#### Speaker: Wen Huang

Xiamen University

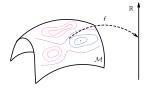
March 19, 2023

Joint work with Wutao Si, P.-A. Absil, Rujun Jiang, Simon Vary

Fuzhou University

**Optimization on Manifolds with Structure:** 

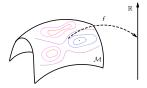
$$\min_{x\in\mathcal{M}}F(x)=f(x)+h(x),$$



- $\mathcal{M}$  is a finite-dimensional Riemannian manifold;
- *f* is smooth and may be nonconvex; and
- *h*(*x*) is continuous and convex but may be nonsmooth;

**Optimization on Manifolds with Structure:** 

$$\min_{x\in\mathcal{M}}F(x)=f(x)+h(x),$$



- $\mathcal{M}$  is a finite-dimensional Riemannian manifold;
- *f* is smooth and may be nonconvex; and
- *h*(*x*) is continuous and convex but may be nonsmooth;

**Applications:** sparse PCA [ZHT06], compressed model [OLCO13], sparse partial least squares regression [CSG<sup>+</sup>18], sparse inverse covariance estimation [BESS19], sparse blind deconvolution [ZLK<sup>+</sup>17], and clustering [HWGVD22].

- Riemannian proximal gradient method and its variants;
- A Riemannian proximal Newton method;
- Numerical experiments;

**Optimization with Structure:**  $\mathcal{M} = \mathbb{R}^n$ 

$$\min_{x\in\mathbb{R}^n}F(x)=f(x)+h(x),$$

#### **Optimization with Structure:** $\mathcal{M} = \mathbb{R}^n$

$$\min_{x\in\mathbb{R}^n}F(x)=f(x)+h(x),$$

- Proximal Gradient
- Accelerated versions
- Proximal inexact Newton
- Proximal quasi-Newton

#### **Optimization with Structure:** $\mathcal{M} = \mathbb{R}^n$

$$\min_{x\in\mathbb{R}^n}F(x)=f(x)+h(x),$$

Given  $x_0^1$ ,  $\begin{cases}
d_k = \arg \min_p \langle \nabla f(x_k), p \rangle + \frac{L}{2} \|p\|_{\mathrm{F}}^2 + h(x_k + p) \\
x_{k+1} = x_k + d_k.
\end{cases}$ 

### Proximal Gradient

- Accelerated versions
- Proximal inexact Newton
- Proximal quasi-Newton

1. The update rule:  $x_{k+1} = \arg \min_x \langle \nabla f(x_k), x - x_k \rangle + \frac{l}{2} ||x - x_k||^2 + h(x)$ .

#### **Optimization with Structure:** $\mathcal{M} = \mathbb{R}^n$

$$\min_{x\in\mathbb{R}^n}F(x)=f(x)+h(x),$$

Given  $x_0$ ,

- Proximal Gradient
- Accelerated versions
- Proximal inexact Newton
- Proximal quasi-Newton

$$d_k = \arg\min_p \langle \nabla f(x_k), p \rangle + \frac{L}{2} \|p\|_{\mathrm{F}}^2 + h(x_k + p)$$
  
$$x_{k+1} = x_k + d_k.$$

- *h* = 0: reduce to steepest descent method;
- Any limit point is a critical point;
- O(<sup>1</sup>/<sub>k</sub>) sublinear convergence rate for convex f and h;
- Linear convergence rate for strongly convex f and convex h;
- Local convergence rate by KL property;

#### **Optimization with Structure:** $\mathcal{M} = \mathbb{R}^n$

$$\min_{x\in\mathbb{R}^n}F(x)=f(x)+h(x),$$

Given  $x_0$ , let  $v_0 = x_0$ ,  $t_0 = 1$ :

- Proximal Gradient
- Accelerated versions
- Proximal inexact Newton
- Proximal quasi-Newton

$$\begin{aligned} & d_{y_k} = \operatorname{argmin}_p \langle \nabla f(y_k), p \rangle + \frac{l}{2} \|p\|_{\mathrm{F}}^2 + h(y_k + p) \\ & x_{k+1} = y_k + d_{y_k} \\ & t_{k+1} = \frac{\sqrt{4t_k^2 + 1 + 1}}{2} \\ & y_{k+1} = x_{k+1} + \frac{t_k - 1}{t_{k+1}} (x_{k+1} - x_k). \end{aligned}$$

#### **Optimization with Structure:** $\mathcal{M} = \mathbb{R}^n$

$$\min_{x\in\mathbb{R}^n}F(x)=f(x)+h(x),$$

- Proximal Gradient
- Accelerated versions
- Proximal inexact Newton
- Proximal quasi-Newton

Given  $x_0$ , let  $y_0 = x_0$ ,  $t_0 = 1$ ;  $\begin{cases}
d_{y_k} = \operatorname{argmin}_p \langle \nabla f(y_k), p \rangle + \frac{L}{2} \|p\|_{\mathrm{F}}^2 + h(y_k + p) \\
x_{k+1} = y_k + d_{y_k} \\
t_{k+1} = \frac{\sqrt{4t_k^2 + 1} + 1}{2} \\
y_{k+1} = x_{k+1} + \frac{t_k - 1}{t_{k+1}} (x_{k+1} - x_k).
\end{cases}$ 

- A representative one: FISTA [BT09];
- Based on the Nesterov momentum technique;
- O(<sup>1</sup>/<sub>k<sup>2</sup></sub>) sublinear convergence rate for convex f and h;

<sup>[</sup>BT09] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, January 2009.

#### **Optimization with Structure:** $\mathcal{M} = \mathbb{R}^n$

$$\min_{x\in\mathbb{R}^n}F(x)=f(x)+h(x),$$

Given x<sub>0</sub>;

• Proximal Gradient

$$d_k = \operatorname{argmin}_p \langle \nabla f(x_k), p \rangle + \frac{1}{2} \langle p, H_k p \rangle + h(x_k + p)$$
  
$$x_{k+1} = x_k + t_k d_k, \text{ for a step size } t_k$$

- Accelerated versions
- Proximal inexact Newton
- Proximal quasi-Newton

#### **Optimization with Structure:** $\mathcal{M} = \mathbb{R}^n$

$$\min_{x\in\mathbb{R}^n}F(x)=f(x)+h(x),$$

Given x<sub>0</sub>;

- Proximal Gradient
- Accelerated versions
- Proximal inexact Newton
- Proximal quasi-Newton

- $\begin{cases} d_k = \operatorname{argmin}_p \langle \nabla f(x_k), p \rangle + \frac{1}{2} \langle p, H_k p \rangle + h(x_k + p) \\ x_{k+1} = x_k + t_k d_k, \text{ for a step size } t_k \end{cases}$ 
  - *H<sub>k</sub>* is Hessian or a positive definite approximation to Hessian [LSS14, MYZZ22];
  - *t<sub>k</sub>* is one for sufficiently large *k*;
  - Quadratic/Superlinear convergence rate for strongly convex *f* and convex *h*;

<sup>[</sup>LLS14] Jason D Lee, Yuekai Sun, and Michael A Saunders. Proximal newton-type methods for minimizing composite functions. SIAM Journal on Optimization, 24(3):1420-1443, 2014. [MYZZ22] Boris S Mordukhovich, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A globally convergent proximal newton-type method in nonsmooth convex optimization. Mathematical Programming, pages 1-38, 2022.

