
1/44

A Riemannian Proximal Newton-CG Method

Speaker: Wen Huang

Xiamen University

September 21, 2024

Joint work with Wutao Si in University Grenoble Alpes

Matrix Optimization

Speaker: Wen Huang A Riemannian Proximal Newton-CG Method



2/44

Problem Statement

Optimization on Manifolds with Structure:

min
x∈M

F (x) = f (x) + h(x),

M is a finite-dimensional Riemannian manifold;

f is smooth and may be nonconvex; and

h(x) is continuous and convex but may be nonsmooth;

M

R
f

Applications: sparse PCA [ZHT06], compressed modes [OLCO13],
sparse partial least squares regression [CSG+18], sparse inverse
covariance estimation [BESS19], sparse blind deconvolution [ZLK+17],
and clustering [HWGVD22].
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Outline

Proximal gradient method and its variants;

A Riemannian proximal Newton method;

A Riemannian proximal Newton-CG method;

Numerical experiments;

Speaker: Wen Huang A Riemannian Proximal Newton-CG Method
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Proximal Gradient Method and its variants
Euclidean versions

Accelerated versions

Proximal inexact Newton

Proximal quasi-Newton

Optimization with Structure: M = Rn

min
x∈Rn

F (x) = f (x) + h(x),

Given x0,{
dk = arg minp 〈∇f (xk), p〉 + L

2
‖p‖2

F + h(xk + p)
xk+1 = xk + dk .

h = 0: reduce to steepest descent method;

Any limit point is a critical point;

O
(

1
k

)
sublinear convergence rate for convex f

and h;

Linear convergence rate for strongly convex f
and convex h;

Local convergence rate by KL property;

1. The update rule: xk+1 = arg minx〈∇f (xk ), x − xk〉 + L
2 ‖x − xk‖2 + h(x).

Speaker: Wen Huang A Riemannian Proximal Newton-CG Method
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Proximal Gradient Method and its variants
Euclidean versions

Proximal Gradient

Accelerated versions

Proximal inexact Newton

Proximal quasi-Newton

Optimization with Structure: M = Rn

min
x∈Rn

F (x) = f (x) + h(x),

Given x0, let y0 = x0, t0 = 1;
dyk = argminp〈∇f (yk), p〉+ L

2
‖p‖2

F + h(yk + p)
xk+1 = yk + dyk

tk+1 =

√
4t2

k
+1+1

2

yk+1 = xk+1 + tk−1
tk+1

(xk+1 − xk).

A representative one: FISTA [BT09];

Based on the Nesterov momentum technique;

O
(

1
k2

)
sublinear convergence rate for convex f

and h;

[BT09] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183-202, January 2009.

Speaker: Wen Huang A Riemannian Proximal Newton-CG Method
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Proximal Gradient Method and its variants
Euclidean versions

Proximal Gradient

Accelerated versions

Proximal inexact Newton

Proximal quasi-Newton

Optimization with Structure: M = Rn

min
x∈Rn

F (x) = f (x) + h(x),

Given x0;{
dk = argminp〈∇f (xk), p〉+ 1

2
〈p,Hkp〉 + h(xk + p)

xk+1 = xk + tkdk , for a step size tk

Mention Joseph-Newton method

Hk is Hessian or a positive definite
approximation to Hessian [LSS14, MYZZ22];

tk is one for sufficiently large k;

Quadratic/Superlinear convergence rate for
strongly convex f and convex h;

[LLS14] Jason D Lee, Yuekai Sun, and Michael A Saunders. Proximal newton-type methods for
minimizing composite functions. SIAM Journal on Optimization, 24(3):1420-1443, 2014.

[MYZZ22] Boris S Mordukhovich, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A globally
convergent proximal newton-type method in nonsmooth convex optimization. Mathematical
Programming, pages 1-38, 2022.
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dk = argminp〈∇f (xk), p〉+ 1

2
〈p,Hkp〉 + h(xk + p)

xk+1 = xk + tkdk , for a step size tk
Update Hk by a quasi-Newton formula

Dennis-Moré condition =⇒ superlinear
convergence rate for strongly convex f and
convex h [LSS14];

Sublinear without the accuracy assumption on
Hk [ST16];

[LLS14] Jason D Lee, Yuekai Sun, and Michael A Saunders. Proximal newton-type methods for
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Proximal Gradient Method and its variants
Euclidean to Riemannian

Proximal Gradient

Accelerated versions

Proximal inexact Newton

Proximal quasi-Newton

Optimization with Structure:

min
x∈M

F (x) = f (x) + h(x),

Riemannian versions

[CMSZ20], ManPG: Given x0,{
ηk = arg minη∈Txk

M 〈∇f (xk), η〉 + L
2
‖η‖2

F + h(xk + η)

xk+1 = Rxk (αkηk) with an appropriate step size αk ;

[HW21a], RPG: Given x0,
Let `xk (η) = 〈gradf (xk), η〉xk + L

2
‖η‖2

xk + h(Rxk (η));
ηk is a stationary point of `xk and `xk (0) ≥ `k(ηk);
xk+1 = Rxk (ηk);

[CMSZ20]: numerical aspect;

[HW21a]: theoretical aspect;

[CMSZ20] S. Chen, S. Ma, A. Man-Cho So, and T. Zhang. Proximal gradient method for nonsmooth
optimization over the Stiefel manifold. SIAM Journal on Optimization, 30(1):210-239, 2020.

