannian quasi-Newton method for computing the Karcher

mean of symmetric positive definite matrices , 2018.
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Conditioning of the Objective Function

Hemstitching phenomenon
for steepest descent

well-conditioned Hessian ill-conditioned Hessian

Small condition number ⇒ fast convergence

Large condition number ⇒ slow convergence
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Conditioning of the Karcher Mean Objective Function

Riemannian metric:

gX (ξ, η) = trace(ξX−1ηX−1)

Euclidean metric:

gX (ξ, η) = trace(ξη)

Condition number κ of Hessian at the minimizer µ:

Hessian of Riemannian metric:

- κ(HR) ≤ 1 +
ln(maxκi )

2
,

where κi = κ(µ−1/2Aiµ
−1/2)

- κ(HR) ≤ 20 if
max(κi ) = 1016

Hessian of Euclidean metric:

-
κ2(µ)

κ(HR)
≤ κ(HE) ≤ κ(HR)κ2(µ)

- κ(HE ) ≥ κ2(µ)/20
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BFGS Quasi-Newton Algorithm: from Euclidean to Riemannian

replace by Rxk (ηk) Retraction

Update formula:

y

xk+1 = xk + αkηk

Search direction:
ηk = −B−1

k grad f (xk)

Bk update:

Bk+1 = Bk −
BksksTk Bk

sTk Bksk
+

ykyT
k

yT
k sk

,

forspace
where sk = xk+1 − xk , and yk = grad f (xk+1)− grad f (xk)

x x
replaced by R−1

xk (xk+1) on different tangent spaces Vector Trans.
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Riemannian BFGS (RBFGS) Algorithm

Update formula:

xk+1 = Rxk (αkηk) with ηk = −B−1
k grad f (xk)

Bk update [HGA15]:

Bk+1 = B̃k −
B̃k sk(B̃k sk)[

(B̃k sk)[sk
+

yky[k
y[k sk

,

where sk = Tαkηkαkηk , yk = β−1
k grad f (xk+1)− Tαkηk grad f (xk),

and B̃k = Tαkηk ◦ Bk ◦ T −1
αkηk

.

Stores and transports B−1
k as a dense matrix

Requires excessive computation time and storage space for
large-scale problem
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Limited-memory RBFGS (LRBFGS)

Riemannian BFGS:

Let Hk+1 = B−1
k+1

Hk+1 = (id− ρkyks[k)H̃k(id− ρkyks[k) + ρksks[k
where sk = Tαkηkαkηk , yk = β−1

k grad f (xk+1)− Tαkηk grad f (xk),

ρk = 1/g(yk , sk) and H̃k = Tαkηk ◦ Hk ◦ T −1
αkηk

Limited-memory Riemannian BFGS:

Stores only the m most recent sk and yk

Transports these vectors to the new tangent space rather than Hk

Computational and storage complexity depends upon m

Averaging positive definite matrices 15



Implementations

Representations of tangent vectors

: TX Sn
++ = {S ∈ Rn×n|S = ST}

Extrinsic representation: n2-dimensional vector

Intrinsic representation: d-dimensional vector where d = n(n + 1)/2 Detail

Retraction

Exponential mapping: ExpX (ξ) = X 1/2 exp(X−1/2ξX−1/2)X 1/2

Second order approximation retraction [JVV12]:

RX (ξ) = X + ξ +
1

2
ξX−1ξ

Vector transport

Parallel translation: Tpη (ξ) = QξQT , with Q = X
1
2 exp(

X−
1
2 ηX−

1
2

2
)X−

1
2

Vector transport by parallelization [HAG15]: essentially an identity
Parallelization
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Complexity Comparison for LRBFGS

Averaging positive definite matrices 17

Extrinsic approach:

Function

Riemannian gradient

Retraction

Riemannian metric

(2m) times of vector transport

Intrinsic approach:

Function

Riemannian gradient

Retraction

Reduces to Euclidean metric

No explicit vector transport

Complexity comparison:

f +∇f +

27n3 + 12mn2+

2m × Vector transport cost

f +∇f +

22n3/3 + 4mn2



Problem Related Functions

Cost function:

F (X ) =
1

2K

K∑
i=1

dist2(Ai ,X ) =
1

2K

K∑
i=1

‖ log(A
−1/2
i XA

−1/2
i )‖2

F

Riemannian gradient:

gradF (X ) =
1

K

K∑
i=1

A
1/2
i log(A

−1/2
i XA

−1/2
i )A

−1/2
i X 1/2

Riemannian Hessian action on tangent vector:

HessF (X )[ξX ] =
1

2K

K∑
i=1

ξX log(A−1
i X )− 1

2K

K∑
i=1

log(XA−1
i )ξX

+
1

K

K∑
i=1

X D(log)(A−1
i X )[A−1

i ξX ]
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Numerical Results: Comparison of Different Algorithms

K = 100, size = 3× 3, d = 6

1 ≤ κ(Ai ) ≤ 200

iterations
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Figure: Evolution of averaged distance between current iterate and the exact
Karcher mean with respect to time and iterations
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Numerical Results: Comparison of Different Algorithms

K = 30, size = 100× 100, d = 5050

1 ≤ κ(Ai ) ≤ 20
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Numerical Results: Riemannian vs. Euclidean Metrics

K = 100, n = 3, and 1 ≤ κ(Ai ) ≤ 106.
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Figure: Evolution of averaged distance between current iterate and the exact
Karcher mean with respect to time and iterations
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Motivations

Karcher mean

K(A1, . . . ,AK ) = arg min
X∈Sn

++

1

2K

K∑
i=1

δ2(X ,Ai ), (1)

where δ(X ,Y ) = ‖ log(X−1/2YX−1/2)‖F
pros: holds desired properties

cons: high computational cost

Use divergences as alternatives to the geodesic distance due to their
computational and empirical benefits

A divergence is like a distance except it lacks

triangle inequality

symmetry
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LogDet α-divergence and Associated Mean

The LogDet α-divergence is defined as

G (A1, . . . ,Ak) = arg min
X∈Sn

++

1

2K

K∑
i=1

δ2
LD,α(Ai ,X ) , (2)

where the LogDet α-divergence on Sn
++ is given by

δ2
LD,α(X ,Y ) =

4

1− α2
log

det( 1−α
2 X + 1+α

2 Y )

det(X )
1−α

2 det(Y )
1+α

2

The LogDet α-divergence is asymetric in general, except for α = 0

(2) defines the right mean. The left mean can be defined in a similar
way.
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Karcher Mean vs. LogDet α-divergence Mean

Complexity comparison for problem-related operations

function gradient total

LD α-div. mean
2Kn3

3
3Kn3 11Kn3

3

Karcher mean 18Kn3 5Kn3 23Kn3

Invariance properties

scaling
invariance

rotation
invariance

congruence
invariance

inversion
invariance

LD α-div. mean 3 3 3 7

Karcher mean 3 3 3 3
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Numerical Experiment: Comparions of Different Algorithms

K = 100, n = 3, and 10 ≤ κ(Ai ) ≤ 106 Fixed Point iteration2: stepsize =
1− α
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2Z. Chebbi and M. Moakher. Means of Hermitian positive-definite matrices based on the
log-determinant -divergence function. Linear Algebra and its Applications, 436(7):1872C1889, 2012

2Z. Chebbi and M. Moakher. Means of Hermitian positive-definite matrices based on the
log-determinant -divergence function. Linear Algebra and its Applications, 436(7):1872C1889, 2012

2Z. Chebbi and M. Moakher. Means of Hermitian positive-definite matrices based on the
log-determinant -divergence function. Linear Algebra and its Applications, 436(7):1872C1889, 2012

2Z. Chebbi and M. Moakher. Means of Hermitian positive-definite matrices based on the
log-determinant -divergence function. Linear Algebra and its Applications, 436(7):1872C1889, 2012
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Numerical Experiment: Comparions of Different Algorithms
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Motivations