#### **Optimization with Structure:** $\mathcal{M} = \mathbb{R}^n$

$$\min_{x\in\mathbb{R}^n}F(x)=f(x)+h(x),$$

Given  $x_0, H_0$ ;

- Proximal Gradient
- Accelerated versions
- Proximal inexact Newton
- Proximal quasi-Newton

 $d_k = \operatorname{argmin}_p \langle \nabla f(x_k), p \rangle + \frac{1}{2} \langle p, H_k p \rangle + h(x_k + p)$  $x_{k+1} = x_k + t_k d_k$ , for a step size  $t_k$ Update  $H_k$  by a quasi-Newton formula

Given  $x_0, H_0$ ;

#### **Optimization with Structure:** $\mathcal{M} = \mathbb{R}^n$

$$\min_{x\in\mathbb{R}^n}F(x)=f(x)+h(x),$$

• Proximal Gradient

- Accelerated versions
- Proximal inexact Newton
- Proximal guasi-Newton

$$\begin{split} & d_k = \mathrm{argmin}_p \langle \nabla f(x_k), p \rangle + \frac{1}{2} \langle p, H_k p \rangle + h(x_k + p) \\ & x_{k+1} = x_k + t_k d_k, \text{ for a step size } t_k \\ & \text{Update } H_k \text{ by a quasi-Newton formula} \end{split}$$

- Dennis-Moré condition ⇒ superlinear convergence rate for strongly convex f and convex h [LSS14];
- Sublinear without the accuracy assumption on  $H_k$  [ST16];

<sup>[</sup>LLS14] Jason D Lee, Yuekai Sun, and Michael A Saunders. Proximal newton-type methods for minimizing composite functions. SIAM Journal on Optimization, 24(3):1420-1443, 2014. [ST16] K. Scheinberg and X. Tang. Practical inexact proximal guasi-Newton method with global complexity analysis. Mathematical Programming, (160):495-529, 2016.

- Euclidean proximal gradient method and its variants;
- Riemannian proximal gradient method and its variants;
- A Riemannian proximal Newton method;
- Numerical experiments;

# Riemannian proximal gradient method and its variants

**Optimization with Structure:** 

$$\min_{x\in\mathcal{M}}F(x)=f(x)+h(x),$$

# Riemannian proximal gradient method and its variants

#### **Optimization with Structure:**

$$\min_{x\in\mathcal{M}}F(x)=f(x)+h(x),$$

- Proximal Gradient 1
- Proximal Gradient 2
- Accelerated versions

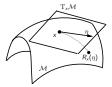
$$\min_{x\in\mathcal{M}}F(x)=f(x)+h(x),$$

• Proximal Gradient 1

CMSZ20]: Given x<sub>0</sub>,  

$$\begin{cases}
\eta_k = \arg \min_{\eta \in \mathbf{T}_{x_k} \mathcal{M}} \langle \nabla f(x_k), \eta \rangle + \frac{L}{2} \|\eta\|_F^2 + h(x_k + \eta) \\
x_{k+1} = R_{x_k}(\alpha_k \eta_k) \text{ with an appropriate step size } \alpha_k;
\end{cases}$$

- Proximal Gradient 2
- Accelerated versions



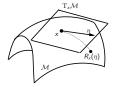
[CMSZ20] S. Chen, S. Ma, A. Man-Cho So, and T. Zhang. Proximal gradient method for nonsmooth optimization over the Stiefel manifold. SIAM Journal on Optimization, 30(1):210-239, 2020.

[CMSZ20]: Given  $x_0$ ,

#### **Optimization with Structure:**

$$\min_{x\in\mathcal{M}}F(x)=f(x)+h(x),$$

- Proximal Gradient 1
- Proximal Gradient 2
- Accelerated versions



 $\begin{cases} \eta_k = \arg \min_{\eta \in \mathbf{T}_{x_k} \mathcal{M}} \langle \nabla f(x_k), \eta \rangle + \frac{L}{2} \|\eta\|_F^2 + h(x_k + \eta) \\ x_{k+1} = R_{x_k}(\alpha_k \eta_k) \text{ with an appropriate step size } \alpha_k; \end{cases}$ 

- Direction in the tangent space;
- Ambient space must be linear;
- Solved by a semismooth Newton method;

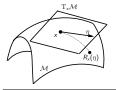
[CMSZ20] S. Chen, S. Ma, A. Man-Cho So, and T. Zhang. Proximal gradient method for nonsmooth optimization over the Stiefel manifold. SIAM Journal on Optimization, 30(1):210-239, 2020.

[CMSZ20]: Given  $x_0$ ,

### **Optimization with Structure:**

$$\min_{x\in\mathcal{M}}F(x)=f(x)+h(x),$$

- Proximal Gradient 1
- Proximal Gradient 2
- Accelerated versions



 $\begin{cases} \eta_k = \arg \min_{\eta \in T_{x_k} \mathcal{M}} \langle \nabla f(x_k), \eta \rangle + \frac{L}{2} \|\eta\|_F^2 + h(x_k + \eta) \\ x_{k+1} = R_{x_k}(\alpha_k \eta_k) \text{ with an appropriate step size } \alpha_k; \end{cases}$ 

- Direction in the tangent space;
- Ambient space must be linear;
- Solved by a semismooth Newton method;
- Any limit point is a critical point [CMSZ20, HW21b];
- No local convergence rate results;

[CMSZ20] S. Chen, S. Ma, A. Man-Cho So, and T. Zhang. Proximal gradient method for nonsmooth optimization over the Stiefel manifold. SIAM Journal on Optimization, 30(1):210-239, 2020.