[HW21a] W. Huang and K. Wei. Riemannian proximal gradient methods. Mathematical
Programming, 194, p.371-413, 2022.

Speaker: Wen Huang A Riemannian Proximal Newton-CG Method
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Proximal Gradient Method and its variants
Euclidean to Riemannian

Proximal Gradient

Accelerated versions

Proximal inexact Newton

Proximal quasi-Newton

Optimization with Structure:

min
x∈M

F (x) = f (x) + h(x),

[HW21b], AManPG: Given x0, set y0 = x0
ηyk = argminη 〈∇f (yk), η〉 + L

2
‖η‖2

F + h(yk + η)
xk+1 = Ryk (ηyk )

tk+1 =

√
4t2

k
+1+1

2

yk+1 = Rxk+1

(
1−tk
tk+1

R−1
xk+1

(xk)
)

A representative on in [HW21b], also see [HW21a];

Observe acceleration empirically;

No theoretical guarantee for acceleration;

[HW21b] W. Huang and K. Wei. An extension of fast iterative shrinkage-thresholding algorithm to
Riemannian optimization for sparse principal component analysis. Numerical Linear Algebra with
Applications, p.e2409, 2021.
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Proximal Gradient Method and its variants
Euclidean to Riemannian

Proximal Gradient

Accelerated versions

Proximal inexact Newton

Proximal quasi-Newton

Optimization with Structure:

min
x∈M

F (x) = f (x) + h(x),

[WY23, WY24], ManRQN, ARPQN, ARPN: Given x0
ηk = arg minη∈Txk

M 〈∇f (xk), η〉+
1
2
〈η,Hkη〉 + h(xk + η)

(
or h(Rxk (η))

)
xk+1 = Rxk (ηk)

Hk : an approximation of quasi-Newton update or
Riemannian Hessian;

Local superlinear convergence results: h(Rxk (η));

Only use diagonal Hk and h(xk + η) numerically.

Good theoretical results
but not practical algorithms with a local superlinear convergence rate

[WY23] Q. Wang and W. Yang. Proximal Quasi-Newton Method for Composite Optimization over
the Stiefel Manifold, 95:39, 2023.

[WY24] Q. Wang and W. Yang. An adaptive regularized proximal Newton-type methods for
composite optimization over the Stiefel manifold, Computational Optimization and Applications, 2024

Speaker: Wen Huang A Riemannian Proximal Newton-CG Method
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Outline

Proximal gradient method and its variants;

A Riemannian proximal Newton method;

A Riemannian proximal Newton-CG method;

Numerical experiments;

A practical algorithm with a local superlinear convergence rate

W. Si, P.-A. Absil, W. Huang, R. Jiang, and S. Vary. A Riemannian Proximal Newton Method,
SIAM Journal on Optimization, 34:1, p.654-681, 2024.
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Proximal gradient method and its variants;

A Riemannian proximal Newton method;

A Riemannian proximal Newton-CG method;

Numerical experiments;

Note that this method focuses on:

M is an Riemannian embedded submanifold of a Euclidean space;

h(x) = µ‖x‖1;

W. Si, P.-A. Absil, W. Huang, R. Jiang, and S. Vary. A Riemannian Proximal Newton Method,
SIAM Journal on Optimization, 34:1, p.654-681, 2024.
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A Riemannian proximal Newton method

minx∈M F (x) = f (x) + h(x)

A Riemannian proximal Newton method (RPN)

1 Compute the ManPG direction

v(xk) = argminv∈Txk
M f (xk) + 〈∇f (xk), v〉 + 1

2t ‖v‖
2
F + h(xk + v);

2 Find u(xk) ∈ TxkM by solving
J(xk)[u(xk)] = −v(xk),

where J(xk) = −
[
In−Λxk + tΛxk (∇2f (xk)− Lxk )

]
, Λxk and Lxk are

defined later;

3 xk+1 = Rxk (u(xk));

Speaker: Wen Huang A Riemannian Proximal Newton-CG Method
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In−Λxk + tΛxk (∇2f (xk)− Lxk )

]
, Λxk and Lxk are

defined later;

3 xk+1 = Rxk (u(xk));

1 Step 1: compute a Riemannian proximal gradient direction (ManPG)

2 Step 2: compute the Riemannian proximal Newton direction, where
J(xk) is from a generalized Jacobi of v(xk);

3 Step 3: Update iterate by a retraction;
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A Riemannian proximal Newton method

minx∈M F (x) = f (x) + h(x)

A Riemannian proximal Newton method (RPN)

1 Compute the ManPG direction

v(xk) = argminv∈Txk
M f (xk) + 〈∇f (xk), v〉 + 1

2t ‖v‖
2
F + h(xk + v);

2 Find u(xk) ∈ TxkM by solving
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A Riemannian proximal Newton method
Local superlinear convergence rate

Without loss of generality, we assume that the nonzero entries of x∗ are
in the first part, i.e., x∗ = [x̄T∗ , 0

T ]T . Bx denotes an orthonormal basis of
T⊥x M at x .

