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Problem Statement

Optimization on Manifolds with Structure: .

Xr'reuj\rll F(x) = f(x) + h(x),

@ M is a finite-dimensional Riemannian manifold;

@ f is smooth and may be nonconvex; and

@ h(x) is continuous and convex but may be nonsmooth;
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Problem Statement

Optimization on Manifolds with Structure:

Xr'reuj\rll F(x) = f(x) + h(x),

@ M is a finite-dimensional Riemannian manifold;
@ f is smooth and may be nonconvex; and

@ h(x) is continuous and convex but may be nonsmooth;

Applications: sparse PCA [ZHTO06], compressed model [OLCO13],
sparse partial least squares regression [CSGT18], sparse inverse
covariance estimation [BESS19], sparse blind deconvolution [ZLK*17],
and clustering [HWGVD22].
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@ Euclidean proximal gradient method and its variants;

Riemannian proximal gradient method and its variants;
@ A Riemannian proximal Newton method;

@ Numerical experiments;
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Euclidean Proximal Gradient Method and its variants

Optimization with Structure: M =R"

Q;}i}gﬂ F(x) = f(x) + h(x),
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Euclidean Proximal Gradient Method and its variants

Optimization with Structure: M =R"

g]l.}@ F(x) = f(x) + h(x),

@ Proximal Gradient
@ Accelerated versions

Proximal inexact Newton

Proximal quasi-Newton
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Euclidean Proximal Gradient Method and its variants

Optimization with Structure: M =R"

g]l.}@ F(x) = f(x) + h(x),

Given xp',

{ di = argmin, (VF(x), p) + 511plIE + b0« + p)

Proximal Gradient X4l = Xk + d.

@ Accelerated versions

Proximal inexact Newton

Proximal quasi-Newton

1. The update rule: x1 = arg min (VF(xc), x — xi) + £|x — xi||2 4+ h(x).
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Euclidean Proximal Gradient Method and its variants

Optimization with Structure: M =R"

g]il@ F(x) = f(x) + h(x),

Given xp,

{ di = argmin, (VF(x), p) + 5llpllE + h(xi + p)

@ Proximal Gradient Xk41 = Xk + di.
@ Accelerated versions @ h = 0: reduce to steepest descent method;
@ Proximal inexact Newton @ Any limit point is a critical point;
. . @ O (}) sublinear convergence rate for convex f
@ Proximal quasi-Newton and A
@ Linear convergence rate for strongly convex f

and convex h;

@ Local convergence rate by KL property;
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Euclidean Proximal Gradient Method and its variants

Optimization with Structure: M =R"

g]l.}@ F(x) = f(x) + h(x),

Given xp, let yo = xo, to = 1;

dy, = argmin, (Vf(y«), p) + 51lpllF + A(yk + p)

@ Proximal Gradient Xit1 = yk + dy,
@ Accelerated versions b1 = A
Yk+1 = Xk+1 + &T(Xkﬂ — Xk)-

@ Proximal inexact Newton

@ Proximal quasi-Newton
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Euclidean Proximal Gradient Method and its variants

Optimization with Structure: M =R"

g]il@ F(x) = f(x) + h(x),

Given xp, let yo = xo, to = 1;

dy, = argmin, (Vf(y«), p) + 51lpllF + A(yk + p)

@ Proximal Gradient Xit1 = yk + dy,
. V424141
@ Accelerated versions b1 = 72

Vet = Xkt + 5 (k1 — xk).-

t
@ Proximal inexact Newton -
@ A representative one: FISTA [BT09];

® Proximal quasi-Newton @ Based on the Nesterov momentum technique;

@ O () sublinear convergence rate for convex f
and h;

[BT09] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183-202, January 2009.
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Euclidean Proximal Gradient Method and its variants

Optimization with Structure: M =R"

g]l.}@ F(x) = f(x) + h(x),

Given xp;

{ di = argmin, (Vf(xk), p) + 5 (p, Hkp) + h(xx + p)

Proximal Gradient Xip1 = Xk + txdy, for a step size tx

@ Accelerated versions

Proximal inexact Newton

Proximal quasi-Newton
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Euclidean Proximal Gradient Method and its variants