[HW21b] W. Huang and K. Wei. An extension of fast iterative shrinkage-thresholding algorithm to Riemannian optimization for sparse principal component analysis. Numerical Linear Algebra with Applications, page e2409, 2021.

$$\min_{x\in\mathcal{M}}F(x)=f(x)+h(x),$$

- Proximal Gradient 1
- Proximal Gradient 2
- Accelerated versions

[HW21a]: Given  $x_0$ ,  $\begin{cases}
\text{Let } \ell_{x_k}(\eta) = \langle \text{grad} f(x_k), \eta \rangle_{x_k} + \frac{L}{2} ||\eta||_{x_k}^2 + h(R_{x_k}(\eta)); \\
\eta_k \text{ is a stationary point of } \ell_{x_k} \text{ and } \ell_{x_k}(0) \ge \ell_k(\eta_k); \\
x_{k+1} = R_{x_k}(\eta_k);
\end{cases}$ 

[HW21a] W. Huang and K. Wei. Riemannian proximal gradient metho ds. Mathematical Programming, 2021. published online, DOI:10.1007/s10107-021-01632-3.

$$\min_{x\in\mathcal{M}}F(x)=f(x)+h(x),$$

- Proximal Gradient 1
- Proximal Gradient 2
- Accelerated versions

[HW21a]: Given  $x_0$ ,

- $\begin{cases} \text{Let } \ell_{x_k}(\eta) = \langle \operatorname{grad} f(x_k), \eta \rangle_{x_k} + \frac{L}{2} ||\eta||_{x_k}^2 + h(R_{x_k}(\eta));\\ \eta_k \text{ is a stationary point of } \ell_{x_k} \text{ and } \ell_{x_k}(0) \ge \ell_k(\eta_k);\\ x_{k+1} = R_{x_k}(\eta_k); \end{cases}$ 
  - Direction in the tangent space;
  - Well-defined for general manifold;
  - Subproblem is difficult in general (simple for sphere);
  - Any limit point is a critical point;
  - $O\left(\frac{1}{k}\right)$  rate for retraction convex f and h;
  - Local convergence rate by Riemannian KL property;

<sup>[</sup>HW21a] W. Huang and K. Wei. Riemannian proximal gradient metho ds. Mathematical Programming, 2021. published online, DOI:10.1007/s10107-021-01632-3.

[⊦

$$\min_{x\in\mathcal{M}}F(x)=f(x)+h(x),$$

- Proximal Gradient 1
- Proximal Gradient 2
- Accelerated versions

$$\begin{aligned} \text{HW21a]: Given } x_0, \\ \left(\begin{array}{l} \eta_{y_k} = \operatorname{argmin}_{\eta \in \mathrm{T}_{y_k} \ \mathcal{M}} \left\langle \operatorname{grad} f(y_k), \eta \right\rangle + \frac{t}{2} \|\eta\|_F^2 + h(y_k + \eta) \\ x_{k+1} = R_{y_k}(\eta_{y_k}) \\ t_{k+1} = \frac{\sqrt{4t_k^2 + 1 + 1}}{2} \\ y_{k+1} = R_{x_{k+1}} \left(\frac{1 - t_k}{t_{k+1}} R_{x_{k+1}}^{-1}(x_k)\right) \end{aligned} \right) \end{aligned}$$

$$\min_{x\in\mathcal{M}}F(x)=f(x)+h(x),$$

- Proximal Gradient 1
- Proximal Gradient 2
- Accelerated versions

$$[HW21a]: \text{ Given } x_0, \\ \begin{cases} \eta_{y_k} = \operatorname{argmin}_{\eta \in \mathrm{T}_{y_k} \mathcal{M}} \langle \operatorname{grad} f(y_k), \eta \rangle + \frac{L}{2} \|\eta\|_F^2 + h(y_k + \eta) \\ x_{k+1} = R_{y_k}(\eta_{y_k}) \\ t_{k+1} = \frac{\sqrt{4t_k^2 + 1 + 1}}{2} \\ y_{k+1} = R_{x_{k+1}} \left( \frac{1 - t_k}{t_{k+1}} R_{x_{k+1}}^{-1}(x_k) \right) \end{cases}$$

- A representative on in [HW21b], also see [HW21a];
- Observe acceleration empirically;
- No  $O(\frac{1}{k^2})$  convergence rate results;

# Riemannian proximal gradient method and its variants

**Optimization with Structure:** 

$$\min_{x\in\mathcal{M}}F(x)=f(x)+h(x),$$

### No proximal Newton or quasi-Newton methods on Riemannian manifold

# Riemannian proximal gradient method and its variants

**Optimization with Structure:** 

$$\min_{x\in\mathcal{M}}F(x)=f(x)+h(x),$$

### No proximal Newton or quasi-Newton methods on Riemannian manifold

Task: Develop a Riemannian proximal Newton method that has superlinear local convergence rate

- Euclidean proximal gradient method and its variants;
- Riemannian proximal gradient method and its variants;
- A Riemannian proximal Newton method;
- Numerical experiments;

- Euclidean proximal gradient method and its variants;
- Riemannian proximal gradient method and its variants;
- A Riemannian proximal Newton method;
- Numerical experiments;

Note that we focus on:

•  $\mathcal{M}$  is an Riemannian embedded submanifold of a Euclidean space;

• 
$$h(x) = \mu ||x||_1;$$

A native generalization

Euclidean version:

$$\begin{cases} d_k = \operatorname{argmin}_p \langle \nabla f(x_k), p \rangle + \frac{1}{2} \langle p, \nabla^2 f(x_k) p \rangle + h(x_k + p) \\ x_{k+1} = x_k + d_k \end{cases}$$

A native generalization by replacing the Euclidean gradient and Hessian by the Riemannian gradient and Hessian:

 $\begin{cases} \eta_k = \arg \min_{\eta \in \mathcal{T}_{x_k}} \mathcal{M} \langle \operatorname{grad} f(x_k), \eta \rangle + \frac{1}{2} \langle \eta, \operatorname{Hess} f(x_k) \eta \rangle + h(x_k + \eta) \\ x_{k+1} = R_{x_k}(\eta_k) \end{cases}$ 

A native generalization

Euclidean version:

$$\begin{cases} d_k = \operatorname{argmin}_p \langle \nabla f(x_k), p \rangle + \frac{1}{2} \langle p, \nabla^2 f(x_k) p \rangle + h(x_k + p) \\ x_{k+1} = x_k + d_k \end{cases}$$

A native generalization by replacing the Euclidean gradient and Hessian by the Riemannian gradient and Hessian:

 $\begin{cases} \eta_k = \arg \min_{\eta \in \mathcal{T}_{x_k}} \mathcal{M} \langle \operatorname{grad} f(x_k), \eta \rangle + \frac{1}{2} \langle \eta, \operatorname{Hess} f(x_k) \eta \rangle + h(x_k + \eta) \\ x_{k+1} = R_{x_k}(\eta_k) \end{cases}$ 

### Does it converge superlinearly locally?

A native generalization

Euclidean version:

$$\begin{cases} d_k = \operatorname{argmin}_p \langle \nabla f(x_k), p \rangle + \frac{1}{2} \langle p, \nabla^2 f(x_k) p \rangle + h(x_k + p) \\ x_{k+1} = x_k + d_k \end{cases}$$

A native generalization by replacing the Euclidean gradient and Hessian by the Riemannian gradient and Hessian:

 $\begin{cases} \eta_k = \arg \min_{\eta \in \mathcal{T}_{x_k}} \mathcal{M} \langle \operatorname{grad} f(x_k), \eta \rangle + \frac{1}{2} \langle \eta, \operatorname{Hess} f(x_k) \eta \rangle + h(x_k + \eta) \\ x_{k+1} = R_{x_k}(\eta_k) \end{cases}$ 

Does it converge superlinearly locally? Not necessarily!

