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Problem Statement

Optimization on Manifolds with Structure: .

Xr'reuj\rll F(x) = f(x) + h(x),

@ M is a finite-dimensional Riemannian manifold;

@ f is smooth and may be nonconvex; and

@ h(x) is continuous and convex but may be nonsmooth;
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Problem Statement

Optimization on Manifolds with Structure:

Xr'reuj\rll F(x) = f(x) + h(x),

@ M is a finite-dimensional Riemannian manifold;
@ f is smooth and may be nonconvex; and

@ h(x) is continuous and convex but may be nonsmooth;

Applications: sparse PCA [ZHTO06], compressed modes [OLCO13],
sparse partial least squares regression [CSGT18], sparse inverse
covariance estimation [BESS19], sparse blind deconvolution [ZLK*17],
and clustering [HWGVD22].
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Proximal gradient method and its variants;

A Riemannian proximal Newton method;
@ A Riemannian proximal Newton-CG method;

@ Numerical experiments;
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Proximal Gradient Method and its variants
Euclidean versions

Optimization with Structure: M = R"

Xrg]i]é]n F(x) = f(x) + h(x),
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Proximal Gradient Method and its variants
Euclidean versions

Optimization with Structure: M = R"

Xrg]ilgn F(x) = f(x) + h(x),

@ Proximal Gradient

Accelerated versions

@ Proximal inexact Newton

@ Proximal quasi-Newton
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Proximal Gradient Method and its variants
Euclidean versions

Optimization with Structure: M = R"

Xrg]i]é]n F(x) = f(x) + h(x),

Given xp',

{ di = argmin, (VF(xc), p) + 5[|pIIE + h(x + p)

@ Proximal Gradient Xip1 = Xk + di.

Accelerated versions

@ Proximal inexact Newton

@ Proximal quasi-Newton

1. The update rule: x1 = arg min (VF(xc), x — xi) + £|x — xi||2 + h(x).
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Proximal Gradient Method and its variants

Euclidean versions

Optimization with Structure: M = R"

Xrg]i]é]n F(x) = f(x) + h(x),

Given xp,

{ di = argmin, (VF(xc), p) + 5[|plIE + h(x + p)

@ Proximal Gradient Xip1 = Xk + di.

Accelerated versions @ h = 0: reduce to steepest descent method;

o Proximal inexact Newton @ Any limit point is a critical point;

O (%) sublinear convergence rate for convex f

@ Proximal quasi-Newton and h:

@ Linear convergence rate for strongly convex f
and convex h;

@ Local convergence rate by KL property;
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Proximal Gradient Method and its variants
Euclidean versions

Optimization with Structure: M = R"

Xrg]i]é]n F(x) = f(x) + h(x),

Given xp, let yo = xo, to = 1;

dy, = argmin, (Vf(ys), p) + 5llpllE + h(yx + p)

@ Proximal Gradient Xkr1 = Yk + dy,
VA2 4141
. — k
o Accelerated versions fep1 = “—5—
Yi+1 = Xe1 + tkk“ (Xk+1 — Xx)-

@ Proximal inexact Newton

@ Proximal quasi-Newton
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Proximal Gradient Method and its variants

Euclidean versions

Optimization with Structure: M = R"

Xrg]i]é]n F(x) = f(x) + h(x),

Given xp, let yo = xo, to = 1;

dy, = argmin, (Vf(ys), p) + 5llpllE + h(yx + p)

@ Proximal Gradient Xkr1 = Yk + dy,
VA2 4141
. — k
o Accelerated versions fep1 = “—5—
Yi+1 = Xe1 + tkk“ (Xk+1 — Xx)-

@ Proximal inexact Newton
@ A representative one: FISTA [BT09];
@ Proximal quasi-Newton

Based on the Nesterov momentum technique;

o (k—lz) sublinear convergence rate for convex f
and h;

[BT09] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183-202, January 2009.
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Proximal Gradient Method and its variants
Euclidean versions

Optimization with Structure: M = R"

Xrg]ilgn F(x) = f(x) + h(x),

Given xp;

{ di = argmin, (Vf(xk), p) + 5 (p, Hkp) + h(xx + p)

Proximal Gradient Xk41 = Xk + tidk, for a step size ti

Accelerated versions Mention Joseph-Newton method

Proximal inexact Newton

@ Proximal quasi-Newton
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Proximal Gradient Method and its variants

Euclidean versions

Optimization with Structure: M = R"

Xrg]i]é]n F(x) = f(x) + h(x),

Given xp;
_ _ di = argmin, (Vf(x), p) + 3 (p, Hkp) + h(xk + p)
@ Proximal Gradient Xip1 = Xk + tidy, for a step size ty
@ Accelerated versions Mentign . h-Newt thod | .. .
e°n ﬁf |Jsol§|%25|anecvyr %npg]s?thl% definite
o Proximal inexact Newton approximation to Hessian [LSS14, MYZZ22];

) ) @ t is one for sufficiently large k;
@ Proximal quasi-Newton

@ Quadratic/Superlinear convergence rate for
strongly convex f and convex h;

[LLS14] Jason D Lee, Yuekai Sun, and Michael A Saunders. Proximal newton-type methods for
minimizing composite functions. SIAM Journal on Optimization, 24(3):1420-1443, 2014.

[MYZZ22] Boris S Mordukhovich, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A globally
convergent proximal newton-type method in nonsmooth convex optimization. Mathematical
Programming, pages 1-38, 2022.
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Proximal Gradient Method and its variants

Euclidean versions

Optimization with Structure: M = R"

Xrg]i]é]n F(x) = f(x) + h(x),

Given xo, Ho;
_ _ di = argmin, (VF(x), p) + 5 (p, Hkp) + h(x« + p)
@ Proximal Gradient Xkl = Xk + tidk, for a step size ti
. Update Hi by a quasi-Newton formula
@ Accelerated versions

@ Proximal inexact Newton

Proximal quasi-Newton

[LLS14] Jason D Lee, Yuekai Sun, and Michael A Saunders. Proximal newton-type methods for
minimizing composite functions. SIAM Journal on Optimization, 24(3):1420-1443, 2014.