Optimization with Structure: M =R"

g]il@ F(x) = f(x) + h(x),

Given xp;

{ di = argmin, (Vf(xk), p) + 5 (p, Hkp) + h(xx + p)

@ Proximal Gradient Xip1 = Xk + txdy, for a step size tx

@ Accelerated versions @ Hy is Hessian or a positive definite

. . approximation to Hessian [LSS14, MYZZ22];
@ Proximal inexact Newton i .
@ ity is one for sufficiently large k;

@ Proximal quasi-Newton @ Quadratic/Superlinear convergence rate for

strongly convex f and convex h;

[LLS14] Jason D Lee, Yuekai Sun, and Michael A Saunders. Proximal newton-type methods for
minimizing composite functions. SIAM Journal on Optimization, 24(3):1420-1443, 2014.

[MYZZ22] Boris S Mordukhovich, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A globally
convergent proximal newton-type method in nonsmooth convex optimization. Mathematical
Programming, pages 1-38, 2022.
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Euclidean Proximal Gradient Method and its variants

Optimization with Structure: M =R"

g]il@ F(x) = f(x) + h(x),

Given xo, Ho;

di = argmin, (VF(xc), p) + 5(p, Hkp) + h(x« + p)
Proximal Gradient

Xk+1 = Xk + tkdk7 for a step size ty

. Update Hi by a quasi-Newton formula
@ Accelerated versions

Proximal inexact Newton

Proximal quasi-Newton
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Euclidean Proximal Gradient Method and its variants

Optimization with Structure: M =R"

min F(x) = f(x) + h(x),

x€R"
Given xo, Ho;
_ _ dx = argmin, (Vf(xx), p) + %(p, Hip) + h(x« + p)
@ Proximal Gradient Xk41 = Xk + tidk, for a step size ti

. Update Hi by a quasi-Newton formula
@ Accelerated versions

. . @ Dennis-Moré condition = superlinear
Proximal inexact Newton convergence rate for strongly convex f and
convex h [LSS14];

@ Sublinear without the accuracy assumption on
H [ST16];

Proximal quasi-Newton

[LLS14] Jason D Lee, Yuekai Sun, and Michael A Saunders. Proximal newton-type methods for
minimizing composite functions. SIAM Journal on Optimization, 24(3):1420-1443, 2014.

[ST16] K. Scheinberg and X. Tang. Practical inexact proximal quasi-Newton method with global
complexity analysis. Mathematical Programming, (160):495-529, 2016.
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@ Euclidean proximal gradient method and its variants;
@ Riemannian proximal gradient method and its variants;
@ A Riemannian proximal Newton method;

@ Numerical experiments;
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Riemannian proximal gradient method and its variants

Optimization with Structure:

xnél/\rlt F(x) = f(x)+ h(x),
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Riemannian proximal gradient method and its variants

Optimization with Structure:

Xnenﬂrl[ F(x) = f(x)+ h(x),

@ Proximal Gradient 1
@ Proximal Gradient 2

@ Accelerated versions
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Riemannian proximal gradient method and its variants

Optimization with Structure:

xnélj\rll F(x) = f(x)+ h(x),

. ) [CMSZ20]: Given xq,
@ Proximal Gradient 1 ) L s
Nk = arg minger, M (VF(xi),m) + 3l + h(xi +n)

@ Proximal Gradient 2 { Xi+1 = Ry, (kmk) with an appropriate step size ay;

@ Accelerated versions
M

T~
A

[CMSZ20] S. Chen, S. Ma, A. Man-Cho So, and T. Zhang. Proximal gradient method for nonsmooth
optimization over the Stiefel manifold. SIAM Journal on Optimization, 30(1):210-239, 2020.
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Riemannian proximal gradient method and its variants

Optimization with Structure:

xnélj\rll F(x) = f(x)+ h(x),

. ) [CMSZ20]: Given xq,
@ Proximal Gradient 1 ) L s
Nk = arg minger, M (VF(xi),m) + 3l + h(xi +n)

@ Proximal Gradient 2 { Xi+1 = Ry, (kmk) with an appropriate step size ay;

@ Accelerated versions @ Direction in the tangent space;
.M

A\ @ Ambient space must be linear;
@ Solved by a semismooth Newton method,;

