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Problem Statement

Optimization on Manifolds with Structure:

min
x∈M

F (x) = f (x) + h(x),

M is a finite-dimensional Riemannian manifold;

f is smooth and may be nonconvex; and

h(x) is continuous and convex but may be nonsmooth;

M

R
f

Applications: sparse PCA [ZHT06], compressed model [OLCO13],
sparse partial least squares regression [CSG+18], sparse inverse
covariance estimation [BESS19], sparse blind deconvolution [ZLK+17],
and clustering [HWGVD22].
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Outline

Euclidean proximal gradient method and its variants;

Riemannian proximal gradient method and its variants;

A Riemannian proximal Newton method;

Numerical experiments;
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Euclidean Proximal Gradient Method and its variants

Accelerated versions

Proximal inexact Newton

Proximal quasi-Newton

Optimization with Structure: M = Rn

min
x∈Rn

F (x) = f (x) + h(x),

Given x0,{
dk = arg minp 〈∇f (xk), p〉 + L

2
‖p‖2

F + h(xk + p)
xk+1 = xk + dk .

h = 0: reduce to steepest descent method;

Any limit point is a critical point;

O
(

1
k

)
sublinear convergence rate for convex f

and h;

Linear convergence rate for strongly convex f
and convex h;

Local convergence rate by KL property;

1. The update rule: xk+1 = arg minx〈∇f (xk ), x − xk〉 + L
2 ‖x − xk‖2 + h(x).

Speaker: Wen Huang A Riemannian Proximal Newton Method
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Euclidean Proximal Gradient Method and its variants

Proximal Gradient

Accelerated versions

Proximal inexact Newton

Proximal quasi-Newton

Optimization with Structure: M = Rn

min
x∈Rn

F (x) = f (x) + h(x),

Given x0, let y0 = x0, t0 = 1;
dyk = argminp〈∇f (yk), p〉+ L

2
‖p‖2

F + h(yk + p)
xk+1 = yk + dyk

tk+1 =

√
4t2

k
+1+1

2

yk+1 = xk+1 + tk−1
tk+1

(xk+1 − xk).

A representative one: FISTA [BT09];

Based on the Nesterov momentum technique;

O
(

1
k2

)
sublinear convergence rate for convex f

and h;

[BT09] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183-202, January 2009.
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Euclidean Proximal Gradient Method and its variants

Proximal Gradient

Accelerated versions

Proximal inexact Newton

Proximal quasi-Newton

Optimization with Structure: M = Rn

min
x∈Rn

F (x) = f (x) + h(x),

Given x0;{
dk = argminp〈∇f (xk), p〉+ 1

2
〈p,Hkp〉 + h(xk + p)

xk+1 = xk + tkdk , for a step size tk

Hk is Hessian or a positive definite
approximation to Hessian [LSS14, MYZZ22];

tk is one for sufficiently large k;

Quadratic/Superlinear convergence rate for
strongly convex f and convex h;

[LLS14] Jason D Lee, Yuekai Sun, and Michael A Saunders. Proximal newton-type methods for
minimizing composite functions. SIAM Journal on Optimization, 24(3):1420-1443, 2014.

[MYZZ22] Boris S Mordukhovich, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A globally
convergent proximal newton-type method in nonsmooth convex optimization. Mathematical
Programming, pages 1-38, 2022.
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Riemannian proximal gradient method and its variants

Proximal Gradient 2

Accelerated versions

Optimization with Structure:

min
x∈M

F (x) = f (x) + h(x),

[CMSZ20]: Given x0,{
ηk = arg minη∈Txk

M 〈∇f (xk), η〉 + L
2
‖η‖2

F + h(xk + η)

xk+1 = Rxk (αkηk) with an appropriate step size αk ;

Direction in the tangent space;

Ambient space must be linear;

Solved by a semismooth Newton method;

Any limit point is a critical point [CMSZ20, HW21b];

No local convergence rate results;

[CMSZ20] S. Chen, S. Ma, A. Man-Cho So, and T. Zhang. Proximal gradient method for nonsmooth
optimization over the Stiefel manifold. SIAM Journal on Optimization, 30(1):210-239, 2020.

