
This space is reserved for the Procedia header, do not use it

A Riemannian Limited-Memory BFGS Algorithm for

Computing the Matrix Geometric Mean

Xinru Yuan1, Wen Huang2, P.-A. Absil2, and K. A. Gallivan1

1 Department of Mathematics, Florida State University, FL, U.S.A.
2 ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.

Abstract

Various optimization algorithms have been proposed to compute the Karcher mean (namely the
Riemannian center of mass in the sense of the affine-invariant metric) of a collection of symmetric
positive-definite matrices. Here we propose to handle this computational task with a recently
developed limited-memory Riemannian BFGS method using an implementation tailored to the
symmetric positive-definite Karcher mean problem. We also demonstrate empirically that the
method is best suited for large-scale problems in terms of computation time and robustness
when comparing to the existing state-of-the-art algorithms.

Keywords: Karcher mean, geometric mean, symmetric positive-definite matrices, Riemannian opti-

mization, Limited-memory Riemannian BFGS method

1 Introduction

Symmetric positive-definite (SPD) matrices have become fundamental computational objects
in many areas. For example, they appear as data points in medical imaging [8, 23], image
processing [9, 22], radar signal processing [19, 5] and elasticity [21]. In these and similar appli-
cations, it is often of interest to average SPD matrices. Averaging is required, e.g., to aggregate
several noisy measurements of the same object. It also appears as a subtask in interpolation
methods, see for example [1].

Let Sn++ be the manifold of n×n SPD matrices. Since Sn++ is an open submanifold of the vec-
tor space of n×n symmetric matrices, its tangent space at point X—denoted by TX Sn++—can
be identified as the set of n×n symmetric matrices. The manifold Sn++ becomes a Riemannian
manifold when endowed with the affine-invariant metric, see [22], given by

gX(ξX , ηX) = trace(ξXX
−1ηXX

−1). (1)

Given a collection of points {A1, . . . , AK} on the Riemannian manifold Sn++, their Rieman-
nian center of mass—also termed Karcher mean in view of [18]—is the minimizer of the sum of

1

A Riemannian LBFGS Algorithm for Computing the Matrix Geometric Mean Xinru Yuan et al.

squared distance

µ = arg min
X∈Sn++

F (X), with F : P+
n → R, X 7→ 1

2K

K∑
i=1

δ2(X,Ai), (2)

where δ(p, q) = ‖ log(p−1/2qp−1/2)‖F is the geodesic distance associated with Riemannian metric
(1). In [18] it is proved that function F has a unique minimizer. Hence a point µ ∈ Sn++ is a
Karcher mean if it is a stationary point of F , i.e.,

gradF (µ) = 0, (3)

where gradF denotes the Riemannian gradient of F under metric (1).
The Karcher mean has been recognized as one of the most suitable means on Sn++ in the

sense that it satisfies all of the geometric properties given in the ALM list [4], which are known
to be important in practical applications, e.g. [20, 21, 6]. However, a closed-form solution for
problem (2) or equation (3) is unknown in general, and for this reason, the Karcher mean is
usually computed by iterative methods. A Richardson-like iteration is derived and evaluated
empirically in [7], and is available in the Matrix Means Toolbox.1 In fact, solving problem (2)
can be considered in the framework of Riemannian optimization (see, e.g., [2]), since it requires
optimizing a function on a manifold. This approach gave rise to several algorithms for the
Karcher mean computation. A constant stepsize steepest descent method with local conver-
gence is proposed in [3]. An adaptive stepsize selection rule based on the explicit expression of
the Hessian of cost function F and a Newton’s method are studied in [25]. Most recently, [17]
presents a survey of several optimization algorithms, including Riemannian version of steepest
descent, conjugate gradient, BFGS, and trust-region Newton’s method. It is empirically demon-
strated that the steepest descent and conjugate gradient methods are the preferred choices for
problem (2) in terms of time efficiency. The benefit of fast convergence of Newton’s method and
BFGS is nullified by their high computational cost in each iteration, especially when the size
of the matrices increases. There are however recently-developed general-purpose Riemannian
optimization methods that have not yet been exploited in the context of SPD Karcher mean
computation; this is the case in particular of the limited-memory BFGS that is known to be
particularly efficient in various contexts [15, 26] but that has not yet been exploited in the
context of the SPD Karcher mean computation.