[

[CMSZ20] S. Chen, S. Ma, A. Man-Cho So, and T. Zhang. Proximal gradient method for nonsmooth
optimization over the Stiefel manifold. SIAM Journal on Optimization, 30(1):210-239, 2020.
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Riemannian proximal gradient method and its variants

Optimization with Structure:

xnél/\rlt F(x) = f(x)+ h(x),

. ) [CMSZ20]: Given xq,
@ Proximal Gradient 1 ) L s
Nk = arg minger, M (VF(xi),m) + 3l + h(xi +n)

@ Proximal Gradient 2 { Xi+1 = Ry, (kmk) with an appropriate step size ay;

@ Accelerated versions @ Direction in the tangent space;
M @ Ambient space must be linear;
A\ @ Solved by a semismooth Newton method,;
’ @ Any limit point is a critical point [CMSZ20, HW21b];
@ No local convergence rate results;

[CMSZ20] S. Chen, S. Ma, A. Man-Cho So, and T. Zhang. Proximal gradient method for nonsmooth
optimization over the Stiefel manifold. SIAM Journal on Optimization, 30(1):210-239, 2020.

[HW21b] W. Huang and K. Wei. An extension of fast iterative shrinkage-thresholding algorithm to
Riemannian optimization for sparse principal component analysis. Numerical Linear Algebra with
Applications, page 2409, 2021.
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Riemannian proximal gradient method and its variants

Optimization with Structure:

xnélj\rll F(x) = f(x)+ h(x),

[HW21a]: Given xo,

Let £y () = (gradf(xc),m)x + 5lnl%, + A(Ry (1));
@ Proximal Gradient 2 7k is a stationary point of £, and £y, (0) > £k(n«);
Xk+1 = Ry (k);

@ Proximal Gradient 1

@ Accelerated versions

[HW21a] W. Huang and K. Wei. Riemannian proximal gradient metho ds. Mathematical
Programming, 2021. published online, DOI:10.1007 /s10107-021-01632-3.
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Riemannian proximal gradient method and its variants

Optimization with Structure:

xnélj\rll F(x) = f(x)+ h(x),

[HW21a]: Given xo,

Let £y () = (gradf(xc),m)x + 5lnl%, + A(Ry (1));
@ Proximal Gradient 2 7k is a stationary point of £, and £y, (0) > £k(n«);
Xk+1 = Ry (k);

@ Proximal Gradient 1

@ Accelerated versions S
Direction in the tangent space;

Well-defined for general manifold;
Subproblem is difficult in general (simple for sphere);
Any limit point is a critical point;

O (#) rate for retraction convex f and h;

e 6 6 6 o o

Local convergence rate by Riemannian KL property;

[HW21a] W. Huang and K. Wei. Riemannian proximal gradient metho ds. Mathematical
Programming, 2021. published online, DOI:10.1007 /s10107-021-01632-3.
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Riemannian proximal gradient method and its variants

Optimization with Structure:

xnélj\rll F(x) = f(x)+ h(x),

) ) [HW21a]: Given xo,
@ Proximal Gradient 1

Ty, = argmin, e, aq (grad f(ve),n) + 5nlE + h(ye +n)

@ Proximal Gradient 2 X1 = Ry (y,)
@ Accelerated versions bt = 2
Yk+1 = ka+1 (i;:lk Rﬁil (Xk))
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Riemannian proximal gradient method and its variants

Optimization with Structure:

xnélj\rll F(x) = f(x)+ h(x),

[HW21a]: Given xo,

@ Proximal Gradient 1 . L2
Ny, = argmin, e g (grad f(y«),n) + 3 lInllF + h(yx +n)

@ Proximal Gradient 2 X1 = Ry (y,)
@ Accelerated versions bt = 2
Yk+1 = ka+1 (i;:lk Rﬁil (Xk))

@ A representative on in [HW21b], also see [HW21a];
@ Observe acceleration empirically;

@ No O(k%) convergence rate results;
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Riemannian proximal gradient method and its variants