х

A native generalization

Consider the Sparse PCA over sphere:

$$\min_{\in \mathbb{S}^{n-1}} - x^{\mathrm{T}} A^{\mathrm{T}} A x + \mu \|x\|_{1}$$

where  $f(x) = -x^{\mathrm{T}}A^{\mathrm{T}}Ax$ ,  $h(x) = \mu ||x||_1$ .

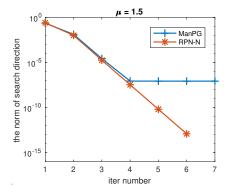


Figure: Comparisons of native generalization (RPN-N) and the proximal gradient method (ManPG) in [CMSZ20].

A native generalization

Euclidean version:

$$\begin{cases} d_k = \operatorname{argmin}_p \langle \nabla f(x_k), p \rangle + \frac{1}{2} \langle p, \nabla^2 f(x_k) p \rangle + h(x_k + p) \\ x_{k+1} = x_k + d_k \end{cases}$$

A native generalization by replacing the Euclidean gradient and Hessian by the Riemannian gradient and Hessian:

$$\begin{cases} \eta_k = \arg\min_{\eta \in \mathbb{T}_{x_k} \mathcal{M}} \langle \operatorname{grad} f(x_k), \eta \rangle + \frac{1}{2} \langle \eta, \operatorname{Hess} f(x_k) \eta \rangle + h(x_k + \eta) \\ x_{k+1} = R_{x_k}(\eta_k) \end{cases}$$

•  $x_k + \eta$  in *h* is only a first order approximation;

A native generalization

<

Euclidean version:

$$\begin{cases} d_k = \operatorname{argmin}_p \langle \nabla f(x_k), p \rangle + \frac{1}{2} \langle p, \nabla^2 f(x_k) p \rangle + h(x_k + p) \\ x_{k+1} = x_k + d_k \end{cases}$$

A native generalization by replacing the Euclidean gradient and Hessian by the Riemannian gradient and Hessian:

 $\begin{cases} \eta_k = \arg \min_{\eta \in \mathcal{T}_{x_k} \mathcal{M}} \langle \operatorname{grad} f(x_k), \eta \rangle + \frac{1}{2} \langle \eta, \operatorname{Hess} f(x_k) \eta \rangle + h(x_k + \eta) \\ x_{k+1} = R_{x_k}(\eta_k) \end{cases} \\ \begin{cases} \eta_k = \arg \min_{\eta \in \mathcal{T}_{x_k} \mathcal{M}} \langle \operatorname{grad} f(x_k), \eta \rangle + \frac{1}{2} \langle \eta, \operatorname{Hess} f(x_k) \eta \rangle + h(x_k + \eta + \frac{1}{2} \Pi(\eta, \eta)) \\ x_{k+1} = R_{x_k}(\eta_k) \end{cases}$ 

- $x_k + \eta$  in *h* is only a first order approximation;
- If an second order approximation is used, then the subproblem is difficult to solve;

The proposed approach

### A Riemannian proximal Newton method (RPN)

### Compute

$$v(x_k) = \operatorname{argmin}_{v \in \operatorname{T}_{x_k} \mathcal{M}} f(x_k) + \langle \nabla f(x_k), v \rangle + \frac{1}{2t} \|v\|_F^2 + h(x_k + v);$$

• Find 
$$u(x_k) \in T_{x_k} \mathcal{M}$$
 by solving  

$$J(x_k)[u(x_k)] = -v(x_k),$$
where  $J(x_k) = -[I_n - \Lambda_{x_k} + t\Lambda_{x_k}(\nabla^2 f(x_k) - \mathcal{L}_{x_k})], \Lambda_{x_k} \text{ and } \mathcal{L}_{x_k} \text{ are defined later };$ 

3 
$$x_{k+1} = R_{x_k}(u(x_k));$$

The proposed approach

#### A Riemannian proximal Newton method (RPN)

Compute

 $v(x_k) = \operatorname{argmin}_{v \in \operatorname{T}_{x_k} \mathcal{M}} f(x_k) + \langle \nabla f(x_k), v \rangle + \frac{1}{2t} \|v\|_F^2 + h(x_k + v);$ 

• Step 1: compute a Riemannian proximal gradient direction (ManPG)

The proposed approach

### A Riemannian proximal Newton method (RPN)

- Compute
  \$\$v(x\_k) = argmin\_{v \in T\_{x\_k} \mathcal{M}} f(x\_k) + \langle \nabla f(x\_k), v \rangle + \frac{1}{2t} ||v||\_F^2 + h(x\_k + v);\$
  Find \$u(x\_k) \in T\_{x\_k} \mathcal{M}\$ by solving \$J(x\_k)[u(x\_k)] = -v(x\_k)\$, where \$J(x\_k) = -[I\_n \Lambda\_{x\_k} + t\Lambda\_{x\_k}(\nabla^2 f(x\_k) \mathcal{L}\_{x\_k})]\$, \$\Lambda\_{x\_k}\$ and \$\mathcal{L}\_{x\_k}\$ are defined later \$;\$
  \$\$x\_{k+1} = R\_{x\_k}(u(x\_k))\$;\$
- Step 1: compute a Riemannian proximal gradient direction (ManPG)
  Step 2: compute the Riemannian proximal Newton direction, where J(x<sub>k</sub>) is from a generalized Jacobi of v(x<sub>k</sub>);

The proposed approach

### A Riemannian proximal Newton method (RPN)

Compute

 $v(x_k) = \operatorname{argmin}_{v \in \operatorname{T}_{x_k} \mathcal{M}} f(x_k) + \langle \nabla f(x_k), v \rangle + \frac{1}{2t} \|v\|_F^2 + h(x_k + v);$ 

Find 
$$u(x_k) \in T_{x_k} \mathcal{M}$$
 by solving  

$$J(x_k)[u(x_k)] = -v(x_k),$$
where  $J(x_k) = -[I_n - \Lambda_{x_k} + t\Lambda_{x_k}(\nabla^2 f(x_k) - \mathcal{L}_{x_k})], \Lambda_{x_k}$  and  $\mathcal{L}_{x_k}$  are defined later;