[HW21b] W. Huang and K. Wei. An extension of fast iterative shrinkage-thresholding algorithm to
Riemannian optimization for sparse principal component analysis. Numerical Linear Algebra with
Applications, page e2409, 2021.

Speaker: Wen Huang A Riemannian Proximal Newton Method
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Riemannian proximal gradient method and its variants

Proximal Gradient 1

Proximal Gradient 2

Accelerated versions

Optimization with Structure:

min
x∈M

F (x) = f (x) + h(x),

[HW21a]: Given x0,
Let `xk (η) = 〈gradf (xk), η〉xk + L

2
‖η‖2

xk + h(Rxk (η));
ηk is a stationary point of `xk and `xk (0) ≥ `k(ηk);
xk+1 = Rxk (ηk);

Direction in the tangent space;

Well-defined for general manifold;

Subproblem is difficult in general (simple for sphere);

Any limit point is a critical point;

O
(

1
k

)
rate for retraction convex f and h;

Local convergence rate by Riemannian KL property;

[HW21a] W. Huang and K. Wei. Riemannian proximal gradient metho ds. Mathematical
Programming, 2021. published online, DOI:10.1007/s10107-021-01632-3.
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Proximal Gradient 2

Accelerated versions
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min
x∈M

F (x) = f (x) + h(x),

[HW21a]: Given x0,
ηyk = argminη∈Tyk

M 〈grad f (yk), η〉 + L
2
‖η‖2

F + h(yk + η)

xk+1 = Ryk (ηyk )

tk+1 =

√
4t2

k
+1+1

2

yk+1 = Rxk+1

(
1−tk
tk+1

R−1
xk+1

(xk)
)

A representative on in [HW21b], also see [HW21a];

Observe acceleration empirically;

No O( 1
k2 ) convergence rate results;
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Riemannian proximal gradient method and its variants

Optimization with Structure:

min
x∈M

F (x) = f (x) + h(x),

No proximal Newton or quasi-Newton methods
on Riemannian manifold

Task: Develop a Riemannian proximal Newton method
that has superlinear local convergence rate
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Outline

Euclidean proximal gradient method and its variants;

Riemannian proximal gradient method and its variants;

A Riemannian proximal Newton method;

Numerical experiments;

Note that we focus on:

M is an Riemannian embedded submanifold of a Euclidean space;

h(x) = µ‖x‖1;
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A Riemannian proximal Newton method
A native generalization

Euclidean version:{
dk = argminp〈∇f (xk), p〉+ 1

2 〈p,∇
2f (xk)p〉 + h(xk + p)

xk+1 = xk + dk

A native generalization by replacing the Euclidean gradient and Hessian
by the Riemannian gradient and Hessian:{

ηk = arg minη∈Txk
M 〈grad f (xk), η〉 + 1

2 〈η,Hess f (xk)η〉 + h(xk + η)

xk+1 = Rxk (ηk)

Does it converge superlinearly locally?

Not necessarily!
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A Riemannian proximal Newton method
A native generalization

Consider the Sparse PCA over sphere:

min
x∈Sn−1

−xTATAx + µ‖x‖1,

where f (x) = −xTATAx , h(x) = µ‖x‖1.
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Figure: Comparisons of native generalization (RPN-N) and the proximal
gradient method (ManPG) in [CMSZ20].
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A Riemannian proximal Newton method
A native generalization

Euclidean version:{
dk = argminp〈∇f (xk), p〉+ 1

2 〈p,∇
2f (xk)p〉 + h(xk + p)

xk+1 = xk + dk

A native generalization by replacing the Euclidean gradient and Hessian
by the Riemannian gradient and Hessian:{

ηk = arg minη∈Txk
M 〈grad f (xk ), η〉 + 1

2
〈η,Hess f (xk )η〉 + h(xk + η)

xk+1 = Rxk (ηk )

{
ηk = arg minη∈Txk

M 〈grad f (xk ), η〉 + 1
2
〈η,Hess f (xk )η〉 + h(xk + η + 1

2
Π(η, η))

xk+1 = Rxk (ηk )

xk + η in h is only a first order approximation;