Optimization with Structure:

xnél/\rlt F(x) = f(x)+ h(x),

No proximal Newton or quasi-Newton methods
on Riemannian manifold

Speaker: Wen Huang A Riemannian Proximal Newton Method



Riemannian proximal gradient method and its variants

Optimization with Structure:

xnél/\rlt F(x) = f(x)+ h(x),

No proximal Newton or quasi-Newton methods
on Riemannian manifold

Task: Develop a Riemannian proximal Newton method
that has superlinear local convergence rate
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e Euclidean proximal gradient method and its variants;
@ Riemannian proximal gradient method and its variants;
@ A Riemannian proximal Newton method;

@ Numerical experiments;
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e Euclidean proximal gradient method and its variants;
@ Riemannian proximal gradient method and its variants;
@ A Riemannian proximal Newton method;

@ Numerical experiments;

Note that we focus on:
@ M is an Riemannian embedded submanifold of a Euclidean space;

o h(x) = pllx][1;
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A Riemannian proximal Newton method

A native generalization

Euclidean version:

{ dk = argmin, (VF(xk), p) + 3 (p, V*f(xk)p) + h(xk + p)
X1 = Xk + di

A native generalization by replacing the Euclidean gradient and Hessian
by the Riemannian gradient and Hessian:

{ Nk = arg minger, am (grad f(xe), ) + %(n, Hess f(xx)n) + h(xk + 1)
Xi+1 = Ry, (1)
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A Riemannian proximal Newton method

A native generalization

Euclidean version:

{ dk = argmin, (VF(xk), p) + 3 (p, V*f(xk)p) + h(xk + p)
X1 = Xk + di

A native generalization by replacing the Euclidean gradient and Hessian
by the Riemannian gradient and Hessian:

{ Nk = arg minger, am (grad f(xe), ) + %(n, Hess f(xx)n) + h(xk + 1)
Xi+1 = Ry, (1)

Does it converge superlinearly locally?
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A Riemannian proximal Newton method

A native generalization

Euclidean version:

{ dk = argmin, (VF(xk), p) + 3 (p, V*f(xk)p) + h(xk + p)
X1 = Xk + di

A native generalization by replacing the Euclidean gradient and Hessian
by the Riemannian gradient and Hessian:

{ Nk = arg minger, am (grad f(xe), ) + %(n, Hess f(xx)n) + h(xk + 1)
Xi+1 = Ry, (1)

Does it converge superlinearly locally?

Not necessarily!
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A Riemannian proximal Newton method

A native generalization

Consider the Sparse PCA over sphere:

min —xT AT Ax + pl|x]|1,
xesn—t

where f(x) = —xTATAx, h(x) = pl|x||1.

p=15

1070

the norm of search direction

107®

iter number

Figure: Comparisons of native generalization (RPN-N) and the proximal
gradient method (ManPG) in [CMSZ20].
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A Riemannian proximal Newton method

A native generalization

Euclidean version:

{ di = argmin, (VF(xk), p) + 3 (p, V*F(xx)p) + h(xk + p)
Xk+1 = Xk + di

A native generalization by replacing the Euclidean gradient and Hessian
by the Riemannian gradient and Hessian:

{ Mk = arg minyer, aq (grad f(xi),m) + 3 (n, Hess f(xi)n) + h(x + 1)
X1 = Ry (M)

@ xx +nin his only a first order approximation;
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A Riemannian proximal Newton method

A native generalization

Euclidean version:

{ di = argmin, (VF(xk), p) + 3 (p, V*F(xx)p) + h(xk + p)
Xk+1 = Xk + di

A native generalization by replacing the Euclidean gradient and Hessian
by the Riemannian gradient and Hessian:

{ Mk = arg minyer, aq (grad f(xi),m) + 3 (n, Hess f(xi)n) + h(x +n)
X1 = Ry (M)

{ ik = arg minger, a4 (grad f(xi),n) + 3 (n, Hess f(x)n) + h(x +n + 31(n,7))
X1 = Ry (M)

@ xx +nin his only a first order approximation;

@ If an second order approximation is used, then the subproblem is
difficult to solve;
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A Riemannian proximal Newton method
The proposed approach

A Riemannian proximal Newton method (RPN)