[ST16] K. Scheinberg and X. Tang. Practical inexact proximal quasi-Newton method with global
complexity analysis. Mathematical Programming, (160):495-529, 2016.
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Proximal Gradient Method and its variants

Euclidean versions

Optimization with Structure: M = R"

Xrg]i]é]n F(x) = f(x) + h(x),

Given xo, Ho;
. _ d = argmin, (VF(xk), p) + 3(p, Hkp) + h(x« + p)
@ Proximal Gradient Xkl = Xk + tidk, for a step size ti

. Update Hi by a quasi-Newton formula
Accelerated versions

_ _ @ Dennis-Moré condition = superlinear
@ Proximal inexact Newton convergence rate for strongly convex f and
convex h [LSS14];

@ Sublinear without the accuracy assumption on
H [ST16];

Proximal quasi-Newton

[LLS14] Jason D Lee, Yuekai Sun, and Michael A Saunders. Proximal newton-type methods for
minimizing composite functions. SIAM Journal on Optimization, 24(3):1420-1443, 2014.

[ST16] K. Scheinberg and X. Tang. Practical inexact proximal quasi-Newton method with global
complexity analysis. Mathematical Programming, (160):495-529, 2016.
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Proximal Gradient Method and its variants
Euclidean to Riemannian

Optimization with Structure:

Xrgl/\rll F(x) = f(x) + h(x),

@ Proximal Gradient

Accelerated versions

Riemannian versions

@ Proximal inexact Newton

@ Proximal quasi-Newton
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Proximal Gradient Method and its variants

Euclidean to Riemannian

Optimization with Structure:

Xrgl/\rll F(x) = f(x) + h(x),

[CMSZ20], ManPG: Given xq,

. _ M = arg minger,, m (VE0a),m) + 5lnllF + h(xi +n)
e Proximal Gradient X1 = Ry (kmi) with an appropriate step size ay;
@ Accelerated versions M

@ Proximal inexact Newton

@ Proximal quasi-Newton ’

[CMSZ20] S. Chen, S. Ma, A. Man-Cho So, and T. Zhang. Proximal gradient method for nonsmooth
optimization over the Stiefel manifold. SIAM Journal on Optimization, 30(1):210-239, 2020.
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Proximal Gradient Method and its variants

Euclidean to Riemannian

Optimization with Structure:

Xrgl/\rll F(x) = f(x) + h(x),

[CMSZ20], ManPG: Given xq,
. . e = arg minger,, am (VF(xi),m) + 5l0ll7 + h(x +n)
o Proximal Gradient X1 = Ry (kmi) with an appropriate step size ay;
Accelerated versions [HW21a], RPG: Given xo,

Let £y, (1) = (gradf(xk), n)x, + 510l + h(Ry (1))
7Nk is a stationary point of £y, and £, (0) > Cx(nk);

Xi+1 = R (1K);

@ Proximal inexact Newton

@ Proximal quasi-Newton

[CMSZ20] S. Chen, S. Ma, A. Man-Cho So, and T. Zhang. Proximal gradient method for nonsmooth
optimization over the Stiefel manifold. SIAM Journal on Optimization, 30(1):210-239, 2020.

[HW21a] W. Huang and K. Wei. Riemannian proximal gradient methods. Mathematical
Programming, 194, p.371-413, 2022.
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Proximal Gradient Method and its variants

Euclidean to Riemannian

Optimization with Structure:

Xrgl/\rll F(x) = f(x) + h(x),

[CMSZ20], ManPG: Given xq,

_ _ M = arg minyer,, m (VE0a),m) + 5nllF + h(xi +n)
e Proximal Gradient X1 = Ry (kmi) with an appropriate step size ay;

Accelerated versions [HW21a], RPG: Given xo,

Let £y, (1) = (gradf(xk), n)x, + 510l + h(Ry (1))
7Nk is a stationary point of £y, and £, (0) > Cx(nk);
Xi+1 = R (1K);

@ [CMSZ20]: numerical aspect;

@ Proximal inexact Newton

@ Proximal quasi-Newton

@ [HW21a]: theoretical aspect;

[CMSZ20] S. Chen, S. Ma, A. Man-Cho So, and T. Zhang. Proximal gradient method for nonsmooth
optimization over the Stiefel manifold. SIAM Journal on Optimization, 30(1):210-239, 2020.

[HW21a] W. Huang and K. Wei. Riemannian proximal gradient methods. Mathematical
Programming, 194, p.371-413, 2022.
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Proximal Gradient Method and its variants

Euclidean to Riemannian

Optimization with Structure:

Xrgl/\rll F(x) = f(x) + h(x),

[HW21b], AManPG: Given xo, set yo = xo
Ny, = argmin, (VF(yx),n) + ElnllF + h(yx +n)

@ Proximal Gradient i1 = Ry, (ny,)
. WA
o Accelerated versions b1 = 3
_ lffk —1
. . Yk+1 = ka+1 ( tet1 ka+1 (Xk))
@ Proximal inexact Newton

@ Proximal quasi-Newton

[HW21b] W. Huang and K. Wei. An extension of fast iterative shrinkage-thresholding algorithm to
Riemannian optimization for sparse principal component analysis. Numerical Linear Algebra with
Applications, p.e2409, 2021.
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Proximal Gradient Method and its variants

Euclidean to Riemannian

Optimization with Structure:

Xrgl/\rll F(x) = f(x) + h(x),

[HW21b], AManPG: Given xo, set yo = xo
Ny, = argmin, (VF(yx),n) + ElnllF + h(yx +n)

@ Proximal Gradient i1 = Ry, (ny,)
. WA
o Accelerated versions b1 = 3
1—t p—1
S Vi1 = Ry (tiRXk+1(Xk))
@ Proximal inexact Newton ke

) ) @ A representative on in [HW21b], also see [HW21a];
@ Proximal quasi-Newton . .
@ Observe acceleration empirically;

@ No theoretical guarantee for acceleration;

[HW21b] W. Huang and K. Wei. An extension of fast iterative shrinkage-thresholding algorithm to
Riemannian optimization for sparse principal component analysis. Numerical Linear Algebra with
Applications, p.e2409, 2021.
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Proximal Gradient Method and its variants

Euclidean to Riemannian

Optimization with Structure:

Xrgl/\rll F(x) = f(x) + h(x),

[WY23, WY24], ManRQN, ARPQN, ARPN: Given xo
nk = arg minger,, m (VF(x),n)+

@ Proximal Gradient %<7777‘[k77> ¥ (i + 1) (or h(ka(n)))
@ Accelerated versions Xir1 = Ry (1k)

@ Proximal inexact Newton

@ Proximal quasi-Newton

[WY23] Q. Wang and W. Yang. Proximal Quasi-Newton Method for Composite Optimization over
the Stiefel Manifold, 95:39, 2023.