If an second order approximation is used, then the subproblem is
difficult to solve;
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A Riemannian proximal Newton method
A native generalization
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2 〈p,∇
2f (xk)p〉 + h(xk + p)
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A Riemannian proximal Newton method
The proposed approach

A Riemannian proximal Newton method (RPN)

1 Compute

v(xk) = argminv∈Txk
M f (xk) + 〈∇f (xk), v〉 + 1

2t ‖v‖
2
F + h(xk + v);

2 Find u(xk) ∈ TxkM by solving
J(xk)[u(xk)] = −v(xk),

where J(xk) = −
[
In−Λxk + tΛxk (∇2f (xk)− Lxk )

]
, Λxk and Lxk are

defined later ;

3 xk+1 = Rxk (u(xk));
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In−Λxk + tΛxk (∇2f (xk)− Lxk )

]
, Λxk and Lxk are

defined later ;

3 xk+1 = Rxk (u(xk));

1 Step 1: compute a Riemannian proximal gradient direction (ManPG)

2 Step 2: compute the Riemannian proximal Newton direction, where
J(xk) is from a generalized Jacobi of v(xk);

3 Step 3: Update iterate by a retraction;

Speaker: Wen Huang A Riemannian Proximal Newton Method



17/41

A Riemannian proximal Newton method
The proposed approach

A Riemannian proximal Newton method (RPN)

1 Compute

v(xk) = argminv∈Txk
M f (xk) + 〈∇f (xk), v〉 + 1

2t ‖v‖
2
F + h(xk + v);

2 Find u(xk) ∈ TxkM by solving
J(xk)[u(xk)] = −v(xk),

where J(xk) = −
[
In−Λxk + tΛxk (∇2f (xk)− Lxk )

]
, Λxk and Lxk are

defined later ;

3 xk+1 = Rxk (u(xk));

1 Step 1: compute a Riemannian proximal gradient direction (ManPG)

2 Step 2: compute the Riemannian proximal Newton direction, where
J(xk) is from a generalized Jacobi of v(xk);

3 Step 3: Update iterate by a retraction;

Speaker: Wen Huang A Riemannian Proximal Newton Method



17/41

A Riemannian proximal Newton method
The proposed approach

A Riemannian proximal Newton method (RPN)

1 Compute

v(xk) = argminv∈Txk
M f (xk) + 〈∇f (xk), v〉 + 1

2t ‖v‖
2
F + h(xk + v);

2 Find u(xk) ∈ TxkM by solving
J(xk)[u(xk)] = −v(xk),

where J(xk) = −
[
In−Λxk + tΛxk (∇2f (xk)− Lxk )

]
, Λxk and Lxk are

defined later ;

3 xk+1 = Rxk (u(xk));

1 Step 1: compute a Riemannian proximal gradient direction (ManPG)

2 Step 2: compute the Riemannian proximal Newton direction, where
J(xk) is from a generalized Jacobi of v(xk);

3 Step 3: Update iterate by a retraction;

Speaker: Wen Huang A Riemannian Proximal Newton Method



17/41

A Riemannian proximal Newton method
The proposed approach

A Riemannian proximal Newton method (RPN)

1 Compute

v(xk) = argminv∈Txk
M f (xk) + 〈∇f (xk), v〉 + 1

2t ‖v‖
2
F + h(xk + v);

2 Find u(xk) ∈ TxkM by solving
J(xk)[u(xk)] = −v(xk),

where J(xk) = −
[
In−Λxk + tΛxk (∇2f (xk)− Lxk )

]
, Λxk and Lxk are

defined later ;

3 xk+1 = Rxk (u(xk));

Next, we will show:

1 G-semismoothness of v(xk) and its generalized Jacobi;

2 Superlinear convergence rate;
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A Riemannian proximal Newton method
G-semismoothness of v(x)

Definition (G-Semismoothness [Gow04])

Let F : D → Rm where D ⊂ Rn be an open set, K : D ⇒ Rm×n be a
nonempty set-valued mapping. We say that F is G-semismooth at x ∈ D
with respect to K if for any J ∈ K(x + d),

F (x + d)− F (x)− Jd = o(‖d‖) as d → 0.