In this paper, we exploit a limited-memory Riemannian BFGS (LRBFGS) method developed
in [14] to tackle the SPD Karcher mean computation problem. An abstract formulation of this
method is provided in [14, Section 5], while its practical implementation requires more work
than one might anticipate. This paper contributes a performance-driven development that turns
the abstract LRBFGS into a concrete and efficient numerical algorithm for the SPD Karcher
mean computation. More specifically, the LRBFGS method involves manipulation of differential
geometric objects on manifolds, such as tangent space, Riemannian metric, retraction, vector
transport, etc. We present an approach to produce efficient numerical representations of those
objects on the manifold Sn++. Those techniques are also applied to our implementation of
Riemannian steepest descent and conjugate gradient methods. It is shown empiricially that the
LRBFGS method is best suited for computing the SPD Karcher mean when the size or number
of matrices increases.

This paper is organized as follows. Section 2 presents a brief analysis on the conditioning of
the problem. LRBFGS method is stated in Section 3. Section 4 presents the implementation
techniques for Sn++. Numerical experiments are reported in Section 5.

1http://bezout.dm.unipi.it/software/mmtoolbox/

2

http://bezout.dm.unipi.it/software/mmtoolbox/

A Riemannian LBFGS Algorithm for Computing the Matrix Geometric Mean Xinru Yuan et al.

2 Conditioning of the sum of squared distances function

Methods such as BFGS that gather second-order information are expected to dramatically
outperform steepest descent methods when the Hessian of the objective function is very ill-
conditioned at the minimizer. Indeed, steepest descent methods are notoriously slow in such
a situation due to the hemstitching phenomenon. In this section, we show that the condition
number of the Hessian of cost function F in (2) admits an upper bound that behaves like the
logarithm of the largest condition number of the data points. Hence a large condition number
cannot be achieved in practice for the Hessian of F . This result sheds new light on the finding
in [17] that BFGS and Newton’s method do not outperform the steepest descent approach.
Nevertheless, we will show numerically in Section 5 that LRBFGS tends to outperform steepest
descent and conjugate gradient methods in various situations.

Rentmeesters et al. [25] derived bounds on the eigenvalues of the Hessian of the squared
distance function fA(X) = 1

2δ(X,A)2. Notice that Riemannian metric (1) is invariant under
the isometry y 7→ L−1yL−T where X = LLT , and so is function fA(X). As a result, without
loss of generality we can assume X = I. The bounds for the Hessian of fA(X) at X = I are
given by, see [25],

1 ≤ Hess fA(X)[∆X,∆X]

‖∆X‖2
≤ log κ

2
coth

(
log κ

2

)
, (4)

where κ is the condition number of A and log stands for the natural logarithm.
We are interested in the conditioning of problem (2) at the minimizer, i.e., the Karcher

mean—denoted by µ—of data points {A1, . . . , AK}. Again without loss of generally, we can
assume µ = I. Otherwise, we can “translate” the problem to identity using an isometry. It is
straightforward to generalize the bounds for the Hessian of our cost function F from inequality
(4) since F (X) = 1

2K

∑K
i=1 fAi(X). At the Karcher mean µ, we have

1 ≤ HessF (µ)[∆µ,∆µ]

‖∆µ‖2
≤ 1

K

K∑
i=1

log κi
2

coth

(
log κi

2

)
≤ max

i

[
log κi

2
coth

(
log κi

2

)]
(5)

≤ 1 +
log(maxi κi)

2
, (6)

where κi is the condition number of Ai. We are using the fact that function x coth(x) is strictly
increasing and bounded by 1 + x on [0,∞] in (5) to get (6). For example, assume that there
is at least one very ill-conditioned point in set {A1, . . . , AK}, with condition number 1010.
From (6) the upper bound on the condition number of the Hessian at the minimizer is given by
1 + log(1010)/2 ≈ 12.51. Based on above discussion, we are ready to conclude that we cannot
expect a very ill-conditioned Hessian at the minimizer in practice.