[WY24] Q. Wang and W. Yang. An adaptive regularized proximal Newton-type methods for
composite optimization over the Stiefel manifold, Computational Optimization and Applications, 2024
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Proximal Gradient Method and its variants

Euclidean to Riemannian

Optimization with Structure:

Xrgl/\rll F(x) = f(x) + h(x),

[WY23, WY24], ManRQN, ARPQN, ARPN: Given xo
nk = arg minger,, m (VF(x),n)+

L0, Hom) + b +n) (o h(Ry (1))
@ Accelerated versions Xir1 = Ry (1k)

@ Proximal Gradient

o Proximal inexact Newton @ H«: an approximation of quasi-Newton update or
Riemannian Hessian;

o Proximal quasi-Newton o | ocal superlinear convergence results: h(Rx.(n));

@ Only use diagonal Hx and h(xx + 1) numerically.

[WY23] Q. Wang and W. Yang. Proximal Quasi-Newton Method for Composite Optimization over
the Stiefel Manifold, 95:39, 2023.

[WY24] Q. Wang and W. Yang. An adaptive regularized proximal Newton-type methods for
composite optimization over the Stiefel manifold, Computational Optimization and Applications, 2024
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Proximal Gradient Method and its variants
Euclidean to Riemannian

Optimization with Structure:

Xrgl/\rll F(x) = f(x) + h(x),

[WY23, WY24], ManRQN, ARPQN, ARPN: Given xo
nk = arg minger,, m (VF(x),n)+

L0, Hom) + b +n) (o h(Ry (1))
@ Accelerated versions Xir1 = Ry (1k)

@ Proximal Gradient

o Proximal inexact Newton @ H«: an approximation of quasi-Newton update or
Riemannian Hessian;
o Proximal quasi-Newton o | ocal superlinear convergence results: h(Rx.(n));

@ Only use diagonal Hx and h(xx + 1) numerically.

Good theoretical results
but not practical algorithms with a local superlinear convergence rate
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@ Proximal gradient method and its variants;

@ A Riemannian proximal Newton method;

A Riemannian proximal Newton-CG method;

o Numerical experiments;

A practical algorithm with a local superlinear convergence rate

W. Si, P.-A. Absil, W. Huang, R. Jiang, and S. Vary. A Riemannian Proximal Newton Method,
SIAM Journal on Optimization, 34:1, p.654-681, 2024.
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@ Proximal gradient method and its variants;

@ A Riemannian proximal Newton method;

A Riemannian proximal Newton-CG method;

o Numerical experiments;

Note that this method focuses on:

@ M is an Riemannian embedded submanifold of a Euclidean space;

o h(x) = llx;
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A Riemannian proximal Newton method

’ minyxe s F(x) = f(x) + h(x) \

A Riemannian proximal Newton method (RPN)
© Compute the ManPG direction
v(x) = argminger, p f(xi) + (VF(xi), v) + 2 IVIE + bl + v);
@ Find u(xx) € Ty, M by solving
JOa)[u(xe)] = —=v(x),
where J(x) = — [In —Ay, + tA (V2F(xk) — Ly,)], Ax, and Ly, are
defined later;
© xit1 = Ry (u(xk));
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A Riemannian proximal Newton method

’ minyxe s F(x) = f(x) + h(x) \

A Riemannian proximal Newton method (RPN)
© Compute the ManPG direction
v(x) = argminger, p f(xi) + (VF(x), v) + 2 [IVIE + bl + v);
@ Find u(xx) € Ty, M by solving
JOa)[u(xe)] = —=v(x),
where J(x) = — [In —Ay, + tA (V2F(xk) — Ly,)], Ax, and Ly, are
defined later;
© xit1 = Ry (u(xk));

@ Step 1: compute a Riemannian proximal gradient direction (ManPG)
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A Riemannian proximal Newton method

’ minyxe s F(x) = f(x) + h(x) \

A Riemannian proximal Newton method (RPN)
© Compute the ManPG direction
v(x) = argminger, p f(xi) + (VF(xi), v) + 2 IVIE + bl + v);
@ Find u(xx) € Ty, M by solving
JOa)[u(xe)] = = v(x),
where J(x) = — [In =Ny, + tA (V2F(xk) — Ly,)], Ax, and Ly, are
defined later;
© xit1 = Ry (u(xk));

Step 1: compute a Riemannian proximal gradient direction (ManPG)

© 0

Step 2: compute the Riemannian proximal Newton direction, where
J(xk) is from a generalized Jacobi of v(xk);
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A Riemannian proximal Newton method

’ minyxe s F(x) = f(x) + h(x) \

A Riemannian proximal Newton method (RPN)
© Compute the ManPG direction
v(x) = argminger, p f(xi) + (VF(xi), v) + 2 IVIE + bl + v);
@ Find u(xx) € Ty, M by solving
JOa)[u(xe)] = —=v(x),
where J(x) = — [In —Ay, + tA (V2F(xk) — Ly,)], Ax, and Ly, are
defined later;

Xk+1 = Ry (u(xx));

Step 1: compute a Riemannian proximal gradient direction (ManPG)

Step 2: compute the Riemannian proximal Newton direction, where
J(xx) is from a generalized Jacobi of v(x);

© 006 ©o

Step 3: Update iterate by a retraction;
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A Riemannian proximal Newton method

Local superlinear convergence rate

Without loss of generality, we assume that the nonzero entries of x, are
in the first part, i.e., x, = [x],07]7. B, denotes an orthonormal basis of
Ty M at x.

Assumption:
O Let B] =[B], éxl_] where B,. € R'*? and and B, € R(")*d |t

is assumed that j > d and B,_ is full column rank;

*
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A Riemannian proximal Newton method

Local superlinear convergence rate

Without loss of generality, we assume that the nonzero entries of x, are
in the first part, i.e., x, = [x],07]7. B, denotes an orthonormal basis of

Ty M at x.

Assumption:
O Let B] =[B], éxl_] where B,. € R'*? and and B, € R(")*d |t
is assumed that j > d and EX* is full column rank;

@ There exists a neighborhood U of x, = [x],07]T on M such that
for any x = [x",%T]T € U, it holds that X+ V # 0 and X + 0 = 0.
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A Riemannian proximal Newton method

Local superlinear convergence rate

Suppose that x, be a local optimal minimizer. Under the above
Assumptions, assume that J(x.) is nonsingular. Then there exists a
neighborhood U of x, on M such that for any xo € U, RPN Algorithm
generates the sequence {xx} converging superlinearly to x.