If F is G-semismooth at any x ∈ D with respect to K, then F is called a
G-semismooth function with respect to K.

The standard definition of semismoothness additional requires:

K is compact valued, upper semicontinuous set-valued mapping;

F is a locally Lipschitz continuous function;

F is directionally differentiable at x ;
[Gow04] M Seetharama Gowda. Inverse and implicit function theorems for h-differentiable and

semismooth functions. Optimization Methods and Software, 19(5):443-461, 2004.
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A Riemannian proximal Newton method
G-semismoothness of v(x)

v(x) (dropping the subscript for simplicity)

v(x) = argmin
v∈TxM

f (x) + 〈∇f (x), v〉 +
1

2t
‖v‖2

F + h(x + v);

Above problem can be rewritten as

arg min
BT
x v=0

〈ξx , v〉 +
1

2t
‖v‖2

F + h(x + v)

where BT
x v = (〈b1, v〉, 〈b2, v〉, . . . , 〈bm, v〉)T , and {b1, . . . , bm} forms an

orthonormal basis of T⊥x M.

Speaker: Wen Huang A Riemannian Proximal Newton Method



19/41

A Riemannian proximal Newton method
G-semismoothness of v(x)

v(x) (dropping the subscript for simplicity)

v(x) = argmin
v∈TxM

f (x) + 〈∇f (x), v〉 +
1

2t
‖v‖2

F + h(x + v);

Above problem can be rewritten as

arg min
BT
x v=0

〈ξx , v〉 +
1

2t
‖v‖2

F + h(x + v)

where BT
x v = (〈b1, v〉, 〈b2, v〉, . . . , 〈bm, v〉)T , and {b1, . . . , bm} forms an

orthonormal basis of T⊥x M.

Speaker: Wen Huang A Riemannian Proximal Newton Method



20/41

A Riemannian proximal Newton method
G-semismoothness of v(x)

The Lagrangian function:

L(v , λ) = 〈ξx , v〉+
1

2t
〈v , v〉+ h(X + v)− 〈λ,BT

x v〉.

Therefore

KKT:

{
∂vL(v , λ) = 0

BT
x v = 0

=⇒
{

v = Proxth (x − t(ξx − Bxλ))− x
BT
x v = 0

where Proxtg (z) = argminv∈Rn×p
1
2‖v − z‖2

F + th(v).

Define

F : Rn×Rn+d 7→ Rn+d : (x ; v , λ) 7→
(
v + x − Proxth

(
x − t[∇f (x) + Bxλ]

)
BT
x v

)
.

v(x) is the solution of the system F(x , v(x), λ(x)) = 0;

Speaker: Wen Huang A Riemannian Proximal Newton Method



21/41

A Riemannian proximal Newton method
G-semismoothness of v(x)

Define

F : Rn×Rn+d 7→ Rn+d : (x ; v , λ) 7→
(
v + x − Proxth

(
x − t[∇f (x) + Bxλ]

)
BT
x v

)
.

F is semismooth;

v(x) is G-semismooth by the G-semismooth Implicit Function
Theorem in [Gow04, PSS03];

[Gow04] M Seetharama Gowda. Inverse and implicit function theorems for h-differentiable and
semismooth functions. Optimization Methods and Software, 19(5):443-461, 2004.

[PSS03] Jong-Shi Pang, Defeng Sun, and Jie Sun. Semismo oth homeomorphisms and strong
stability of semidefinite and Lorentz complementarity problems. Mathematics of Operations Research,
28(1):39-63, 2003.
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A Riemannian proximal Newton method
G-semismoothness of v(x)

Lemma (Semismooth Implicit Function Theorem)

Suppose that F : Rn × Rm → Rm is a semismooth function with respect
to ∂BF in an open neighborhood of (x0, y0) with F (x0, y0) = 0. Let
H(y) = F (x0, y), if every matrix in ∂CH(y0) is nonsingular, then there
exists an open set V ⊂ Rn containing x0, a set-valued fucntion
K : V → Rm×n, and a G-semismooth function f : V → Rm with respect
to K satisfying f (x0) = y0, for every x ∈ V,

F (x , f (x)) = 0,

and the set-valued function K is

K : x 7→ {−(Ay )−1Ax : [Ax Ay ] ∈ ∂BF
(
x , f (x)

)
},

where the map x 7→ K(x) is compact valued and upper semicontinuous.