© Compute
v(xc) = argmin,ep, g (%) + (VF(xi), v) +
@ Find u(xx) € Ty, M by solving
JOa)[u(xe)] = —v(x),
where J(x¢) = — [In =Ny + tA (V3 (xk) — Lx,)], A
defined later ;

Ry (u(xc));

Q Xk+1 =

= IVIIE + h(x + v);

x and L, are
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A Riemannian proximal Newton method
The proposed approach

A Riemannian proximal Newton method (RPN)

@ Compute
v(xc) = argmin,er, a Fx) +(VF(xi), v) + 5 [IVIIE + h(x + v);
@ Find u(xx) € Ty, M by solving
J0a)[u(xe)] = —v(xk),
where J(x) = — [In =Ny, + tA (V2F(xk) — Ly,)], Ax, and Ly, are
defined later ;
Q xit1 = Ry (u(xk));

v

@ Step 1: compute a Riemannian proximal gradient direction (ManPG)
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A Riemannian proximal Newton method
The proposed approach

A Riemannian proximal Newton method (RPN)

@ Compute
v(xc) = argmin,er, a Fx) +(VF(x), v) + 5 [IVIE + h(x + v);
@ Find u(xx) € Ty, M by solving
JOa)[u(xe)] = —v(xk),
where J(x) = — [In =Ny, + tA (V2F(xk) — Ly,)], Ax, and Ly, are
defined later ;
Q xit1 = Ry (u(xk));

v

Step 1: compute a Riemannian proximal gradient direction (ManPG)

© 0

Step 2: compute the Riemannian proximal Newton direction, where
J(xk) is from a generalized Jacobi of v(xk);

Speaker: Wen Huang A Riemannian Proximal Newton Method



A Riemannian proximal Newton method
The proposed approach

A Riemannian proximal Newton method (RPN)

@ Compute
v(xc) = argmin,er, a Fx) +(VF(x), v) + 5 [IVIE + h(x + v);
@ Find u(xx) € Ty, M by solving
J0a)[u(xe)] = —v(xk),
where J(x) = — [In =Ny, + tA (V2F(xk) — Ly,)], Ax, and Ly, are
defined later ;

Xkt1 = Ry (u(xx));

v

Step 1: compute a Riemannian proximal gradient direction (ManPG)

Step 2: compute the Riemannian proximal Newton direction, where
J(xk) is from a generalized Jacobi of v(x);

© 0060 O

Step 3: Update iterate by a retraction;
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A Riemannian proximal Newton method
The proposed approach

A Riemannian proximal Newton method (RPN)

@ Compute
v(xe) = argmingen, o F0x) + (V). v) + gllvIE + h(x+v);
@ Find u(xx) € Ty, M by solving
J(xic)[u(xi)] = —v(xi),
where J(x) = — [In =Ny, + tA (V2F(xk) — Ly,)], Ax, and Ly, are
defined later ;
Q xkr11 = Ry (u(xk));

Next, we will show:
@ G-semismoothness of v(xk) and its generalized Jacobi;

@ Superlinear convergence rate;
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A Riemannian proximal Newton method

G-semismoothness of v(x)

Definition (G-Semismoothness [Gow04])

Let F: D — R™ where D C R"” be an open set, £ : D = R™*" be a
nonempty set-valued mapping. We say that F is G-semismooth at x € D
with respect to K if for any J € K(x + d),

F(x +d) — F(x) — Jd = o(||d|)) as d — 0.

If Fis G-semismooth at any x € D with respect to K, then F is called a
G-semismooth function with respect to /.

The standard definition of semismoothness additional requires:
@ /C is compact valued, upper semicontinuous set-valued mapping;
@ F is a locally Lipschitz continuous function;

@ F is directionally differentiable at x;

[Gow04] M Seetharama Gowda. Inverse and implicit function theorems for h-differentiable and
semismooth functions. Optimization Methods and Software, 19(5):443-461, 2004.
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A Riemannian proximal Newton method

G-semismoothness of v(x)

v(x) (dropping the subscript for simplicity)

1
v(x) = argmin f(x)+ (Vf(x),v) + —||v]|% 4+ h(x + v);
veT, M 2t
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A Riemannian proximal Newton method

G-semismoothness of v(x)

v(x) (dropping the subscript for simplicity)

1
v(x) = argmin f(x)+ (Vf(x),v) + —||v]|% 4+ h(x + v);
veT, M 2t

Above problem can be rewritten as

. 1
arg min (€v) + o ||VIE -+ hx +v)

X

where B v = ((by, V), (bo, v),..., {bm,v))T, and {by,..., by} forms an
orthonormal basis of T} M.
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A Riemannian proximal Newton method

G-semismoothness of v(x)

The Lagrangian function:

L(v,\) = (&, v) + %w, v) 4+ h(X +v) — (\,Blv).