The convergence rate is improved to quadratically convergence
in [SAHT24a]
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A Riemannian proximal Newton method

@ Similar to the Riemannian Newton method, this Riemannian proximal
Newton method does not guarantee global convergence;
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A Riemannian proximal Newton method

@ Similar to the Riemannian Newton method, this Riemannian proximal
Newton method does not guarantee global convergence;

@ A hybrid method that merges ManPG with RPN is proposed
in [SAHT24b];

Input: xo e M, t >0, € > 0;
1: for k=0,1,... do
2. Compute a ManPG direction vg;

3:  If |||l <€, then K = k and break;

4. xk41 = Ry (avk) with an appropriate step size;

5. end for

6: for k = K+1, K+2, ... do

7. Compute uy by solving J(xk)ux = —vi with v, being the ManPG
direction;

8 X1 = R (uk);

9: end for
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A Riemannian proximal Newton method

@ Similar to the Riemannian Newton method, this Riemannian proximal
Newton method does not guarantee global convergence;

@ A hybrid method that merges ManPG with RPN is proposed
in [SAHT24b];

Input: xo e M, t >0, € > 0;
1: for k=0,1,... do
2. Compute a ManPG direction vg;

3:  If |||l <€, then K = k and break;

4. xk41 = Ry (avk) with an appropriate step size;

5. end for

6: for k = K+1, K+2, ... do

7. Compute uy by solving J(xk)ux = —vi with v, being the ManPG
direction;

8 X1 = R (uk);

9: end for

The switching parameter ¢ is crucial for the performance.



@ Proximal gradient method and its variants;

@ A Riemannian proximal Newton method;

A Riemannian proximal Newton-CG method;

o Numerical experiments;

A practical and robust algorithm with
global convergence and local superlinear convergence guarantee

W. Huang, and W. Si. A Riemannian Proximal Newton-CG Method, arxiv:2405.08365, 2024.
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@ Proximal gradient method and its variants;
@ A Riemannian proximal Newton method;
@ A Riemannian proximal Newton-CG method;

o Numerical experiments;

Also focus on:
@ M is an Riemannian embedded submanifold of a Euclidean space;

o h(x) = llx;
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A Riemannian proximal Newton-CG method

A Riemannian proximal Newton method (RPN)
© Compute the ManPG direction
v(xi) = argmin,er, aq () + (VF(x), v) + 5 IVIE + hOac+ v);

@ Find u(xx) € Tx, M by solving
J(xic)[u(xi)] = —v(xi);

Q X1 = R (u(xk));

Smooth case:
o v(xx) = —tgrad f(x);
o J(xx) = —tHess f(xx);
o J(x)[u(xk)] = —v(x) =
Hess f(xi)[u(xx)] = — grad f(xx) -

truncated conjugate gradient (tCG)
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A Riemannian proximal Newton-CG method

A Riemannian proximal Newton method (RPN)
© Compute the ManPG direction
v(xi) = argmin,er, aq () + (VF(x), v) + 5 IVIE + hOac+ v);

@ Find u(xx) € Tx, M by solving
J(xic)[u(xi)] = —v(xi);

Q X1 = R (u(xk));

Smooth case: Nonsmooth case:
o v(xk) = —tgrad f(x); e v(xx): ManPG direction;
o J(xk) = —tHess f(x); @ J(xk): Generalized Jacobi of v;
o J(xi)[u(xw)] = —v(x) = @ u(xk): solving a linear system by
Hess f (xi)[u(xe)] = — grad f(x) - J(x)[u(xe)] = —v(x)
truncated conjugate gradient (tCG) tCG?
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A Riemannian proximal Newton-CG method

A Riemannian proximal Newton method (RPN)
© Compute the ManPG direction
v(xi) = argmin,er, aq () + (VF(x), v) + 5 IVIE + hOac+ v);

@ Find u(xx) € Tx, M by solving
J(xic)[u(xi)] = —v(xi);

Q X1 = R (u(xk));

Smooth case: Nonsmooth case:
o v(xk) = —tgrad f(x); e v(xx): ManPG direction;
o J(xk) = —tHess f(x); @ J(xk): Generalized Jacobi of v;
o J(xi)[u(xw)] = —v(x) = @ u(xk): solving a linear system by
Hess f (xi)[u(xe)] = — grad f(x) - J(x)[u(xe)] = —v(x)
truncated conjugate gradient (tCG) tCG?

Problem: J(xx) is not symmetric!
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A Riemannian proximal Newton-CG method

Notation:

(11) (12)
B B
By, = V2F(xi) — Lo = | % S|, By, =800,
( k) (ngil) SBgi”) k

5 D 5 D 5 D 12
J(Xk) - _ (BXk B)]:k + t(ljk - BXk B)tk)BXk t(ljk - BXk B)J{k)%&k )>

O(n—j) i In—j.

{ (BB, + t(l;, — By B)Byla(x) = v(x¢) — t(lj, — By Bf,)BLY a(xk)
0(xk) = U(xx)
}

v
= U(Xk) = V(Xk) - {/Jk + (IJk - Bxk Xk)NXk 71(IJ‘k - B BT )gxk

Xk =Xk

—~
e

L g + 1By )0(x) + BLED0(xc) and Ny, = — 1, + tBy, is

where £, = +

symmetric.

Speaker: Wen Huang A Riemannian Proximal Newton-CG Method



A Riemannian proximal Newton-CG method

E(Xk) = V(Xk) - {/Jk + (IJk - EXk éik) NXk }71(Ijk - éxk éik )Exk
~~—

symmetric

Lemma

Let N € R\>J and B € RIX™ with m < j. Suppose that I; + N is symmetric
positive definite on {w | BTw = 0} and that B is full column rank. Then it
holds that the unique solution of the problem

1
g T T(].
ol Wt g (kv

is given by

w, = — [+ (I — BBY)N] T [, — BB] £.
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A Riemannian proximal Newton-CG method

E(Xk) = V(Xk) - {/Jk + (IJk - EXk éik) NXk }71(Ijk - éxk _)Jgk )Exk
~~—

symmetric

Corollary

Suppose B,, has full column rank, By, is symmetric positive definite on
{w | BTw = 0}. Then the proximal Newton equation
J(xi)[u(xk)] = —v(xk) can be computed by

u(xi) = (V(Xk)A+ W(Xk)) 7

where w(xy) = argmingr ,_o {] w + JwT B, w.
Xk
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A Riemannian proximal Newton-CG method