Assumption:

1 Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and and B̂x∗ ∈ R(n−j)×d . It

is assumed that j ≥ d and B̄x∗ is full column rank;

2 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that

for any x = [x̄T , x̂T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0.
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A Riemannian proximal Newton method
Local superlinear convergence rate

Theorem

Suppose that x∗ be a local optimal minimizer. Under the above
Assumptions, assume that J(x∗) is nonsingular. Then there exists a
neighborhood U of x∗ on M such that for any x0 ∈ U , RPN Algorithm
generates the sequence {xk} converging superlinearly to x∗.

The convergence rate is improved to quadratically convergence
in [SAH+24a]
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A Riemannian proximal Newton method

Similar to the Riemannian Newton method, this Riemannian proximal
Newton method does not guarantee global convergence;

A hybrid method that merges ManPG with RPN is proposed
in [SAH+24b];

Input: x0 ∈M, t > 0, ε > 0;
1: for k = 0, 1, . . . do
2: Compute a ManPG direction vk ;
3: If ‖vk‖ ≤ ε, then K = k and break;
4: xk+1 = Rxk (αvk) with an appropriate step size;
5: end for
6: for k = K+1, K+2, . . . do
7: Compute uk by solving J(xk)uk = −vk with vk being the ManPG

direction;
8: xk+1 = Rxk (uk);
9: end for

The switching parameter ε is crucial for the performance.
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Outline

Proximal gradient method and its variants;

A Riemannian proximal Newton method;

A Riemannian proximal Newton-CG method;

Numerical experiments;

A practical and robust algorithm with
global convergence and local superlinear convergence guarantee

W. Huang, and W. Si. A Riemannian Proximal Newton-CG Method, arxiv:2405.08365, 2024.
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Outline

Proximal gradient method and its variants;

A Riemannian proximal Newton method;

A Riemannian proximal Newton-CG method;

Numerical experiments;

Also focus on:

M is an Riemannian embedded submanifold of a Euclidean space;

h(x) = µ‖x‖1;

W. Huang, and W. Si. A Riemannian Proximal Newton-CG Method, arxiv:2405.08365, 2024.
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A Riemannian proximal Newton-CG method

A Riemannian proximal Newton method (RPN)

1 Compute the ManPG direction

v(xk) = argminv∈Txk
M f (xk) + 〈∇f (xk), v〉 + 1

2t ‖v‖
2
F + h(xk + v);

2 Find u(xk) ∈ TxkM by solving
J(xk)[u(xk)] = −v(xk);

3 xk+1 = Rxk (u(xk));

Smooth case:

v(xk) = −t grad f (xk);

J(xk) = −t Hess f (xk);

J(xk)[u(xk)] = −v(xk) =⇒
Hess f (xk)[u(xk)] = − grad f (xk)︸ ︷︷ ︸

truncated conjugate gradient (tCG)

.

Nonsmooth case:

v(xk): ManPG direction;

J(xk): Generalized Jacobi of v ;

u(xk): solving a linear system by
J(xk)[u(xk)] = −v(xk)︸ ︷︷ ︸

tCG?

Problem: J(xk) is not symmetric!

Speaker: Wen Huang A Riemannian Proximal Newton-CG Method
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A Riemannian proximal Newton-CG method

Notation:

Bxk = ∇2f (xk)− Lxk =

(
B

(11)
xk B

(12)
xk

B
(21)
xk B

(22)
xk

)
,Bxk = B(11)

xk .

J(xk) = −
(
B̄xk B̄

†
xk + t(Ijk − B̄xk B̄

†
xk )Bxk t(Ijk − B̄xk B̄

†
xk )B

(12)
xk

0(n−jk )×jk In−jk

)

{
[B̄xk B̄

†
xk + t(Ijk − B̄xk B̄

†
xk )Bxk ]ū(xk) = v̄(xk)− t(Ijk − B̄xk B̄

†
xk )B

(12)
xk û(xk)

û(xk) = v̂(xk)
.