Therefore

[ oL(v,\)=0 v = Proxe, (x — t(€x — BxA)) — x
KKT'{ Blv=0 :{ Blv=0

where Proxeg(z) = argmin, cgnxs 5[|v — 2||% + th(v).

Define

T RVKRM oy R - (x: v, A) <v—|—x - Proxth(x— t[Vf(x) + BX)\])) '

.
B, v

v(x) is the solution of the system F(x, v(x), A(x)) = 0;
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A Riemannian proximal Newton method

G-semismoothness of v(x)

Define

T ROKRM oy RO (v, \) > <v+x - Proxth(xf t[Vf(x) + BX/\])) .

.
B v

@ F is semismooth;

@ v(x) is G-semismooth by the G-semismooth Implicit Function
Theorem in [Gow04, PSS03];

[Gow04] M Seetharama Gowda. Inverse and implicit function theorems for h-differentiable and
semismooth functions. Optimization Methods and Software, 19(5):443-461, 2004.

[PSS03] Jong-Shi Pang, Defeng Sun, and Jie Sun. Semismo oth homeomorphisms and strong
stability of semidefinite and Lorentz complementarity problems. Mathematics of Operations Research,
28(1):39-63, 2003.
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A Riemannian proximal Newton met

G-semismoothness of v(x)

Lemma (Semismooth Implicit Function Theorem)

Suppose that F : R" x R™ — R™ is a semismooth function with respect
to OgF in an open neighborhood of (x°, y°) with F(x°,y°) = 0. Let
H(y) = F(x°,y), if every matrix in Oc H(y®) is nonsingular, then there
exists an open set V C R" containing x°, a set-valued fucntion

K:V — R™" and a G-semismooth function f : ¥V — R™ with respect
to K satisfying f(x°) = y°, for every x € V,

F(x,f(x)) =0,
and the set-valued function KC is

K:x— {=(A) " Ac: [Ac A)] € OsF (x, f(x))1,

where the map x — K(x) is compact valued and upper semicontinuous.
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A Riemannian proximal Newton method

G-semismoothness of v(x)

Without loss of generality, we assume that the nonzero entries of x, are
in the first part, i.e., x, = [x],07]"

Let B =[BT, BT], where B,, € RI* and B, € RO=Dx9_ |t js
assumed that j > d and BX* is full column rank.
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A Riemannian proximal Newton method

G-semismoothness of v(x)

Without loss of generality, we assume that the nonzero entries of x, are
in the first part, i.e., x, = [x],07]"

Let B =[BT, BT], where B,, € RI* and B, € RO=Dx9_ |t js
assumed that j > d and EX* is full column rank.

v(x) is a G-semismooth function of x in a neighborhood of x,

Under the above Assumption, there exists a neighborhood U of x, such
that v : U — R" : x — v(x) is a G-semismooth function with respect to
IC., where

Ky :x— {=[I,, 0]B7'A: [A B] € 9pF (x, v(x),A(x)) } .

For x € U, any element of IC,(x) is called a generalized Jacobi of v at x.