3 Brief description of limited-memory Riemannian BFGS

We start the description of the LRBFGS method—which we adapt to problem (2) in the next
section—by recalling its foundation, the RBFGS method. More details can be found in [14].
The methods proposed in [14] are retraction-based line-search methods, namely, the iterate xk
on the manifold M is updated by

xk+1 = Rxk(αkηk), (7)

3

A Riemannian LBFGS Algorithm for Computing the Matrix Geometric Mean Xinru Yuan et al.

where R is a retraction on M, ηk ∈ TxkM is the search direction and αk ∈ R denotes the
stepsize. A definition of retraction appears in [2, Definition 4.1.1]. The search direction in (7)
is ηk = −B−1k grad f(xk), where Bk is a linear operator that approximates the action of the
Hessian on TxkM. More specifically, Bk incurs a rank-two update at each iteration, see [14,
Algorithm 1] for the update formula. In addition, the RBFGS method requires the Riemannian
manifold M to be equipped with a vector transport T . A vector transport T : TM⊕TM→
TM, (ηx, ξx) 7→ Tηxξx with associated retraction R is a smooth mapping such that, for all
(x, ηx) in the domain of R and all ξx, ζx ∈ TxM, it holds that (i) Tηxξx ∈ TR(ηx)M, (ii)
T0xξx = ξx, (iii) Tηx is a linear map. Additionally, the RBFGS method in [14, Algorithm 1]
requires the vector transport, denoted by TS , to be isometric, i.e., gR(ηx)(TSηx ξx, TSηx ζx) =
gx(ξx, ζx). Throughout the paper, we use the notation TS for isometric vector transport.

However, for large-scale problems, the RBFGS method may require excessive computation
time and storage space, since it stores and transports linear operator B−1k as a dense matrix. A
well-known way to remedy this drawback is the limited-memory version of BFGS, which stores
only the m most recent rank-two updates of B. A Riemannian version of the limited-memory
BFGS was proposed in [14, Algorithm 2]. Our actual instantiation depends on this algorithm.
For the SPD Karcher mean problem, we modify this version to use an alternate update in [13]
that allows the line search using the Riemannian Wolfe conditions to be replaced by the Armijo
line search addressed in [2, Algorithm 1].

4 Implementation

This section presents the implementation details of all the required objects for LRBFGS on
the SPD Karcher mean computation problem, including a tangent vector, Riemannian metric,
vector transport, retraction, and Riemannian gradient of the objective function.

4.1 Representations of a tangent vector and the Riemannian metric

As noted in the introduction, the tangent space to Sn++ at X can be identified as the set of
symmetric matrices. Thus, Sn++ is a d-dimensional submanifold of an n2-dimensional Euclidean
space E , where d = n(n+1)/2. A tangent vector in TX Sn++ can be represented either by an n2-
dimensional vector in E , or a d-dimensional vector of coordinates in a given basis BX of TX Sn++.
The n2-dimensional representation is called the extrinsic approach, and the d-dimensional one
is called the intrinsic approach. The computational benefits of using intrinsic representation are
addressed in [11, 12]: (i) The Riemannian metric is reduced to the Euclidean metric. (ii) There
exists an isometric vector transport, called vector transport by parallelization, whose intrinsic
implementation is simply the identity. (iii) Working in d-dimensions reduces the computational
complexity of linear operations on the tangent space. However, the intrinsic representation
requires a basis of the tangent space, and in order to obtain those computational benefits, it
must be orthonormal. Hence, if a manifold admits a smooth field of orthonormal tangent space
bases with acceptable computationally complexity, the intrinsic representation often leads to a
very efficient implementation. This property holds for manifold Sn++ as shown next.