Speaker: Wen Huang A Riemannian Proximal Newton Method



23/41

A Riemannian proximal Newton method
G-semismoothness of v(x)

Without loss of generality, we assume that the nonzero entries of x∗ are
in the first part, i.e., x∗ = [x̄T∗ , 0

T ]T

Assumption

Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank.

v(x) is a G-semismooth function of x in a neighborhood of x∗

Under the above Assumption, there exists a neighborhood U of x∗ such
that v : U → Rn : x 7→ v(x) is a G-semismooth function with respect to
Kv , where

Kv : x 7→
{
−[In, 0]B−1A : [A B] ∈ ∂BF

(
x , v(x), λ(x)

)}
.

For x ∈ U , any element of Kv (x) is called a generalized Jacobi of v at x .

Here, the semismooth implicit function theorem is used
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A Riemannian proximal Newton method
G-semismoothness of v(x)

The generalized Jacobi of v at x is{
Jx |Jx [ω] = −

[
In−Λx + tΛx(∇2f (x)− Lx)

]
ω −MxBxHx(DBT

x [ω])v ,∀ω

Mx ∈ ∂Cproxth(x)
}
,

where Λx = Mx −MxBxHxB
T
x Mk , Hx =

(
BT
x MxBx

)−1
,

Lx(·) =Wx(·,Bxλ(x)), and Wx denotes the Weingarten map;

v(x∗) = 0;

Set J(x) = In−Λx + tΛx(∇2f (x)− Lx);

The Riemannian proximal Newton direction: J(x)u(x) = −v(x);

Let u(x) = (ū(x); û(x)), then

û(x) = v̂ and J̄(x)ū(x) = −v̄(x)
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A Riemannian proximal Newton method
Local superlinear convergence rate

Assumption:

1 Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank;

2 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that for

any x = [x̄T , x̃T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0.
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A Riemannian proximal Newton method
Local superlinear convergence rate
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x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank;

2 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that for

any x = [x̄T , x̃T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0.

Theorem

Suppose that x∗ be a local optimal minimizer. Under the above
Assumptions, assume that J(x∗) is nonsingular. Then there exists a
neighborhood U of x∗ onM such that for any x0 ∈ U , RPN Algorithm
generates the sequence {xk} converging superlinearly to x∗.

If the intersection of manifold and sparsity constraints forms an embedded
manifold around x∗, then ¯∇2f (x∗)− L̄ � 0. If ¯∇2f (x∗)− L̄ � 0, then J(x∗)
is nonsingular.
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A Riemannian proximal Newton method
The proposed method for smooth problems

Smooth case: min
x∈M

f (x)

KKT conditions:

∇f (x) +
1

t
v + Bxλ = 0, and BT

x v = 0;

Closed form solutions:

λ(x) = −BT
x ∇f (x), v = −t grad f (x);

Action of J(x): for ω ∈ TxM

J(x)[ω] =− tPTxM(∇2f (x)− Lx)PTxMω = −t Hess f (x)[ω]

J(x)u(x) = −v(x) =⇒ Hess f (x)[u(x)] = − grad f (x);

It is the Riemannian Newton method;
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Numerical experiments
The proposed method for smooth problems

Euclidean proximal gradient method and its variants;

Riemannian proximal gradient method and its variants;

A Riemannian proximal Newton method;

Numerical experiments;
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Numerical Experiments

Sparse PCA problem

min
X∈St(r ,n)

− trace(XTATAX ) + µ‖X‖1,

where A ∈ Rm×n is a data matrix and
St(r , n) = {X ∈ Rn×r | XTX = Ir} is the compact Stiefel manifold.