- Step 1: compute a Riemannian proximal gradient direction (ManPG)
- Step 2: compute the Riemannian proximal Newton direction, where J(x<sub>k</sub>) is from a generalized Jacobi of v(x<sub>k</sub>);
- Step 3: Update iterate by a retraction;

The proposed approach

### A Riemannian proximal Newton method (RPN)

Compute

v(x<sub>k</sub>) = argmin<sub>v∈T<sub>xk</sub> M</sub> f(x<sub>k</sub>) + ⟨∇f(x<sub>k</sub>), v⟩ + 1/2t ||v||<sup>2</sup><sub>F</sub> + h(x<sub>k</sub> + v);

Find u(x<sub>k</sub>) ∈ T<sub>xk</sub> M by solving

J(x<sub>k</sub>)[u(x<sub>k</sub>)] = -v(x<sub>k</sub>),
where J(x<sub>k</sub>) = -[I<sub>n</sub> -Λ<sub>xk</sub> + tΛ<sub>xk</sub>(∇<sup>2</sup>f(x<sub>k</sub>) - L<sub>xk</sub>)], Λ<sub>xk</sub> and L<sub>xk</sub> are defined later;
x<sub>k+1</sub> = R<sub>xk</sub>(u(x<sub>k</sub>));

Next, we will show:

- G-semismoothness of  $v(x_k)$  and its generalized Jacobi;
- Superlinear convergence rate;

G-semismoothness of v(x)

### Definition (G-Semismoothness [Gow04])

Let  $F : \mathcal{D} \to \mathbb{R}^m$  where  $\mathcal{D} \subset \mathbb{R}^n$  be an open set,  $\mathcal{K} : \mathcal{D} \rightrightarrows \mathbb{R}^{m \times n}$  be a nonempty set-valued mapping. We say that F is G-semismooth at  $x \in \mathcal{D}$  with respect to  $\mathcal{K}$  if for any  $J \in \mathcal{K}(x + d)$ ,

$$F(x+d) - F(x) - Jd = o(||d||)$$
 as  $d \rightarrow 0$ .

If F is G-semismooth at any  $x \in D$  with respect to  $\mathcal{K}$ , then F is called a G-semismooth function with respect to  $\mathcal{K}$ .

The standard definition of semismoothness additional requires:

- K is compact valued, upper semicontinuous set-valued mapping;
- F is a locally Lipschitz continuous function;
- F is directionally differentiable at x;

[Gow04] M Seetharama Gowda. Inverse and implicit function theorems for h-differentiable and semismooth functions. Optimization Methods and Software, 19(5):443-461, 2004.

G-semismoothness of v(x)

v(x) (dropping the subscript for simplicity)

$$v(x) = \underset{v \in \mathrm{T}_{x} \mathcal{M}}{\operatorname{argmin}} f(x) + \langle \nabla f(x), v \rangle + \frac{1}{2t} \|v\|_{F}^{2} + h(x+v);$$

G-semismoothness of v(x)

v(x) (dropping the subscript for simplicity)

$$v(x) = \operatorname*{argmin}_{v \in \mathrm{T}_x \mathcal{M}} f(x) + \langle \nabla f(x), v \rangle + \frac{1}{2t} \|v\|_F^2 + h(x+v);$$

Above problem can be rewritten as

$$\arg\min_{B_x^{\mathsf{T}}v=0} \langle \xi_x, v \rangle + \frac{1}{2t} \|v\|_F^2 + h(x+v)$$

where  $B_x^T v = (\langle b_1, v \rangle, \langle b_2, v \rangle, \dots, \langle b_m, v \rangle)^T$ , and  $\{b_1, \dots, b_m\}$  forms an orthonormal basis of  $T_x^{\perp} \mathcal{M}$ .

G-semismoothness of v(x)

The Lagrangian function:

$$\mathcal{L}(\boldsymbol{v},\lambda) = \langle \xi_{\boldsymbol{x}}, \boldsymbol{v} \rangle + \frac{1}{2t} \langle \boldsymbol{v}, \boldsymbol{v} \rangle + h(\boldsymbol{X} + \boldsymbol{v}) - \langle \lambda, \boldsymbol{B}_{\boldsymbol{x}}^{\mathsf{T}} \boldsymbol{v} \rangle.$$

Therefore

$$\mathsf{KKT:} \left\{ \begin{array}{l} \partial_{v} \mathcal{L}(v,\lambda) = 0 \\ B_{x}^{\mathsf{T}} v = 0 \end{array} \right\} \Longrightarrow \left\{ \begin{array}{l} v = \operatorname{Prox}_{th} \left( x - t(\xi_{x} - B_{x}\lambda) \right) - x \\ B_{x}^{\mathsf{T}} v = 0 \end{array} \right.$$

where  $\operatorname{Prox}_{tg}(z) = \operatorname{argmin}_{v \in \mathbb{R}^{n \times p}} \frac{1}{2} \|v - z\|_F^2 + th(v).$ 

#### Define

$$\mathcal{F}: \mathbb{R}^n \times \mathbb{R}^{n+d} \mapsto \mathbb{R}^{n+d}: (x; v, \lambda) \mapsto \begin{pmatrix} v + x - \operatorname{Prox}_{th} (x - t[\nabla f(x) + B_x \lambda]) \\ B_x^T v \end{pmatrix}$$

v(x) is the solution of the system  $\mathcal{F}(x, v(x), \lambda(x)) = 0$ ;

G-semismoothness of v(x)

#### Define

$$\mathcal{F}: \mathbb{R}^n \times \mathbb{R}^{n+d} \mapsto \mathbb{R}^{n+d}: (x; v, \lambda) \mapsto \begin{pmatrix} v + x - \operatorname{Prox}_{th} (x - t[\nabla f(x) + B_x \lambda]) \\ B_x^T v \end{pmatrix}$$

- $\mathcal{F}$  is semismooth;
- v(x) is G-semismooth by the G-semismooth Implicit Function Theorem in [Gow04, PSS03];

[Gow04] M Seetharama Gowda. Inverse and implicit function theorems for h-differentiable and semismooth functions. Optimization Methods and Software, 19(5):443-461, 2004.

[PSS03] Jong-Shi Pang, Defeng Sun, and Jie Sun. Semismo oth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems. Mathematics of Operations Research, 28(1):39-63, 2003.