=⇒ ū(xk) = v̄(xk)− {Ijk + (Ijk − B̄xk B̄
†
xk )Nxk}−1(Ijk − B̄xk B̄

†
xk )`xk

where `xk = 1
tk

(−Ijk + tkBxk )v̄(xk) + B
(12)
xk v̂(xk) and Nxk = −Ijk + tBxk is

symmetric.
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A Riemannian proximal Newton-CG method

ū(xk) = v̄(xk)− {Ijk + (Ijk − B̄xk B̄
†
xk ) Nxk︸︷︷︸

symmetric

}−1(Ijk − B̄xk B̄
†
xk )`xk

Lemma

Let N ∈ Rj×j and B ∈ Rj×m with m ≤ j . Suppose that Ij + N is symmetric
positive definite on {w | BTw = 0} and that B is full column rank. Then it
holds that the unique solution of the problem

min
BTw=0

`Tw +
1

2
wT (Ij + N)w

is given by

w∗ = −
[
Ij + (Ij − BB†)N

]−1 [
Ij − BB†

]
`.

tCG can be used for the computation of w(xk).
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A Riemannian proximal Newton-CG method
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Corollary

Suppose B̄xk has full column rank, Bxk is symmetric positive definite on
{w | BTw = 0}. Then the proximal Newton equation
J(xk)[u(xk)] = −v(xk) can be computed by

u(xk) =

(
v̄(xk) + w(xk)

v̂(xk)

)
,

where w(xk) = argminB̄T
xk
w=0 `

T
xkw + 1

2w
TBxkw .

tCG can be used for the computation of w(xk).
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A Riemannian proximal Newton-CG method

A Riemannian proximal Newton method (RPN)

1 v(xk) = argminv∈Txk
M f (xk) + 〈∇f (xk), v〉 + 1

2t ‖v‖
2
F + h(xk + v);

2 d(xk) =

(
d̄(xk)

d̂(xk)

)
=

(
v̄(xk) + w(xk)

v̂(xk)

)
, where w(xk) is an output of

tCG for solving minB̄T
xk
w=0 〈`xk ,w〉 + 1

2 〈w ,Bxkw〉.
3 xk+1 = Rxk (αkd(xk)) with an appropriate step size αk ;

Question:

Is Bxk symmetric positive definite near a local minimizer x∗?

What is the early termination conditions for tCG?

Guarantee global convergence;
Guarantee local superlinear convergence;
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A Riemannian proximal Newton-CG method

Is Bxk symmetric positive definite near x∗?

Assumption:

1 The function f is twice continuously differentiable with a Lipschitz
continuous Euclidean Hessian;

2 Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank;

3 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that for

any x = [x̄T , x̃T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0;

4 The linear operator Bx∗ is positive definite on the subspace
Lx∗ = {w | B̄T

x∗w = 0}.
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A Riemannian proximal Newton-CG method

Is Bxk symmetric positive definite near x∗?

Assumption:

1 The function f is twice continuously differentiable with a Lipschitz
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2 Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank;

3 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that for

any x = [x̄T , x̃T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0;

4 The linear operator Bx∗ is positive definite on the subspace
Lx∗ = {w | B̄T

x∗w = 0}.

Under the second assumption, the intersection of the manifold and the
sparsity constraints forms an embedded submanifold around x∗;

Bx∗ is the Riemannian Hessian of F at x∗ for the submanifold;

Bx∗ is symmetric positive semidefinite on Lx∗ ;
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A Riemannian proximal Newton-CG method

Is Bxk symmetric positive definite near x∗?

Assumption:

1 The function f is twice continuously differentiable with a Lipschitz
continuous Euclidean Hessian;

2 Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank;

3 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that for

any x = [x̄T , x̃T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0;

4 The linear operator Bx∗ is positive definite on the subspace
Lx∗ = {w | B̄T

x∗w = 0}.

Lemma

Suppose the above Assumption holds. Then there exists a neighborhood of
x∗, denoted by V2, and a positive constant χε such that the smallest
eigenvalue of Bx on Lx is greater than χε for all x ∈ V2. This implies Bx is
positive definite on Lx for all x ∈ V2.
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A Riemannian proximal Newton-CG method

Early termination conditions in tCG

tCG step

2 d(xk) =

(
d̄(xk)

d̂(xk)

)
=

(
v̄(xk) + w(xk)

v̂(xk)

)
, where w(xk) is an output of

tCG for solving minB̄T
xk
w=0 〈`xk ,w〉 + 1

2 〈w ,Bxkw〉.

Difficulty
Smooth:

approximately min
d∈Txk

M
〈grad f (xk), d〉 +

1

2
〈Hess f (xk)[d ], d〉,

find d(xk) such that 〈d(xk), grad f (xk)〉 < 0;

Nonsmooth:

approximately min
B̄T
xk
w=0
〈`xk ,w〉 +

1

2
〈w ,Bxkw〉,

find w(xk) such that d(xk) is a descent direction;

The early termination conditions for the smooth case are not sufficient.
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A Riemannian proximal Newton-CG method

Early termination conditions in tCG

Algorithm: Truncated conjugate gradient (tCG)

Input: ϑ > 0, γ > 0, τ > 0, θ > 0, and κ ∈ (0, 1);
Output: (w(x), status);

1: if Gx(v(x)) > Gx(0) then

2: return w(x) = 0 and status =′ early1′;
3: end if
4: z = Bv(x);
5: if 〈v(x), z〉 + τ‖v̂(x)‖2

F < γ‖v(x)‖2
F then

6: return w(x) = 0 and status =′ early2′;
7: end if
8: w0 = 0, r0 = Px(`x), o0 = −r0, δ0 = 〈r0, r0〉, t0 = z ;
9: ...... (CG iterations)