The orthonormal basis of TX Sn++ that we select is given by BX = {LeieTi LT : i = 1, . . . , n}∪
{ 1√

2
L(eie

T
j + eje

T
i)LT , i < j, i = 1, . . . , n, j = 1, . . . , n}, where X = LLT is the Cholesky

decomposition, and {ei, . . . , en} is the standard basis of n-dimensional Euclidean space. It is
easy to verify the orthonormality of BX under Riemannian metric (1), i.e., B[XBX = Id×d for
all X. (The notation a[denotes the function a[: TXM → R : v 7→ gX(a, v), where g stands
for the affine-invariant metric (1).) We assume throughout the paper that BX stands for our

4

A Riemannian LBFGS Algorithm for Computing the Matrix Geometric Mean Xinru Yuan et al.

selected orthonormal basis of TX Sn++. Given ξX , ηX ∈ TX Sn++, their intrinsic representations

are uX = B[XξX and vX = B[XηX respectively. In practice, the d-dimensional representation of
tangent vector ξX ∈ TX Sn++ is obtained by taking the diagonal elements of L−1ξXL

−T , and

its upper triangular elements row-wise and multiplied by
√

2. The intrinsic representation of
the Riemannian metric (1) is then given by

g̃(uX , vX) := gX(BXuX , BXvX) = uTXvX .

A detailed proof can be found in [11, Section 9.2.1].

4.2 Retraction and vector transport

The choice of retraction and vector transport is a key step in the design of efficient Riemannian
optimization algorithms. The exponential mapping is a natural choice for retraction. When
Sn++ is endowed with the affine-invariant Riemannian metric (1), the exponential mapping is
given by, see [10],

ExpX(ξX) = X1/2 exp(X−1/2ξXX
−1/2)X1/2, (8)

for all X ∈ Sn++ and ξX ∈ TX Sn++. In practice, the exponential mapping (8) is expensive to
compute. More importantly, when computing the matrix exponential exp(B), eigenvalues of
matrix B with large magnitude can lead to numerical difficulties, such as overflow. Jeuris et
al. [17] proposed a retraction

RX(ξX) = X + ξX +
1

2
ξXX

−1ξX , (9)

which is a second order approximation to (8). Retraction (9) is cheaper to compute and tends
to avoid numerical overflow. Additionally, RX(ξX) remains symmetric positive-definite for all
X ∈ Sn++ and ξX ∈ TX Sn++.

Parallel translation is a particular instance of vector transport. The parallel translation on
Sn++ is given by, see [10],

TpηX (ξX) = X1/2 exp(
X−1/2ηXX

−1/2

2
)X−1/2ξXX

−1/2 exp(
X−1/2ηXX

−1/2

2
)X1/2. (10)

Unfortunately, the implementation of parallel translation (4.2) is computationally expensive.
We will thus resort to another vector transport, as follows.

Recently, Huang et al. [12] proposed a novel way to construct an isometric vector transport,
called vector transport by parallelization. For all X ∈ Sn++ and ξX , ηX ∈ TX Sn++, the vector
transport by parallelization is given by

TSηX ξX = BYB
[
XξX , (11)

where Y = RX(ηX). In fact, the intrinsic representation of this vector transport is simply the
identity, i.e.,

T dS uX = uX , (12)

where T dS denotes the intrinsic approach of TS and uX is the intrinsic representation of ξX . The
derivation of (12) can be found in [11, Section 9.5.2].

Another possible choice for the vector transport is the identity: TidηX (ξX) = ξX . However,
vector transport Tid is not applicable to the LRBFGS method since it is not isometric under
Riemannian metric (1).