The mean is sensitive to outliers

The median is less sensitive to outliers
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10

points

outliers

mean

median

Figure: The geometric mean and median in R2 space.
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Riemannian Median of SPD Matrices

The Riemannian median of a set of SPD matrices is defined as

M(A1, . . . ,AK ) = arg min
X∈Sn

++

1

2K

K∑
i=1

δ(Ai ,X ) ,

where δ is a distance or the square root of a divergence function

The cost function is nonsmooth at X = Ai

If δ is the geodesic distance, the median is unique
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Algorithms

M(A1, . . . ,AK ) = arg min
X∈Sn

++

1

2K

K∑
i=1

δ(Ai ,X )

Riemannian Weiszfeld’s algorithm [FVJ09]

Our approach: Riemannian quasi-Newton algorithms

- Smooth RBFGS [HAG18]

- Modified RBFGS [Hua12]

- Nonsmooth RBFGS [HHY18]

- Limited-memory versions of the above three [HAGH16]
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Numerical Results for L1 Median Computation on Sn
++:

Comparison of Different Algorithms
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Figure: Evolution of averaged distance between current iterate and the exact
Riemannian median with respect to time and iterations.
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Numerical Results for L1 Median Computation on Sn
++:

Comparison of Different Algorithms

K = 100, size = 3× 3
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Outline

Karcher mean computation on Sn
++

Divergence-based means on Sn
++

Riemannian L1 median computation on Sn
++

Applications

Application I: Structure tensor image denoising
Application II: EEG classification based on the minimum distance to
mean classifier
Application III: Image clustering

Conclusions
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Application: Structure Tensor Image Denoising

A structure tensor image is a spatial
structured matrix field

I : Ω ⊂ Z2 → Sn
++

Noisy tensor images are simulated by
replacing the pixel values by an outlier
tensor with a given probability Pr

Denoising is done by averaging
matrices in the neighborhood of each
pixel

Mean Riemannian Error:

MRE =
1

#Ω

∑
(i,j)∈Ω

δR(Ii,j , Ĩi,j)

Original tensor image

Noisy tensor image
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Structure Tensor Image Denoising: Pr = 0.1
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Structure Tensor Image Denoising: MRE and Time

MRE comparison

Means
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Time comparison

Means
A-m LE-m J-m K-m R-median α-m α-median

T
im

e
(s
)

0

2

4

6

8

10

12

14

16

0.04 0.40 0.31

6.47

14.31

4.66

11.32

Pr = 0.1

Averaging positive definite matrices 37



Application II: Electroencephalography (EEG) Classification

13 Hz 17 Hz 21 Hz No led

The subject is either asked to focus on one specific blinking LED or
a location without LED

EEG system is used to record brain signals

Covariance matrices of size 24× 24 are used to represent EEG
recordings [KCB+15, MC17]
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EEG Classification: Examples of Covariance Matrices

Resting Class

5 10 15 20
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EEG Classification: Minimum Distance to Mean classier

Goal: classify new covariance matrix using Minimum Distance to Mean
Classifier

For each class k = 1, . . . ,K , compute the center µk of the
covariance matrices in the training set that belong to class k

Classify a new covariance matrix X according to

k̂ = arg min
1≤k≤K

δ(X , µk)
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EEG Classfification: Accuracy and Computation Time

Accuracy comparison

Means
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Application III: Image Clustering Using K-means Method

The KTH-TIPS2 dataset [MFT+06]

- 4752 samples, 11 categories, 432 samples per category
- Region Covariance Matrices: 23× 23

Performance metrics to measure the quality of K-means clustering

- F1-Score
- Normalized mutual information (NMI)

Performance metrics to measure the timing of K-means clustering

- Total computation time
- Computation time per iteration
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Image Clustering: Comparison of Different K-means Variants

Quality comparison
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Outline

Karcher mean computation on Sn
++

Divergence-based means on Sn
++

Riemannian L1 median computation on Sn
++

Applications

Conclusions
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Conclusions

Investigate different averaging techniques for SPD matrices,
including the computation of means and medians centers