Omit subscript k for simplicity
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A Riemannian proximal Newton-CG method

Early termination conditions in tCG

Algorithm: Truncated conjugate gradient (tCG)

Input: ϑ > 0, γ > 0, τ > 0, θ > 0, and κ ∈ (0, 1);
Output: (w(x), status);

1: if Gx(v(x)) > Gx(0) then

2: return w(x) = 0 and status =′ early1′;
3: end if
4: z = Bv(x);
5: if 〈v(x), z〉 + τ‖v̂(x)‖2

F < γ‖v(x)‖2
F then

6: return w(x) = 0 and status =′ early2′;
7: end if
8: w0 = 0, r0 = Px(`x), o0 = −r0, δ0 = 〈r0, r0〉, t0 = z ;
9: ...... (CG iterations)

Gx(u) = f (x) + 〈∇f (x), u〉 + 1
2 〈u,Bxu〉 + τ

2 ‖û(x)‖2
F + h(x + u);

Use to guarantee global convergence;
τ
2 ‖û(x)‖2

F is added for the condition in Step 5;
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A Riemannian proximal Newton-CG method

Early termination conditions in tCG

Algorithm: Truncated conjugate gradient (tCG)

Input: ϑ > 0, γ > 0, τ > 0, θ > 0, and κ ∈ (0, 1);
Output: (w(x), status);

1: if Gx(v(x)) > Gx(0) then

2: return w(x) = 0 and status =′ early1′;
3: end if
4: z = Bv(x);
5: if 〈v(x), z〉 + τ‖v̂(x)‖2

F < γ‖v(x)‖2
F then

6: return w(x) = 0 and status =′ early2′;
7: end if
8: w0 = 0, r0 = Px(`x), o0 = −r0, δ0 = 〈r0, r0〉, t0 = z ;
9: ...... (CG iterations)

Use to guarantee global convergence;

τ‖v̂(x)‖2
F is used since Bx � 0 may not hold;
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A Riemannian proximal Newton-CG method

Early termination conditions in tCG

Algorithm: Truncated conjugate gradient (tCG)

Input: ϑ > 0, γ > 0, τ > 0, θ > 0, and κ ∈ (0, 1);
Output: (w(x), status);

1: ...... (See the previous slide)
2: w0 = 0, r0 = Px(`x), o0 = −r0, δ0 = 〈r0, r0〉, t0 = z ;
3: for i = 0, 1, . . . do
4: pi = Boi and qi = Px(pi );
5: if 〈oi , qi 〉 ≤ ϑδi then
6: return w(x) = wi and status =′ neg ′;
7: end if
8: ...... (Remaining CG iterations)
9: end for

An existing early termination condition
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A Riemannian proximal Newton-CG method

Early termination conditions in tCG

Algorithm: Truncated conjugate gradient (tCG)

Input: ϑ > 0, γ > 0, τ > 0, θ > 0, and κ ∈ (0, 1);
Output: (w(x), status);

1: ...... (See previous slides)
2: for i = 0, 1, . . . do
3: ...... (See previous slides)

4: αi = 〈ri ,ri 〉
〈oi ,qi 〉 ; wi+1 = wi + αioi ; ri+1 = ri + αiqi ;

5: di+1 =

(
v̄(x) + wi+1

v̂(x)

)
, ti+1 = ti + αi

(
pi

B21oi

)
;

6: if 〈di+1, ti+1〉 + τ‖v̂(x)‖2
F < γ‖di+1‖2

F or Gx (di+1) > Gx(0) then
7: return w(x) = wi and status =′ early3′;
8: end if
9: ...... (Remaining CG iterations)

10: end for

Use to guarantee global convergence
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A Riemannian proximal Newton-CG method

Early termination conditions in tCG

Algorithm: Truncated conjugate gradient (tCG)

Input: ϑ > 0, γ > 0, τ > 0, θ > 0, and κ ∈ (0, 1);
Output: (w(x), status);

1: ...... (See previous slides)
2: for i = 0, 1, . . . do
3: ...... (See previous slides)

4: βi+1 = 〈ri+1,ri+1〉
〈ri ,ri 〉 ; oi+1 = −ri+1 + βi+1oi ;

5: δi+1 = 〈ri+1, ri+1〉 + β2
i+1δi ; (Note that δi+1 = 〈oi+1, oi+1〉)

6: i = i + 1;
7: if ‖ri‖F ≤ ‖r0‖F min(‖r0‖θF , κ) then

8: return w(x) = wi , and status =′ lin′ if ‖r0‖θF > κ and
status =′ sup′ otherwise;

9: end if
10: end for

An existing early termination condition
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A Riemannian proximal Newton-CG method

Assumption:

1 The function f is twice continuously differentiable with a Lipschitz
continuous gradient;

Theorem

Suppose the above Assumption holds and the parameters are
appropriately chosen. Then it holds that

lim
k→∞

‖v(xk)‖F = 0.
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A Riemannian proximal Newton-CG method