G-semismoothness of v(x)

#### Lemma (Semismooth Implicit Function Theorem)

Suppose that  $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$  is a semismooth function with respect to  $\partial_{\mathrm{B}}F$  in an open neighborhood of  $(x^0, y^0)$  with  $F(x^0, y^0) = 0$ . Let  $H(y) = F(x^0, y)$ , if every matrix in  $\partial_C H(y^0)$  is nonsingular, then there exists an open set  $\mathcal{V} \subset \mathbb{R}^n$  containing  $x^0$ , a set-valued function  $\mathcal{K} : \mathcal{V} \to \mathbb{R}^{m \times n}$ , and a G-semismooth function  $f : \mathcal{V} \to \mathbb{R}^m$  with respect to  $\mathcal{K}$  satisfying  $f(x^0) = y^0$ , for every  $x \in \mathcal{V}$ ,

$$F(x,f(x))=0,$$

and the set-valued function  ${\cal K}$  is

$$\mathcal{K}: x \mapsto \{-(A_y)^{-1}A_x: [A_x A_y] \in \partial_{\mathrm{B}}F(x, f(x))\},\$$

where the map  $x \mapsto \mathcal{K}(x)$  is compact valued and upper semicontinuous.

G-semismoothness of v(x)

Without loss of generality, we assume that the nonzero entries of  $x_*$  are in the first part, i.e.,  $x_* = [\bar{x}_*^T, 0^T]^T$ 

#### Assumption

Let  $B_{x_*}^{\mathrm{T}} = [\bar{B}_{x_*}^{\mathrm{T}}, \hat{B}_{x_*}^{\mathrm{T}}]$ , where  $\bar{B}_{x_*} \in \mathbb{R}^{j \times d}$  and  $\hat{B}_{x_*} \in \mathbb{R}^{(n-j) \times d}$ . It is assumed that  $j \geq d$  and  $\bar{B}_{x_*}$  is full column rank.

G-semismoothness of v(x)

Without loss of generality, we assume that the nonzero entries of  $x_*$  are in the first part, i.e.,  $x_* = [\bar{x}_*^T, 0^T]^T$ 

#### Assumption

Let  $B_{x_*}^{\mathrm{T}} = [\bar{B}_{x_*}^{\mathrm{T}}, \hat{B}_{x_*}^{\mathrm{T}}]$ , where  $\bar{B}_{x_*} \in \mathbb{R}^{j \times d}$  and  $\hat{B}_{x_*} \in \mathbb{R}^{(n-j) \times d}$ . It is assumed that  $j \geq d$  and  $\bar{B}_{x_*}$  is full column rank.

### v(x) is a G-semismooth function of x in a neighborhood of $x_*$

Under the above Assumption, there exists a neighborhood  $\mathcal{U}$  of  $x_*$  such that  $v : \mathcal{U} \to \mathbb{R}^n : x \mapsto v(x)$  is a G-semismooth function with respect to  $\mathcal{K}_v$ , where

$$\mathcal{K}_{\mathbf{v}}: \mathbf{x} \mapsto \left\{-[\mathbf{I}_n, \ \mathbf{0}] B^{-1} A : [A \ B] \in \partial_{\mathrm{B}} \mathcal{F}(\mathbf{x}, \mathbf{v}(\mathbf{x}), \lambda(\mathbf{x}))\right\}.$$

For  $x \in \mathcal{U}$ , any element of  $\mathcal{K}_{v}(x)$  is called a generalized Jacobi of v at x.

### Here, the semismooth implicit function theorem is used

G-semismoothness of v(x)

The generalized Jacobi of v at x is

$$\begin{split} \Big\{ \mathcal{J}_{x} \mid & \mathcal{J}_{x}[\omega] = - \left[ \mathrm{I}_{n} - \Lambda_{x} + t \Lambda_{x} (\nabla^{2} f(x) - \mathcal{L}_{x}) \right] \omega - M_{x} B_{x} H_{x} (\mathrm{D} B_{x}^{\mathrm{T}}[\omega]) v, \forall \omega \\ & M_{x} \in \partial_{\mathcal{C}} \mathrm{prox}_{th}(x) \Big\}, \end{split}$$

where  $\Lambda_x = M_x - M_x B_x H_x B_x^T M_k$ ,  $H_x = (B_x^T M_x B_x)^{-1}$ ,  $\mathcal{L}_x(\cdot) = \mathcal{W}_x(\cdot, B_x \lambda(x))$ , and  $\mathcal{W}_x$  denotes the Weingarten map;

•  $v(x_*) = 0;$ 

• Set 
$$J(x) = I_n - \Lambda_x + t\Lambda_x(\nabla^2 f(x) - \mathcal{L}_x);$$

- The Riemannian proximal Newton direction: J(x)u(x) = -v(x);
- Let  $u(x) = (\overline{u}(x); \hat{u}(x))$ , then

$$\hat{u}(x) = \hat{v}$$
 and  $\bar{J}(x)\bar{u}(x) = -\bar{v}(x)$ 

Local superlinear convergence rate

Assumption:

• Let  $B_{x_*}^T = [\bar{B}_{x_*}^T, \hat{B}_{x_*}^T]$ , where  $\bar{B}_{x_*} \in \mathbb{R}^{j \times d}$  and and  $\hat{B}_{x_*} \in \mathbb{R}^{(n-j) \times d}$ . It is assumed that  $j \ge d$  and  $\bar{B}_{x_*}$  is full column rank;

Local superlinear convergence rate

Assumption:

- Let  $B_{x_*}^T = [\bar{B}_{x_*}^T, \hat{B}_{x_*}^T]$ , where  $\bar{B}_{x_*} \in \mathbb{R}^{j \times d}$  and and  $\hat{B}_{x_*} \in \mathbb{R}^{(n-j) \times d}$ . It is assumed that  $j \ge d$  and  $\bar{B}_{x_*}$  is full column rank;
- **③** There exists a neighborhood  $\mathcal{U}$  of  $x_* = [\bar{x}_*^T, 0^T]^T$  on  $\mathcal{M}$  such that for any  $x = [\bar{x}^T, \tilde{x}^T]^T \in \mathcal{U}$ , it holds that  $\bar{x} + \bar{v} \neq 0$  and  $\hat{x} + \hat{v} = 0$ .

$$v(x) = \operatorname*{argmin}_{v \in \mathrm{T}_x \mathcal{M}} f(x) + \langle \nabla f(x), v \rangle + \frac{1}{2t} \|v\|_F^2 + h(x+v)$$

Local superlinear convergence rate

Assumption:

- Let  $B_{x_*}^T = [\bar{B}_{x_*}^T, \hat{B}_{x_*}^T]$ , where  $\bar{B}_{x_*} \in \mathbb{R}^{j \times d}$  and and  $\hat{B}_{x_*} \in \mathbb{R}^{(n-j) \times d}$ . It is assumed that  $j \ge d$  and  $\bar{B}_{x_*}$  is full column rank;
- **②** There exists a neighborhood  $\mathcal{U}$  of  $x_* = [\bar{x}_*^T, 0^T]^T$  on  $\mathcal{M}$  such that for any  $x = [\bar{x}^T, \tilde{x}^T]^T \in \mathcal{U}$ , it holds that  $\bar{x} + \bar{v} \neq 0$  and  $\hat{x} + \hat{v} = 0$ .