Use recent developments in Riemannian optimization to develop
efficient and robust algorithms on Sn

++

Provide empirical assessments and comparisons of the performance
of considered Riemannian optimization algorithms and existing
stat-of-the-art algorithms

Contribute a C++ toolbox for various averaging techniques (based
on ROPTLIB)

Evaluate the performance of different averaging techniques in
applications

Averaging positive definite matrices 45



Thank you!
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Intrinsic Representation of Tangent Vectors

Tangent vector ηX ∈ TXM can be represented by its intrinsic
representation, i.e., a d-dimensional vector of coordinates n a given
basis of BX of TXM

If BX = {b1, . . . bd}, ηX = α1b1 + · · ·+ αdbd , then ηdX = B[
XηX and

ηdX = (α1, . . . , αd)T

Reduces storage of tangent vectors and simplifies certain
Riemannian objects if BX is orthonormal and the coefficients αi ’s
are easy to compute

Go Back←↩
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Vector Transport by Parallelization

Vector transport by parallelization is defined as T = BY B[
X , where

BY and BX are bases of TY M and TX X , respectively

If BY and BX are orthonormal bases of TY M and TXM,
respectively, then the vector transport by parallelization is the
identity

Parallelization is an isometric vector transport

Go Back←↩
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Jointly Geodesically Convexity

Definition

Let (M, g) be a Riemannian manifold. A function f :M→ R is said to
be geodesically convex if for any x , y ∈M, a geodesic γ such that
γ1(0) = x1 and γ(1) = y, and t ∈ [0, 1], it holds that

f (γ(t)) ≤ (1− t)f (x) + tf (y) (3)

Definition

Let (M, g) be a Riemannian manifold. A function f :M×M→ R is
said to be jointly geodesically convex if for any x1, x2, y1, y2 ∈M,
geodesics γx and γy such that γx(0) = x1, γx(1) = x2, γy (0) = y1 and
γy (1) = y2, and t ∈ [0, 1], it holds that

f (γx(t), γy (t)) ≤ (1− t)f (x1, y1) + tf (x2, y2). (4)

Go Back←↩
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Divergence Symmetrization

A divergence is asymmetric in general. There are two common ways to
symmetrize a divergence [CCA15]:

Type 1:

δ2
Sφ(X ,Y ) =

1

2
(δ2
φ(X ,Y ) + δ2

φ(Y ,X )),

Type 2:

δ2
Sφ(X ,Y ) =

1

2
(δ2
φ(X ,

X + Y

2
) + δ2

φ(Y ,
X + Y

2
)).
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ALM List

P1 Consistency with scalars. If A1, . . . ,AK commute then
G (A1, . . . ,AK ) = (A1 · · ·AK )1/K .

P2 Joint homogeneity.
G (α1A1, . . . , αKAK ) = (α1 · · ·αK )1/KG (A1, . . . ,AK ).

P3 Permutation invariance. For any permutation π(A1, . . . ,AK ) of
(A1, . . . ,AK ), G (A1, . . . ,AK ) = G (π(A1, . . . ,AK )).

P4 Monotonicity. If Ai ≥ Bi for all i , then
G (A1, . . . ,AK ) ≥ G (B1, . . . ,BK ) in the positive semidefinite
ordering.

P5 Continuity from above. If {A(n)
1 }, . . . , {A

(n)
k } are monotonic

decreasing sequences (in the positive semidefinite ordering)

converging to A1, . . . , AK , respectively, then G (A
(n)
1 , . . . ,A

(n)
K )

converges to G (A1, . . . ,AK ).
P6 Congruence invariance.

G (STA1S , . . . ,STAKS) = STG (A1, . . . ,AK )S for any invertible S .
P7 Joint concavity. G (λA1 + (1− λ)B1, . . . , λAK + (1− λ)AK ) ≥

λG (A1, . . . ,AK ) + (1− λ)G (B1, . . . ,BK ).
P8 Invariance under inversion. G (A1, . . . ,AK )−1 = G (A−1

1 , . . . ,A−1
K ).