E(Xk) = V(Xk) - {/Jk + (IJk - EXk éik) NXk }71(Ijk - éxk éik )Exk
~~—

symmetric

Corollary

Suppose B,, has full column rank, By, is symmetric positive definite on
{w | BTw = 0}. Then the proximal Newton equation
J(xi)[u(xk)] = —v(xk) can be computed by

u(xi) = (V(Xk)A+ W(Xk)) 7

where w(xy) = argmingr ,_o {] w + JwT B, w.
Xk

tCG can be used for the computation of w(x).
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A Riemannian proximal Newton-CG method

A Riemannian proximal Newton method (RPN)

Q v(x) = argmin,er, pq Fxk) +(VF(x0), v) + g IVIIE + h(xic+ v);

Q d(x) = (ZEZ%) _ (V(Xk??&:;(xk)> e i) B e @i 6

tCG for solving mingr,,_o ({x,, w) + 3(w, By w).
Xk

Q xxi1 = Ry (akd(xk)) with an appropriate step size cv;

Question:
o Is B,, symmetric positive definite near a local minimizer x,.?
@ What is the early termination conditions for tCG?

o Guarantee global convergence;
o Guarantee local superlinear convergence;
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Is B,, symmetric positive definite near x,?
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A Riemannian proximal Newton-CG method

Is B,, symmetric positive definite near x,?

Assumption:

© The function f is twice continuously differentiable with a Lipschitz
continuous Euclidean Hessian;

Q@ Let BT =[BT, é;;] where B, € R’*? and and B, € RO)*9 |t is
assumed that j > d and EX* is full column rank;

© There exists a neighborhood U of x, = [%],07]" on M such that for
any x = [xT,%T]T € U, it holds that X + ¥ # 0 and X + 0 = 0;

© The linear operator By, is positive definite on the subspace
g, ={w|Blw=0}
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A Riemannian proximal Newton-CG method

Is B,, symmetric positive definite near x,?

Assumption:
© The function f is twice continuously differentiable with a Lipschitz
continuous Euclidean Hessian;
Q@ Let BT =[BT, é;;] where B, € R’*? and and B, € RO)*9 |t is
assumed that j > d and By, is full column rank;
© There exists a neighborhood U of x, = [%],07]" on M such that for
any x = [xT,%T]T €U, it holds that X + ¥ # 0 and X + 0 = 0;

© The linear operator By, is positive definite on the subspace
g, ={w|Blw=0}

@ Under the second assumption, the intersection of the manifold and the
sparsity constraints forms an embedded submanifold around x,;

@ B, is the Riemannian Hessian of F at x, for the submanifold;

@ B, is symmetric positive semidefinite on £, ;
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Is B,, symmetric positive definite near x,?

Assumption:
© The function f is twice continuously differentiable with a Lipschitz
continuous Euclidean Hessian;
Q@ Let BT =[BT, é;;] where B, € R’*? and and B, € RO)*9 |t is
assumed that j > d and By, is full column rank;
© There exists a neighborhood U of x, = [%],07]" on M such that for
any x = [xT,%T]T €U, it holds that X + ¥ # 0 and X + 0 = 0;

© The linear operator By, is positive definite on the subspace
g, ={w|Blw=0}

Suppose the above Assumption holds. Then there exists a neighborhood of
Xy, denoted by V,, and a positive constant x. such that the smallest
eigenvalue of By on £, is greater than x. for all x € V. This implies By is
positive definite on £, for all x € V,.
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Early termination conditions in tCG

@ d(x)= (d (Xk)> — (V(Xk)f W(Xk)> e i) B e @uimr o
3

d(x)
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Early termination conditions in tCG

@ d(x)= (d (Xk)) — (V(Xk)f W(Xk)> e i) B e @uimr o
3

d(x)

Difficulty

@ Smooth: .
approximately der%]:an (grad f(xx), d) + §<Hess f(x«)[d], d),
find d(xk) such that {(d(xx),grad f(xx)) < 0;
@ Nonsmooth:

approximately _min (€, , w) + =(w, B, w),
B w=0 2

find w(xx) such that d(xx) is a descent direction;
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A Riemannian proximal Newton-CG method

Early termination conditions in tCG

@ d(x)= (d (Xk)) — (V(Xk)f W(Xk)> e i) B e @uimr o
3

d(x)

Difficulty

@ Smooth: .
approximately gmin (grad f(xx), d) + §<Hess f(x«)[d], d),

Xk

find d(xk) such that {(d(xx),grad f(xx)) < 0;
@ Nonsmooth:

approximately _min (ly, , w) + = (w, By w),
BT w=0 2
find w(xx) such that d(xx) is a descent direction;

The early termination conditions for the smooth case are not sufficient.
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Early termination conditions in tCG

Algorithm: Truncated conjugate gradient (tCG)

Input: ¥ >0,v>0,7>0,6>0,and s € (0,1);
Output: (w(x),status);

9:

e B A B o v

if Ge(v(x)) > Gx(0) then

return w(x) = 0 and status =" early1’;

end if
z-%v( );
f(v(x).2) + 7[00C)[E < vlv(x)E then
return w(x) = 0 and status =" early2’;
end if

wo =0, ro = Px(ly), 00 = —r9, 8o = (ro, o), to = z;
...... (CG iterations)

Omit subscript k for simplicity
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A Riemannian proximal Newton-CG method

Early termination conditions in tCG

Algorithm: Truncated conjugate gradient (tCG)

Input: ¥ >0,v>0,7>0,6>0,and s € (0,1);
Output: (w(x),status);

1 if Gy(v(x)) > G(0) then

2:  return w(x) = 0 and status =" early1’;

3: end if

4z =Bv(x);

5: i (v(x),2) + 7l|0(x) | <7llv(x)[ then

6:  return w(x) = 0 and status =" early2’;

7: end if

8: wy=0,rg= PX(KX), 0y = —ry, 0g = <r0, r0>, to = z;

9 ... (CG iterations)

o Gy(u) = f(x) + (VF(x), u) + 3(u, Byu) + FG()[F + h(x + u);

@ Use to guarantee global convergence;

o Z|la(x)||% is added for the condition in Step 5;



A Riemannian proximal Newton-CG method

Early termination conditions in tCG

Algorithm: Truncated conjugate gradient (tCG)

Input: ¥ >0,v>0,7>0,6>0,and s € (0,1);
Output: (w(x),status);

9:

ONQ @R

if Ge(v(x)) > Gx(0) then

return w(x) = 0 and status =" early1’;

end if
z = Bv(x);
f(v(x),2) + 7[00C)[E <lv(x)]E then
return w(x) = 0 and status =" early2’;
end if

wo =0, ro = Px(ly), 00 = —r9, 8o = (ro, o), to = z;
...... (CG iterations)