Our implementation of LRBFGS for the SPD Karcher mean computation uses retraction (9)
and the intrinsic approach of vector transport (12).

5

A Riemannian LBFGS Algorithm for Computing the Matrix Geometric Mean Xinru Yuan et al.

4.3 Riemannian gradient of the sum of squared distances function

The Riemannian gradient of cost function F in (2) is given by, see [18],

gradF (X) = − 1

K

K∑
i=1

Exp−1X (Ai), (13)

where Exp−1x (y) is the log-mapping, i.e., the inverse exponential mapping. On Sn++, the log-
mapping is computed as

Exp−1X (ξX) = X1/2 log(X−1/2ξXX
−1/2)X1/2 = log(ξXX

−1)X. (14)

Note that the computational complexity of the Riemannian gradient is less than that con-
veyed in formula (14) since the most expensive logarithm computation is already available
from the evaluation of the cost function at X. Specifically, each term in (13) is computed as

−Exp−1X (Ai) = − log(AiX
−1)X = log(XA−1i)X = A

−1/2
i log(A

−1/2
i XA

−1/2
i)A

1/2
i X−1, and the

term log(A
−1/2
i XA

−1/2
i) is available from the evaluation of the cost function F (X).

We have thus gathered all the necessary ingredients to implement the LRBFGS method
of [13] for the SPD Karcher mean problem (2).

5 Experiments

We compare the performance of the LRBFGS method described earlier and existing state-of-the-
art methods, including the Riemannian steepest descent (RSD) [2, Page 62], the Riemannian
conjugate gradient (RCG) [2, Algorithm 13], and the Richardson-like iteration (RL) [7]. In
particular, we use the implementation of the RL iteration in Bini et al.’s Matrix Means Toolbox.1

In our practical implementation, the stepsizes in LRBFGS and RSD are selected with a
line search method that satisfies the Armijo condition [2, Algorithm 1], with Armijo parameter
c1 = 10−4, backtracking reduction factor γ = 0.25, and initial stepsize α = 2/(1 + L) in [24]
where L is the upper bound at the initial iterate defined in inequality (6). The line search
procedure in RCG enforces the strong Wolfe condition [27, Algorithm 3.5] with constant c1 =
10−4 and c2 = 0.999. In LRBFGS, we set the memory size m to 2. The d-dimensional
intrinsic representation is used for tangent vectors. Retraction (9) and the vector transport
by parallelization (12) are used. When the iterate is close enough to the minimizer (in our
experiments, when the norm of the Riemannian gradient is less than 10−4), in order to achieve
sufficient accuracy, we switch the line search procedure to another stepsize selection strategy.
For RSD and RCG, the choice of stepsize follows the rule introduced in [24, Section 3.6]. For
LRBFGS, the stepsize is set to 1. Our choice of the initial iterate is the Arithmetic-Harmonic
mean [16] of data points. We run the algorithms until they reach their highest accuracy.

For simplicity of notation, throughout this section we denote the number, dimension, and
condition number of the matrices by K, n, and κ respectively. For each choice of (K,n) and
the range of conditioning desired, a single experiment comprises generating 5 sets of K random
n × n matrices with appropriate condition numbers, and running all 4 algorithms on each set
with the initial iterate described earlier. The result of the experiment is the distance to the
true Karcher mean averaged over the 5 sets as a function of iteration and time. All experiments
are performed using MATLAB R2014b in standard double precision arithmetic on a MAC OS
X platform with a 1.8 GHz CPU.

6

A Riemannian LBFGS Algorithm for Computing the Matrix Geometric Mean Xinru Yuan et al.