P9 Determinant identity. det G (A1, . . . ,AK ) = (det A1 · · · det AK )1/K .
Go Back←↩
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Tangent Vector

Definition: The tangent space TXM is
the vector space comprised of the tangent
vectors at X ∈M. The Riemannian
metric is an inner product on each tangent
space.

Tangent vectors can be represented by an
intrinsic representation, which reduces the
storage and simplifies certain Riemannian
objects Intrinsic Representation
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Retraction

Maps tangent vectors back to the manifold

Definition: A retraction is a mapping R
from TM to M satisfying the following:

R is continuously differentiable

Rx(0) = x

DRx(0)(η) = η

Euclidean Riemannian

xk+1 = xk + αkηk xk+1 = Rxk (αkηk)

Go Back←↩
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Vector Transport

Some algorithms need to combine
information on different tangent spaces
to determine the next search direction

Vector transport: transport a tangent
vector from one tangent space to
another

Tηx ξx , denotes transport of ξx to
tangent space of Rx(ηx)

Go Back←↩
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Stepsizes for RSD

Classical stepsize strategy in [WN06, (3.44)]

αk+1 = min{1, 1.01 · 2(f (xk+1)− f (xk))

g(grad f (xk+1),− grad f (xk))
}

Different versions of BB stepsizes

- sk = Tαkηk (αkηk ), yk = grad f (xk+1)− Tαkηk (grad f (xk ))

- BB1: αk+1 = g(sk , sk )/g(sk , yk )

- BB2: αk+1 = g(sk , yk )/g(yk , yk )

- ABBmin:

αk+1 =

{
min{αBB2

j : j = max(1, k −ma), . . . , k}, if αBB2
k+1/α

BB1
k+1 < τ

αBB1
k+1, otherwise

Go Back←↩
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Stepsizes for RSD
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Go Back←↩
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LogDet α-divergence Mean: CM’s Fixed-point Iteration

Chebbi and Moakher’s fixed-point iteration [CM12] can be rewritten as

Yk+1 =
1

K

K∑
i=1

(
1− α

2
Ai +

1 + α

2
Y−1
k )−1 (1)

= Yk −
1− α

2K
grad f (Yk) (2)

where grad f (Y ) denotes the Riemannian gradient of f (Y ) and

f (Y ) =
4

1− α2

K∑
i=1

{log det(
1− α

2
Ai +

1 + α

2
Y−1) +

1 + α

2
log det Y }

The fixed-point iteration is a Riemannian steepest descent using

a constant stepsize (1− α)/2K

Euclidean retraction RX (ηX ) = X + ηX
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Background

Update for steepest descent:

ηk = −αk grad f (xk)

xk+1 = Rxk (ηk)

RSD:

- αk is taken as the classical strategy in [WN06] Formula

- no use of second order information

RBB:

- choose αk so that −αk grad f (xk) approximates −Hess f (xk)−1 grad f (xk)
.

i.e., αk I approximates Hess f (xk)−1

- make use of second order information BB Stepsize

Goal: investigate the relationship between the BB stepsizes and the
eigenvalues of the Riemannian Hessian of the objective function
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Numerical Experiment II: BB Stepsizes and the Hessian Eigenvalues

Goal: investigate the relationship between the BB stepsizes and the
eigenvalues of the Riemannian Hessian of the objective function

Objective function used: f (X ) = 1
2K

∑K
i=1 δ

2
LD,α(Ai ,X )

{λ(k)
1 , . . . , λ

(k)
d } are eigenvalues of the Riemannian Hessian of f

Compare 1/αk and {λ(k)
1 , . . . , λ

(k)
d }

RBB is used with Armijo backtracking line search

BB1, BB2, ABBmin are compared BB Stepsize
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Numerical Experiment III: α = 0.5

K = 200, 6× 6, d = 21
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