#### Theorem

Suppose that  $x_*$  be a local optimal minimizer. Under the above Assumptions, assume that  $J(x_*)$  is nonsingular. Then there exists a neighborhood  $\mathcal{U}$  of  $x_*$  on  $\mathcal{M}$  such that for any  $x_0 \in \mathcal{U}$ , RPN Algorithm generates the sequence  $\{x_k\}$  converging superlinearly to  $x_*$ .

Local superlinear convergence rate

Assumption:

- Let  $B_{x_*}^T = [\bar{B}_{x_*}^T, \hat{B}_{x_*}^T]$ , where  $\bar{B}_{x_*} \in \mathbb{R}^{j \times d}$  and and  $\hat{B}_{x_*} \in \mathbb{R}^{(n-j) \times d}$ . It is assumed that  $j \ge d$  and  $\bar{B}_{x_*}$  is full column rank;
- **③** There exists a neighborhood  $\mathcal{U}$  of  $x_* = [\bar{x}_*^T, 0^T]^T$  on  $\mathcal{M}$  such that for any  $x = [\bar{x}^T, \tilde{x}^T]^T \in \mathcal{U}$ , it holds that  $\bar{x} + \bar{v} \neq 0$  and  $\hat{x} + \hat{v} = 0$ .

#### Theorem

Suppose that  $x_*$  be a local optimal minimizer. Under the above Assumptions, assume that  $J(x_*)$  is nonsingular. Then there exists a neighborhood  $\mathcal{U}$  of  $x_*$  on  $\mathcal{M}$  such that for any  $x_0 \in \mathcal{U}$ , RPN Algorithm generates the sequence  $\{x_k\}$  converging superlinearly to  $x_*$ .

If the intersection of manifold and sparsity constraints forms an embedded manifold around  $x_*$ , then  $\nabla^2 \overline{f}(x_*) - \overline{\mathcal{L}} \succeq 0$ . If  $\nabla^2 \overline{f}(x_*) - \overline{\mathcal{L}} \succ 0$ , then  $J(x_*)$  is nonsingular.

The proposed method for smooth problems

Smooth case:  $\min_{x \in \mathcal{M}} f(x)$ 

• KKT conditions:

$$abla f(x)+rac{1}{t}oldsymbol{v}+B_x\lambda=0, ext{ and } B_x^{ op}oldsymbol{v}=0;$$

• Closed form solutions:

$$\lambda(x) = -B_x^{\mathrm{T}} \nabla f(x), \qquad v = -t \operatorname{grad} f(x);$$

• Action of J(x): for  $\omega \in T_x \mathcal{M}$ 

$$J(x)[\omega] = -tP_{\mathrm{T}_{x}\mathcal{M}}(\nabla^{2}f(x) - \mathcal{L}_{x})P_{\mathrm{T}_{x}\mathcal{M}}\omega = -t\operatorname{Hess} f(x)[\omega]$$

- $J(x)u(x) = -v(x) \Longrightarrow \operatorname{Hess} f(x)[u(x)] = -\operatorname{grad} f(x);$
- It is the Riemannian Newton method;

The proposed method for smooth problems

- Euclidean proximal gradient method and its variants;
- Riemannian proximal gradient method and its variants;
- A Riemannian proximal Newton method;
- Numerical experiments;

### Sparse PCA problem

$$\min_{X \in \operatorname{St}(r,n)} - \operatorname{trace}(X^T A^T A X) + \mu \|X\|_1,$$

where  $A \in \mathbb{R}^{m \times n}$  is a data matrix and  $\operatorname{St}(r, n) = \{X \in \mathbb{R}^{n \times r} \mid X^T X = I_r\}$  is the compact Stiefel manifold.

• 
$$R_x(\eta_x) = (x + \eta_x)(I + \eta_x^T \eta_x)^{-1/2};$$

• 
$$t = 1/(2||A||_2^2);$$

Run ManPG until ||v|| reaches 10<sup>-4</sup>, i.e., it reduces by a factor of 10<sup>3</sup>. The resulting x as the input of RPN;

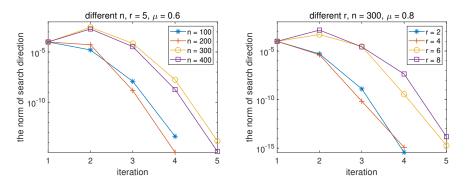


Figure: Random data. Left: different  $n = \{100, 200, 300, 400\}$  with r = 5 and  $\mu = 0.6$ ; Right: different  $r = \{2, 4, 6, 8\}$  with n = 300 and  $\mu = 0.8$ 

### A Hybrid version of ManPG and RPN

**Require:**  $x_0 \in \mathcal{M}, t > 0, \rho \in (0, \frac{1}{2}], \epsilon > 0;$ 

- 1: for k = 0, 1, ... do
- 2: Compute *v<sub>k</sub>* by solving the Riemannian proximal gradient subproblem;
- 3: if  $||v_k|| > \epsilon$  then
- 4: Set  $\alpha = 1$ ;
- 5: while  $F(R_{x_k}(\alpha v_k)) > F(x_k) \frac{1}{2}\alpha \|v_k\|^2$  do
- 6:  $\alpha = \rho \alpha;$

7: end while

8: 
$$x_{k+1} = R_{x_k}(\alpha v_k);$$

9: else

10: Compute 
$$u_k$$
 by solving  $J(x_k)u_k = -v_k$ ;

11: 
$$x_{k+1} = R_{x_k}(u_k);$$

12: end if

13: end for

Consider the simple version of sparse PCA with r = 1, i.e.,

$$\min_{x\in\mathbb{S}^{n-1}}-x^{T}A^{T}Ax+\mu\|x\|_{1},$$

where  $A \in \mathbb{R}^{m \times n}$  is a data matrix.