5.1 Experiment design

When defining each set of experiments, we choose a desired (true) Karcher mean µ, and
construct data matrices Ai’s such that their Karcher mean is exactly µ, i.e., equation∑K
i=1 Exp−1µ (Ai) = 0 holds. The benefits of this scheme are: (i) We can control the con-

ditioning of µ and Ai’s, and observe the influence of the conditioning on the performance of
algorithms. (ii) Since the true Karcher mean µ is known, we can monitor the distance δ between
µ and the iterates produced by various algorithms, thereby removing the need to consider the
effects of a terminating criteria.

Given a Karcher mean µ, the Ai’s are constructed as follows: (i) Generate Wi in Matlab as
follows, with n being the size of matrix, f the order of magnitude of the condition number, and
p some number less than n,

[O, ~] = qr(randn(n));

D = diag([rand(1,p)+1, (rand(1,n-p)+1)*10^(-f)]);

W = O * D * O’; W = W/norm(W,2);

(ii) Compute ηi = Exp−1µ (Wi). (iii) Enforce the condition
∑K
i=1 ηi = 0 on ηi’s. Specifically,

we test on data sets with K = 3, 30, 100. In the case of K = 3, we enforce η3 = −η1 − η2.
When K = 30 or K = 100, let ki = 5(k − 1) + i for 1 ≤ k ≤ K/5 and 1 ≤ i ≤ 5. We

enforce ηk4 = −ηk1 − 0.5ηk3 and ηk5 = −ηk2 − 0.5ηk3 , which gives
∑5
i=1 ηki = 0, and thus∑K/5

k=1

∑5
i=1 ηki = 0. (iv) Compute Ai = Expµ(ηi).

It should be pointed out that instead of producing ηi directly, we produce Wi first and obtain
ηi from the log-mapping, since this procedure gives us greater control over the conditioning
of data points. As discussed in Section 2, we can take the Karcher mean µ as the identity
matrix in numerical experiments, since we can “translate” the data set {µ,A1, . . . , AK} to
{I, L−1A1L

−T , . . . , L−1AKL
−T } using an isometry, where µ = LLT .

5.2 Numerical results

We now compare the performances of all 4 algorithms on various data sets by examining per-
formance results from representative experiments for various choices of (K,n) and condition-
ing. The Matlab code that generated the figures is available from http://www.math.fsu.edu/

~whuang2/papers/ARLBACMGM.htm.
Figure 1 displays the performance results of different algorithms running on well-conditioned

data set with small K and n. Specifically, we take K = 3, n = 3, and 1 ≤ κ(Ai) ≤ 10. It is
seen that LRBFGS converges the fastest in terms of number of iterations, but is outperformed
by RL in terms of computation time. Note that our LRBFGS Matlab library is designed to
be user friendly, hence for small-scale problems, the Matlab library machinery dominates the
computation time. Thus the findings on small-scale problems may be quite different if Matlab
is replaced by a compiled language such as C++. This is no longer the case for the large-scale
problems considered next, as it is then the BLAS calls that dominate the computation time.

Figure 2 and Figure 3 report the results of tests conducted on data sets with large
K (K = 100, n = 3) and large n (K = 30, n = 100) respectively. Note that when n = 100,
the dimension of manifold Sn++ is d = n(n + 1)/2 = 5050. In each case, both well-conditioned
and ill-conditioned data sets are tested. From Figure 2 and Figure 3, we observe that LRBFGS
outperforms the state-of-the-art algorithms in term of computation time and number of itera-
tions per unit of accuracy required. On a well-conditioned data set, RSD, RCG and RL require
similar numbers of iterations to achieve the same accuracy, while on an ill-conditioned data set,
RL requires significantly more iterations.

7

http://www.math.fsu.edu/~whuang2/papers/ARLBACMGM.htm
http://www.math.fsu.edu/~whuang2/papers/ARLBACMGM.htm

A Riemannian LBFGS Algorithm for Computing the Matrix Geometric Mean Xinru Yuan et al.

time (s)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

d
is
t(
µ
,
X

t)

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

RSD
RCG
LRBFGS
RL Iteration

iterations
0 5 10 15 20 25 30 35 40 45

d
is
t(
µ
,
X

k
)

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

RSD
RCG
LRBFGS
RL Iteration

Figure 1: Evolution of averaged distance between current iterate and the exact Karcher mean
with respect to time and iterations with K = 3, n = 3, and 1 ≤ κ(Ai) ≤ 20.