@ Use to guarantee global convergence;

o 7||0(x)||% is used since B, = 0 may not hold;

Speaker: Wen Huang A Riemannian Proximal Newton-CG Method
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Early termination conditions in tCG

Algorithm: Truncated conjugate gradient (tCG)

Input: ¥ >0,v>0,7>0,0>0, and k € (0,1);
Output: (w(x),status);
1 (See the previous slide)
22wy =0, rg= PX(KX), 0y = —ry, O0g = <ro, r0>, to = z;
3: fori=0,1,... do
4 p;=Bo;j and q; = P.(p;);
if <O,', q,'> < 96; then
return w(x) = w; and status =" neg’;
end if

©o e NOa

An existing early termination condition
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Early termination conditions in tCG

Algorithm: Truncated conjugate gradient (tCG)

Input: ¥ >0,v>0,7>0,6>0,and s € (0,1);
Output: (w(x),status);

1 (See previous slides)

2: for i =0,1,... do

3 (See previous slides)

4 = {0 Wiy = Wit a0 i = 1+ aig;
_ (VO) +wina _ Pi .

5. diy1 = 9(x) ) tiy1 =t + a; (%210/)

6: if (diy1, tiv1) + T0(X)|F < vlldis1]|% or Gy (dir1) > G«(0) then

7: return W( ) = w; and status =" early3’;

8: endif

9 .. (Remaining CG iterations)

10: end for

Use to guarantee global convergence
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A Riemannian proximal Newton-CG method

Early termination conditions in tCG

Algorithm: Truncated conjugate gradient (tCG)

Input: ¥ >0,v>0,7>0,0>0, and k € (0,1);
Output: (w(x),status);
1 (See previous slides)
for i =0,1,... do
...... (See previous slides)

— Fig1,ri41) . — .
Bit1 = % Oit1 = —riy1 + Biy10i;

2:

3

4

5: (5,’+1 = <r,-+1, r,-+1> + ﬂ,-z+15;; (Note that 5,‘+1 = <O,'+1, O,'+1>)

6 i=i+1,

7. if |rillF < llrollF min([iroll%, <) then

8 return w(x) = w;, and status =’ lin if ||ro]|% > & and
status = sup’ otherwise;

9: endif

10: end for

An existing early termination condition
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A Riemannian proximal Newton-CG method

Assumption:

@ The function f is twice continuously differentiable with a Lipschitz
continuous gradient;

Suppose the above Assumption holds and the parameters are
appropriately chosen. Then it holds that

lim [[v(x)]lF = 0.
k— o0
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A Riemannian proximal Newton-CG method

Assumption:

@ The function f is twice continuously differentiable with a Lipschitz
continuous Euclidean Hessian;

Q@ Let B] =[B], BXT] where B,, € R/*? and and B, € R"-Dx9_ |t is
assumed that j > d and BX* is full column rank;

© There exists a neighborhood U of x, = [x],07]" on M such that for
any x = [x7,%T]T € U, it holds that X + ¥ # 0 and X + 0 = 0;

© The function F is ¢-geodesically strongly convex at x,, i.e., there exists
a neighborhood U, of x, in M such that

S _
Fly) = Fe) + S Bxp  (n)IIF
holds for any y € LN{X*.
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A Riemannian proximal Newton-CG method

Assumption:

@ The function f is twice continuously differentiable with a Lipschitz
continuous Euclidean Hessian;

Q@ Let B] =[B], BXT] where B,, € R/*? and and B, € R"-Dx9_ |t is
assumed that j > d and BX* is full column rank;

© There exists a neighborhood U of x, = [x],07]" on M such that for
any x = [x7,%T]T € U, it holds that X + ¥ # 0 and X + 0 = 0;

© The function F is ¢-geodesically strongly convex at x,, i.e., there exists
a neighborhood U, of x, in M such that

S _
Fly) = Fe) + S Bxp  (n)IIF
holds for any y € LN{X*.

Suppose the last Assumption holds, that is, the function F = f + h is
g-geodesically strongly convex at x.. Then the linear operator By, is
positive definite on £, .
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Assumption:

@ The function f is twice continuously differentiable with a Lipschitz
continuous Euclidean Hessian;

Q@ Let B] =[B], BXT] where B,, € R/*? and and B, € R"-Dx9_ |t is
assumed that j > d and BX* is full column rank;
© There exists a neighborhood U of x, = [x],07]" on M such that for
any x = [x7,%T]T € U, it holds that X + ¥ # 0 and X + 0 = 0;
© The function F is ¢-geodesically strongly convex at x,, i.e., there exists
a neighborhood U, of x, in M such that
S _
Fly) = Fe) + S Bxp  (n)IIE
holds for any y € U, .

Suppose the previous assumptions hold. If x is sufficiently close x, and the
parameters are appropriately chosen, then tCG terminates only due to the

accurate condition, i.e., ||ri||F < |IrollF min(||ro]|Z, %).
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Suppose the previous Assumptions hold and the parameters are
appropriately chosen. Then there exists a neighborhood of x,, denoted by
Vg, such that if the step size one is used, then the convergence rate is
min(1 +6,2), i.e., |Re(d(x)) = x:]lF < Cupllx — x:|IP" ) holds for any
x € Vg and a constant Cy, > 0.
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A Riemannian proximal Newton-CG method

Suppose the previous Assumptions hold and the parameters are
appropriately chosen. Then there exists a neighborhood of x,, denoted by
Vg, such that if the step size one is used, then the convergence rate is
min(1 +6,2), i.e., |Re(d(x)) = x:]lF < Cupllx — x:|IP" ) holds for any
x € Vg and a constant Cy, > 0.

Is step size one acceptable for x sufficiently close to x,?
That is to make objective function sufficiently descent.
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A Riemannian proximal Newton-CG method

Suppose the previous Assumptions hold and the parameters are
appropriately chosen. Then there exists a neighborhood of x,, denoted by
Vg, such that if the step size one is used, then the convergence rate is
min(1 +6,2), i.e., |Re(d(x)) = x:]lF < Cupllx — x:|IP" ) holds for any
x € Vg and a constant Cy, > 0.

Is step size one acceptable for x sufficiently close to x,?
That is to make objective function sufficiently descent.