Rx(ηx) = (x + ηx)(I + ηTx ηx)−1/2;

t = 1/(2‖A‖2
2);

Run ManPG until ‖v‖ reaches 10−4, i.e., it reduces by a factor
of 103. The resulting x as the input of RPN;
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Numerical Experiments
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Figure: Random data. Left: different n = {100, 200, 300, 400} with r = 5 and
µ = 0.6; Right: different r = {2, 4, 6, 8} with n = 300 and µ = 0.8
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Numerical Experiments

A Hybrid version of ManPG and RPN

Require: x0 ∈M, t > 0, ρ ∈ (0, 1
2 ], ε > 0;

1: for k = 0, 1, . . . do
2: Compute vk by solving the Riemannian proximal gradient

subproblem;
3: if ‖vk‖ > ε then
4: Set α = 1;
5: while F (Rxk (αvk)) > F (xk)− 1

2α‖vk‖
2 do

6: α = ρα;
7: end while
8: xk+1 = Rxk (αvk);
9: else

10: Compute uk by solving J(xk)uk = −vk ;
11: xk+1 = Rxk (uk);
12: end if
13: end for
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Numerical Experiments

Consider the simple version of sparse PCA with r = 1, i.e.,

min
x∈Sn−1

−xTATAx + µ‖x‖1,

where A ∈ Rm×n is a data matrix.
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Numerical Experiments
Precision Comparison

Table: An average result of 5 random runs for random data with different
setting of (n, µ). The subscript k indicates a scale of 10k . iter-u denotes the
number of using the new search direction uk .

(n, µ) Algo iter iter-v iter-u f sparsity ‖vk‖
(5000,1.5) ManPG 3000 897 - −4.591 0.37 7.41−8

(5000,1.5) RPN 334 - 5 −4.591 0.37 4.53−16

(10000,1.8) ManPG 3000 1736 - −1.022 0.32 2.19−8

(10000,1.8) RPN 580 - 6 −1.022 0.32 5.69−16

(30000,2.0) ManPG 3000 1283 - −3.982 0.22 1.19−8

(30000,2.0) RPN 347 - 5 −3.982 0.22 5.25−15

(50000,2.2) ManPG 3000 1069 - −7.062 0.18 4.56−7

(50000,2.2) RPN 789 - 5 −7.062 0.18 1.41−14

(80000,2.5) ManPG 3000 834 - −1.173 0.17 1.41−6

(80000,2.5) RPN 839 - 6 −1.173 0.17 1.94−15

Stopping criteria: ManPG does not terminate until iteration attains the
maximal iteration (3000), RPN terminate until ‖vk‖ ≤ 10−12
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Numerical Experiments
CPU Comparison
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Figure: Random data: the norm of search direction vk versus CPU for different
(n, µ), where the blue circle indicates the use of the new direction uk .
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Numerical Experiments
Synthetic Data

Synthetic Data [SCL+18] : we first obtain an m × n noise-free matrix,
then the data matrix A is generated by adding a random noise matrix,
where each entry of the noise matrix is drawn form N (0, 0.25), we set
m = 400, n = 4000 and µ = 1.2.
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0

0.2

0.4

0.6

0.8
Principal Components

Principal component 1
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Principal component 3

Principal component 4

Principal component 5

Figure: The five principal components used in the synthetic data.

Speaker: Wen Huang A Riemannian Proximal Newton Method



35/41

Numerical Experiments
Synthetic Data
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Figure: Plots of ‖vk‖ versus iterations and CPU times respectively, where ‖vk‖
is the norm of search direction, data matrix A ∈ R4000×400 is from the synthetic
data, µ is set to be 1.2. Note that the blue circle indicates the use of the new
direction uk .
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Summary

Briefly review Euclidean and Riemannian proximal gradient method
and its variants;

Propose a Riemannian proximal Newton method;

Local superlinear convergence rate is proven;

Numerical experiments show its performance;

Speaker: Wen Huang A Riemannian Proximal Newton Method



37/41

Future work

Globalization;

Other types of h(x);

General manifold;

Riemannian proximal inexact-Newton methods;

Riemannian proximal quasi-Newton methods;
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Thank you

Thank you!
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