References

[1] P.-A. Absil and Pierre-Yves Gousenbourger. Differentiable piecewise-Bezier surfaces on Rieman-
nian manifolds. Technical report, ICTEAM Institute, Universite catholique de Louvain, 2015.

[2] P.-A. Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix mani-
folds. Princeton University Press, 2008.

[3] Bijan Afsari, Roberto Tron, and René Vidal. On the convergence of gradient descent for finding
the Riemannian center of mass. SIAM Journal on Control and Optimization, 51(3):2230–2260,
2013.

[4] T Ando, Chi-Kwong Li, and Roy Mathias. Geometric means. Linear algebra and its applications,
385:305–334, 2004.

[5] F Barbaresco. Innovative tools for radar signal processing based on Cartans geometry of SPD
matrices & information geometry. In Radar Conference, 2008. RADAR’08. IEEE, pages 1–6.
IEEE, 2008.

[6] Rajendra Bhatia and Rajeeva L Karandikar. Monotonicity of the matrix geometric mean. Math-
ematische Annalen, 353(4):1453–1467, 2012.

[7] Dario A Bini and Bruno Iannazzo. Computing the Karcher mean of symmetric positive definite
matrices. Linear Algebra and its Applications, 438(4):1700–1710, 2013.

[8] Guang Cheng, Hesamoddin Salehian, and Baba C Vemuri. Efficient recursive algorithms for
computing the mean diffusion tensor and applications to DTI segmentation. In Computer Vision–
ECCV 2012, pages 390–401. Springer, 2012.

[9] P Thomas Fletcher and Sarang Joshi. Riemannian geometry for the statistical analysis of diffusion
tensor data. Signal Processing, 87(2):250–262, 2007.

[10] P Thomas Fletcher, Conglin Lu, Stephen M Pizer, and Sarang Joshi. Principal geodesic analysis
on symmetric spaces: statistics of diffusion tensors. Computer Vision and Mathematical Methods
in Medical and Biomedical Image Analysis, 3117:87–98, 2004.

[11] Wen Huang. Optimization algorithms on Riemannian manifolds with applications. PhD thesis,
Dept. of Mathematics, Florida State University, 2012.

[12] Wen Huang, P.-A. Absil, and K A Gallivan. A Riemannian symmetric rank-one trust-region
method. Mathematical Programming, 2014.

[13] Wen Huang, P.-A. Absil, and K. A. Gallivan. A Riemannian BFGS method for nonconvex opti-
mization problems. Technical Report UCL-INMA-2015.11, U.C.Louvain, 2015.

8

A Riemannian LBFGS Algorithm for Computing the Matrix Geometric Mean Xinru Yuan et al.

time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

d
is
t(
µ
,
X

t)

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

RSD
RCG
LRBFGS
RL Iteration

iterations
0 10 20 30 40 50 60 70

d
is
t(
µ
,
X

k
)

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

RSD
RCG
LRBFGS
RL Iteration

time (s)
0 0.2 0.4 0.6 0.8 1 1.2

d
is
t(
µ
,
X

t)

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

RSD
RCG
LRBFGS
RL Iteration

iterations
20 40 60 80 100 120 140

d
is
t(
µ
,
X

k
)

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

RSD
RCG
LRBFGS
RL Iteration

Figure 2: Evolution of averaged distance between current iterate and the exact Karcher mean
with respect to time and iterations with K = 100 and n = 3; Top: 1 ≤ κ(Ai) ≤ 200; Bottom:
103 ≤ κ(Ai) ≤ 2 · 106

[14] Wen Huang, K. A. Gallivan, and P.-A. Absil. A Broyden class of quasi-Newton methods for
Riemannian optimization. SIAM Journal on Optimization, 25(3):1660–1685, 2015.