Assumption:

1 The function f is twice continuously differentiable with a Lipschitz
continuous Euclidean Hessian;

2 Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank;

3 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that for

any x = [x̄T , x̃T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0;

4 The function F is ς-geodesically strongly convex at x∗, i.e., there exists
a neighborhood Ũx∗ of x∗ in M such that

F (y) ≥ F (x∗) +
ς

2
‖Exp−1

x∗ (y)‖2
F

holds for any y ∈ Ũx∗ .
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A Riemannian proximal Newton-CG method

Assumption:

1 The function f is twice continuously differentiable with a Lipschitz
continuous Euclidean Hessian;

2 Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank;

3 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that for

any x = [x̄T , x̃T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0;

4 The function F is ς-geodesically strongly convex at x∗, i.e., there exists
a neighborhood Ũx∗ of x∗ in M such that

F (y) ≥ F (x∗) +
ς

2
‖Exp−1

x∗ (y)‖2
F

holds for any y ∈ Ũx∗ .

Lemma

Suppose the last Assumption holds, that is, the function F = f + h is
ς-geodesically strongly convex at x∗. Then the linear operator Bx∗ is
positive definite on Lx∗ .
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A Riemannian proximal Newton-CG method

Assumption:

1 The function f is twice continuously differentiable with a Lipschitz
continuous Euclidean Hessian;

2 Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank;

3 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that for

any x = [x̄T , x̃T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0;

4 The function F is ς-geodesically strongly convex at x∗, i.e., there exists
a neighborhood Ũx∗ of x∗ in M such that

F (y) ≥ F (x∗) +
ς

2
‖Exp−1

x∗ (y)‖2
F

holds for any y ∈ Ũx∗ .

Theorem

Suppose the previous assumptions hold. If x is sufficiently close x∗ and the
parameters are appropriately chosen, then tCG terminates only due to the
accurate condition, i.e., ‖ri‖F ≤ ‖r0‖F min(‖r0‖θF , κ).
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A Riemannian proximal Newton-CG method

Theorem

Suppose the previous Assumptions hold and the parameters are
appropriately chosen. Then there exists a neighborhood of x∗, denoted by
V8, such that if the step size one is used, then the convergence rate is

min(1 + θ, 2), i.e., ‖Rx(d(x))− x∗‖F ≤ Cup‖x − x∗‖min(1+θ,2)
F holds for any

x ∈ V8 and a constant Cup > 0.
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Suppose the previous Assumptions hold and the parameters are
appropriately chosen. Then there exists a neighborhood of x∗, denoted by
V8, such that if the step size one is used, then the convergence rate is

min(1 + θ, 2), i.e., ‖Rx(d(x))− x∗‖F ≤ Cup‖x − x∗‖min(1+θ,2)
F holds for any

x ∈ V8 and a constant Cup > 0.

Is step size one acceptable for x sufficiently close to x∗?

That is to make objective function sufficiently descent.
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A Riemannian proximal Newton-CG method

Theorem

Suppose the previous Assumptions hold and the parameters are
appropriately chosen. Then there exists a neighborhood of x∗, denoted by
V8, such that if the step size one is used, then the convergence rate is

min(1 + θ, 2), i.e., ‖Rx(d(x))− x∗‖F ≤ Cup‖x − x∗‖min(1+θ,2)
F holds for any

x ∈ V8 and a constant Cup > 0.

Is step size one acceptable for x sufficiently close to x∗?

That is to make objective function sufficiently descent.

For smooth Riemannian optimization problem, step size one is
acceptable eventually for Riemannian Newton method;

For Euclidean nonsmooth optimization problem F = f + g , step size
one is also acceptable eventually for proximal Newton method [LSS14];
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A Riemannian proximal Newton-CG method

Example
Consider F : R2 → R : (x1, x2)T 7→ x2

1 − 3x1 + 1 + x2
2︸ ︷︷ ︸

f (x)

+ |x1|+ |x2|︸ ︷︷ ︸
g(x)

;

The unique minimizer: x∗ = (1, 0)T ;

x = (1 + ε, 0)T with |ε| being arbitrarily small;

Proximal Newton direction: u(x) = −(ε, 0)T ;

Retraction: R : TM→M : ηx 7→ x + ηx +

(
0

2ηTx ηx

)
;

R(u(x)) = (1, 2ε2)T ;

F (Rx(u(x)))− F (x) = 4ε4 + ε2 > 0;

Step size one is not acceptable for any ε > 0;

The answer is negative for nonsmooth Riemannian problems.

Difficulty comes from the nonsmoothness and the curvature.
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A Riemannian proximal Newton-CG method

Two consecutive iterations near x∗ guarantee sufficient descent.