Here, the semismooth implicit function theorem is used
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A Riemannian proximal Newton method

G-semismoothness of v(x)
The generalized Jacobi of v at x is
{jx | Telw] = = [In —As + tA(VZF(x) — £4)] w — McBH (DB [w])v, Yo

M, € 8cproxth(x)},

where A, = M, — M,B.H,BT My, Hy = (BT M,B,) ",
L(-) = Wh(:, BiA(x)), and W, denotes the Weingarten map;

° v(x,)=0;

o Set J(x) = I, —A, + tA(V3F(x) — Ly);

@ The Riemannian proximal Newton direction: J(x)u(x) = —v(x);
o Let u(x) = (a(x); 4(x)), then

i(x) = ¥ and J(x)d(x) = —v(x)
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A Riemannian proximal Newton method

Local superlinear convergence rate

Assumption:
O Let BT =[BT,B]] where B,, ¢ R'*¢ and and B,, € R("-)x9. |t is

assumed that j > d and B,, is full column rank;
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A Riemannian proximal Newton method

Local superlinear convergence rate

Assumption:
O Let B] =[BT,B]], where B,, ¢ R'*? and and B,, € R(")*9 |t is
assumed that j > d and EX* is full column rank;

@ There exists a neighborhood U of x, = [x],07]T on M such that for
any x = [xT,%T]T €U, it holds that _Jrv;éOand X+0=0.

1
v(x) = argmin f(x) 4+ (VF(x),v) + = |Iv[|% + h(x + V)
veTx M 2t
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A Riemannian proximal Newton method

Local superlinear convergence rate

Assumption:
O Let B] =[BT,B]], where B,, ¢ R'*? and and B,, € R(")*9 |t is
assumed thatj > d and BX* is fuII column rank;

@ There exists a neighborhood U of x, = [x],07]T on M such that for
any x = [xT,%T]T €U, it holds that X+ ¥ # 0 and £ + 0 = 0.

Suppose that x, be a local optimal minimizer. Under the above
Assumptions, assume that J(x,) is nonsingular. Then there exists a
neighborhood U of x, on M such that for any xo € U, RPN Algorithm
generates the sequence {xx} converging superlinearly to x,.
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A Riemannian proximal Newton method

Local superlinear convergence rate

Assumption:
O Let B] =[BT,B]], where B,, ¢ R'*? and and B,, € R(")*9 |t is
assumed thatj > d and BX* is fuII column rank;

@ There exists a neighborhood U of x, = [x],07]T on M such that for
any x = [xT,%T]T €U, it holds that X+ ¥ # 0 and £ + 0 = 0.

Suppose that x, be a local optimal minimizer. Under the above
Assumptions, assume that J(x,) is nonsingular. Then there exists a
neighborhood U of x, on M such that for any xo € U, RPN Algorithm
generates the sequence {xx} converging superlinearly to x,.

If the intersection of manifold_and sparsity constraints forms an embedded
manifold around x., then V2f(x.) — £ = 0. If V2f(x,) — L > 0, then J(x,)
is nonsingular.
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A Riemannian proximal Newton method

The proposed method for smooth problems

Smooth case: min f(x)
xeM

e KKT conditions:
VF(x)+ %v +BA=0, and B] v =0;
@ Closed form solutions:
Mx) = =BIVf(x), v = —tgrad f(x);
@ Action of J(x): for w € Ty M

J(X)[w] = — tPr, m(V?F(x) — Ly)Pr, mw = —t Hess f(x)[w]

J(x)u(x) = —v(x) = Hess f(x)[u(x)] = — grad f(x);

It is the Riemannian Newton method;
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Numerical experiments

The proposed method for smooth problems

Euclidean proximal gradient method and its variants;

Riemannian proximal gradient method and its variants;

@ A Riemannian proximal Newton method;

Numerical experiments;
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Numerical Experiments

Sparse PCA problem

in —t XTATAX X
xeon race( )+ wll X1,

where A € R™*" is a data matrix and
St(r,n) = {X € R™" | XTX = I,} is the compact Stiefel manifold.

© Ru(nx) = (x +n:)(/ +ndm) 7

o t=1/(2]All3);

@ Run ManPG until ||v|| reaches 107%, i.e., it reduces by a factor
of 103. The resulting x as the input of RPN;
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Numerical Experiments

differentn,r=5, 1 =0.6 different r, n = 300, = 0.8

<,
&

10-10,

e
>

the norm of search direction
the norm of search direction

10715 ¢
1 2 3 4 5
iteration iteration

Figure: Random data. Left: different n = {100, 200, 300, 400} with r =5 and
u = 0.6; Right: different r = {2,4,6,8} with n =300 and 1 = 0.8
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Numerical Experiments