Table: An average result of 5 random runs for random data with different setting of  $(n, \mu)$ . The subscript k indicates a scale of  $10^k$ . iter-u denotes the number of using the new search direction  $u_k$ .

| $(n, \mu)$   | Algo  | iter | iter-v | iter-u | f           | sparsity | $\ v_k\ $    |
|--------------|-------|------|--------|--------|-------------|----------|--------------|
| (5000,1.5)   | ManPG | 3000 | 897    | -      | $-4.59_{1}$ | 0.37     | $7.41_{-8}$  |
| (5000,1.5)   | RPN   | 334  | -      | 5      | $-4.59_{1}$ | 0.37     | $4.53_{-16}$ |
| (10000,1.8)  | ManPG | 3000 | 1736   | -      | $-1.02_{2}$ | 0.32     | $2.19_{-8}$  |
| (10000, 1.8) | RPN   | 580  | -      | 6      | $-1.02_{2}$ | 0.32     | $5.69_{-16}$ |
| (30000,2.0)  | ManPG | 3000 | 1283   | -      | $-3.98_{2}$ | 0.22     | $1.19_{-8}$  |
| (30000,2.0)  | RPN   | 347  | -      | 5      | $-3.98_{2}$ | 0.22     | $5.25_{-15}$ |
| (50000,2.2)  | ManPG | 3000 | 1069   | -      | $-7.06_{2}$ | 0.18     | 4.56_7       |
| (50000,2.2)  | RPN   | 789  | -      | 5      | $-7.06_{2}$ | 0.18     | $1.41_{-14}$ |
| (80000,2.5)  | ManPG | 3000 | 834    | -      | $-1.17_{3}$ | 0.17     | $1.41_{-6}$  |
| (80000,2.5)  | RPN   | 839  | -      | 6      | $-1.17_{3}$ | 0.17     | $1.94_{-15}$ |

Stopping criteria: ManPG does not terminate until iteration attains the maximal iteration (3000), RPN terminate until  $||v_k|| \le 10^{-12}$ 

**CPU** Comparison

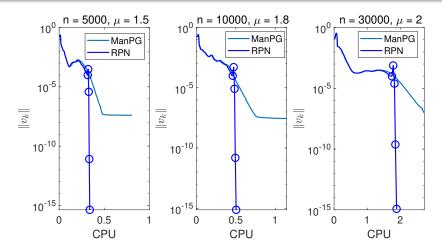


Figure: Random data: the norm of search direction  $v_k$  versus CPU for different  $(n, \mu)$ , where the blue circle indicates the use of the new direction  $u_k$ .

#### Synthetic Data

Synthetic Data [SCL<sup>+</sup>18] : we first obtain an  $m \times n$  noise-free matrix, then the data matrix A is generated by adding a random noise matrix, where each entry of the noise matrix is drawn form  $\mathcal{N}(0, 0.25)$ , we set m = 400, n = 4000 and  $\mu = 1.2$ .

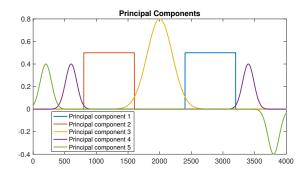


Figure: The five principal components used in the synthetic data.

#### Synthetic Data

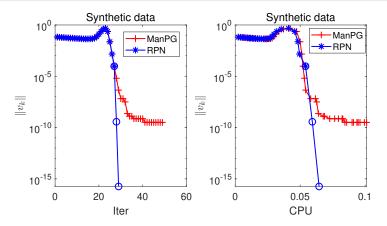


Figure: Plots of  $||v_k||$  versus iterations and CPU times respectively, where  $||v_k||$  is the norm of search direction, data matrix  $A \in \mathbb{R}^{4000 \times 400}$  is from the synthetic data,  $\mu$  is set to be 1.2. Note that the blue circle indicates the use of the new direction  $u_k$ .

- Briefly review Euclidean and Riemannian proximal gradient method and its variants;
- Propose a Riemannian proximal Newton method;
- Local superlinear convergence rate is proven;
- Numerical experiments show its performance;

- Globalization;
- Other types of h(x);
- General manifold;
- Riemannian proximal inexact-Newton methods;
- Riemannian proximal quasi-Newton methods;

Thank you!

## References I



#### Matthias Bollh ofer, Aryan Eftekhari, Simon Scheidegger, and Olaf Schenk.

Large-scale sparse inverse covariance matrix estimation. SIAM Journal on Scientific Computing, 41(1):A380–A401, 2019.



A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM Journal on Imaging Sciences*, 2(1):183–202, January 2009. doi:10.1137/080716542.



Shixiang Chen, Shiqian Ma, Anthony Man-Cho So, and Tong Zhang.

Proximal gradient method for nonsmooth optimization over the Stiefel manifold. SIAM Journal on Optimization, 30(1):210–239, 2020.



#### Haoran Chen, Yanfeng Sun, Junbin Gao, Yongli Hu, and Baocai Yin.

Fast optimization algorithm on riemannian manifolds and its application in low-rank learning. Neurocomputing, 291:59 - 70, 2018.



#### M Seetharama Gowda.

Inverse and implicit function theorems for h-differentiable and semismooth functions. Optimization Methods and Software, 19(5):443-461, 2004.



#### W. Huang and K. Wei.

Riemannian proximal gradient methods. Mathematical Programming, 2021. published online, DOI:10.1007/s10107-021-01632-3.



#### Wen Huang and Ke Wei.

An extension of fast iterative shrinkage-thresholding algorithm to Riemannian optimization for sparse principal component analysis.

Numerical Linear Algebra with Applications, page e2409, 2021.

## References II



#### Wen Huang, Meng Wei, Kyle A. Gallivan, and Paul Van Dooren.

A Riemannian Optimization Approach to Clustering Problems, 2022.



#### Jason D Lee, Yuekai Sun, and Michael A Saunders.

Proximal newton-type methods for minimizing composite functions. SIAM Journal on Optimization, 24(3):1420–1443, 2014.



#### Boris S Mordukhovich, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang.

A globally convergent proximal newton-type method in nonsmooth convex optimization. Mathematical Programming, pages 1–38, 2022.



#### Vidvuds Ozolinš, Rongjie Lai, Russel Caflisch, and Stanley Osher.

Compressed modes for variational problems in mathematics and physics. Proceedings of the National Academy of Sciences, 110(46):18368–18373, 2013.



#### Jong-Shi Pang, Defeng Sun, and Jie Sun.

Semismooth homeomorphisms and strong stability of semidefinite and lorentz complementarity problems. Mathematics of Operations Research, 28(1):39–63, 2003.



K. Sjöstrand, L. Clemmensen, R. Larsen, G. Einarsson, and B. Ersboll.

SpaSM: A matlab toolbox for sparse statistical modeling. Journal of Statistical Software, Articles, 84(10):1–37, 2018.



#### K. Scheinberg and X. Tang.

Practical inexact proximal quasi-newton method with global complexity analysis. Mathematical Programming, (160):495–529, February 2016.



Hui Zou, Trevor Hastie, and Robert Tibshirani.

#### Sparse principal component analysis.

Journal of Computational and Graphical Statistics, 15(2):265-286, 2006.



Y. Zhang, Y. Lau, H.-W. Kuo, S. Cheung, A. Pasupathy, and J. Wright.

On the global geometry of sphere-constrained sparse blind deconvolution. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.