Theorem

Suppose that the previous Assumptions hold and that there exists a
neighborhood of x∗, denoted by V9, such that for any x ∈ V9, it holds
that ‖Rx(d(x))− x∗‖F ≤ Cup‖x − x∗‖κF for a κ >

√
2 and

Rx(d(x)) ∈ V9. Then there exists a neighborhood of x∗, denoted by V10,
and a constant ρ1 > 0 such that for any x ∈ V10, it holds that

F (x++) ≤ F (x)− ρ1‖v(x)‖2
F ,

where x+ = Rx(d(x)) and x++ = Rx+ (d(x+)).

The global convergence result becomes: lim infk→∞ ‖v(xk)‖F = 0.
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A Riemannian proximal Newton-CG method

A new interpretation of RPN

Lemma

Suppose the previous Assumptions hold. Then there exists a neighborhood
of x∗, denoted by V5, such that

u(x) = argmin
u∈TxM,û=v̂(x)

Gx(u) =
1

2
〈u,Bxu〉 +∇f (x)Tu + µ‖x + u‖1 (1)

holds for any x ∈ V5.

First, find the ManPG search direction v(x);

Fixed the entries that corresponds to the zero of x + v ;

Solve (1) for u(x);

Msub: submanifold of the intersection ofM and the sparse constraints;

B
(11)
x is the Riemannian Hessian at x with respect to Msub;

u(x) is the Riemannian Newton direction on Msub;
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Outline

Proximal gradient method and its variants;

A Riemannian proximal Newton method;

A Riemannian proximal Newton-CG method;

Numerical experiments;
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Numerical Experiments
Sparse PCA

Sparse PCA problem

min
X∈St(p,n)

− trace(XTATAX ) + µ‖X‖1,

where A ∈ Rm×n is a data matrix and
St(p, n) = {X ∈ Rn×p | XTX = Ip} is the compact Stiefel manifold.
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Numerical Experiments
Sparse PCA

Table: An average result of 20 random runs for random data. Multiple values of n,
p, and µ are used. The subscript k indicates a scale of 10k .

(n, p, µ) Algo iter Fval ‖v(xk)‖F time sparsity
(400, 8, 0.8) ManPG 3416.15 −2.161 3.66−9 2.69 0.63
(400, 8, 0.8) ManPG-Ada 1281.55 −2.161 1.06−10 1.21 0.63
(400, 8, 0.8) ManPQN 1260.40 −2.161 9.83−11 0.72 0.63
(400, 8, 0.8) RPN-CG 204.85 −2.161 1.16−11 0.37 0.63
(800, 8, 0.8) ManPG 4232.80 −5.921 1.84−7 3.56 0.48
(800, 8, 0.8) ManPG-Ada 1867.05 −5.921 2.57−10 1.80 0.48
(800, 8, 0.8) ManPQN 1883.80 −5.921 1.22−10 1.43 0.48
(800, 8, 0.8) RPN-CG 215.05 −5.921 1.07−11 0.60 0.48
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Numerical Experiments
Sparse PCA

Table: An average result of 20 random runs for random data. Multiple values of n,
p, and µ are used. The subscript k indicates a scale of 10k .

(n, p, µ) Algo iter Fval ‖v(xk)‖F time sparsity
(400, 8, 0.8) ManPG 3416.15 −2.161 3.66−9 2.69 0.63
(400, 8, 0.8) ManPG-Ada 1281.55 −2.161 1.06−10 1.21 0.63
(400, 8, 0.8) ManPQN 1260.40 −2.161 9.83−11 0.72 0.63
(400, 8, 0.8) RPN-CG 204.85 −2.161 1.16−11 0.37 0.63
(800, 8, 0.8) ManPG 4232.80 −5.921 1.84−7 3.56 0.48
(800, 8, 0.8) ManPG-Ada 1867.05 −5.921 2.57−10 1.80 0.48
(800, 8, 0.8) ManPQN 1883.80 −5.921 1.22−10 1.43 0.48
(800, 8, 0.8) RPN-CG 215.05 −5.921 1.07−11 0.60 0.48

Proximal gradient on Stiefel manifold: ManPG, ManPG-Ada [CMSZ20];

Proximal quasi-Newton on Stiefel manifold: ManPQN [WY23];

The proposed method: RPN-CG;
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Numerical Experiments
Sparse PCA

Table: An average result of 20 random runs for random data. Multiple values of n,
p, and µ are used. The subscript k indicates a scale of 10k .

(n, p, µ) Algo iter Fval ‖v(xk)‖F time sparsity
(400, 8, 0.8) ManPG 3416.15 −2.161 3.66−9 2.69 0.63
(400, 8, 0.8) ManPG-Ada 1281.55 −2.161 1.06−10 1.21 0.63
(400, 8, 0.8) ManPQN 1260.40 −2.161 9.83−11 0.72 0.63
(400, 8, 0.8) RPN-CG 204.85 −2.161 1.16−11 0.37 0.63
(800, 8, 0.8) ManPG 4232.80 −5.921 1.84−7 3.56 0.48
(800, 8, 0.8) ManPG-Ada 1867.05 −5.921 2.57−10 1.80 0.48
(800, 8, 0.8) ManPQN 1883.80 −5.921 1.22−10 1.43 0.48
(800, 8, 0.8) RPN-CG 215.05 −5.921 1.07−11 0.60 0.48

Stop criterion: iter≥ 5000 or ‖v(x)‖F ≤ 10−10;

The entries of A are drawn from the standard normal distribution;

Runs that converges to the same minimizer are reported;

Support estimation: (x + v(x))i nonzero and |(x)i | ≥ ‖v(x)‖F ;
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Numerical Experiments
Sparse PCA

Table: An average result of 20 random runs for random data. Multiple values of n,
p, and µ are used. The subscript k indicates a scale of 10k .