A Hybrid version of ManPG and RPN

Require: xo € M, t >0, p € (0, %] € > 0;
1: for k=0,1,... do
2. Compute v, by solving the Riemannian proximal gradient

subproblem;
3: if ||vk]| > € then
4 Set v = 1;
5 while F(R,, (avk)) > F(x) — 3a//v||> do
6: a = pa;
7 end while
8 Xit1 = Ry (avi);
9 else
10: Compute uy by solving J(xk)ux = —vi;
11: Xk+1 = ka(uk);
12:  end if
13: end for
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Numerical Experiments

Consider the simple version of sparse PCA with r =1, i.e.,

min —xT AT Ax + p|x]|1,
xesn—1

where A € R™*" is a data matrix.
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Numerical Experiments

Precision Comparison

Table: An average result of 5 random runs for random data with different
setting of (n, 11). The subscript k indicates a scale of 10. iter-u denotes the
number of using the new search direction w.

(n, ) Algo iter iter-v  iter-u f sparsity [ vie ||
(5000,1.5) ManPG 3000 897 - —4.59; 0.37 7.41_g
5 —4.59; 0.37 4.53_156

(5000,1.5) RPN 334 -
(10000,1.8) | ManPG | 3000 1736 - —1.02, 032 2.10 4
(10000,1.8) | RPN 580 - 6 —1.02, 032  5.69_3

—3.08, 0.22 1.19 4
0.22 5.25_15

(30000,2.0) | ManPG | 3000 1283
(30000,2.0) | RPN 347 -

(50000,2.2) | ManPG | 3000 1069 n —7.06, 018 756,
(50000,2.2) | RPN 789 - 5 —7.06, 018  1.41_y
(80000,2.5) | ManPG | 3000 834 n —117; 017 T4,
(80000,2.5) | RPN 839 - 6 —117; 017  1.94_3s

o
I
w
O
3]
N

Stopping criteria: ManPG does not terminate until iteration attains the
maximal iteration (3000), RPN terminate until [|v4|| < 10712
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Numerical Experiments
CPU Comparison

(0 N=58000, =15 ;n=10000,p=18  , n=30000, =2
——ManPG ManPG
——RPN ——RPN
1075} \
10'10» B 10-10, 1 -10 L ()
® o 10
107°k S— . 10715+ O — 1071° ' (L:‘
0 0. 1 0 0.5 1 0 1 2
CPU CPU CPU

Figure: Random data: the norm of search direction v versus CPU for different
(n, i), where the blue circle indicates the use of the new direction wy.
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Numerical Experiments

Synthetic Data

Synthetic Data [SCL*18] : we first obtain an m x n noise-free matrix,
then the data matrix A is generated by adding a random noise matrix,
where each entry of the noise matrix is drawn form A/(0,0.25), we set
m =400, n = 4000 and px = 1.2.

Principal Components
T T T

0.8
0.6 B
0.4 q
0.2 4
0
—— Principal component 1
—— Principal component 2
021 Principal component 3 B
—— Principal component 4
—— Principal component 5
0.4 T T T . . . .
0 500 1000 1500 2000 2500 3000 3500 4000

Figure: The five principal components used in the synthetic data.
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Numerical Experiments

Synthetic Data

Synthetic data Synthetic data
10° 10°
——ManPG ——ManPG
—%—RPN *— RPN
10° 10°
= =
() |
10710 10710
10715 ] ‘ 10718 ‘ ‘
A4 A4
0 20 40 60 0 0.05 0.1
Iter CPU

Figure: Plots of ||vk|| versus iterations and CPU times respectively, where ||vi||
is the norm of search direction, data matrix A € R*%*%% is from the synthetic
data, p is set to be 1.2. Note that the blue circle indicates the use of the new
direction wuy.
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Briefly review Euclidean and Riemannian proximal gradient method
and its variants;

Propose a Riemannian proximal Newton method;

Local superlinear convergence rate is proven;

@ Numerical experiments show its performance;
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@ Globalization;

Other types of h(x);

General manifold;
@ Riemannian proximal inexact-Newton methods;

@ Riemannian proximal quasi-Newton methods;
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Thank you

Thank you!
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