@ For smooth Riemannian optimization problem, step size one is
acceptable eventually for Riemannian Newton method;

@ For Euclidean nonsmooth optimization problem F = f 4 g, step size
one is also acceptable eventually for proximal Newton method [LSS14];
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Example
o Consider F:R?2 = R : (x1, %) = xF —3x1 + 14+ 3 + |x1| + |x
——

f(x) g(x)

’

The unique minimizer: x, = (1,0)7;

x = (1+¢,0)7 with |e| being arbitrarily small;

Proximal Newton direction: u(x) = —(¢,0)7;

@ Retraction: R: TM > M :ny— x+ 1+ (277977 );

R(u(x)) = (1,2¢%)7;
F(Re(u(x))) — F(x) = 4¢* + €2 > 0;
Step size one is not acceptable for any € > 0;
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A Riemannian proximal Newton-CG method

Example
o Consider F:R?2 = R : (x1,x2)" = x¥ —3x1 + 143 + |xa| + [xal;
—_————
f(x) g(x)
o The unique minimizer: x, = (1,0)7;
o x = (1+4¢,0)7 with |¢| being arbitrarily small;
@ Proximal Newton direction: u(x) = —(¢,0)7;

@ Retraction: R: TM > M :ny— x+ 1+ (277977 );

R(u(x)) = (1,2¢%)7;
F(Re(u(x))) — F(x) = 4¢* + €2 > 0;
Step size one is not acceptable for any € > 0;

The answer is negative for nonsmooth Riemannian problems.

Difficulty comes from the nonsmoothness and the curvature.
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Two consecutive iterations near x, guarantee sufficient descent.

Theorem

Suppose that the previous Assumptions hold and that there exists a
neighborhood of x,, denoted by Vo, such that for any x € Vg, it holds
that || R(d(x)) — x|lF < Cupllx — x«||Z for a ¢ > /2 and

R« (d(x)) € Vy. Then there exists a neighborhood of x., denoted by V1o,
and a constant p; > 0 such that for any x € Vg, it holds that

F(xi+) < F(x) = prllv(x)|I7,

where xy = R (d(x)) and x4+ = Ry, (d(x3)).

Speaker: Wen Huang A Riemannian Proximal Newton-CG Method



A Riemannian proximal Newton-CG method

Two consecutive iterations near x, guarantee sufficient descent.

Theorem

Suppose that the previous Assumptions hold and that there exists a
neighborhood of x,, denoted by Vo, such that for any x € Vg, it holds
that || R(d(x)) — x|lF < Cupllx — x«||Z for a ¢ > /2 and

R« (d(x)) € Vy. Then there exists a neighborhood of x., denoted by V1o,
and a constant p; > 0 such that for any x € Vg, it holds that

F(xi+) < F(x) = prllv(x)|I7,

where xy = R (d(x)) and x4+ = Ry, (d(x3)).

The global convergence result becomes: liminf,_, ., ||v(xk)||F = 0.
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A new interpretation of RPN

Lemma

Suppose the previous Assumptions hold. Then there exists a neighborhood
of x,, denoted by Vs, such that

1
u(x)= argmin G (u) = Z(u,Bu) + V) Tu+plx+ullp (1)
UET, M, a=0(x) 2

holds for any x € Vs.

o First, find the ManPG search direction v(x);
@ Fixed the entries that corresponds to the zero of x + v;
@ Solve (1) for u(x);
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A new interpretation of RPN

Lemma

Suppose the previous Assumptions hold. Then there exists a neighborhood
of x,, denoted by Vs, such that

1
u(x)= argmin G (u) = Z(u,Bu) + V) Tu+plx+ulls (1)
UET, M, a=0(x) 2

holds for any x € Vs.

4

@ Mg,y submanifold of the intersection of M and the sparse constraints;
° %)((11) is the Riemannian Hessian at x with respect to Mg;

@ u(x) is the Riemannian Newton direction on Mgyp;
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@ Proximal gradient method and its variants;

A Riemannian proximal Newton method;
@ A Riemannian proximal Newton-CG method;

@ Numerical experiments;
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Numerical Experiments
Sparse PCA

Sparse PCA problem

min —trace(XT AT AX) + u||X||1,
XeSt(p,n)

where A € R™*" is a data matrix and
St(p,n) = {X € R™P | XTX = I,} is the compact Stiefel manifold.
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Numerical Experiments
Sparse PCA

Table: An average result of 20 random runs for random data. Multiple values of n,
p, and j are used. The subscript k indicates a scale of 10%.

(n, p, 1) Algo iter Fval  ||v(xk)||r time sparsity
(400, 8,0.8)| ManPG |3416.15 —2.16; 3.66_g 2.69 0.63
(400, 8, 0.8) | ManPG-Ada | 1281.55 —2.16; 1.06_30 1.21 0.63
(400, 8,0.8)| ManPQN |1260.40 —2.16; 9.83_1; 0.72 0.63
(400, 8,0.8)| RPN-CG | 204.85 —2.16; 1.16_;; 0.37 0.63
(800, 8,0.8)| ManPG |4232.80 —5.92; 1.84_; 3.56 0.48
(800, 8, 0.8) | ManPG-Ada | 1867.05 —5.92; 2.57_3, 1.80 0.48
(800, 8, 0.8) | ManPQN |1883.80 —5.92; 1.22_;, 143 0.48
(800, 8,0.8)| RPN-CG | 21505 —5.92; 1.07_;; 0.60 0.48
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Numerical Experiments
Sparse PCA

Table: An average result of 20 random runs for random data. Multiple values of n,
p, and j are used. The subscript k indicates a scale of 10%.

(n, p, 1) Algo iter Fval  ||v(xk)||r time sparsity
(400, 8,0.8)| ManPG |3416.15 —2.16; 3.66_g 2.69 0.63
(400, 8, 0.8) | ManPG-Ada | 1281.55 —2.16; 1.06_30 1.21 0.63
(400, 8,0.8)| ManPQN |1260.40 —2.16; 9.83_1; 0.72 0.63
(400, 8,0.8)| RPN-CG | 204.85 —2.16; 1.16_;; 0.37 0.63
(800, 8,0.8)| ManPG |4232.80 —5.92; 1.84_; 3.56 0.48
(800, 8, 0.8) | ManPG-Ada | 1867.05 —5.92; 2.57_3, 1.80 0.48
(800, 8, 0.8) | ManPQN |1883.80 —5.92; 1.22_;, 143 0.48
(800, 8,0.8)| RPN-CG | 21505 —5.92; 1.07_;; 0.60 0.48

@ Proximal gradient on Stiefel manifold: ManPG, ManPG-Ada [CMSZ20];
@ Proximal quasi-Newton on Stiefel manifold: ManPQN [WY23];
@ The proposed method: RPN-CG;
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Numerical Experiments
Sparse PCA

Table: An average result of 20 random runs for random data. Multiple values of n,
p, and j are used. The subscript k indicates a scale of 10%.