(n, p, µ) Algo iter Fval ‖v(xk)‖F time sparsity
(400, 8, 0.8) ManPG 3416.15 −2.161 3.66−9 2.69 0.63
(400, 8, 0.8) ManPG-Ada 1281.55 −2.161 1.06−10 1.21 0.63
(400, 8, 0.8) ManPQN 1260.40 −2.161 9.83−11 0.72 0.63
(400, 8, 0.8) RPN-CG 204.85 −2.161 1.16−11 0.37 0.63
(800, 8, 0.8) ManPG 4232.80 −5.921 1.84−7 3.56 0.48
(800, 8, 0.8) ManPG-Ada 1867.05 −5.921 2.57−10 1.80 0.48
(800, 8, 0.8) ManPQN 1883.80 −5.921 1.22−10 1.43 0.48
(800, 8, 0.8) RPN-CG 215.05 −5.921 1.07−11 0.60 0.48

RPN-CG always stops due to ‖v‖F ≤ 10−10

and is the most efficient one.
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Numerical Experiments
Sparse PCA
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Figure: Sparse PCA: plots of ‖v(xk)‖ versus iterations and CPU times
respectively.
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Numerical Experiments
Compressed modes

The compressed modes (CM) problem aims to seek sparse solution of the
independent-particle Schrödinger equation. It can be formulated as

min
X∈St(p,n)

trace(XTHX ) + µ‖X‖1,

where H ∈ Rn×n denotes the discretized Schrödinger operator.
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Numerical Experiments
Compressed modes

Table: An average result of 50 random runs for random data. Multiple values of n,
p, and µ are used. The subscript k indicates a scale of 10k .

(n, p, µ) Algo iter Fval ‖v(xk)‖F time sparsity
(256, 4, 0.1) ManPG 3000.00 2.49 4.03−5 0.75 0.85
(256, 4, 0.1) ManPG-Ada 3000.00 2.49 9.49−5 0.88 0.85
(256, 4, 0.1) ManPQN 3000.00 2.49 9.06−6 1.22 0.84
(256, 4, 0.1) RPN-CG 92.54 2.49 2.66−9 0.20 0.86
(512, 4, 0.1) ManPG 3000.00 3.29 3.83−5 0.76 0.86
(512, 4, 0.1) ManPG-Ada 3000.00 3.29 1.16−4 0.88 0.86
(512, 4, 0.1) ManPQN 3000.00 3.30 1.44−6 2.98 0.86
(512, 4, 0.1) RPN-CG 147.40 3.29 2.29−9 0.48 0.88

Stop criterion: iter≥ 3000 or ‖v(x)‖F ≤ 10−8;

Different runs may converge to different points;
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Numerical Experiments
Compressed modes

Table: An average result of 50 random runs for random data. Multiple values of n,
p, and µ are used. The subscript k indicates a scale of 10k .

(n, p, µ) Algo iter Fval ‖v(xk)‖F time sparsity
(256, 4, 0.1) ManPG 3000.00 2.49 4.03−5 0.75 0.85
(256, 4, 0.1) ManPG-Ada 3000.00 2.49 9.49−5 0.88 0.85
(256, 4, 0.1) ManPQN 3000.00 2.49 9.06−6 1.22 0.84
(256, 4, 0.1) RPN-CG 92.54 2.49 2.66−9 0.20 0.86
(512, 4, 0.1) ManPG 3000.00 3.29 3.83−5 0.76 0.86
(512, 4, 0.1) ManPG-Ada 3000.00 3.29 1.16−4 0.88 0.86
(512, 4, 0.1) ManPQN 3000.00 3.30 1.44−6 2.98 0.86
(512, 4, 0.1) RPN-CG 147.40 3.29 2.29−9 0.48 0.88

RPN-CG always stops due to ‖v‖F ≤ 10−8

and is the most efficient one.

None of other methods find a solution with ‖v‖F ≤ 10−8.
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Numerical Experiments
Compressed modes
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Figure: CM: plots of ‖v(xk)‖ versus iterations and CPU times respectively.
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Summary

Briefly review Euclidean and Riemannian proximal gradient method
and its variants;

Review the existing Riemannian proximal Newton method;

Propose a Riemannian proximal Newton-CG method with global and
local superlinear convergence gauranteed;

Numerical experiments show its performance;
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Future work

Other types of h(x);

General manifold;

Riemannian proximal quasi-Newton methods;

Accelerated Riemannian proximal gradient method with theoretical
guaranteed;
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Thank you

Thank you!
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