[15] Wen Huang, Kyle A Gallivan, Anuj Srivastava, Pierre-Antoine Absil, et al. Riemannian op-
timization for elastic shape analysis. In Proceedings of the 21st Internaltional Symposium on
Mathematical Theory of Networks and Systems (MTNS 2014), 2014.

[16] Ben Jeuris and Raf Vandebril. Geometric mean algorithms based on harmonic and arithmetic
iterations. In Geometric Science of Information, pages 785–793. Springer, 2013.

[17] Ben Jeuris, Raf Vandebril, and Bart Vandereycken. A survey and comparison of contemporary
algorithms for computing the matrix geometric mean. Electronic Transactions on Numerical Anal-
ysis, 39(EPFL-ARTICLE-197637):379–402, 2012.

[18] H. Karcher. Riemannian center of mass and mollifier smoothing. Communications on Pure and
Applied Mathematics, 1977.

[19] J Lapuyade-Lahorgue and F Barbaresco. Radar detection using Siegel distance between autore-
gressive processes, application to HF and X-band radar. In Radar Conference, 2008. RADAR’08.
IEEE, pages 1–6. IEEE, 2008.

[20] Jimmie Lawson and Yongdo Lim. Monotonic properties of the least squares mean. Mathematische
Annalen, 351(2):267–279, 2011.

9

A Riemannian LBFGS Algorithm for Computing the Matrix Geometric Mean Xinru Yuan et al.

time (s)
0 1 2 3 4 5 6

d
is
t(
µ
,
X

t)

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

RSD
RCG
LRBFGS
RL Iteration

iterations
0 5 10 15 20 25 30 35 40 45 50

d
is
t(
µ
,
X

k
)

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

RSD
RCG
LRBFGS
RL Iteration

time (s)
0 2 4 6 8 10 12

d
is
t(
µ
,
X

t)

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

RSD
RCG
LRBFGS
RL Iteration

iterations
0 50 100 150

d
is
t(
µ
,
X

k
)

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

RSD
RCG
LRBFGS
RL Iteration

Figure 3: Evolution of averaged distance between current iterate and the exact Karcher mean
with respect to time and iterations with K = 30 and n = 100; Top: 1 ≤ κ(Ai) ≤ 20; Bottom:
104 ≤ κ(Ai) ≤ 2 · 106

[21] Maher Moakher. On the averaging of symmetric positive-definite tensors. Journal of Elasticity,
82(3):273–296, 2006.

[22] Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Riemannian framework for tensor comput-
ing. International Journal of Computer Vision, 66(1):41–66, 2006.

[23] Yogesh Rathi, Allen Tannenbaum, and Oleg Michailovich. Segmenting images on the tensor
manifold. In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on,
pages 1–8. IEEE, 2007.

[24] Quentin Rentmeesters. Algorithms for data fitting on some common homogeneous spaces. PhD
thesis, UCL, 2013.

[25] Quentin Rentmeesters and P.-A. Absil. Algorithm comprison for Karcher mean computation of
rotation matrices and diffusion tensors. 19th European Signal Processing Conference (EUSIPCO
2011), 2011.

[26] V Schulz, Martin Siebenborn, and Kathrin Welker. Structured inverse modeling in parabolic
diffusion problems. arXiv preprint arXiv:1409.3464, 2014.

[27] Stephen J Wright and Jorge Nocedal. Numerical optimization, volume 2. Springer New York,
1999.

10

	Introduction
	Conditioning of the sum of squared distances function
	Brief description of limited-memory Riemannian BFGS
	Implementation
	Representations of a tangent vector and the Riemannian metric
	Retraction and vector transport
	Riemannian gradient of the sum of squared distances function

	Experiments
	Experiment design
	Numerical results