(n, p, 1) Algo iter Fval  ||v(xk)||r time sparsity
(400, 8,0.8)| ManPG |3416.15 —2.16; 3.66_g 2.69 0.63
(400, 8, 0.8) | ManPG-Ada | 1281.55 —2.16; 1.06_30 1.21 0.63
(400, 8,0.8)| ManPQN |1260.40 —2.16; 9.83_1; 0.72 0.63
(400, 8,0.8)| RPN-CG | 204.85 —2.16; 1.16_;; 0.37 0.63
(800, 8,0.8)| ManPG |4232.80 —5.92; 1.84_; 3.56 0.48
(800, 8, 0.8) | ManPG-Ada | 1867.05 —5.92; 2.57_3, 1.80 0.48
(800, 8, 0.8) | ManPQN |1883.80 —5.92; 1.22_;, 143 0.48
(800, 8,0.8)| RPN-CG | 21505 —5.92; 1.07_;; 0.60 0.48

e Stop criterion: iter> 5000 or ||v(x)||r < 10710;

@ The entries of A are drawn from the standard normal distribution;
@ Runs that converges to the same minimizer are reported;

@ Support estimation: (x + v(x)); nonzero and |(x);| > ||v(x)]|F;
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Numerical Experiments
Sparse PCA

Table: An average result of 20 random runs for random data. Multiple values of n,
p, and j are used. The subscript k indicates a scale of 10%.

(n, p, 1) Algo iter Fval  ||v(xk)||r time sparsity
(400, 8,0.8)| ManPG |3416.15 —2.16; 3.66_g 2.69 0.63
(400, 8, 0.8) | ManPG-Ada | 1281.55 —2.16; 1.06_30 1.21 0.63
(400, 8,0.8)| ManPQN |1260.40 —2.16; 9.83_1; 0.72 0.63
(400, 8,0.8)| RPN-CG | 204.85 —2.16; 1.16_;; 0.37 0.63
(800, 8,0.8)| ManPG |4232.80 —5.92; 1.84_; 3.56 0.48
(800, 8, 0.8) | ManPG-Ada | 1867.05 —5.92; 2.57_3, 1.80 0.48
(800, 8, 0.8) | ManPQN |1883.80 —5.92; 1.22_;, 143 0.48
(800, 8,0.8)| RPN-CG | 21505 —5.92; 1.07_;; 0.60 0.48

RPN-CG always stops due to ||v||f < 10710
and is the most efficient one.
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Numerical Experiments

Sparse PCA

o)l

n=400,r=12, u=0.8

n=400,r=12, u=0.8

—— ManPG *— ManPG
ManPG-Ada ManPG-Ada

— — ManPQN — — ManPQN

—+— RPN-CG —— RPN-CG

A\
10710 10°10 \
10715 1 1 1 1 10'15 1 1
0 1000 2000 3000 4000 5000 0 2 4
Iter CPU time(s)

Figure: Sparse PCA: plots of ||v(x)|| versus iterations and CPU times
respectively.
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Numerical Experiments
Compressed modes

The compressed modes (CM) problem aims to seek sparse solution of the
independent-particle Schrodinger equation. It can be formulated as

in t XTHX X
L race( )+ wl X1,

where H € R"™" denotes the discretized Schrodinger operator.
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Numerical Experiments
Compressed modes

Table: An average result of 50 random runs for random data. Multiple values of n,
p, and j are used. The subscript k indicates a scale of 10%.

(n, p, ) Algo iter  Fval ||v(x)||r time sparsity
(256, 4,0.1)| ManPG |3000.00 2.49 4.03_5 0.75 0.85
(256, 4, 0.1) | ManPG-Ada | 3000.00 2.49 9.49_; 0.88 0.85
(256, 4, 0.1)| ManPQN |3000.00 2.49 9.06_¢ 122 0.84
(256, 4,0.1)| RPN-CG | 92.54 249 266_9 020 0.86
(512, 4,0.1)| ManPG |3000.00 3.29 3.83_5 0.76 0.86
( )
( )
( )

512, 4, 0.1) | ManPG-Ada | 3000.00 3.29 1.16_, 0.88 0.86
512, 4, 0.1)| ManPQN |3000.00 3.30 1.44_5 298 0.86
512, 4, 0.1 RPN-CG | 147.40 3.29 229_49 0.48 0.88

e Stop criterion: iter> 3000 or ||v(x)||r < 1078;
o Different runs may converge to different points;
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Numerical Experiments
Compressed modes

Table: An average result of 50 random runs for random data. Multiple values of n,
p, and j are used. The subscript k indicates a scale of 10%.

(n, p, ) Algo iter  Fval ||v(x)||r time sparsity
(256, 4,0.1)| ManPG |3000.00 2.49 4.03_5 0.75 0.85
(256, 4, 0.1) | ManPG-Ada | 3000.00 2.49 9.49_; 0.88 0.85
(256, 4, 0.1)| ManPQN |3000.00 2.49 9.06_¢ 122 0.84
(256, 4,0.1)| RPN-CG | 92.54 249 266_9 020 0.86
(512, 4,0.1)| ManPG |3000.00 3.29 3.83_5 0.76 0.86
( )
( )
( )

512, 4, 0.1) | ManPG-Ada | 3000.00 3.29 1.16_, 0.88 0.86
512, 4, 0.1)| ManPQN |3000.00 3.30 1.44_5 298 0.86
512, 4, 0.1 RPN-CG | 147.40 3.29 2.29_9 0.48 0.88

RPN-CG always stops due to ||v|[f < 1078
and is the most efficient one.

None of other methods find a solution with ||v|f < 1078.




Numerical Experiment

Compressed modes

n=256,r=8, u=0.15

o2y N=256,r=8 =015

o)l

—— ManPG —— ManPG
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Figure: CM: plots of ||v(xk)|| versus iterations and CPU times respectively.
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Briefly review Euclidean and Riemannian proximal gradient method
and its variants;

@ Review the existing Riemannian proximal Newton method;

Propose a Riemannian proximal Newton-CG method with global and
local superlinear convergence gauranteed;

@ Numerical experiments show its performance;
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Other types of h(x);
@ General manifold;

@ Riemannian proximal quasi-Newton methods;

Accelerated Riemannian proximal gradient method with theoretical
guaranteed;
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Thank you!
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